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Abstract
Biopharma drug discovery requires a set of approaches to find, produce, and test the safety of
drugs for clinical application. A crucial part involves image-based screening of cell culture mod-
els where single cells are stained with appropriate markers to visually distinguish between disease
and healthy states. In practice, such image-based screening experiments are frequently performed
using highly scalable and automated multichannel microscopy instruments. This automation en-
ables parallel screening against large panels of marketed drugs with known function. However,
the large data volume produced by such instruments hinders a systematic inspection by human ex-
perts, which consequently leads to an extensive and biased data curation process for supervised
phenotypic endpoint classification. To overcome this limitation, we propose a novel approach for
learning an embedding of phenotypic endpoints, without any supervision. We employ the concept
of archetypal analysis, in which pseudo-labels are extracted based on biologically reasonable end-
points. Subsequently, we use a self-supervised triplet network to learn a phenotypic embedding
which is used for visual inspection and top-down assay quality control. Extensive experiments
on two industry-relevant assays demonstrate that our method outperforms state-of-the-art unsuper-
vised and supervised approaches.

1. Introduction

In recent years, there has been tremendous progress in the development of novel drug and treatment
strategies in various disease areas such a vaccines (Polack et al., 2020) or cancer immunotherapies
(Kruger et al., 2019).

One driver here, High-Content Screening, based on automated microscopy and lab automa-
tion has become an important toolbox to mitigate this trend by systematically analyzing the drug
candidates in thousands of cells to develop new treatments. A good high content assay allows to
systematically measure complex phenotypes triggered by application of drug candidates. Therefore,
a primary goal is achieving a highly reliable assay quality which reflects the biological change of
the cells and ensures the selection of relevant drug candidates for further analysis.

To date, the analysis of High-Content Screening assays is performed by handcrafted feature-
based analysis (Caicedo et al., 2017) using classical image analysis software e.g. Cellprofiler (Car-
penter et al., 2006) or deep learning based approaches (Godinez et al., 2017; Steigele et al., 2020;
Dürr et al., 2018). However, all of the aforementioned approaches require labels or other prior
knowledge to conduct the often difficult analysis, biased by the curating scientist designing the
analysis workflows.
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To overcome these limitations, we propose a novel data curation approach for High-Content
Screening without any supervision, where we employ the concept of archetypal analysis (Cutler and
Breiman, 1994) to extract phenotypes in an unsupervised fashion. In contrast to high-dimensional
clustering techniques or principal component analysis, archetypal analysis is grounded on biolog-
ical principles of phenotype discovery (Shoval et al., 2012; Tendler A, 2015). Here the idea is,
that each individual is a convex mixture of pure phenotypes or archetypes - allowing to uncover
the important phenotypes, by employing a triplet network to learn an embedding that group similar
phenotypes/archetypes together. This embedding may subsequently be used for visual inspecting
and as stand-alone, complete top-down analysis including assay quality control.

Our contributions are summarized as follows:

• Extraction of biologically relevant phenotypes in an unsupervised fashion based on archetypal
analysis.

• Learning of an embedding given the extracted phenotypes by employing self-supervised
learning.

• Using industry relevant screening datasets demonstrate that the proposed model even outper-
forms state-of-the-art supervised approaches.

2. Related Work

Archetypal Analysis Archetypal Analysis aims to identify extremal points in a given dataset
(Cutler and Breiman, 1994). As the traditional approach deals merely with static data, Stone and
Cutler (1996) and Cutler and Stone (1997) proposed an extension to deal with time-resolved data.
More recently, Prabhakaran et al. (2012) discovered the open problem of manual model selection
and introduced an approach to automatically select the optimal number of archetypes via group-
lasso constraints. In addition, the classical approach suffers from limited model flexibility as it
assumes linearity, this is why Bauckhage and Manshaei (2014); Mørup and Hansen (2012) intro-
duced a kernel-based archetype approach whereas Keller et al. (2021, 2019) proposed to model
non-linearity with neural networks based on the information bottleneck principle (Tishby et al.,
1999; Alemi et al., 2017; Wieczorek et al., 2018). Moreover, archetypal analysis assumes that the
data is real valued which is not reasonable in many situations. As a consequence, Seth and Eug-
ster (2016) provided a probabilistic formulation of the archetype problem that is able to deal with
different data types. However, this formulation makes strong assumptions on the underlying data
distribution. Hence, Kaufmann et al. (2015) proposed a copula formulation that relaxes these as-
sumptions by only assuming a Gaussian dependency structure with arbitrary margins that is also
able to deal with mixed and missing data.

Metric Learning Quantifying the distance between data samples or feature vectors is a challeng-
ing task for many machine learning algorithms. In certain cases, we employ prior domain knowl-
edge to select a predefined metric that is subsequently used by our algorithm. However, in many
cases it is unreasonable to employ a standard metric for certain tasks and datasets. As a conse-
quence, metric learning attempts to overcome these problems by learning a suitable distance metric
for such specific tasks. More specifically, Hoffer and Ailon (2015) introduced the concept of triplet
networks. This approach selects a positive and a negative example per data point that aims to push
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the negative example far away while simultaneously contracting the positive example to the current
data point. Inspired by the success of the aforementioned approach, Schroff et al. (2015a) applied
these ideas to improve face recognition systems in the context of computer vision. Despite its suc-
cess, current approaches of metric learning have the limitation that they treat negative examples
equally which may lead to suboptimal results. For this reason, Zhou et al. (2020) introduced a lad-
der loss to account for the relevance of the negative examples. In its current form, such approaches
have been shown to be highly powerful for learning class-discriminative distance metrics but to have
limited abilities for learning diverse data characteristics. Milbich et al. (2020) circumvent these lim-
itations by introducing a feature aggregation loss which leads to improved generalization abilities
in metric learning, overall.

Consequently, researchers in High-Content Screening (HCS) have been inspired by the success
of the aforementioned metric learning approaches and applied these concepts to various HCS tasks.
Here, we can distinguish between supervised and unsupervised approaches for HCS tasks: In the
supervised case, metric learning has been used to classify the mechanism of action (MOA) by using
a triplet loss (Ando et al., 2017) instead of applying a supervised classification model. This work
is further been extended by Caicedo et al. (2018) which aimed to classify MOAs using single-cell
feature embeddings that solely rely on weak instead of strong supervision. Moreover, these met-
ric learning approaches have been used to perform automating morphological profiling based on
Generic Deep Convolutional Networks (Pawlowski et al., 2016). In the unsupervised case, Janssens
et al. (2020) transferred to knowledge of unsupervised metric learning to the context of MOA clas-
sification in high-content cellular images by employing a fully unsupervised deep mode of action
learning approach. Concurrent work has been proposed by Lafarge et al. (2019) who also classified
MOAs using an unsupervised metric learning method. Last, Perakis et al. (2021) improved treat-
ment classifications upon supervised approaches by using self-supervised contrastive learning (He
et al., 2020; Chen et al., 2020b) to obtain better representation of single-cell phenotypes.

In contrast to the aforementioned approaches, our work focuses on learning meaningful repre-
sentations for downstream analysis based on archetypal self-supervision.

3. Model

We introduce a three step approach to extract relevant phenotypes in High-Content Screening. In
the first step, we extract pseudo-labels based on archetypal analysis. Subsequently, we learn an
embedding in self-supervised fashion based on the previously extracted pseudo-labels. Afterwards
we perform a top-down analysis of the learned embedding to conduct downstream analysis tasks
e.g. assay quality statistics. For this analysis, we take the features from the embedding layer as
input features.

Learning of Low-Dimensional Feature Map of Cell Images Given input image I , we extract a
feature map F by using a pretrained convolutional neural network c. Specifically, we take the last
flattened layer as feature map F ∈ R1×p where p denotes the number of feature dimensions.

Extract Label Information via Archetypes In this step, we take the previously calculated feature
maps F and perform the archetype-based pseudo-label assignment. As previously described in
Section A.1, archetypal analysis is a method to extract extreme data points from a dataset. To do
so, we build a data matrix X ∈ Rn×p. This matrix consists of n feature maps with p dimensions.
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Figure 1: Self-supervised representation learning approach for High-Content Screening Black
arrows denote steps and gray boxes actions in our workflow, respectively. In the first step
(1.), we extract a low-dimensional feature representation F from an image by employing
a CNN backbone. In the subsequent step (2.), we learn an archetypal representation of
the feature representation F and pseudo-label each data point by assigning it to its closest
archetype. In the third step (3.), we learn a self-supervised embedding based and use this
embedding to perform top-down assay analysis tasks such as quality control (4.).

Our goal to decompose the feature matrix X into the weight matrices A ∈ Rn×k and B ∈ Rk×n

as well as into an archetype matrix Z ∈ Rk×p where k denotes the number of archetypes. Here,
it is particularly important that the rows of A and B are row-stochastic. More intuitively, row-
stochasticity means that the entries of a row sum to one:

aij ≥ 0 ∧
k∑

j=1

aij = 1 bji ≥ 0 ∧
n∑

i=1

bji = 1 (1)

As a result, we are able to represent our data matrix X as a weighted sum of archetypes Z as
well as the archetypes as a weighted sum of the data matrix X .

xi ≈
k∑

j=1

aijzj = aiZ zj =

n∑
i=1

bjixi = bjX (2)

To this end, our problem boils down to learn the correct weight matrices A and B given our
feature matrix X and the predefined number of archetypes k. The central problem of AA is finding
the weight matrices A and B for a given data matrix X and a given number k of archetypes. Hence,
the optimization problem consists in minimizing the following objective function:

min
A,B

∥X−ABX∥2 (3)

After having learned the weight matrices A and B, we take all images I to pseudo-label our data
set for representation learning. Specifically, we take weight matrix A to select the most prominent
archetype as label by employing a softmax function:
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li = argmax(
exp(ai)∑
j exp(aj)

) (4)

This results in a fully labeled data set for each cell image which we subsequently use to create
triplets for the self-supervised representation learning part.

Self-Supervised Representation Learning In this work, we adopt a self-supervised representa-
tion learning approach based on triplet losses to obtain an embedding E (Schroff et al., 2015a).
Here, the main idea is to group similar cells together while pushing dissimilar cells away. Our em-
bedding E is represented by a convolutional neural network g(I) which takes the image I as an
input and maps this image into a d-dimensional latent representation.

As this approach is fully self-supervised, we have to provide the algorithm with image triplets
to learn the representation E. The triplets consist of there different images: an anchor image fa,
a similar (positive) image fp and a completely dissimilar (negative) image fn. As a result, we
optimize the following loss function to obtain the embedding E:

N∑
i=1

[
||fa

i − fp
i ||

2
2 − ||fa

i − fn
i ||22 + α

]
(5)

where α denotes the margin between positive and negative pairs. As we are in an unsupervised
setting, we determine positive and negative images for the triplets by making use of pseudo-labels
obtained by the archetypal analysis from the previous section.

Downstream Analysis To assess the quality of the computed self-supervised embedding, the fea-
tures from the embedding layer for every cell image are extracted. For qualitative evaluation the
extracted features are visualized via t-SNE (Van der Maaten and Hinton, 2008). For quantitative as-
sessment we apply standard procedures for downstream analysis in High-Content Screening using
additional experimental annotations (e.g. control conditions) (Bray and Carpenter, 2017). This is
done for each feature separately. Further details of the computed downstream metrics are discussed
in Section 4.

4. Experiments

Real-world HCS datasets are tested by their quantitative and qualitative performance: The NTR1
(Peddibhotla et al., 2013) dataset is used for a qualitative assessment of the self-supervised embed-
ding. The BBBC013 (Ljosa et al., 2012) dataset is used to evaluate the quantitative performance of
the embedding features with regard to assay quality metrics.

4.1. NTR1 Dataset

Dataset and Setup. The data set consists of 36864 images which are obtained from an internal-
ization assay of the neurotensin receptor 1 (NTR1). More specifically, this data stems from a screen
for modulators of NTR1. Upon activation this G-protein-coupled receptor is internalized into endo-
somes in a beta-arresting mediated process. Here, the redistribution of β-arrestin-conjugated green
fluorescent protein (GFP) was measured to assess the activation of NTR1. Further details can be
found in the original publication (Peddibhotla et al., 2013).
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Figure 2: Overview of two different embeddings produced for Dataset 1 (NTR1): Left: embed-
ding of the complete data using the extracted features - highlighted are the most archetypi-
cal examples of the calculated eight archetype classes., Right: Self supervised embedding
of the eight archetype classes.

Metrics. The learned embedding is qualitatively tested with respect to the estimated archetypes.

4.2. BBBC013 Dataset

Dataset and Setup. This dataset encompasses 192 images from Human U2OS cells showing
cytoplasm to nucleus translocation of the Forkhead (FKHR-EGFP) fusion protein. Blocking PI3
kinase / PKB signaling with Wortmannin (Cpd 1) or with the compound LY294002 (Cpd 2) leads
to accumulation of FKHR-EGFP within the nucleus. Both compounds are applied in nine point
dose responses in addition to negative and positive controls. Nuclei are stained with DRAQ. Further
details about the assay may be found with accession number BBBC013 in the Broad Bioimage
Benchmark Collection (Ljosa et al., 2012).

Baselines. Our method is benchmarked against two unsupervised clustering methods that provide
pseudo-labels for the training of the self-supervised embedding using triplet networks: k-Means
clustering and Gaussian Mixture Models (details in Appendix C). In addition, we benchmark our
method against a recent state-of the art self-supervised approach with successful application for
biomedical images - SimCLR (Chen et al., 2020a; Chaitanya et al., 2020) and a complete super-
vised retraining of the EfficientNetB2 using ground-truth labels. The performance of our method is
compared to previous published work on the same dataset using either conventional image analysis
(Carpenter et al., 2006) or a supervised training with a multi-scale deep neural network (Godinez
et al., 2017); however, both studies do not report the complete metrics. In addition, we report the
performance of the embedding from the EfficientNetB2 without further self-supervision.

Metrics. We assess the maximum Z’ factor (max Z’) as performance measure (Zhang et al., 1999).
The Z’ factor measures the statistical effect size to judge the quality of a biological assay - a standard
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in high throughput screening. The values can range between 1 and -inf with a good assay quality
if the Z’ factor is larger than 0.5. For the calculation the data of negative and positive controls are
used. In this study the Z’ factor for all features from the self-supervised embedding is used and
only the maximum value is reported. The second metric applied for this dataset is the half maximal
effective concentration ( EC50 ) which describes the necessary compound concentration to obtain
the half response between two control stages. The EC50 value (also called potency) is one of the
key result parameters in drug discovery (Sebaugh, 2011). Z’ factor and EC50 are calculated using
Genedata Screener. For a more detailed decription of the applied metrics please see Appendix D.

Method max Z’ Cpd1 EC50 Cpd2 EC50

Archetypes w/o self-supervised embedding
(pseudo-labeled extraction network features)

0.540 12.0 4.3

EfficientNetB2 supervised 0.935 8.4 3.6
Carpenter et al. (Carpenter et al., 2006) 0.910 9.0 −
Godinez et al. (Godinez et al., 2017) − 7.7 2.3

GMM* −2.204 91.5 35.2
k-Means* −1.888 no fit no fit
SimCLR* −5.424 no fit no fit
Archetypes (Ours)* 0.943 11.9 5.5

Table 1: Quantitative summary of results from BBBC013 experiments. Triplet Networks with
GMM, k-Means and archetypal pseudo-labeling, SimCLR, and supervised approaches.
For all models the max Z’ and EC50 values are considered. max Z’ close to one and EC50

close to supervised solution is better. Archetypes outperform even supervised approaches
on max Z’ and are comparable in terms of EC50. The * denotes self-supervised methods.

5. Discussion

The idea of archetypal analysis is based on finding extremal points in multidimensional data sets
instead of uncovering cluster centers. This could render it into a potent approach for real-world
applications where the analysis of such extremals is one goal. This makes this approach appro-
priate for phenotypic drug-discovery as High-Content Screening focuses on extremal phenotypes
frequently, e.g. control phenotypes (Moffat et al., 2017).

Archetypical Self-Supervised Representation Learning Produces Meaningful Embeddings.
In Figure 2 the embedding using archetypical self-supervision is shown for the NTR1 dataset. The
left side of Figure 2 shows the t-SNE embedding of the feature outputs from the EfficientNet (see
Appendix B). The extracted eight archetypes are highlighted in different colors whereas the other
cells are shown translucent. The algorithm is able to identify different archetypes that would be not
just found using pure t-SNE embeddings. One such example is the green archetype which is located
in different locations in the map. On the right side of Figure 2 a t-SNE embedding of the learned
self-supervised features is displayed in conjunction with an exemplary cell image per archetype
class. Utilizing this map, control phenotypes (pink and grey archetypes) and novel phenotypes (e.g.
red archetype corresponding to overexpression) can easily be identified. For further information on
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the prevalent phenotypes that occur in the NTR1 assay please see (Siegismund et al., 2021).

Archetypical Self-Supervised Representation Learning Outperforms in Downstream Analysis
Tasks. In addition to the qualitatively improved embeddings, our proposed method outperforms
different state-of-the-art self-supervised representation learning techniques, as well as complete su-
pervised techniques on High-Content downstream analysis tasks. Indicative is the max Z’, a stan-
dard quality indicator for characterizing a batch of biological measurements (e.g. a single experi-
mental unit = one microtiter plate) compared to results from published supervised and unsupervised
approaches (Table 4.2 shows the max Z’ and the EC50 values (please see 4.2)). The proposed ap-
proach receives the highest max Z’ of 0.943, close to the optimal value of 1. This is in contrast
to the self-supervised competitors: GMM, k-Means and SimCLR which achieve quite worse max
Z’ values of -2.204, -1.888 and -5.424 respectively; well below any acceptable quality threshold of
0.5 (Zhang et al., 1999). Interestingly, the new approach also outperforms supervised approaches
that rely on labeled data (0.935); and methods using prior knowledge (0.910 - (Carpenter et al.,
2006)). In addition, we performed an ablation experiment where we directly calculated max Z’
on the archetypal pseudo-labeled features from the extraction network (EfficientNet unsupervised)
without learning the self-supervised embedding. Here, we achieve a max Z’ value of 0.540. Thus,
a subsequent self-supervised embedding step using archetypes dramatically improves the result.
The EC50 values for Cpd1 and Cpd2 show close values to the ones calculated from the supervised
methods. Of special note is that for all other self-supervised methods no meaningful results were
produced, and for k-means and SimCLR no concentration response fitting could be obtained (more
details in Appendix D). Overall, we found that our proposed approach can produce biologically
more relevant features for downstream analysis than other self-supervised approaches.

6. Conclusion

High-Content Screening, using automated microscopy forms a crucial drug discovery technology
for the systematic analysis of thousands of drug candidates and for a deep characterization of lead
candidates in developing drugs. So far, workflows rely on labels and on prior knowledge to drive
the data analytics and obtained insights. This process, however, does not scale enough and often
results in highly expensive data curation processes. In this work, we demonstrate that archetypes can
be defining elements to uncover important pharmacological phenotypic endpoints; without relying
on any prior knowledge. The method is fully self-supervised and hence can be combined with
other workflow elements, e.g., by presenting a panel of learned archetypes to a human curator via
active learning. As a consequence, learned representations based on archetypal analysis have a large
potential for further automation of existing real-world deep-learning analysis workflows as they
often rely on a expensive, manual and biased training data curation process (please see (Steigele
et al., 2020) for a exemplary workflow).

In summary, we demonstrated in this work that we can extract relevant and meaningful bio-
logical phenotypes using archetypal analysis, learn embeddings for visual inspection and for per-
forming a practical top-down analysis incl. assay quality control; outperforming state-of-the-art
approaches on two industry relevant screening datasets, considering practical standard metrics from
drug screening.
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Roger G. Linington, and Anne E. Carpenter. Data-analysis strategies for image-based cell profil-
ing. Nature Methods, 14:849 – 863, 2017.

Juan C. Caicedo, Claire McQuin, Allen Goodman, Shantanu Singh, and Anne E. Carpenter. Weakly
supervised learning of single-cell feature embeddings. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), June 2018.

Anne E Carpenter, Thouis R Jones, Michael R Lamprecht, Colin Clarke, In Han Kang, Ola Friman,
David A Guertin, Joo Han Chang, Robert A Lindquist, Jason Moffat, et al. Cellprofiler: image
analysis software for identifying and quantifying cell phenotypes. Genome biology, 7(10):1–11,
2006.

Krishna Chaitanya, Ertunc Erdil, Neerav Karani, and Ender Konukoglu. Contrastive learning of
global and local features for medical image segmentation with limited annotations. arXiv preprint
arXiv:2006.10511, 2020.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning,
pages 1597–1607. PMLR, 2020a.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In Proceedings of the 37th International Confer-
ence on Machine Learning, 2020b.

Adele Cutler and Leo Breiman. Archetypal analysis. Technometrics, 36(4):338–347, 1994. doi: 10.
1080/00401706.1994.10485840. URL http://digitalassets.lib.berkeley.edu/
sdtr/ucb/text/379.pdf.

9

https://doi.org/10.1101/161422
http://digitalassets.lib.berkeley.edu/sdtr/ucb/text/379.pdf
http://digitalassets.lib.berkeley.edu/sdtr/ucb/text/379.pdf


SIEGISMUND WIESER HEYSE STEIGELE

Adele Cutler and Emily Stone. Moving archetypes. Physica D: Nonlinear Phenomena, 107(1):
1–16, August 1997. doi: 10.1016/s0167-2789(97)84209-1. URL https://doi.org/10.
1016/s0167-2789(97)84209-1.
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Appendix A. Foundations of Archetypal Analysis

A.1. Formal Definition

Archetypal analysis (AA) was first proposed by Cutler and Breiman (1994). It is a linear procedure
where archetypes are selected by minimizing the squared error in representing each individual data
point as a mixture of archetypes. Identifying the archetypes involves the minimization of a non-
linear least squares loss. More specifically, linear AA is a form of non-negative matrix factorization
where a matrix X ∈ Rn×p of n data vectors is approximated as X ≈ ABX = AZ where A ∈ Rn×k

and B ∈ Rk×n represent the weight matrices with k representing the number of archetypes, n the
number of data samples and p the dimensionallity of the feature matrix X , respectively. In addition,
we denote Z ∈ Rk×p the archetype matrix. In general, we assume that k < min{n, p}. In order
to solve this non-linear optimization problem, we aim to minimize the following residual sum of
squares:

min
A,B

∥X−ABX∥2 (6)

A.2. Intuition and Comparison to Clustering Methods

We provide a more intuitive explanation for Archetypal Analysis to demonstrate the functionality
and the differences compared to classical clustering approaches (see Figure A.1). To do so, we
simulate a two-dimensional dataset where we define three archetypes at positions (0,0), (1,0) and
(0.5,1.73). Subsequently, we sample 250 combinations by drawing samples from a Dirichlet distri-
bution with parameters (1,1,1) which corresponds to matrix A from the AA method. To obtain our
data points, we multiply A with our archetypes and add Gaussian noise with variance 0.005.

In clustering approaches such as k-means the goal is to find prototype points in the dataset,
called cluster centers. However, in certain cases no cluster structure is present like in the case of
many phenotypic driven drug screening problems. For example, in Figure A.1(a) k-means is not
capable in finding reasonable prototypes that describe the structure of the data distribution. In such
cases, it is intuitive to look at archetypes because this method does not look for prototypes but for
extremal data points that form a convex hull. More specifically, all data points are described as a
convex combination of the archetypes which you can see in Figure A.1(b). The more archetypes we
add for our analysis the better is the approximation of the convex hull.

Appendix B. Algorithmic Implementation
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Figure A.1: A comparision of k-means clustering and archetypal analysis. Blue dots denote data
samples. In Figure A.1(a) the orange cross denote the cluster means found by k-means
clustering. In Figure A.1(b) the cross illustrates found archetypes and the orange line
the convex hull.

Algorithm 1 Archetypal Self-Supervised Representation Learning
Input: Set of images I
Output: embedding e

1: extract features F from image I with CNN c(I)
2:

3: take F and calculate archetypes A
4: assign every feature map F to closest archetype A and use as pseudo-labels
5:

6:

7: for each epoch do
8: sample i minibatches of x, y and t
9: for each minibatch i do

10: encode xi into pη(zi | xi)
11: end for
12: end for

Dataset k (# of archetypes) Dense layers learning rate dropout rates batch size epochs
BBBC013 4 [500 50 24] 0.001 [0.3 0.3] 64 400
NTR1 8 [500 50 6] 0.001 [0.15 0.22] 128 400

Table B.1: Overview of the used hyperparameters used for the training of the triplet network for
both datasets
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Appendix C. Experimental Setup of Baseline Methods

In the following section, we describe the experimental setup for the benchmark methods used in this
study.

C.1. Feature Extraction Process

The extraction of single cell images from the original images is performed on Genedata Imagence
(Steigele et al., 2020). These single cell images have a size of 50x50 px (Dataset 1) or 120x120 px
(Dataset 2). As feature extraction network we used an EfficientNetB2 (Tan and Le, 2019) pretrained
on Imagenet via Noisy-Student (Xie et al., 2020). The penultimate layer of the network was used as
output (1408 features).

C.2. SimCLR

For the encoder architecture, we defined a convolutional neural network with four convolutional lay-
ers with kernel size = 3 and strides = 2, followed by a fully-connected layer with 128 neurons and
relu activation functions. Furthermore, we defined a non-linear projection head with 128 neuron and
a relu activation function. We trained our model for 400 epochs with a batch size of 525 by employ-
ing an Adam optimizer with learning rate=0.001, beta1=0.9 and beta2=0.999. For augmentation,
we performed standard augmentation, namely flipping, translation, zooming and jitter.

C.3. GMM and k-means

As parameters for the clustering algorithms the default values for their respective implementation
from the scikit-learn framework are used (Pedregosa et al., 2011). The cluster number is set to the
number of archetypes determined via optimization to ensure comparability. Afterwards the exact
procedure as for the archetype applying the same hyperparameters for the datasets (Table B.1) is
performed to obtain the self-supervised embedding.

C.4. Archetypal Analysis

Analysis of the archetypes is done via coreset approximation on the embedding vectors for all cell
images (Mair and Brefeld, 2019). Afterwards, pseudo-labels are extracted from the archetypical
composition vector of each cell image.

C.5. Self-Supervised Triplet Network

The learning of the self-supervised embedding is done via a retraining of the EfficientNetB2 adding
three Dense and two Dropout layers using Triplet Semi Hard loss (Schroff et al., 2015b). The
determined pseudo labels are used as class labels for the network retraining. For parameter and
hyperparameter tuning (dropout rates, size of dense layers, learning rate and the optimal number of
archetypes k) the optuna hyperparameter optimization framework was applied with the triplet loss
as objective (Akiba et al., 2019). Table B.1 shows the used hyperparameters as determined with
optuna optimization for both datasets.
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Appendix D. Details on the evaluation metrics

In contrast to the performance metrices common for the field of machine learning e.g., classification
accuracy we use two domain specific and very practical metrics (EC50 and max Z’), predominant
for biopharma industry.

First, the Z’ factor is a metric to investigate the quality of screening assays e.g., if the controls
are suitable to answer the particular biological questions. It is defined as:

Z ′ = 1− 3 · (σp + σn)

|µp + µn|
(7)

Where σp and µp denote the sample standard deviation and sample mean of the positive (p) controls.
Whereas the subscript n refers to the neutral controls.
The here interesting point is, that there is no linear correlation between classification accuracy and
Z’ factor (Kümmel et al., 2010). Thus, classification accuracies cannot be used as a suitable proxy
to describe assay quality.

Second, the 50 % effective concentration EC50 describes the needed dosage of a drug where
the biological effect is 50 %. It’s really important ot note, that the EC50 is likley the most important
and thus most heavily used metric in any screening assay to assess aiming to assess drug potency.
The calculation of the EC50 is commonly done via fitting the Hill equation to the measured data
points with:

Y = S0 +
(Sinf + S0)

1 + (EC50
[C] )n

(8)

S0 is the fitted activity level at zero concentration of test compound (”zero activity”); Sinf is the
fitted activity level at infinite concentration of test compound (”infinite activity”); n is the Hill
coefficient for the curve, i.e. the measure of the slope at EC50; [C] is the concentration and Y the
activity.

Figure D.1 shows an exemplary dose-response curve with all parameters described in Equation
8. Please note that the data cannot always be fitted with Equation 8 e.g. if S0 and Sinf possess the
same value (no activity). Thus no EC50 value can be determined and has been denoted as “no fit” in
Table 4.2. The value of the EC50 should be ideally close to the theoretically value of the compound
(difference less than one order of magnitude).
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Figure D.1: Exemplary hill fit of a drug dose–response relationship with all important parameters.
S0 and Smax denote the activity level at zero and infinite concentration respectively;
the hill parameter n defines the slope at EC50 and EC50 the effective concentration at
the 50% activity level.
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