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Abstract
We study the behavior of error bounds for multi-
class classification under suitable margin condi-
tions. For a wide variety of methods we prove that
the classification error under a hard-margin con-
dition decreases exponentially fast without any
bias-variance trade-off. Different convergence
rates can be obtained in correspondence of differ-
ent margin assumptions. With a self-contained
and instructive analysis we are able to generalize
known results from the binary to the multiclass
setting.

1. Introduction
It was recently remarked that the learning curves observed
in practice can be quite different from those predicted in
theory (Zhang et al., 2021). In particular, while one might
expect performance to degrade as models get larger or less
constrained (Hastie et al., 2009), this is in fact not the case.
By the no free lunch theorem (Wolpert, 1996), theoretical
results critically depend on the set of assumptions made on
the problem. Such assumptions can be hard to verify in
practice, hence a possible way to tackle the seeming contra-
dictions in learning theory vs. practice is to consider a wider
range of assumptions, and check whether the corresponding
results can explain empirical observations.

In the context of classification, it is interesting to consider as-
sumptions describing the difficulty of the problem in terms
of margin (Mammen & Tsybakov, 1999; Tsybakov, 2004).
It is well known that very different learning curves can
be obtained depending on the considered margin condition
(Bartlett et al., 2006). Further, the behavior of the test error
in terms of misclassification can be considerably different
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from that induced by the surrogate loss function used for
empirical risk minimization (Zhang, 2004a; Bartlett et al.,
2006). An extreme case is when there is a hard margin
among the classes. Indeed, in this case the misclassification
error can decrease exponentially fast as the number of points
increases, while the surrogate loss error displays a polyno-
mial decay. This behavior was first noted in (Koltchinskii &
Beznosova, 2005; Audibert & Tsybakov, 2007) for a wide
class of estimators (see also (Yao et al., 2007)), and reprised
more recently in (Pillaud-Vivien et al., 2018; Nitanda &
Suzuki, 2019) for stochastic gradient descent. The effect
of margin conditions has also been considered for multi-
class learning (Zhang, 2004b; Chen & Sun, 2006; Mroueh
et al., 2012), but not in the hard-margin case. Interestingly,
hard-margin and exponential rates have been studied by (Ca-
bannes et al., 2021) in the context of structured prediction
(Nowak et al., 2019), a general framework which includes
traditional classification. However, these latter results are
restricted to least-squares-based estimators.

The purpose of our paper is twofold. On the one hand, we
analyze the effect of margin conditions, and in particular
hard-margin conditions, for a wide class of multiclass esti-
mators derived from different surrogate losses. On the other
hand, we build on ideas in (Mroueh et al., 2012; Pillaud-
Vivien et al., 2018; Nitanda & Suzuki, 2019) to provide
a simplified and self-contained treatment that naturally re-
covers results for binary classification as a special case. In
particular, we note that, in the presence of a hard margin,
the misclassification error curve does not exhibit any bias-
variance trade-off, thus providing a possible explanation to
the empirical observations that motivate our study.

The rest of the paper is organized as follows. We conclude
the introduction by setting up some basic notation. In Sec-
tion 2 we describe the multiclass classification problem, the
surrogate approach and the simplex encoding. In Section 3
we analyze the bias-variance decomposition for the mis-
classification risk, discuss soft and hard-margin conditions,
and prove our main results of exponential convergence un-
der assumptions of hard margin. In Section 4 we validate
the theory with experiments on synthetic data. Some final
remarks are provided in Section 5.
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Notation. We will be using the following general notation.
a ≲ bmeans that a ≤ cb for some positive absolute constant
c. The Euclidean norm and inner product of vectors w,w′ ∈
Rp are denoted by ∥w∥ and ⟨w,w′⟩, respectively, while the
outer product is denoted by w ⊗ w′. For an event E, 1{E}
denotes its indicator function, and P{E} its probability.
The expectation of a random variable Z is denoted by EZ;
when the expectation is taken only with respect to a random
variable X (but Z possibly depends also on other variables),
we write EXZ. Conditioning of events or random variables
on an event E is indicated by · | E. L0(X ,Z) is the space
of measurable functions on the probability space X and with
values in Z ⊂ Rp, and L∞(X ,Z) the subspace of almost
surely bounded functions, with norm ∥ · ∥∞.

2. Setting
We consider a standard multiclass learning problem. Let
(X,Y ) ∈ X × Y be a random pair, where X ⊂ Rd and Y
is a finite set of T ≥ 2 elements. We call the elements of Y
classes, and a (measurable) function c : X → Y a classifier.
The misclassification risk of a classifier c is

R(c) = P{c(X) ̸= Y }.

Let
ρ(y | x) = P{Y = y | X = x}

denote the conditional probability of the class y given the
observation x. The risk R is minimized by the Bayes rule

c∗(x) = argmax
y∈Y

ρ(y | x).

We denote the minimum risk by R∗ = R(c∗). Given n
independent copies (Xi, Yi) of (X,Y ), i = 1, . . . , n, the
goal is to learn a classifier ĉ such that R(ĉ) −R∗ → 0 in
expectation as n→ ∞. More precisely, we are interested in
finite-sample bounds of the form

ER(ĉ)−R∗ ≲ an,

where an → 0 gives a rate of convergence.

Empirical risk minimization would prescribe to compute ĉ
by minimizing a sample version of R. The misclassification
risk can be seen as the expectation of the 0-1 loss

1{y ̸= y′}, y, y′ ∈ Y.

The empirical mean would thus be 1
n

∑n
i=1 1{c(Xi) ̸=

Yi}. However, the 0-1 loss is neither smooth nor convex,
and optimizing it is in general an NP-hard combinatorial
problem (Feldman et al., 2012). A viable strategy is to
replace the 0-1 loss with a convex surrogate, and the space
of classifiers with a suitable linear space of vector-valued
functions. To do this, it is necessary to choose a vector

encoding of the classes Y ↪→ Rp and a decoding operator
D : Rp → Y . Following (Mroueh et al., 2012), we encode
the T classes as the vertices of a (T −1)-simplex embedded
in RT−1 (see Figure 1).

Figure 1. Simplex encoding for T = 2, 3, 4.

For notational convenience, we identify Y itself with its
simplex encoding, that is, Y is the set of points in RT−1

such that

∥y∥ = 1, ⟨y, y′⟩ = − 1
T−1 .

The decoding operator assigns a vector to the class with
largest projection, with ties arbitrarily broken (see Figure 2):

D : RT−1 → Y, D(w) = argmax
y∈Y

⟨w, y⟩.

w
D(w)

w

D(w)

Figure 2. Simplex decoding (T = 2, 3).

In the case of binary classification (T = 2), we have
Y = {±1} ⊂ R and D(w) = sign(w). A plug-in clas-
sifier Df(x) = D(f(x)) can be defined by composing a
vector-valued function f : X → RT−1 with the decod-
ing operator. The simplex coding offers some advantages
over other common types of coding, such as one-hot. First,
as we just saw, it is perfectly consistent with the standard
({±1}, sign) coding of binary classification. Second, it au-
tomatically satisfies structural constraints that other codings
need to impose additionally on the hypothesis class; as the
so-called sum to zero constraint, which makes both numeri-
cal implementation and theoretical analysis more involved.

To identify the target function to plug into the decoder, we
fix a convex surrogate loss

ℓ : RT−1 × Y → [0,∞)

with corresponding risk Rℓ(f) = Eℓ(f(X), Y ), and define

fℓ = argmin
f∈L0(X ,RT−1)

Rℓ(f).
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We then approximate fℓ by a (uniform) approximator fλ.
At the current level of generality, λ simply denotes a generic
parameter to be tuned. For instance, fλ can be the minimizer
of a regularized risk, with λ the regularization parameter.
Finally, our classifier will be Df̂λ, with f̂λ the empirical
estimate of fλ based on the samples {(Xi, Yi)}ni=1.

We are going to consider two cases of loss functions. The
first case is the square loss ℓ(w, y) = ∥w − y∥2, for which
fℓ(x) = η(x), where

η(x) = E[Y | X = x]

is the regression function. The second case is a family
of functions of the margin ⟨w, y⟩, namely losses of the
form ℓϕ(w, y) = ϕ(⟨w, y⟩) for a suitable (differentiable,
convex) function ϕ : R → [0,∞). Examples of ϕ are
ϕ(t) = ln(2)−1 ln(1 + e−t) and ϕ(t) = e−t, generalizing
the logistic and exponential loss to the multiclass setting, re-
spectively. For margin losses, we will denote the minimizer
fℓ by fϕ. Note that in binary classification the square loss is
itself a function of the margin, ℓ(w, y) = ∥1−wy∥2, while
for T ≥ 3 this is no longer the case.

3. Analysis
We start by analyzing the peculiar structure of the bias-
variance decomposition in classification. Note that such
a decomposition is quite different from more classical de-
compositions such as (Geman et al., 1992). As we will see,
the key point is that the bias can be made zero under suit-
able margin conditions. When only the variance is left, the
misclassification error can be controlled by uniform concen-
tration. These general facts can then be applied to different
loss functions, leading to our main results.

3.1. Bias-variance for plug-in classifiers

To analyze the performance of a plug-in classifier Df̂λ, we
decompose the excess misclassification risk as

R(Df̂λ)−R∗ =R(Df̂λ)−R(Dfλ) (1)
+R(Dfλ)−R(Dfℓ) (2)
+R(Dfℓ)−R∗. (3)

The last term results from replacing the 0-1 loss with the
surrogate loss ℓ. Loss functions for which Dfℓ = c∗, and
therefore (3) is zero, are called Fisher consistent (or classifi-
cation calibrated). Fisher consistency is a common and well
characterized property (Zhang, 2004a). In particular, the
square loss is Fisher consistent (see Lemma 2). For margin
losses, consistency will be assumed in all that follows, and
shown in some examples.

The term (2) is a bias term. Crucially, it can be set to zero
for a wide range of parameters λ. The idea is that we can

have R(Dfλ) = R(Dfℓ) even when Rℓ(fλ) ≫ Rℓ(fℓ).
Here is a fundamental difference between regression and
classification. While in regression fℓ is a target point, in
classification it is rather a representative of the target class

[fℓ] = {f ∈ L0(X ,RT−1) : Df = Dfℓ almost surely}.

fℓ

fλ
fλ∗

η

Hence, it is enough for fλ to land in
[fℓ], possibly far from fℓ itself. This
is easier if the class [fℓ] is “large”,
which can be ensured by imposing
special margin conditions. Assum-
ing that ℓ is Fisher consistent, a
generic function f lies in [fℓ] if and only if

Df = c∗ almost surely. (4)

Chosen a Fisher consistent loss and put the bias to zero, all
that’s left is the variance term (1):

R(Df̂λ)−R∗ = R(Df̂λ)−R(Dfλ). (5)

At this point, λ is set and needs no trade-off. Fast conver-
gence of the variance, and therefore of the whole excess
misclassification risk, can be derived using once again mar-
gin conditions.

3.2. Margin conditions

In binary classification, the margin conditions, also known
as Tsybakov’s low-noise assumptions (Mammen & Tsy-
bakov, 1999; Tsybakov, 2004; Koltchinskii & Beznosova,
2005; Audibert & Tsybakov, 2007), are a set of assumptions
under which it is possible to obtain fast convergence (up to
exponential) for plug-in classifiers. They can be stated as
follows: there exists α ∈ (0,∞] such that, for every δ > 0,

P{|η(X)| ≤ δ} ≲ δα. (6)

In the extreme case of α = ∞, we get

|η(X)| ≥ δ almost surely, (7)

which is sometimes referred to as the hard-margin condition.

Following (Mroueh et al., 2012; Nowak et al., 2019), we
can generalize (6) and (7) to the multiclass setting. For
w ∈ RT−1, we define the decision margin

M(w) = min
y ̸=D(w)

⟨w,D(w)− y⟩.

M(w) is the difference between the largest and the sec-
ond largest projection of w onto Y , namely the confidence
gap between first and second guess. For T = 2, we
have M(w) = 2|w|. In general, we say that a function
f : X → RT−1 satisfies the margin condition with expo-
nent α ∈ (0,∞] if, for every δ > 0,

P{M(f(X)) ≤ δ} ≲ δα. (8)
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In particular, one can take f = η, which for T = 2 gives
back (6). Again, α = ∞ gives the hard-margin condition
(see Figure 3)

M(f(X)) ≥ δ almost surely. (9)

δ

δ

Figure 3. Hard-margin condition (T = 2, 3).

Intuitively, these conditions say that the probability of
falling in a “runoff zone”, where the plugging-in function
would be “uncertain”, is either (polynomially) small (8), or
zero (9). The reason why we state (8) and (9) for an arbitrary
f is that we will transfer these properties to minimizers fℓ
(and fλ) of general (regularized) losses, including but not
limited to the square. Combining Fisher consistency and
hard margin, we obtain the following stronger condition.

Lemma 1. A function f ∈ L0(X ,RT−1) satisfies (4) and
(9) if and only if

min
y ̸=c∗(X)

⟨f(X), c∗(X)− y⟩ ≥ δ almost surely. (10)

Proof. First note that, if (4) holds, then (10) is the same as
(9). Now suppose (10) holds. Then

⟨f(X), c∗(X)⟩ > max
y ̸=c∗(X)

⟨f(X), y⟩,

hence Df(X) = c∗(X), that is, (4) holds too.

Beside (8) and (9), we will also consider another general-
ization of the hard margin (7) which is independent of any
particular classifier, and instead is stated purely in terms of
the conditional probabilities. To illustrate such a condition,
we note that (7) is equivalent to saying that either ρ(1|x)
or ρ(−1|x) is no less than 1/2 + δ/2 (for almost every x,
there is one class with probability bounded away from coin
flipping). This in turn is equivalent to

min
y ̸=c∗(X)

ρ(c∗(X) | X)− ρ(y | X) ≥ δ almost surely,

(11)
which says that the most probable class has almost always
an edge of δ over the second most probable class. Since this
inequality makes sense for arbitrary T , we take it as our hard-
margin condition for multiclass problems. More generally,

one may consider problems where for some α ∈ (0,∞] and
all δ > 0,

P{ min
y ̸=c∗(X)

ρ(c∗(X) | X)− ρ(y | X) ≤ δ} ≲ δα, (12)

generalizing (6) to T ≥ 2.

The following Lemma describes the relationship between
margin on conditional probabilities and margin on classi-
fiers.

Lemma 2. We have Dη = c∗ almost surely. Moreover, (11)
holds if and only if η satisfies (9).

Proof. Let

∆ = {p ∈ RY : py ≥ 0,
∑
y∈Y

py = 1}

be the probability simplex on Y , and let coY be the encod-
ing simplex defined as the convex hull of Y . Then ∆ and
coY are canonically isomorphic via the barycenter coordi-
nate map

β : ∆ → coY, β(p) =
∑
y∈Y

pyy.

Now consider the map

ρ : X → ∆, ρ(x) = [ρ(y | x)]y∈Y .

Then we have β ◦ ρ = η. It follows that y ∈ Y maximizes
ρ(y | x) if and only if it maximizes ⟨η(x), y⟩. Therefore,
Dη = c∗. The same holds for maximizing over y ̸= c∗(x),
whence the second claim.

3.3. Misclassification comparison

In view of (5), we need in fact to compare the misclassifica-
tion risk of two classifiers. This can be done by introducing
a bounding distance. Since the distance will be symmet-
ric, the resulting bound will give a symmetric comparison
between any two classifiers, as opposed to the usual com-
parison of a classifier with respect to a fixed (Bayes) rule.
For this reason, the following results may be of independent
interest.

We define the Hamming distance of c′, c ∈ L0(X ,Y) as

r(c′, c) = P{c′(X) ̸= c(X)}.

The Hamming distance bounds the difference of misclassifi-
cation risk.

Lemma 3. For every c′, c ∈ L0(X ,Y),

|R(c′)−R(c)| ≤ r(c′, c).
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Proof. By direct computation,

|R(c′)−R(c)| = |E[1{c′(X) ̸= Y } − 1{c(X) ̸= Y }]|
≤ E[|1{c′(X) ̸= Y } − 1{c(X) ̸= Y }|]
≤ E[1{c′(X) ̸= c(X)}] = r(c′, c).

The next step is to bound the Hamming distance between
two plug-in classifiers.
Lemma 4. For every f ′, f ∈ L∞(X ,RT−1),

r(Df ′, Df) ≤ P
{
∥f ′ − f∥∞ ≥

√
T−1
2T M(f(X))

}
.

Proof. Let Df ′(x) = y′ ̸= y = Df(x). Then

min
j ̸=y′

⟨y′ − j, f ′(x)⟩ = ⟨y′, f ′(x)⟩ −max
j ̸=y′

⟨j, f ′(x)⟩

≤ ⟨y′, f ′(x)⟩ − ⟨y, f ′(x)⟩
≤ ⟨y′ − y, f ′(x)⟩ − ⟨y′ − y, f(x)⟩
= ⟨y′ − y, f ′(x)− f(x)⟩
≤ ∥y′ − y∥∥f ′(x)− f(x)∥

≤
√

2T
T−1∥f

′ − f∥∞.

Now we let the samples come into play. Let f̂ ∈
L∞(X ,RT−1) be a function of (Xi, Yi), i = 1, . . . , n, such
that, for every ϵ > 0 and some constant b > 0,

P{∥f̂ − f∥∞ > ϵ} ≲ exp(−nϵ2/b2). (13)

Then the following polynomial and exponential bounds hold
true.
Proposition 5. Suppose f satisfies the margin condition (8),
and let f̂ obey the concentration (13). Then

E|R(Df̂)−R(Df)| ≲ bα
(

2T
T−1

)α/2 (
lognα/2

n

)α/2

.

If f satisfies the hard-margin condition (9), then

E|R(Df̂)−R(Df)| ≲ exp(−nδ2/b2).

Proof. By Lemma 3 and Lemma 4,

E|R(Df̂)−R(Df)| ≤ Er(Df̂,Df)

≤ E{(Xi,Yi)}n
i=1

EX1

{
∥f̂ − f∥∞ ≥

√
T−1
2T M(f(X))

}
.

Let γ =
√

T−1
2T M(f(X)) and E = {M(f(X)) ≤ δ}.

Then we have

EX1{∥f̂ − f∥∞ ≥ γ}

= EX [1{∥f̂ − f∥∞ ≥ γ} | E ] P{E}

+ EX [1{∥f̂ − f∥∞ ≥ γ} | E∁ ] P{E∁}

≤ P{E}+ 1{∥f̂ − f∥∞ ≥
√

T−1
2T δ},

where P{E} ≲ δα by (8). Moreover, thanks to (13),

E{(Xi,Yi)}n
i=1

1{∥f̂ − f∥∞ ≥
√

T−1
2T δ}

= P
{
∥f̂ − f∥∞ ≥

√
T−1
2T δ

}
≲ exp(−nT−1

2T δ2/b2).

Setting δ2 = b2 2T
T−1 (log(n

α/2)/n), we obtain the first
claimed inequality. The second inequality follows similarly
using (9) in place of (8).

3.4. Main results

In this section we establish exponential convergence of plug-
in classifiers under assumptions of hard margin. We as-
sume the setting of Section 2, and use the arguments of
Sections 3.1 to 3.3. The main results are given for two cases
of loss functions, first for the square loss (namely, for the
regression function), and then for a general family of margin
losses. We will also be making the additional assumptions
below.

(i) fℓ ∈ L∞(X ,RT−1) and ∥fλ − fℓ∥∞ −−−→
λ→0

0 .

The limit in (i) is taken with respect to the amount of (ex-
plicit or implicit) regularization. For example, λ can rep-
resent a Tikhonov parameter, the reciprocal of the number
of iterations in gradient descent, or the reciprocal of the
number of weights in a neural network model.

Further, let f̂λ ∈ L∞(X ,RT−1) be an estimate of fλ, and
assume that, for every λ and some bλ > 0, the following
concentration bound holds true:

(ii) P{∥f̂λ − fλ∥∞ > ϵ} ≲ exp(−nϵ2/b2λ).

Regularization methods in reproducing kernel Hilbert spaces
(RKHS) (Schölkopf & Smola, 2002; Steinwart & Christ-
mann, 2008) provide one framework where the properties
(i), (ii) can be satisfied. In particular, one can fix a separable
RKHS H ⊂ L0(X ,RT−1) with norm ∥ · ∥H, and define

fλ = argmin
f∈H

Rℓ(f) + λ∥f∥2H, λ ≥ 0.

If H has kernel K : X ×X → R such that supxK(x, x) ≤
κ2, H is continuously embedded in the space of bounded
continuous functions on X , with ∥ · ∥∞ ≤ κ∥ · ∥H. Hence,
the uniform bounds (i), (ii) may be derived from bounds
in the RKHS norm. The estimate f̂λ can be computed
with a variety of methods, such as empirical risk minimiza-
tion (ERM) (Schölkopf & Smola, 2002), gradient descent
(GD) (Yao et al., 2007) and stochastic gradient descent
(SGD) (Robbins & Monro, 1951).



Hard-margin multiclass classification

Lemma 6. Suppose (9) holds true with f = fℓ and δ = γ
for some γ > 0. Then, under the assumption (i), there is
λ∗ such that (10) holds true with f = fλ and δ = γ/2 for
every λ ≤ λ∗.

Proof. Let Dfℓ(x) = y∗ = c∗(x) (recall that ℓ is Fisher
consistent), and let

a = ⟨fλ(x), y∗⟩ −max
y ̸=y∗

⟨fλ(x), y⟩.

Then

a = ⟨fℓ(x), y∗⟩ − ⟨fℓ(x)− fλ(x), y∗⟩

b

−max
y ̸=y∗

⟨fλ(x), y⟩

c

,

where b ≤ ∥fℓ − fλ∥∞, and

c = max
y ̸=y∗

(⟨fℓ(x), y⟩+ ⟨fλ(x)− fℓ(x), y⟩)

≤ max
y ̸=y∗

⟨fℓ(x), y⟩+max
y ̸=y∗

⟨fλ(x)− fℓ(x), y⟩

≤ max
y ̸=y∗

⟨fℓ(x), y⟩+ ∥fλ − fℓ∥∞.

In view of (i), there is λ∗ such that ∥fλ − fℓ∥∞ ≤ γ/4.
Hence, for every λ ≤ λ∗, using (9) we obtain

a ≥ ⟨fℓ(x), y∗⟩ − γ/4−max
y ̸=y∗

⟨fℓ(x), y⟩ − γ/4

=M(fℓ(x))− γ/2 ≥ γ − γ/2 = γ/2.

This implies (4), and thus (9), for f = fλ and δ = γ/2. The
assertion now follows from Lemma 1.

Square loss. We can now state our first main result.

Theorem 7. Suppose the hard-margin condition

min
y ̸=c∗(X)

ρ(c∗(X) | X)− ρ(y | X) ≥ δ almost surely.

Then, under the assumptions (i) and (ii), there is λ∗ such
that, for every λ ≤ λ∗,

E|R(Df̂)−R∗| ≲ exp(−nδ2λ/b2λ).

Proof. First, recall that, thanks to Lemma 2, Dη = c∗ and
M(η(X)) ≥ δ almost surely. Moreover, by Lemma 6 (and
Lemma 1), we have Dfλ = c∗ and M(fλ(X)) ≥ δ/2
almost surely for λ ≤ λ∗. Thus, (5) holds true, and the
claim follows from Proposition 5.

Margin losses. We now consider surrogate losses of the
form

ℓϕ(w, y) = ϕ(⟨w, y⟩)

for some scalar function ϕ : R → [0,∞). We de-
note the minimizer of the corresponding risk Rϕ(f) =
Eϕ(⟨f(X), Y ⟩) by

fϕ = argmin
f∈L0(X ,RT−1)

Rϕ(f).

Following and generalizing the analysis of (Zhang, 2004a;
Nitanda & Suzuki, 2019), we want to extract an inner risk
from Rϕ. The idea is to expand

Rϕ(f) = EX

∑
y∈Y

ϕ(⟨f(X), y⟩)ρ(y | X)

and isolate the argument of EX removing the dependence on
X . Recalling the definition of ∆ in Lemma 2, we introduce
the inner risk

Φ(p, w) =
∑
y∈Y

ϕ(⟨w, y⟩)py, p ∈ ∆, w ∈ RT−1,

and the inner risk minimizer

hϕ : ∆ → RT−1, hϕ(p) = argmin
w∈RT−1

Φ(p, w).

Note that, denoting p(x)y = ρ(y | x), we have

fϕ(x) = hϕ(p(x)). (14)

In the following, we will be assuming that

(iii) ℓϕ is Fisher consistent;

(iv) ⟨hϕ(p), y⟩ is a non-decreasing function of py .

As previously mentioned, losses satisfying (iii) are indeed
abundant. For a general characterization of Fisher consis-
tency in the framework of simplex encoded classification,
we refer to (Mroueh et al., 2012). The requirement (iv) is
easily met by many functions ϕ, as the next lemma shows.
Essentially, it is sufficient for the loss to be decreasing and
convex. Notable examples of ϕ satisfying both (iii) and (iv)
are the logistic loss ϕ(t) = ln(2)−1 ln(1 + e−t), and the
exponential loss ϕ(t) = e−t.

Lemma 8. Suppose ϕ is twice differentiable, non-increasing
and convex. Then (iv) holds true.

Proof. Let Ψ(p) = ∇wΦ(p, hϕ(p)) be the gradient with
respect to Φ’s second argument. Computing the Jacobian of
Ψ(p) with respect to p we have

JΨ(p) =
∑
j∈Y

(
ϕ′′(⟨hϕ(p), j⟩) j ⊗ j Jhϕ(p)pj

+ ϕ′(⟨hϕ(p), j⟩) j ⊗ ej

)
,
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where ej denotes the vector of RT with [ej ]y = δj,y. By
definition of hϕ(p), both Ψ(p) = 0 and JΨ(p) = 0. Thus,
for all y ∈ Y ,

0 = JΨ(p)ey =
∑
j∈Y

pj ϕ
′′(⟨hϕ(p), j⟩) j ⟨∂hϕ(p)

∂py
, j⟩

+ ϕ′(⟨hϕ(p), y⟩) y,

and therefore

0 = ⟨∂hϕ(p)
∂py

, JΨ(p)ey⟩

=
∑
j∈Y

pj ϕ
′′(⟨hϕ(p), j⟩) ⟨∂hϕ(p)

∂py
, j⟩2

+ ϕ′(⟨hϕ(p), y⟩) ⟨∂hϕ(p)
∂py

, y⟩.

Since ϕ′′ ≥ 0 and ϕ′ ≤ 0, we must have ⟨∂hϕ(p)
∂py

, y⟩ ≥ 0,
which proves the claim.

In order to derive exponential rates for margin losses, we
need to transfer the hard-margin condition from the condi-
tional probabilities to the minimizer of the margin loss. This
is the content of the following lemma.

Lemma 9. Suppose that (11) holds true with δ = γ. Then,
under the assumption (iv), (9) holds true with f = fϕ and
δ = m(γ), where

m(γ) = max
y,j∈Y

min{M(hϕ(p)) : p ∈ ∆, py − pj = 2γ}.

Proof. Let p(X)y = ρ(y | X). By (14) we have

M(fϕ(X)) =M(hϕ(p(X))).

Let y, j ∈ Y be such that

M(hϕ(p(X))) = ⟨hϕ(p(X)), y⟩
a

−⟨hϕ(p(X)), j⟩
b

.

In view of (11) and (iv), there is p ∈ ∆ with py − pj = 2δ
such that a decreases and b increases, hence

M(hϕ(p(X))) ≥M(hϕ(p)).

Taking the minimum over such a p and the maximum over
y and j, we obtain the assertion.

To visualize the lower bound m(γ), note that, for T = 2, it
corresponds to max{hϕ(1/2+γ),−hϕ(1/2−γ)} (cf. with
Nitanda & Suzuki (2019)).

We can finally prove our main result for margin losses.

Theorem 10. Suppose the hard-margin condition

min
y ̸=c∗(X)

ρ(c∗(X) | X)− ρ(y | X) ≥ δ almost surely.

Then, under the assumptions (i), (ii), (iii) and (iv), there is
λ∗ such that, for every λ ≤ λ∗,

E|R(Df̂)−R∗| ≲ exp(−n m(δ)2λ/b2λ),

where m(δ) is defined in Lemma 9.

Proof. By assumption (iii), we have Dfϕ = c∗ al-
most surely. Moreover, thanks to Lemma 9, we have
M(fϕ(X)) ≥ m(δ) almost surely. Now, Lemma 6
(together with Lemma 1) gives that Dfλ = c∗ and
M(fλ(X)) ≥ m(δ)/2 almost surely for λ ≤ λ∗. Therefore,
we have (5), and Proposition 5 yields the result.

The critical value λ∗ in Theorem 7 and Theorem 10 can
be quantified in presence of additional assumptions on the
distribution. For example, consider the case of a kernel
ridge regression estimator in a separable RKHS H. Suppose
that the kernelK : X ×X → R is bounded by κ, and define
the covariance operator as

T : H → H, T =

∫
X
Kx ⊗Kxdρ(x),

where Kx = K(·, x) and ρ is the marginal distribution on
X . Further, suppose there exist g ∈ H and s ∈ (0, 1/2]
such that

fℓ = T sg.

This is known as the source condition, and it corresponds
to assuming Sobolev smoothness of the regression function.
Then, it can be proved that (Caponnetto & De Vito, 2007)

∥fλ − fℓ∥H ≤ λs∥g∥H.

As a consequence, λ∗ in Lemma 6, and therefore in Theo-
rem 7, may be picked as λ∗ = (δ/4κ∥g∥H)1/s.

We finally remark that analogous results to Theorem 7 and
Theorem 10 may be proved under the soft-margin condition
(12), using the polynomial bound of Proposition 5.

4. Experiments
This section is concerned with empircally verifying the theo-
retical analysis presented in Section 3. We will first consider
a classification problem in which the true function satisfies
the hard-margin condition (defined in (9)), and show how –
under optimization of a surrogate loss by gradient descent –
the misclassification loss decreases faster than the surrogate
loss. Then we will take into account a different synthetic
dataset, where the weaker soft-margin or low noise condi-
tion (see (8)) is satisfied. We will verify how the rate of
change of the misclassification error with the number of
data-points adheres to the theoretical rates.

Initially we compare the logistic, exponantial and square sur-
rogate loss functions. A synthetic, two-dimensional dataset
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Figure 4. Sample datasets. In the left panel, the three classes are
separated by a hard margin of length δ. In the right panel there is
no hard margin, but the probability of a point falling close to the
boundary is decreasing (soft-margin).

Figure 5. Optimization curves on hard-margin classification with
different surrogate losses. Each panel contains two curves calcu-
lated on datasets with different margins δ. The top row shows the
surrogate loss, the bottom row shows the 0-1 loss.

is generated such that the hard-margin condition holds with
margin δ, see Figure 4, left panel for a sample dataset.
Random Fourier features (RFF) models (Rahimi & Recht,
2008) approximate potentially infinite dimensional feature
maps in a reproducing kernel Hilbert space (RKHS) using
finite dimensional randomized maps: given a kernel func-
tion k(x, x′) = ⟨ψ(x), ψ(x′)⟩H the feature map ψ ∈ H
can be approximated with function z : RD → RR such
that ⟨ψ(x), ψ(x′)⟩H ≈ ⟨z(x), z(x′)⟩R. Finally z(x) can
be used instead of the sample itself in a linear model with
parameters w ∈ RR: f(x) = w⊤z(x). In order to learn
the parameters w we minimize the regularized surrogate
loss with gradient descent. In Figure 5 we plot the 0-1 error
and the surrogate losses on unseen data as a function of the
optimization step. The experiments were repeated 20 times
to obtain error bands. Note how the 0-1 loss converges at a
faster pace than the surrogate. When the 0-1 loss is zero our
classifier has entered the region in which its decoded value
is equal to the true classifier, even if the surrogate loss is still
far from zero. We can further notice how not all surrogates
are equal: for both the small (δ = 0.1) and the larger margin

(δ = 0.2), the square loss leads to faster convergence of the
0-1 error than both exponential and logistic losses.

Figure 6. Main figure: error rates for multiclass classification with
polynomial soft-margin with increasing dataset size. Inset: Linear
rate of convergence of the error with α.

The second experiment was carried out with a 2D synthetic
dataset comprising of three classes, such that the probability
of a point falling close to the decision boundary decreases
with the distance to the boundary itself as Mα for margins
M < 1 (see (8)). A linear model was trained on this dataset
by minimizing the regularized logistic loss with gradient
descent until convergence. The experiment was repeated
100 times using different values of α (a higher α equates
to an easier problem) and an increasing number of training
points, recording the average 0-1 loss over unseen data. By
plotting the 0-1 loss against the number of training samples
for each α, we could observe an approximately linear trend
on a log-log scale (see Figure 6). From Proposition 5 the
error is expected to drop more rapidly with higher α, and
in particular the rate of decrease should be n−α/2 (ignoring
constant and logarithmic factors). By plotting the slopes of
the error rates we obtain a straight line with slope −0.35,
which is close to the prediction of −0.5 (see the inset on
Figure 6).

5. Conclusions
In this paper we have shown how, under the hard-margin
condition and for a very general framework which encom-
passes many different models and surrogate losses, the mul-
ticlass classification error exhibits exponentially fast con-
vergence. Along the way we have provided an error de-
composition where the bias term disappears. This kind of
result fits with the recent empirical observations of how even
highly overparametrized models do not overfit the training
data. Our analysis can be experimentally verified for several
losses, and different margin conditions.
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Several possible extensions of this work have been left for
future work. Beyond the hard-margin and low-noise con-
ditions, robustness with respect to different kinds of noise
may be studied. The explicit application of our bounds to
specific models – which was sketched in this paper for ker-
nel ridge regression – could be especially interesting for
(deep) neural networks, for which fast convergence on clas-
sification problems has been ascertained. Indeed, for the
latter models, the interplay of exponential convergence and
overparameterization is a further topic of great interest.
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