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Abstract

Distributionally robust optimization (DRO) and
invariant risk minimization (IRM) are two popular
methods proposed to improve out-of-distribution
(OOD) generalization performance of machine
learning models. While effective for small mod-
els, it has been observed that these methods can
be vulnerable to overfitting with large overparam-
eterized models. This work proposes a principled
method, Model Agnostic samPLe rEweighting
(MAPLE), to effectively address OOD problem,
especially in overparameterized scenarios. Our
key idea is to find an effective reweighting of
the training samples so that the standard empir-
ical risk minimization training of a large model
on the weighted training data leads to superior
OOD generalization performance. The overfit-
ting issue is addressed by considering a bilevel
formulation to search for the sample reweighting,
in which the generalization complexity depends
on the search space of sample weights instead
of the model size. We present theoretical anal-
ysis in linear case to prove the insensitivity of
MAPLE to model size, and empirically verify its
superiority in surpassing state-of-the-art methods
by a large margin. Code is available at https:
//github.com/x-zho14/MAPLE.

1. Introduction
Despite the unprecedented success of deep learning in recent
decades, machine learning methods are vulnerable to even
slight distributional shift (Goyal et al., 2019; Sagawa et al.,
2020; Gulrajani & Lopez-Paz, 2020). Actually, the common
independent and identical distribution (IID) assumption in
machine learning can be easily violated due to data selection
biases or unobserved confounders that widely exist in real
data (Liu et al., 2021b). Arjovsky et al. (2019) suggests that
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models trained by empirical risk minimization (ERM) can
fail to learn causal factors but instead exploit the easier-to-
fit spurious correlations, which are prone to distributional
shift from training to testing domains (Gulrajani & Lopez-
Paz, 2020). A typical example is that deep neural networks
(DNN) can rely on the background (spurious features: sand
or grassland) to distinguish between caw and camel (core
features) (Beery et al., 2018). Such model can fail dramati-
cally in recognizing a cow in desert. How to enable the deep
models to generalize well under distributional shifts is an
important long-standing problem.

In an effort to prevent DNN from exploiting the undesired
spurious correlation, a popular research direction targets on
regularizing DNN during training, including distributionally
robust optimization (DRO) (Ben-Tal et al., 2013; Duchi
et al., 2019; 2021; Sagawa et al., 2020) and invariant risk
minimization (IRM) (Arjovsky et al., 2019; Krueger et al.,
2021a; Xie et al., 2020). We refer them as regularization-
based methods in this paper. DRO aims to optimize the
worst case performance in a set of distributions within a
certain distance to the original training distribution while
IRM tries to learn an invariant representation that discards
the spurious features. DRO and IRM have gained their
popularity owed to promising performance on small models
and datasets (Arjovsky et al., 2019; Duchi et al., 2019)
and simplicity to perform training in an end-to-end manner.
However, they are reported to be less effective when applied
to DNNs in recent studies (Sagawa et al., 2019; Cherepanova
et al., 2021; Yong Lin, 2021). Overparamterized DNN can
easily reduce the regularization term of DRO or IRM to zero
during training while still relying on the spurious features.

Another line of research is based on reweighting including
importance sampling (Kanamori et al., 2009; Ben-Tal et al.,
2013; Fang et al., 2020) and stable learning (Kuang et al.,
2020; Shen et al., 2020; Xu et al., 2021). We refer to them
as reweighting-based methods. They generally perform
a two-stage pipeline: 1) reweight the data distribution by
some heuristics; 2) perform ERM training on the reweighted
distribution. In the first stage, they assign a weight to each
sample: importance sampling upweights the rare group in-
versely to its group size and stable learning tries to find a
weight that makes each feature orthogonal. With the weights
found in the first stage, the second stage of weighted ERM
training becomes resistant to spurious features. Since the
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first stage is agnostic to the model size of DNN, it does
not suffer from the vulnerability of overfitting caused by
model overparameterization as in DRO and IRM. However,
the heuristics in those reweighting based methods require
more strict prior knowledge like group annoatations to per-
form well, which makes them less competitive in practice
compared with regularization-based counterparts.

In this paper, to resolve the above limitations, we propose a
model agnostic sample reweighting method integrating the
benefits of two lines of previous works. In short, we solve
the overfitting problem of regularization-based methods by
taking the weighted ERM training pattern and transform
the search space of model parameters into that of sample
weights. On the other hand, we avoid the strict requirements
of reweighting-based methods by learning sample weights
automatically. To achieve this, we formulate the learning of
sample reweighting into a bilevel optimization problem. In
the inner loop, we train the DNN on the weighted training
samples. In the outer loop, we ultilize the OOD criterion
evaluated on validation set as the outer objective to guide the
learning of the sample weights. We alternatively perform
the inner loop and outer loop and finally obtain a set of
weights w with the such appealing property: with only
learnt sample weights and training samples, we are able to
perform weighted ERM training to obtain superior OOD
performance, without any regularization term or strict prior
knowledge on training samples. We use the term model
agnostic in MAPLE to stress its ability to avoid overfitting
regardless of the model size. In addition, the learned sample
weights do not have strong dependence on the model used
during the searching phase, e.g. the sample weights learned
through ResNet-18 can be successfully applied to weighted
ERM training on ResNet-50 on the same task (Table 6).

The general bilevel framework is presented below:

• Outer loop. Evaluate the model θ by the OOD cri-
terions to measure the model’s reliance to spurious
features and optimize w to minimize the criterion.

• Inner loop. Perform ERM training on the dataset
weighted by w to obtain learned model θ.

An appealing feature of this formulation is that the inner
loop can be viewed as a mapping from the sample weight
space into the DNN parameter space, and the outer loop
performs the optimization on weights. Our bilevel optimiza-
tion framework is less prone to overfitting because it only
searches for the weight candidate: the space of weight is
much smaller than that of neural networks. For example,
CIFAR-10 only contains 50K training data while ResNet-18
exhibits 11.4 million parameters. We empirically demon-
strate the effectiveness of MAPLE on various OOD tasks
and show that MAPLE surpasses the state-of-the-art meth-
ods by a large margin. Remarkably, we achieve even higher
worst-group accuracy in Waterbirds without group labels

in training samples compared with GroupDRO previously
recognized as the Oracle upperbound (Table 2).

Our contributions are summarized as follows:
• We propose a model agnostic sample reweighting

method based on bilevel optimization for OOD learn-
ing, which enjoys the following benefits:

– MAPLE learns sample weights automatically
through bilevel optimization avoiding the pathol-
ogy of conventional reweighting-based methods’
reliance on strong prior knowledge on data.

– MAPLE transforms the optimization problem
from DNN’s parameter space to sample weight
space, which in turn solves the overfitting problem
suffered by regularization-based methods.

• We provide theoretical analysis in linear case to prove
the existence of ideal sample weight under suitable
conditions and insensitivity of the generalization per-
formance to the model capacity of DNN, which is
consistent with our empirical results.

• We empirically demonstrate the superior performance
of MAPLE to state-of-the-art domain generalization
methods on various tasks and models.

2. Related Work
Invariant Risk Minimization. IRM aims to learn a feature
representation which elicits a classifier that is simultane-
ously optimal in various environments (Peters et al., 2016;
Arjovsky et al., 2019). Several works try to improve IRM
by proposing different variants: (Krueger et al., 2021b; Xie
et al., 2020) suggest to penalize the variance of the risks
among different environments and (Chang et al., 2020; Xu
& Jaakkola, 2021) try to estimate the invariance violation by
training neural networks. (Arjovsky et al., 2019; Rosenfeld
et al., 2020; Chen et al., 2021b) provide theoretical guar-
antees for IRM on linear models with sufficient training
environments. However, IRM is found to be less effective
when applied to overparameterized neural networks (Gulra-
jani & Lopez-Paz, 2020; Lin et al., 2021). (Lin et al., 2022a)
shows that this can be largely attributed to the overfitting
problem.

Distributionally Robust Optimization. DRO optimizes
the worst-case loss in an uncertainty set (Ben-Tal et al.,
2013; Sagawa et al., 2019; Duchi et al., 2019; Oren et al.,
2019; Duchi et al., 2021; Zhang et al., 2022). When the un-
certainty set is properly chosen, Duchi & Namkoong (2019;
2021) shows that DRO can improve the robustness of the
learned model by imposing regularization. Unfortunately,
similar to IRM, DRO is also shown to be less effective on
overparameterized neural networks (Sagawa et al., 2019),
which may be largely attributed to the deep model’s ability
to overfit all the training data. In an effort to enhance DRO
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in this case, Sagawa et al. (2019) suggests to impose large ℓ2
regularization or early stopping on the DNN to alleviate the
catastrophic overfitting. Liu et al. (2021a) proposes a two-
stage method that firstly performs ERM with early stopping
and then conduct weighted ERM training by upweighting
misclassified samples from the model obtained in the first
stage.

Reweighting. Sample reweighting is a classic method to
deal with distribution shifts. Traditional sample reweight-
ing methods, e.g., importance sampling, assume the prior
knowledge of testing distributions are known and they can
estimate the density ratio between training and testing dis-
tributions directly (Shimodaira, 2000; Huang et al., 2006;
Sugiyama et al., 2007; 2008; Kanamori et al., 2009; Fang
et al., 2020). As a result, ERM training on the reweighted
distribution is unbiased in the testing distribution (Fang
et al., 2020). Recent works consider a much more challeng-
ing setting where the testing distribution is unknown (Shen
et al., 2021). In this direction, stable learning proposes to
learn sample weights that make features statistically inde-
pendent in the reweighted distribution (Kuang et al., 2020;
Shen et al., 2020; Zhang et al., 2021b; Wang et al., 2022; Xu
et al., 2020). Xu et al. (2021) further theoretically analyze
the effectiveness of such algorithms by explaining them as
processes of feature selection. However, stable learning is
still limited in the sense that the features need to be provided
generally. A recent work aiming at addressing learning with
label noise also relies on optimizing sample reweighting
using a bilevel framework (Ren et al., 2018), where a vali-
dation set with the same distribution as the test set is needed
to ensure good performance. However, in OOD tasks, the
training and validation sets are from the same distribution,
which is different from the test distribution, rendering these
methods inapplicable.

Causality. The topics covered in this work is closely related
to causality. Peters et al. (2016) proposes Invariant Causal
Prediction (ICP) to utilize the invariance property to identify
the direct cause of the target. IRM then extends this idea
to DNN by incorporating feature learning (Arjovsky et al.,
2019). Both ICP and IRM need train data to be split into
distinct environments, whereas, environments partition is
frequently not available in real application. It is of great
interest to learn invariance without explicit environment
indexes. (Lin et al., 2022b) proposes a framework called
ZIN that can provably learn both invariance and environment
partition based on the carefully chosen auxiliary information.
DRO is also intrinsically related to causality by noting that
causal model optimizes the worst case loss w.r.t. infinite
intervention on the causal graph. (Rothenhäusler et al.,
2021) explicitly build the connection between distributional
robustness with causality. We believe our method is also a
potential technique to make causal models compatible with
large neural networks.

3. Preliminaries
Notations. Given a dataset D := {(xi,yi)}ni=1 with sam-
ples (xi,yi) drawn from X × Y , we denote weighted em-
pirical loss as L(D,θ;w) := 1

n

∑n
i=1 wiℓ(f(xi;θ),yi),

where f(·;θ) is a network parameterized by θ, ℓ(·, ·) is the
loss function, e.g., cross entropy and least square loss, and
wi ∈ R+ is the non-negative weight. We denote L(D,θ)
to be the unweighted loss L(D,θ;1) for abbreviation. Let
zc ∈ Zc and zs ∈ Zs be the core and spurious features.
The core feature is safe to rely on and the reliance on the
spurious feature is unstable and unwanted. We assume the
observed feature space is generated by an unknown/known
mapping from the core and spurious feature spaces, i.e.,
K(·, ·) : Zc ×Zs → X .

IRM and DRO aim to learn a good predictor f : X → Y , in
a sense that f does not rely on the spurious feature Zs. They
formulate it into a minimization problem of different ob-
jective functions (referred as OOD Risk) based on different
settings in practice. The details are presented below.

3.1. IRM

IRM assumes that we have multiple environments E :=
{e1, e2, . . . , eE} in the sample space X × Y with different
joint distributions, and the correlation between the spuri-
ous features and labels is unstable among different environ-
ments. IRM formulates the predictor f(·;θ) as a composite
function of representaion ϕ(·; Φ) and classifier h(·;v), i.e.,
f(·;θ) = h(ϕ(·; Φ);v), where θ = {v,Φ} are the train-
able parameters. Its idea is that if a predictor f(·;θ) works
well on all the environments, then it can be expected that
the correlation between the spurious features and the labels
are not fitted as it is unstable. Therefore, it formulates the
task as to minimize a certain OOD risk to find such good
predictor. Two popular risks are

RIRMv1(D,θ) :=
∑
e

L(De,θ) + λ∥∇vL(De,θ)∥22 (1)

RREx(D,θ) :=
∑
e

L(De,θ) + λVe[L(De,θ)], (2)

where D = ∪eDe with De being the data drawn from en-
vironment e and Ve[L(De,θ)] is the variance of the loss
across different environments.

3.2. DRO

DRO aims to optimize the worst case performance in a set of
distributions within a certain distance to the original training
distribution.

When a set of distributions with different group annotations
g, i.e., D =

⋃
g Dg, is available, a popular method named

GroupDRO (Sagawa et al., 2019) learns a robust predictor
by minimizing the following risk, which is actually the
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(a) unweighted (b) weighted (c) weighted+sparse

Figure 1. An illustrative example of removing the reliance on spu-
rious feature via sample reweighting and sparsity constraint on
sample size. Circles with larger radius means more weight paid
to this training sample. Different colors indicate different labels,
i.e., {0,1}. Here, x1 = zc and x2 = zs are the core and spurious
features, respectively.

worst-group loss over {Dg}g , i.e.,:

RGroup-DRO(D, θ) := max
g
L(Dg, θ). (3)

When such set of distributions is not available, a typical
method, conditional value at risk (CVaR) (Rockafellar et al.,
2000), constructs distributions near the original training
distributions by reweighting on the training samples and
minimizes a risk defined as the supreme loss over these
distributions, i.e.,

RCVaR-DRO(D, θ) := sup
w∈C(α)

L(D, θ;w), (4)

where C(α) = {w : w ⪰ 0, ∥w∥∞ ≤ 1
αn , ∥w∥1 = 1}.

4. Model Agnostic Sample Reweighting
In this section, we will first present the bilevel formulation of
our proposed MAPLE and provide some theoretical analysis
about its generalization ability. Then we will introduce
sparsity into MAPLE to enhance its generalization ability.

4.1. Bilevel Formulation of MAPLE

We illustrate our key idea using the example in Figure 1,
which is to remove the reliance of the learned predictor
f on the spurious features by sample reweighting. To be
precise, in this example, we assume x1 and x2 are the core
and spurious features, and we aim to learn a classifier on
these training data. If without reweighting, it is clear that
with conventional loss functions, the optimal classifier is the
dashed slant line in Figure 1.(a), which depends on x2. If
we assign larger weights to the samples in the left-bottem
and right-up areas, then the optimal classifier would rotate
to be vertical shown in Figure 1.(b). We can see the vertical
classifier does not depend on the spurious feature x2, as for
fixed x1 and any value of x2, the output of the classifier
never changes. Therefore, it shows that we can remove the
reliance on the spurious features by sample reweighting.
Thus, the problem comes to how to automatically learn
appropriate weights for training samples.

Consider a training dataset Dtr := {(xtr
i ,ytr

i )}ntr
i=1 and

a validation dataset Dv := {(xv
i ,y

v
i )}

nv
i=1 randomly parti-

tioned from dataset D. We formulate the task of learning
sample weights to remove the reliance on the spurious fea-
tures as the following bilevel optimization problem:

min
w∈C
R(Dv,θ

∗(w)), (5)

s.t. θ∗(w) ∈ argmin
θ

L(Dtr,θ;w), (6)

where w is a sample weight vector with length ntr indicat-
ing the importance of training samples, C = {w : w ⪰ 0}.
Any OOD RiskR(D,θ) described in the Section 3 can be
used as the outer objective here. In the inner loop, we mini-
mize the weighted ERM loss on training samples, in order
to obtain a model θ∗(w), and in the outer loop, we evaluate
the learned model’s reliance on spurious features through
OOD Risk and optimize sample weights. By alternatively
performing inner loop and outer loop, the sample weights
gradually evolve to the state of being able to produce satis-
factory OOD performance with simply ERM training.

Moreover, our formulation has the following advantages:

• In our framework, we essentially define an implicit
mapping from the sample weight space to the model
parameter space, which enables us to learn in the sam-
ple weight space. As the sample weight space is always
significantly smaller than model parameter spaces, we
can avoid the pathology of overfitting caused by over-
parameterization.

• Compared with existing regularization-based methods,
MAPLE adopts validation dataset in the outer loop to
alleviate the problem of overfitting to training dataset.

These advantages are consistent with our theoretical analysis
(Section 4.2) and empirical observations (Section 5).

[Optimization by Truncated Back-propagation and Pro-
jected Gradient Descent]. The above bilevel optimization
can be solved by performing projected gradient descent to
w. The gradient of w can be calculated by:

∇wR
= ∇θR|θ∗ ∇wθ∗ (7)
≈ ∇θR|θT ∇wθT (8)

= ∇θR|θT
∑
j≤L

∏
k<j

I − ∂2L
∂θ∂θ⊺

∣∣∣∣
θT−k−1

 ∂2L
∂θ∂w⊺

∣∣∣∣∣∣
θT−j−1

≈ ∇θR|θT
∂2L

∂θ∂w⊺

∣∣∣∣
θT−1

, (9)

where Eqn. (7) follows chain rule, Eqn. (8) approximates θ∗

by θT obtained from T steps of inner loop gradient descent
and Eqn. (9) performs 1-step truncated backpropagation
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(Shaban et al., 2019). Then MAPLE updates w by projected
gradient descent:

w ← projC
(
w − η ∇θR|θT

∂2L
∂θ∂w⊺

∣∣∣∣
θT−1

)
, (10)

where η is the learning rate.

4.2. Theoretical Analysis on Linear Case

In this section, we analyze the performance of our method
in the linear case where we consider Problem (5) with lin-
ear predictor f(x;θ) = x⊺θ,θ ∈ Rd and least square
loss ℓ(f(x),y) = ∥f(x) − y∥22. We further consider
x ∈ Rd to be the generated from core features zc ∈ Rdc

and spurious features zs ∈ Rds by a transformation ma-
trix S ∈ Rd×(dc+ds), i.e., x = S[zc; zs]. We assume
dc + ds = d for simplicity and assume the feature trans-
formation S is invertible by some matrix T ∈ R(dc+ds)×d

such that TS([zc; zs]) = [zc; zs]. Our goal is to learn a
function f that predicts y based on x without reliance on
zs. Let P(x,y) denote the distribution on the training and
validation sets as defined in Section 4.1. We further use E
to denote the expectation w.r.t. P(x,y).

In Section 4.2.1, we consider the population level property,
i.e., when infinite samples are available. In Section 4.2.2,
we consider the case with finite samples.

4.2.1. POPULATION LEVEL PROPERTIES

At first, we need to extend the weight and loss of problem
(13) into the population level as follows.
Definition 4.1. We define the set of weight functions as

W = {w : X × Y −→ R+|E[w(x,y)] = 1}.

Given any w ∈ W , the populated unweighted and weighted
loss can be defined as

L(θ) =
∫
(y − x⊺θ)2P(x, y)dxdy (11)

L(θ;w) =
∫
(y − x⊺θ)2Pw(x, y)dxdy, (12)

where Pw(x,y) = w(x,y)P(x,y) is the weighted distri-
bution.

The populated version of problem (5) takes the form of

min
w∈C
R(θ∗(w)), (13)

s.t. θ∗(w) ∈ argmin
θ

L(θ;w), (14)

hereR(θ) is the populated OOD risk obtained by replacing
the empirical loss with the populated one in Eqn (1)-(4). We
assume the solution in the inner loop is unique. We define
the optimal linear classifier as the one that minimizes the
expected loss without using any spurious features:

Definition 4.2. We define the optimal debiased predictor as

θ̄ := T ⊺[θ̄c;0],

where θ̄c := argminθc
E[∥y − z⊺

cθc∥2].

We now make further assumptions as follows:

Assumption 4.3 (Strictly positive density). ∀y ∈ Y, zc ∈
Zc, zs ∈ Zs, P (zc = zc, zs = zs,y = y) > 0.

Assumption 4.4. The optimal debiased predictor θ̄ is iden-
tifiable by the populated OOD RiskR, i.e.,

R(θ̄) < R(θ),∀θ ∈ Rd,θ ̸= θ̄.

Assumption 4.3 is common in existing works because there
always exists uncertainty in the data (Pearl, 1988; Strobl &
Visweswaran, 2016; Xu et al., 2021). Assumption 4.4 is a
natural condition, making it possible to provably identify
θ̄ by usingR. For example, it has been demonstrated that
the metrics of IRM can satisfy this condition with sufficient
number of environments (Arjovsky et al., 2019; Rosenfeld
et al., 2020).

Theorem 4.5 (Identifiability on population level). When
Assumption 4.3 holds, there exists a weight function w ∈ W ,
such that the optimum solution of Eq. (14) satisfies that

θ∗(w) = θ̄.

Further, when Assumption 4.4 holds, the populated MAPLE,
i.e., Eqn.(13)-(14), can uniquely identify θ̄.

The theorem above shows MAPLE can provably find the
sample weight to removes reliance of model on the spurious
features. This verify the main idea illustrated in Figure 1.

4.2.2. FINITE SAMPLE

Now we turn to analyze the finite sample case. By extending
the weight vector w into the functional form w(x, y) in
Definition 4.1, we rewrite problem (5) into:

min
w∈C
R(Dv, θ̂

∗
(w)), (15)

s.t. θ̂
∗
(w) = argmin

θ
L(Dtr,θ;w),

Then given a weight function w, θ̂
∗
(w) is a deterministic

mapping fromW to the parameter space. Suppose we can
find a ŵ that is a ϵ−approximate solution of minimizing
R(Dv, θ̂

∗
(w)), i.e.,

R(Dv, θ̂
∗
(ŵ)) ≤ inf

w∈W
R(Dv, θ̂

∗
(w)) + ϵ. (16)

Observing that θ̂
∗
(·) only depends on Dtr, we can obtain

the following generalization bound with standard uniform
convergence analysis on Dv:
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Theorem 4.6 (Finite Samples). Suppose |Dv| = n. Let
D−1

v denote the dataset generated by replacing one sample
in Dv with another arbitrary sample. Assume there exists a
constant M > 0 such that ∀θ, |R(Dv,θ)−R(D−1

v ,θ)| ≤
M/n, whereR(D,θ) denotes the OOD risk on the dataset
D. Further assumeW contains |W| discrete choices. With
probability at least 1 − δ, MAPLE outputs a solution ŵ
satisfies

R(θ̂
∗
(ŵ)) ≤ inf

w∈W
R(θ̂

∗
(w)) + ϵ+M

√
2 ln(2|W|/δ)

n
,

(17)

where R(θ) is the populated OOD risk achieved by θ, θ̂
and ϵ are defined in Eqn. (15) and Eqn. (16), respectively.

Theorem 4.6 shows that the generalization performance de-
pends on the complexity of W and the size of validation
dataset. As our weight space W is usually significantly
smaller than the parameter space, MAPLE could have better
generalization performance compared with training OOD
risk directly on DNN. Further, the RHS of Eqn. (17) does
not involve the complexity of neural networks, indicating
MAPLE is insensitive to the model size. Extensive ex-
perimental results in Section 5 verify this result, showing
MAPLE can achieve significant better performance than
existing methods, especially on large models. We’d like
to point out that Theorem 4.6 still holds when θ̂

∗
(·) is a

general non-linear function because the theorem is a direct
application of the standard uniform convergence analysis
which doesn’t require θ̂

∗
(·) to be linear.

4.3. Enhance MAPLE by sparsity

As shown in Figure 1.(c), we further impose a sparsity
constraint on the training sample size, i.e., C becomes {w :
w ⪰ 0, ∥w∥0 ≤ K} in order to save the computational
cost in the inner loop. We will verify the benefit in our
experiment. Intuitively, sparsity can be seen as forcing
several sample weights to be zero. In this way, noisy data
samples are removed. Inspired by previous works on L0

regularization optimization (Louizos et al., 2018; Zhou et al.,
2021a;b; Zou et al., 2019), we relax the original formulation
to be continuous:

min
(w,s)∈C′

Φ(w, s) = Ep(m|s) R(Dv,θ
∗(w,m)), (18)

s.t. θ∗(w,m) ∈ argmin
θ

L(Dtr,θ;w ◦m)

where C′ = {(w, s) : w ⪰ 0, 0 ⪯ s ⪯ 1, ∥s∥1 ≤ K} is
the feasible set, mi is viewed as a Bernoulli random variable
with probability si to be 1 and 1 − si to be 0. Assuming
the variables mi are independent, we can get p(m|s) =
Πn

i=1(si)
mi(1−si)(1−mi). The discrete constraint ∥w∥0 ≤

K in problem (5) can be relaxed into ∥s∥1 ≤ K.

We calculate the gradient to w and s by Straight-through
Gumbel-softmax (Paulus et al., 2021):

∇w,sΦ ≈ ∇w,sR(θ∗(w,1(log(
s

1− s
) + g1 − g0 ≥ 0))),

where g0 and g1 are two random variables with each ele-
ment IID sampled from Gumbel(0, 1) and the following
calculations are similar to those of Eqn. 9. Then MAPLE
updates w and s by projected gradient descent:

(w, s)← projC′(w − η∇wΦ, s− η∇sΦ), (19)

where η is the learning rate.

5. Experiment
In this section, we conduct a series of experiments to justify
the superiority of our MAPLE in IRM and DRO. Detailed
dataset descriptions and experimental configurations are
placed in appendix due to space limitation.

5.1. Datasets and Baselines

[Datasets]. For IRM experiments, ColoredMNIST is the
most widely used benchmark in IRM and ColoredObject,
CIFARMNIST are adopted to showcase the superior per-
formance of MAPLE on more challenging largescale set-
tings (Arjovsky et al., 2019; Krueger et al., 2021b; Ahuja
et al., 2020; Zhang et al., 2021a). We adopt two popular
vision datasets, Waterbirds and CelebA, to validate the ef-
fectiveness of MAPLE on DRO problems (Wah et al., 2011;
Sagawa et al., 2019; Liu et al., 2015; Sagawa et al., 2019;
Liu et al., 2021a; Lin et al., 2021). Waterbirds and CelebA
are real-world datasets and we adopt them to demonstrate
the generalizability of MAPLE to real-world scenarios. We
follow the challenging setting of Liu et al. (2021a) where
no group annotation is provided in the training dataset.

[Baselines]. To demonstrate the superiority of our MAPLE
on IRM, we compare with standard empirical risk minimiza-
tion (ERM), two popular foundational invariant risk mini-
mization methods IRMv1 (Arjovsky et al., 2019) and REx
(Krueger et al., 2021b) and the latest competitive method
MRM (Zhang et al., 2021a) and SparseIRM (Zhou et al.,
2022b) which boost IRM via imposing sparsity. SparseIRM
imposes sparsity during training while MRM imposes spar-
sity after training. We also compare with BayesianIRM (Lin
et al., 2022a) which introduces Bayesian Inference into IRM
to estimate a distribution of classifiers. We include ERM
trained on datasets without spurious features to serve as an
upper bound (Oracle). To showcase the effectiveness of
MAPLE on DRO, we compare with standard empirical risk
minimization (ERM), three widely-used DRO methods with-
out group annotations on the training samples: CVaR DRO
(Levy et al., 2020) which is described in Eqn. (4), Learn
from failure (LfF) (Nam et al., 2020), Just Train Twice
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Algorithm 1 Model Agnostic Sample Reweighting (MAPLE)
Input: a network θ, remaining training sample size K, training set Dtr and validation set Dv .
1: Initialize sample weights w = 1 and probabilities s = K

|Dtr|1.
2: for training iteration i = 1, 2 . . . I do
3: Sample mask m according to the probability distribution p(m|s) = Πn

i=1(si)
mi(1− si)

(1−mi).
4: Train the inner loop to converge: θ∗(w,m)← argminθ L(Dtr,θ;w,m) started from randomly initialized θ.
5: Estimate ∇sΦ(w, s) and ∇wΦ(w, s) by Straight-through Gumbel-softmax and 1-step truncated backpropagation.
6: Perform projected gradient descent: (w, s)← projC′(w − η∇wΦ(w, s), s− η∇sΦ(w, s))
7: end for

output The weighted set {(xi,yi, wi) : mi ̸= 0, (xi,yi) ∈ Dtr} with m sampled from p(m|s)
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Figure 2. Comparing MAPLE with Oracle, IRM, MRM (Zhang et al., 2021a) and ERM on MLP on ColoredMNIST with varying hidden
dimensions and dataset sizes. Oracle is the method done with ERM training with no spurious features and serves as an upper bound. The
left (right) two figures demonstrate the comparison of MAPLE with IRMv1 (REx) where MAPLE adopts the same IRMv1 (REx) loss as
the outer objective. MAPLE achieves comparable generalization performance with Oracle in all settings.

(JTT) (Liu et al., 2021a) and two DRO methods demanding
group annotations on the training samples: UpWeighting
(Cui et al., 2019; Cao et al., 2019), GroupDRO (Sagawa
et al., 2019).

5.2. MAPLE on IRM

[IRM on ColoredMNIST]. For different vanilla IRM
method (IMRv1 or REx) to be compared, we ultilize the
same IRM loss as the outer objective in MAPLE. We vary
the number of training sample size and model parameters
to demonstrate the general applicability to various scales in
practice. We add a number to the end of the dataset name to
indicate the training set size. We split 10% training data as
the validation dataset.

From Figure 2, vanilla IRM methods still lags behind the
Oracle performance by a large margin. The gap becomes
more prominent when the model is more overparameterized.
MRM further boosts the generalization performance while
its performance is still limited by regularization-based IRM
training paradigm. MAPLE transforms the search space of
model parameters into that of sample weights and searches
for the optimal sample weights on training dataset, and
further guides the optimization by evaluating the criterion

on the learned model. MAPLE beats these latest compet-
itive baselines by a large margin and even approaches the
performance of Oracle.

Table 1. Comparison of Top-1 Test Accuracy on ResNet-18 on
ColoredObject and CIFARMNIST.

Dataset ColoredObject CIFARMNIST

Oracle 87.9± 0.3 83.7± 1.5

ERM 51.6± 0.5 39.5± 0.4

BayesianIRM 78.1± 0.6 59.3± 0.8

IRM 72.5± 2.1 51.3± 3.0

IRMv1b MRM 58.4± 0.9 56.7± 2.3

SparseIRM 87.4± 0.6 63.9± 0.4

MAPLE 87.4 ± 0.5 82.9 ± 0.4

IRM 73.8± 1.3 50.1± 2.2

REx MRM 55.7± 2.9 52.6± 1.5

SparseIRM 80.3± 1.1 62.7± 0.6

MAPLE 86.9 ± 1.0 82.5 ± 0.7

[IRM on ColoredObject and CIFRAMNIST]. In this sec-
tion, we evaluate the performance of MAPLE on ColoredOb-
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Table 2. Comparison of MAPLE and state-of-the-art DRO methods in Waterbirds and CelebA. MAPLE surpasses previous methods
without group annotations by a large margin and even achieves comparable or even better performance than GroupDRO and Upweighting,
which utilize the group annotation for training samples.

Method Group annotations for
training samples? Waterbirds CelebA

Average Worst-group Average Worst-group

Upweighting (Cui et al., 2019) Yes 92.2 87.4 89.3 83.3
GroupDRO (Sagawa et al., 2019) Yes 93.5 91.4 92.9 88.9

ERM No 97.3 72.6 95.6 47.2
CVaR DRO (Levy et al., 2020) No 96.0 75.9 82.4 64.4

LfF (Nam et al., 2020) No 91.2 78.0 86.0 70.6
JTT (Liu et al., 2021a) No 93.3 86.7 88.0 81.1

MAPLE No 92.9 91.7 89.0 88.0

ject and CIFARMNIST with large-sized model ResNet-18 in
Table 1. We split 10% training data as the validation dataset.
MAPLE consistently beats the baselines by a large margin
and achieves performance approaching Oracle. These re-
sults validate the effectivenss of MAPLE on more modern
ResNet architecture and diverse tasks. Notably MAPLE
surpasses vanilla IRM method by over 30% percent in the
CIFARMNIST dataset. It shows that in more challenging
scenarios MAPLE can outperform IRM by a larger margin.

5.3. DRO on Waterbirds and CelebA

In this section, we further validate the effectiveness of
MAPLE when applied to DRO. The worst-group accuracy
is taken as the core criterion to evaluate the effectiveness of
DRO methods. In this experiment, we adopt the CVaR DRO
objective. To be noted, our bilevel formulation doesn’t rely
on the group annotations on training samples. We set the α
to be 20% and we find it serves as a good threshold without
hyperparameter search.

From the Table 2, we find that MAPLE beats previous state-
of-the-art method JTT without group annotations on train-
ing samples by 5% in Waterbirds and 6.9% in CelebA. This
can be expected as JTT upweights mis-classified training
samples by a mannually-searched magnitude, by evaluating
a checkpoint obtained from ERM training at a manually-
searched epoch. This inevitably leads to suboptimal perfor-
mance due to its cumbersome criterion of just upweighting
the misclassified training samples at a specific epoch rather
than considering more globally is imperfect. To be totally
contrary, MAPLE ultilizes the CVaR DRO criterion evalu-
ated on validation set to consider the problem more reason-
ably by gradually optimizing the sample weights through
evaluating the model learned from current sample weights
step by step. Upweighting simply upweights the rare groups
inversely to its portion in the whole dataset and ignores
the importance differed from sample to sample in the same
group. GroupDRO makes further improvement to Upweight-
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Figure 3. Training dynamics of each group weight fraction for
ResNet-50 on CelebA. The weight fraction of (Blond Hair, Male)
and (Dark Hair, Male) changes to 20%. The weight fraction of
(Dark Hair, Female) and (Blond Hair, Female) changes to 30%.
This indicates that MAPLE can automatically adjust the weight
fraction of different groups and the weight fraction of four groups
need not be the same.

ing by regularziation term and is generally considered as a
upperbound by previous works (Liu et al., 2021a). MAPLE
surpasses Upweighting by 4.3% and GroupDRO by 0.3% in
Waterbirds and surpasses Upweighting by 4.7% in CelebA
demonstrating the effectiveness of MAPLE in more complex
DRO setting.

5.4. Further Analysis

[Training dynamics of the weights of different groups]
We plot the training dynamics of sample weight fraction
in CelebA experiment in Figure 3. Initially all the weights
of different samples are initilized as 1. As there are scarce
training samples in group (Blond Hair, Male), its weight
fraction is initially only 0.085%. After 100 iterations of
updates, the weight fraction of (Blond Hair, Male) gradually
comes up to approximately 20%. Concurrently, the weight
fraction of group (Dark Hair, Male) goes down to approxi-
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mately 20% and the weight fraction of (Dark Hair, Female)
and (Blond Hair, Female) both come to approximately 30%.
This demonstrates that we need not upweight each group to
the same importance level, which indicates one reason why
Upweighting fails behind MAPLE.

[Weight Distributions of Four Groups] We further plot the
histogram of samples weights in Figure 4 for four groups in
CelebA experiment at the end of training. It indicates that
the weights of group (Blond Hair, Female) flattens to around
30. This is consistent with our primal goal to upweight the
group with few training samples, and MAPLE sucessfully
achieve this without any training group annotations. We
also discovers that the sample weight assigned to different
training samples need not be the same. This demonstrates
another reason why MAPLE beats JTT and Upweighting by
a large margin.

6. Conclusion
In this work, we present a model agnostic sample reweigh-
ing method named MAPLE for out-of-domain learning. We
propose a novel bilevel optimization framework to learn
sample weights to address the out-of-domain learning prob-
lem effectively. We further enhance MAPLE with sparsity
to improve training speed. We present theorectical analy-
sis in linear case and demonstrate its superior performance
various tasks and models.
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Supplementary Materials:
Model Agnostic Sample Reweighting for Out-of-Distribution Learning

This appendix can be divided into the following parts:

1. Section A gives the details of datasets in IRM and DRO.

2. Section B presents experimental configurations of this work.

3. Section C presents experiments on weight distributions of different groups to show the ability of MAPLE to identify
weights for each training samples.

4. Section D presents experiments on the effectivenss of improving training speed via sparsity constraint on training
sample size.

5. Section E presents experiments on validation of transferability of sample weights.

6. Section F presents proof of Theorem 4.5

7. Section G presents proof of Theorem 4.6

8. Section H introduces related works on bi-level optimization.

9. Section I presents discussions on future works.

A. Dataset Details
ColoredMNIST is the most widely used benchmark in IRM and ColoredObject, CIFARMNIST are adopted to showcase
the superior performance of MAPLE on more challenging largescale settings. The labels for IRM datasets are generated
from the core features. The spurious features have strong correlations with the labels in the training set but the correlation
reverses in the testing set. In each dataset there exist two training environments and one testing environment with different
correlations. We combine the correlations of two training environments and one testing environment into a correlation tuple.
Label noise is added to the datasets to make the task more challenging (Arjovsky et al., 2019; Zhang et al., 2021a).

Waterbirds and CelebA are real-world datasets and we adopt them to demonstrate the generalizability of MAPLE to
real-world scenarios. Waterbirds and CelebA are both binary prediction tasks. In each dataset, there exists a binary spurious
feature highly correlated with the label. We follow the challenging setting of Liu et al. (2021a) that no group annotation is
provided in the training dataset and group annotations are provided in the small validation set.

ColoredMNIST (Arjovsky et al., 2019). It contains images from MNIST and the images are labeled as 0 or 1. Each image
is attached with a color as the spurious feature. Correlation tuple is (0.9, 0.8, 0.1). Noise ratio is 25%.

ColoredObject (Ahmed et al., 2020; Zhang et al., 2021a). It is constructed by extracting 8 classes of objects from MSCOCO
and put them onto colored backgrounds. Correlation tuple is (0.999, 0.7, 0.1). Noise ratio is 5%.

CIFARMNIST (Shah et al., 2020; Lin et al., 2021). It is constructed by concatenating images of CIFAR10 with MNIST.
The CIFAR images are the invariant features and the MNIST images are the spurious features. Correlation tuple is
(0.999, 0.7, 0.1). Noise ratio is 10%.

Waterbirds (Wah et al., 2011; Sagawa et al., 2019). The Waterbirds dataset contains two group of birds, i.e., {waterbird,
landbird}. There are two kinds of background, i.e., {water background, land background}. The background type is
spuriously correlated with the bird type. No background annotation is provided in the training dataset.

CelebA (Liu et al., 2015; Sagawa et al., 2019). In the CelebA dataset, the task is to predict hair color, {blond, dark}, based
on the image input. The attribute gender, {male, female}, is spuriously correlated with the hair color.
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Table 3. Illustration of each dataset. Core and Spurious stand for the core and spurious features, respectively. Spurious features are highly
correlated with the label. However, the correlations are reversed in the testing samples to simulate the distributional shift.

Dataset Core Spurious Training Testing

ColoredMNIST Digit Color

ColoredObject Object Background

CIFARMNIST CIFAR MNIST

Waterbirds Bird Background

CelebA Hair Color Gender

B. Experimental Configurations

Table 4. Experimental Configurations of MAPLE. The hyperparameters of sample weight and probability optimization are obtained via
grid search on validation set on ColoredMNIST and applied directly to other scenarios. The demonstrates the robustness of MAPLE to
different settings. We directly takes the regular training recipe for ERM training as the hyperparameters of inner loop model parameter
optimization. We early stop in the inner loop as we find that training for such schedule is enough to obtain approximately best performance
in validation set.

Dataset ColoredMNIST CIFARMNIST ColoredObject Waterbirds CelebA

GPUs 1 1 1 1 8

Batch Size 50000 1000 1000 128 1024

Outer Iterations 100 100 100 50 100

Inner Training Schedule 100 iterations 100 iterations 100 iterations 3 epochs 1 epoch

Sample Weight
Optimizer

Adam Adam Adam Adam Adam

Sample Weight
Learning Rate

0.25 0.25 0.25 0.25 0.25

Sample Probability
Optimizer

Adam Adam Adam Adam Adam

Sample Probability
Learning Rate

5e-2 5e-2 5e-2 5e-2 5e-2

Model Parameter
Optimizer

SGD SGD SGD SGD SGD

Model Parameter
Learning Rate

1e-1 1e-2 1e-2 1e-4 1e-4

Model Parameter
Weight Decay

1e-1 1e-2 1e-2 1e-1 1e-2

C. Weight Distributions of Different Groups
We further plot the histogram of samples weights in Figure 4 for four groups in CelebA experiment at the end of training.
It indicates that the weights of group (Blond Hair, Female) flattens to around 30, while the weights of other groups still
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Figure 4. Histogram of weights for four groups in CelebA. MAPLE automatically upweights the weights of group (Blond Hair, Female)
and the histograms demonstrate that the weight assigned to different groups need not be the same.

remainly lies around 1. This is consistent with our primal goal to upweight the group with few training samples, and MAPLE
sucessfully achieve this without any training group annotations. We also discovers that the sample weight assigned to
different training samples need not be the same. This demonstrates another reason why MAPLE beats JTT and Upweighting
by a large margin.

D. Effectiveness of Sparsity in Promoting Training Speed
Table 5 demonstrates the comparison of training speed between MAPLE with no sparsity constraint on sample sizes and
MAPLE. MAPLE saves a lot of inner loop computation time.

Table 5. Comparing computational time of inner loop of different methods on Waterbirds. MAPLE(NS) indicates MAPLE with no sparsity
constraint.

Method MAPLE(NS) MAPLE

GPU Hours 8.43 6.74

E. Validation of Transferability of Sample Weights
We transfer the sample weights searched via ResNet-18 and directly apply it to train the weighted training samples on
ResNet-50. Table 6 demonstrates that the searched sample weights on ResNet-18 can be successfully applied to perform
weighted ERM training on ResNet-50, even with slight performance boost.

Table 6. Validating transferability of sample weights on Waterbirds, from ResNet-18 on seaching phase and ResNet-50 on downstream
weighted training phase.

Sample Weights Searched on
ResNet-18

Weighted ERM
Training on ResNet-18

Weighted ERM
Training on ResNet-50

Worst-group Acc 91.2% 91.6%
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F. Proof of Theorem 4.5
By Assumption 4.3, P(y, zc, zs) > 0. Then we can define the following weighting function

w(y,x) :=
P(y, zc)P(zs)

P(y,x)
(20)

Below, we will show that w(x, y) is the desired weight function, and the solution of this ordinary least square re-weighted
by w(x, y) is the optimal debiased predictor θ̄. Specifically,

L(θ;w) =
∫
(y − x⊺θ)2Pw(x, y)dxdy, (21)

It is easy to know that the minimizer of Eqn. (21).

θ∗(w) =

(∫
xx⊤Pw(x, y)dxdy

)−1 ∫
xyPw(x, y)dxdy

=

(∫
Szz⊤S⊤Pw(x, y)dxdy

)−1 ∫
SzyPw(z, y)dxdy

= (S⊤)−1

(∫
zz⊤Pw(z, y)dzdy

)−1 ∫
zyPw(z, y)dzdy

= (T⊤)

(∫
zz⊤Pw(z, y)dzdy

)−1 ∫
zyPw(z, y)dzdy.

At last, we are going to show
(∫

zz⊤Pw(z, y)dzdy
)−1 ∫

zyPw(z, y)dzdy will be equal to [θ̄c;0] as defined in Definition
4.2.

Proof. We denote Σw =
∫
xx⊤Pw(x, y)dxdy, and turn to simplify θ∗(w) by computing Σw and Covw

It follows that

Pw(y, zc, zs) = Pw(y,x) = w(y,x)P(y,x) = P(y, zc)P(zs).

It is easy to see Pw(y, zc) = P(y, zc) and Pw(zs) = P(zs) because

Pw(y, zc) =

∫
zs

Pw(y, zc, zs) =

∫
zs

P(y, zc)P(zs) = P(y, zc)

∫
zs

P(zs) = P(y, zc)

Pw(zs) =

∫
y,zc

Pw(y, zc, zs) =

∫
y,zc

P(y, zc)P(zs) = P(zs)

∫
y,zc

P(y, zc) = P(zs)

So we further have
Pw(y, zc, zs) = P (y, zc)P (zs) = Pw(y, zc)Pw(zs).

It also leads to
Pw(zc, zs) = Pw(zc)Pw(zs)

Pw(y, zs) = Pw(y)Pw(zs)

It follows that

Σw
c := E[w(x, y)zcz

⊺
c ] =

∫
zcz

⊺
cPw(x, y) =

∫
zcz

⊺
cPw(z, y) =

∫
zcz

⊺
cPw(zc) =

∫
zcz

⊺
cP(zc) = Σc

Σw
b := E[w(x, y)zsz

⊺
s ] =

∫
zsz

⊺
sPw(x, y) =

∫
zsz

⊺
sPw(z, y) =

∫
zsz

⊺
sPw(zs) =

∫
zsz

⊺
sP(zs) = Σb

Furthermore,

Covw(zc, zs)
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= E[w(x, y)z⊺
czs]− E[w(x, y)zc]

⊺E[w(x, y)zs]

=

∫
Pw(zc, zs)z

⊺
czsdzcdzs − E[w(x, y)zc]

⊺E[w(x, y)zs]

=

∫
Pw(zc)Pw(zs)z

⊺
czsdzcdzs − E[w(x, y)zc]

⊺E[w(x, y)zs]

= E[w(x, y)zc]
⊺E[w(x, y)zs]− E[w(x, y)zc]

⊺E[w(x, y)zs] = 0.

Similarly, we can obtain

E[w(x, y)zcy] = E[zcy], E[w(x, y)zsy] = 0.

Putting these together, we have

Σw =

[
Σw

c Covw(zc, zs)
Covw(zs, zc) Σw

s

]
=

[
Σb 0
0 Σc

]
,

E[w(x, y)zy] =
[
E[w(x, y)zcy]
E[w(x, y)zsy]

]
=

[
E[zcy]

0

]
.

Then

θ∗(w) = (Σw)−1E[w(x, y)zy] =
[
Σc 0
0 Σb

]−1 [E[zcy]
0

]
=

[
Σ−1

c E[zcy]
0

]
=

[
θ̄c

0

]
= θ̄.

The second part proof is straightforward. By Assumption 4.4, for any θ ̸= θ∗ = θw, we have

R(θ) > R(θ̄) = R(θ∗(w)). (22)

We already know that θ∗(w) is in the feasible solution of MAR. Eq. (22) further shows that θ∗(w) achieves the minimum
loss ofR. Putting these together, we conclude that MAR uniquely identify θ̄.

G. Proof of Theorem 4.6
By the bounded difference inequality (Corollary 2.21 of (Wainwright, 2019)), given any w, we have with probability
1− δ/2,

R(θ̂
∗
(w);Dv) ≤ R(θ̂

∗
(w)) +M

√
ln(2/δ)

2N
, (23)

whereR(θ̂
∗
(w);Dv) is the OOD risk on the validation dataset Dv andR(θ̂

∗
(w)) is the population OOD risk. Then we

have with probability 1− δ,

R(θ̂
∗
(ŵ))

≤R(θ̂
∗
(ŵ);Dv) +M

√
2 ln(2|W|/δ)

N

≤R(θ̂
∗
(w);Dv) +M

√
ln(2|W|/δ)

2N
+ ϵ

≤R(θ̂
∗
(w)) +M

√
ln(2/δ)

2N
+M

√
ln(2|W|/δ)

2N
+ ϵ

≤R(θ̂
∗
(w)) +M

√
2 ln(2|W|/δ)

N
+ ϵ,

The first inequality because we require inequality (23) to hold uniformly for all |W| functions. The second inequality is
because ŵ is the ϵ-approximated solution descrided in Eqn. (16). The third inequality is applying inequality (23). The forth
inequality is because |W| > 1. Taking infimum over w on the right hand side, we obtain the desired bound.
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H. Related Works on Bilevel Optimization
Bilevel optimization (Sinha et al., 2017) has aroused much attention in recently due to its ability to handle hierarchical
decision making processes. Previous works utilize bilevel optimization in multiple areas of research, such as hyper-paramter
optimization (Lorraine et al., 2020; Maclaurin et al., 2015; Pedregosa, 2016; MacKay et al., 2019), meta learning (Finn
et al., 2017; Nichol & Schulman, 2018), neural architecture search (Liu et al., 2018; Xu et al., 2019; Shi et al., 2020; Yao
et al., 2021b; Gao et al., 2021; Yao et al., 2021a; Shi et al., 2021) and sample re-weighting (Ren et al., 2018; Shu et al.,
2019), coreset selection (Zhou et al., 2022c; Borsos et al., 2020).

I. Future Directions
MAPLE stills needs to demonstrate its applicability to NLP tasks especially on today’s large pretraining language models
(Devlin et al., 2018; Radford et al., 2019; Liu et al., 2019; Diao et al., 2019; Brown et al., 2020), cross-modal tasks (Gu
et al., 2018; Gao et al., 2022; Zhou et al., 2022a), domain adaptation tasks (Diao et al., 2021; Huang et al., 2022) and
self-supervised learning tasks (He et al., 2020; Grill et al., 2020; Chen et al., 2021a; Liu et al., 2022). It is also interesting to
explore how MAPLE interacts with other parallel domain generalization methods (Luo et al., 2018; Bai et al., 2021a;b) ,
how it interacts with other methods focusing on model sparsity (Shao et al., 2019; Zhou et al., 2022b; Shi et al., 2021) and
how it performs on more challenging benchmarks (Ye et al., 2022).


