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Abstract
The kernelized bandit problem is a theoretically
justified framework and has solid applications to
various fields. Recently, there is a growing interest
in generalizing the problem to the optimization of
risk-averse metrics such as Conditional Value-at-
Risk (CVaR) or Mean-Variance (MV). However,
due to the model assumption, most existing meth-
ods need explicit design of environment random
variables and can incur large regret because of
possible high dimensionality of them. To address
the issues, in this paper, we model the environ-
ment using a family of the output distributions
(or more precisely, probability kernel) and Ker-
nel Mean Embeddings (KME), and provide novel
UCB-type algorithms for CVaR and MV. More-
over, we provide algorithm-independent lower
bounds for CVaR in the case of Matérn kernels,
and propose a nearly optimal algorithm. Further-
more, we empirically verify our theoretical result
in synthetic environments, and demonstrate that
our proposed method significantly outperforms a
baseline in many cases.

1. Introduction
The kernelized bandit problem, or Bayesian optimization
problem (Srinivas et al., 2010; Chowdhury & Gopalan,
2017) is an online black-box optimization problem and
has solid applications to various fields including material
design, drug discovery, hyperparameter optimization, and
recommender system (Frazier, 2018; Shahriari et al., 2015).
Although, in the conventional kernelized bandit setting, the
objective is to maximize the mean function, it may not be
appropriate to optimize it in high-stake settings. For ex-
ample, to optimize hyperparameters of a machine learning
algorithm for medical domain, healthcare, or finance, one
might optimize the mean performance with small variance
(Mean-Variance optimization), or want to optimize more
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sophisticated risk averse metrics such as Conditional Value-
at-Risk (CVaR). Recently, there is a growing interest in
generalizing the optimization of the mean function to that
of risk-averse metrics such as CVaR, Value-at-Risk (VaR),
and Mean-Variance (MV) (Cakmak et al., 2020; Nguyen
et al., 2021b;a; Iwazaki et al., 2021; Makarova et al., 2021).
Here, for a distribution ρ, the Mean-Variance is defined as
E [ρ] − cV [ρ], where c > 0 is a parameter of the metric.
CVaR is a metric for risk-aversion established in finance
(Rockafellar et al., 2000) and given as the conditional ex-
pectation Ey∼ρ [y | y ≤ yα], where yα is the α-quantile and
α ∈ (0, 1] is a parameter called the risk level. In this pa-
per, we consider kernelized bandit problems for risk-averse
metrics. We mainly focus on CVaR and MV, especially on
CVaR, because CVaR has nice theoretical properties such
as coherency or continuity on α (Acerbi & Tasche, 2002).

In most existing work on kernelized bandit problems for
risk-averse metrics, the authors model the output y using a
function y = f(x,W ) with two kinds of variables, where
x is the input variable that can be controlled by algorithms,
and W is a random variable called the environment ran-
dom variable that accounts for randomness of the output y
and cannot be controlled by the algorithms (Marzat et al.,
2013). In this paper, we call such a model the environment-
variable-function (EVF) model. However, the EVF model
assumption can cause some restrictions and drawbacks. For
instance, recently, Nguyen et al. (2021a) considered kernel-
ized bandit problems for CVaR under the conditions that
the distribution of W is known, the leaner can select W in
the optimization procedure. If the environment is the real
world or a complicated simulator, these conditions are too
restrictive, since it is necessary to design the environment
random variable that affects the output y, and it is assumed
that the leaner can control/observe it during the optimiza-
tion procedure. Moreover, since the regret upper bound in
Nguyen et al. (2021a) is provided by using the maximum
information gain (Srinivas et al., 2010) of a function with
respect to (x,W ), the regret upper bound increases if the
dimension of W increases even if that of x is moderate.

Contributions

In this paper, by embedding the output distribution ρ(x) at
a point x via Kernel Mean Embedding (KME) (Muandet
et al., 2017) and motivated by the regression interpretation of
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Conditional Mean Embeddings (CME) (Grünewälder et al.,
2012), we model a family of the output distributions (or
more precisely, probability kernel) {ρ(x)}x by a bounded
linear operator between two Reproducing Kernel Hilbert
Spaces (RKHS). Although this model assumption is closely
related to CME (Song et al., 2009; Park & Muandet, 2021),
to distinguish the differences in theoretical conditions, we
term our model the Probability Kernel Embedding (PKE)
model. We provide more details in §3. Our contributions
are summarized as follows:

(i) We provide a formulation of the PKE model (§3), and pro-
pose a novel UCB-type algorithm called CVPKE-UCB for
the kernelized CVaR bandit problem without the aforemen-
tioned drawbacks of the method based on the EVF model,
and provide a sublinear regret upper bound in the case of
discrete output distributions (§4).

(ii) To show the PKE model is sufficiently generic to han-
dle metrics other than CVaR, we also provide a kernelized
bandit algorithm called MVPKE-UCB for MV (§5), which
achieves a similar objective as recent work (Makarova et al.,
2021).

(iii) Furthermore, we provide a lower bound of our cumu-
lative regret for CVaR optimization in the case of Matérn
kernels (§6).

(iv) Then, we propose a phased algorithm CVPKE-PH for
the kernelized CVaR bandit problem with finitely many arms
and discrete distributions, prove that it is a nearly optimal
algorithm in the case of Matérn kernels (§7).

(v) Finally, we empirically compare CVPKE-UCB with a
baseline algorithm in synthetic environments and demon-
strate that the proposed method significantly outperforms
the baseline in many settings (§8).

We shall provide all the proofs omitted in the main paper in
the appendix.

2. Related Work
First, we review classical results regarding kernelized ban-
dit problems in the conventional setting. Srinivas et al.
(2010) studied the kernelized bandit problem, propose a
UCB-type algorithm called GP-UCB, and provide sublinear
regret upper bounds. Later, Chowdhury & Gopalan (2017)
theoretically improved (Srinivas et al., 2010) by proving
a self-normalized concentration inequality and provided a
UCB-type algorithm called IGP-UCB. Scarlett et al. (2017)
proved algorithm-independent lower bounds for the ker-
nelized bandit problem in the case of squared exponential
kernels and Matérn kernels. Although IGP-UCB is a nearly
optimal algorithm for squared exponential kernels, it is not
nearly optimal for Matérn kernels. A nearly optimal algo-
rithm was provided by Valko et al. (2013) in the finitely

many arms setting. More over, this has been recently pur-
sued with more practical algorithms Camilleri et al. (2021);
Salgia et al. (2021); Li & Scarlett (2022).

Next, we review related work on the CVaR or MV opti-
mization in the multi-armed bandit or kernelized bandit
literatures. If the arm set is finite and discrete and there is no
model for the environment (i.e., the classical multi-armed
bandit setting), the CVaR (or MV) bandit problem has been
extensively studied (Tamkin et al., 2019; Baudry et al., 2021;
Chang & Tan, 2022; Sani et al., 2012; Vakili & Zhao, 2016).
Notably, Baudry et al. (2021) considered the CVaR ban-
dit problem, proposed Thompson sampling strategies and
proved asymptotic optimality of problem-dependent regret
bounds. On the other hand, only a few results (Cakmak
et al., 2020; Nguyen et al., 2021a) are known for the kernel-
ized CVaR bandit problem. As explained in the introduction,
Nguyen et al. (2021a) considered a kernelized CVaR ban-
dit problem using the EVF model, but their method has
the aforementioned drawbacks. Iwazaki et al. (2021) con-
sidered MV optimization problems with the EVF model,
and their method has similar drawbacks to (Nguyen et al.,
2021a). Recently, Makarova et al. (2021) also considered
MV optimization problem in a kernelized bandit setting and
provided a regret upper bound. Their algorithm has a pa-
rameter m ∈ Z≥0 (k in their notation) and for each selected
point xt, observations are repeatedly sampled (m times) at
xt to estimate the variance of observations at xt. Although
the variance of the estimation reduces as m increase, there
is a linear factorm in their regret upper bound. In this paper,
using the PKE model, we can estimate MV without repeat-
edly sampling observations at the same point and provide a
UCB-type algorithm for MV.

KME and CME were utilized in some kernelized bandit
literatures (Kirschner et al., 2020; Chowdhury et al., 2020).
Kirschner et al. (2020) studied a distributionally robust opti-
mization problem with the EVF model. They used KME and
maximum mean discrepancy (MMD) to define distance be-
tween two distributions. Originally, CME was used to model
dynamical systems (e.g., transition probability in a Markov
decision process) (Song et al., 2009; 2010). Chowdhury
et al. (2020) modeled uncontrollable input state transition
using CME to optimize the conditional mean of an unknown
function in a kernelized bandit setting. However, they did
not consider an optimization problem of risk-averse metrics
as in this study.

3. Problem Formulation
In this section, we briefly review RKHS and KME, for-
mulate our environment model called the PKE model, and
provide definitions of the cumulative regret and assumptions.
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RKHS and KME

First, we briefly review RKHS and KME to explain our
problem formulation. For more detailed introduction to the
subjects, we refer to Wendland (2004, Chapter 10), Muandet
et al. (2017).

Let X be a set and k : X × X → R be a symmet-
ric semi-positive definite kernel, i.e., k(x, x′) = k(x′, x)
for any x, x′ and for any x1, . . . , xn ∈ X , matrix
(k(xi, xj))1≤i,j≤n is a semi-positive definite matrix. Let
F(X ) be the real vector space consisting of R-valued
functions on X . For x′ ∈ X , we define a “feature vec-
tor” φk(x′) ∈ F(X ) by k(·, x′). A real Hilbert space
(Hk(X ), 〈·, ·〉k) with Hk(X ) ⊆ F(X ) is called the Repro-
ducing Kernel Hilbert Space (RKHS) associated to k if the
following two properties are satisfied: (i) φk(x′) ∈ Hk(X )
for all x′ ∈ X . (ii) 〈f, φk(x′)〉k = f(x′) for all f ∈ Hk(X )
and x′ ∈ X . The second property is called reproducing
property, and the map φk : X → Hk(X ) is called the
feature map. A RKHS uniquely exists if k is symmetric
positive definite by the Moore-Aronszajn theorem. We
provide some examples of non-linear kernels defined on
Rd × Rd. Squared Exponential (SE) kernels are defined
as kSE(x, y) = exp(−‖x − y‖22/a2), where a > 0 is a
length scale parameter. Rational Quadratic (RQ) kernels
are defined by kRQ(x, y) = (1 + ‖x − y‖22/(2νa2))−ν ,
where ν > 0 is a parameter. Matérn-ν kernels are defined as
k

(ν)
Matern(x, y) := 21−ν

Γ(ν)

(
s
√

2ν
)ν
Kν(s

√
2ν), where ν > 0

is a parameter, s = ‖x − y‖2/a, and Kν is the modified
Bessel function of the second kind. We assume k(x, x) ≤ 1
for any x ∈ X as in the previous work (Chowdhury &
Gopalan, 2017). We also assume thatHk(X ) is a separable
Hilbert space. This is a very weak condition and can be
satisfied if k is continuous and X is a separable topological
space (Berlinet & Thomas-Agnan, 2011, pp. 35).

Next, we review KME (Muandet et al., 2017). Let Y be
a measurable space and l : Y × Y → R a symmetric,
semi-positive definite kernel. For simplicity, we assume
supy∈Y l(y, y) ≤ 1. We denote byM(Y) the set of prob-
ability measures on Y . Then, there exists a unique map
µl :M(Y)→ Hl(Y) satisfying

〈µl(ρ), f〉l = Ey∼ρ [f(y)] (1)

for any f ∈ Hl(Y) and ρ ∈ M(Y) (Muandet et al., 2017,
Lemma 3.1), (Smola et al., 2007). The unique map µl is
called the Kernel Mean Embedding (KME). We provide
some simple examples. First, we consider the case of Dirac
delta ρ = δy′ with y′ ∈ Y . By uniqueness and the repro-
ducing property, we see that µl(δy′) = φl(y

′). Next, we
consider the case when Y = (−1, 1) ⊂ R and l is the linear
kernel (i.e., l(y, y′) = yy′). Then Hl(Y) can be identified
with R with the inner product defined by the multiplica-
tion and the map µl can be identified with the expectation,

i.e., µl(ρ) = Ey∼ρ [y]. In particular, µl is not injective in
general. However, if a power function y 7→ yn belongs to
Hl(Y), then one can recover a higher moment from µl(ρ).
Moreover, µl is injective for many popular kernels such as
Matérn or SE kernels, i.e., they are characteristic kernels
(Gretton et al., 2006; Fukumizu et al., 2007).

Formulation of the Environment Model

Hereafter, we assume Y ⊂ R. In the conventional kernel-
ized bandit problem, the reward model is given as a function
from X to Y with some smoothness defined by the RKHS
(Chowdhury & Gopalan, 2017; Srinivas et al., 2010). In this
paper, rather than a function from X to Y , we consider a
map ρ : X →M(Y) to the space of probability measures
on Y . More precisely, ρ is a probability kernel, that is, for
any measurable set A ⊆ Y , x 7→ Ey∼ρ(x) [1A(y)] is a mea-
surable function, where 1A denotes the indicator function.
However, without any smoothness or continuous assump-
tion, we cannot hope for an algorithm with a sublinear regret
guarantee. For the smoothness assumption, we consider a
map Θ : Hk(X ) → Hl(Y) with µl ◦ ρ = Θ ◦ φk, i.e., we
consider the following commutative diagram:

X ρ−−−−→ M(Y)

feature map φk

y KME µl

y
Hk(X )

Θ−−−−→ Hl(Y)

(2)

If we regard φk (resp. µl) as “embeddings” toHk(X ) (resp.
Hl(Y)), then we can suppose that the map Θ defines the
smoothness of the map ρ. In this paper, we assume that Θ is
bounded linear for ρ being smooth. That is, we assume that
there exists a bounded linear operator Θ : Hk(X )→ Hl(Y)
(i.e., ‖Θ‖op := supf∈Hk(X ),f 6=0 ‖Θ(f)‖l/‖f‖k ≤ B) that
makes the diagram (2) commutative.

This can be thought as a generalization of the conventional
reward model of the kernelized bandit problem (Chowdhury
& Gopalan, 2017). To explain this, until the end of this
paragraph, we assume that Y = (−1, 1) ⊂ R and l is the
linear kernel. In this case,Hl(Y) can be identified with R
and µl ◦ ρ(x) = E [ρ(x)]. On the other hand, by the Riesz
representation theorem (c.f., e.g., Conway (2019)), Θ is
given by an element f ∈ Hk(X ), i.e., Θ(·) = 〈·, f〉k. Then,
by the reproducing property, µl ◦ρ = Θ◦φk is equivalent to
E [ρ(x)] = f(x) for any x, which recovers the conventional
reward model in this special case.

Although this model assumption is closely related to Con-
ditional Mean Embedding (CME) (Song et al., 2009; Park
& Muandet, 2021), we did not use the existing theoretical
frameworks due to some undesired properties. For example,
recently, Park & Muandet (2021) provided a measure theo-
retic definition of CME, however, the conditional probability
PY |X is only defined up to a measure zero set (here X,Y
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are random variables on X and Y , respectively) and PY |X
cannot be necessarily regarded as a map from X toM(Y).
To distinguish the differences in theoretical conditions, we
termed our model the PKE model.

In this paper, we consider a kernelized bandit problem as
follows. Let ρ be an unknown probability kernel with com-
mutative diagram (2), and T be a time interval. For each
round t = 1, . . . , T , the learner selects an arm xt ∈ X and
observes yt ∈ Y with yt|Ft−1

∼ ρ(xt). Here Ft−1 is the
σ-algebra generated by x1, y1, . . . , xt−1, yt−1, xt. We pro-
vide some more measure theoretic details in the appendix
(§A).

Definition of the Cumulative Regret

To evaluate leaner’s performance, we define cumulative
regret for the problems. Unlike the conventional setting
where the best arm is defined as an arm with the max-
imum expectation, we define a cumulative CVaR regret
and cumulative MV regret as follows. For a distribu-
tion ρ, we define conditional value at risk CVaRα(ρ) by
supν∈R

(
ν − 1

αEy∼ρ [ψν(y)]
)
, where ψν(y) := max(ν −

y, 0). If ρ is a continuous distribution, then CVaRα(ρ) coin-
cides with conditional expectation Ey∼ρ

[
y | y ≤ F−1

ρ (α)
]

given the condition that y is less than the α-quantile of
ρ, where Fρ is the cumulative distribution of ρ (Acerbi &
Tasche, 2002). If α = 1, then CVaRα(ρ) is identical to
the expectation E [ρ], and if α is small, then it puts more
focus on a rare event. Then, the cumulative CVaR regret
RCVaR,α(T ) is defined as

T∑
t=1

(
sup
x∈X

CVaRα(ρ(x))− CVaRα(ρ(xt))

)
,

and the cumulative MV regret RMV(T ) is defined as

T∑
t=1

(
sup
x∈X

MV(ρ(x))−MV(ρ(xt))

)
.

Further Assumptions on Y and l

To make the problem tractable within the framework, we
require further assumptions. Since we consider two kinds
of objectives (CVaR and MV), we provide two assumptions
respectively.

Due to technical reasons which we detail in §4 and §7,
we need the following finiteness condition for the CVaR
optimization.
Assumption 3.1 (Assumptions for CVaR). We assume l is
positive definite and Y is a finite set. Since ψν ∈ Hl(Y) for
any ν ∈ Y , we define U := supν∈Y ‖ψν‖l <∞.
Remark 3.2. This assumption implies ρ(x) is a discrete
distribution whose support is included in Y for x ∈ X . Un-
der this assumption, it is easy to see that CVaRα(ρ(x)) =

supν∈Y
(
ν − 1

αEy∼ρ [ψν(y)]
)
. The condition ψν ∈ Hl(Y)

and boundedness of U are assured since l is positive definite
and |Y| <∞. However, if we assume l is Matérn-1/2 and
take an open interval Ỹ with Y ⊂ Ỹ , then U has the follow-
ing interpretation: U = O(supν∈Ỹ

∑1
a=0 ‖Daψν‖L2(Ỹ))

(Wendland, 2004, Theorem 10.47, Corollary 10.48), where
D is the weak derivative, which implies that U is bounded
by a constant multiple of the length of Ỹ even if |Y| is large.
Assumption 3.3 (Assumptions for MV). For n ∈ Z≥1, we
define a function χn : Y → R as χn(y) = yn. We assume
that χ1 ∈ Hl(Y) and χ2 ∈ Hl(Y).
Remark 3.4. For example, this assumption is satisfied if
Y is a bounded open interval and l is a polynomial kernel
l(y, y′) = C (1 + yy′)2 of degree 2 with a constant C > 0,
or a Matérn kernel.

Although the assumptions on l and Y seem restrictive and
our algorithms and regret guarantees depend on l (and
log |Y| in the case of CVaR), but we will see that the depen-
dence is only through constants determined by l and Y , and
there is no restrictive assumption on k.

Notation

For x1, . . . , xt ∈ X , we define Hk(X )-coefficient
row vector Φk(x1:t) by (φk(x1), . . . , φk(xt)) and de-
fine Φl(y1:t) similarly for y1, . . . , yt ∈ Y . For
x1, . . . , xt; x

′
1, . . . , x

′
s ∈ X , we define k(x1:t, x

′
1:s) ∈

Rt×s as (k(xi, x
′
j))1≤i≤t,1≤j≤s.

4. UCB-type Algorithm for the Kernelized
CVaR Bandits

In this section, under Assumption 3.1, we propose a UCB-
type algorithm for the CVaR optimization and provide a
high-probability regret upper bound. As is well-known,
UCB-type algorithms elegantly solve the explore-exploit
dilemma in bandit problems. Our key observation is that
using the PKE model, we can model multiple functions
x 7→ Ey∼ρ(x) [ψν(y)] for ν ∈ Y with a single bounded
linear map Θ : Hk(X )→ Hl(Y).

First, following (Song et al., 2009; Chowdhury et al.,
2020), we introduce an estimation of Θ using observa-
tion history up to time step t. For observation history
(x1, y1), . . . , (xt, yt), and x ∈ X , we define an estimation
Θ̂(x;x1:t, y1:t) = Θ̂t(x) ∈ Hl(Y) of Θ by

Φl(y1:t) (k(x1:t, x1:t) + λ1t)
−1k(x1:t, x). (3)

We introduce some standard notations for the kernelized
bandit problem. For time step 1 ≤ t ≤ T , we define the
maximum information gain γk,t as

1

2
sup

x̃1,...,x̃t∈X
log det

(
1t + λ−1k(x̃1:t, x̃1:t)

)
,
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where the supremum is taken over any t points x̃1, . . . , x̃t
in X . Then, we define

βk,t(δ) = B
√
λ+ 2

√
2(γk,t + log(1/δ)),

where λ > 0 and δ > 0 are parameters of the algorithms.
We define σk,t(x) ∈ R≥0 by

λσ2
k,t(x) := k(x, x)

− k(x1:t, x)T (k(x1:t, x1:t) + λ1t)
−1

k(x1:t, x),

for x ∈ X . If t = 0, we understand σk,0(x) =

λ−1/2
√
k(x, x) and Θ̂0(x) = 0. We also write σk,t(x) as

σk(x;x1:t) to make the dependence of x1, . . . , xt explicit.

For any f ∈ Hl(Y), using an existing concentration inequal-
ity for function (Durand et al., 2018, Theorem 1), Chowd-
hury et al. (2020) proved that following inequality in the
proof of their main theorem:

|〈f,Θ◦φk(x)〉l−〈f, Θ̂t(x)〉l| ≤ ‖f‖lβk,t(δ)σk,t(x). (4)

We provide a proof in the appendix since the technical con-
ditions are different. Since the event on which (4) holds
depends on f , in this section, we take a union bound for
f ∈ {ψν : ν ∈ Y}. Then, by (2) and the property of
the KME (1), we can derive a concentration inequality
|Ey∼ρ(x) [ψν(y)] − 〈ψν , Θ̂t(x)〉l| ≤ Uβk,t(|Y|δ)σk,t(x),
which uniformly holds on ν ∈ Y . Therefore, we can prove
the following concentration inequality for CVaR.

Proposition 4.1. For observation history (x1, y1), . . . ,

(xt, yt) up to time step t, we define ĈVaRα(x;x1:t, y1:t) =

ĈVaRα,t(x) by

sup
ν∈Y

{
ν − 1

α
ψν(y1:t)(k(x1:t, x1:t) + λ1t)

−1k(x1:t, x)

}
,

(5)
where ψν(y1:t) is defined as (ψν(y1), . . . , ψν(yt)). Then,
with probability at least 1 − δ, the following inequality
holds:∣∣∣CVaRα(ρ(x))− ĈVaRα,t(x)

∣∣∣ ≤ U

α
β

(CV)
k,t (δ)σk,t(x),

for all x and t. Here β(CV)
k,t (δ) is defined as βk,t(δ/|Y|),

i.e.,

β
(CV)
k,t (δ) = B

√
λ+ 2

√
2 (γk,t + log(|Y|/δ)).

Remark 4.2. Since ψν is piece-wise linear, the function ν 7→
ν− 1

αψν(y1:t)(k(x1:t, x1:t)+λ1t)
−1k(x1:t, x) achieves its

maximum on {y1, . . . , yt} ∪ {supY, inf Y}. Hence, if we
use Schur complement to update the matrix (k(x1:t, x1:t) +
λ1t)

−1 (c.f., (Chowdhury & Gopalan, 2017, Section F)),
the computational complexity for ĈVaRα,t(x) is O(t2) for
each arm x.

Algorithm 1 UCB-type Algorithm for Kernelized CVaR
Bandits

Input: U > 0, λ > 0, δ > 0.
for t = 1, 2, . . . , T do

Define xt as the arm with the largest UCB
argmaxx∈X ĈVaRα,t−1(x) + U

α β
(CV)
k,t−1(δ)σk,t−1(x).

Play xt and observe yt.
end for

Using the confidence bounds of CVaR(ρ(x)) provided
above, we can construct a standard UCB-type algorithm
(Algorithm 1) and call it CVPKE-UCB. Compared to the
existing method (Nguyen et al., 2021a) with the EVF model,
our algorithm selects only the input variable xt, and it is
unnecessary to design or know the environment random
variable.

Theorem 4.3. Assuming λ ≥ 1, Algorithm 1 achieves the
following high probability regret upper bound, i.e., for any
δ ∈ (0, 1), the following inequality holds with probability
at least 1− δ:

RCVaR,α(T ) ≤ 2U
√

2

α
√

log(2)
β

(CV)
k,T (δ)

√
Tγk,T .

Remark 4.4. (i) In the EVF-model based approach (Nguyen
et al., 2021a), the kernel is defined for a pair (x,W ) of the
input variable x and the environment variableW . Therefore,
their algorithm can incur a larger regret due to possible high
dimensionality of W .

(ii) Although we assume that distribution ρ(x) is discrete
and Y is finite, if we discretize supports of continuous dis-
tributions with Y , then we can apply CVPKE-UCB to con-
tinuous distributions. In fact, we empirically show that
CVPKE-UCB works well for continuous distributions in
§8.

(iii) Ignoring constants α,U, log |Y|, CVPKE-UCB
achieves the same regret upper bound as the algorithms
in the conventional setting such as GP-UCB, IGP-UCB
(Srinivas et al., 2010; Chowdhury & Gopalan, 2017).

(iv) By Remark 4.2, the computational complexity for the
UCB for each arm at round t is given as O(t2). Therefore,
CVPKE-UCB has the same computational complexity as
GP-UCB and IGP-UCB. It would be possible to construct
a provably efficient algorithm using kernel approximation
methods as in the conventional setting (Mutnỳ & Krause,
2019; Calandriello et al., 2020; Takemori & Sato, 2021).
However, for simplicity, we do not focus on efficiency in
this study.

For reader’s reference, we provide some known results on
upper bounds of the maximum information gain γk,T . Until
the end of this paragraph, we assume X is a compact subset
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of Rd and consider d-dimensional linear kernels, SE kernels,
RQ kernels, and Matérn-ν kernels. If k is a linear kernel,
then γk,T = O(d log(T )) and if k is an SE kernel, then
γk,T = O(logd+1(T )) (Srinivas et al., 2010). If k is Matérn-
ν, then γk,T = Õ(T

d
2ν+d ) (Vakili et al., 2021). If k is a RQ

kernel, then γk,T = O(logd+1(T )). This follows from
(Vakili et al., 2021), (Wendland, 2004, Theorem 11.22) and,
(Santin & Schaback, 2016, Theorem 15).

5. UCB-type Algorithm for Kernelized MV
Bandits

To show the PKE model is sufficiently general to handle
metrics other than CVaR, in this section, we consider the
MV optimization problem in the kernelized setting. Under
Assumption 3.3, we provide a UCB-type algorithm for mini-
mizing the cumulative MV regret, which does not require re-
peated sampling unlike a recent algorithm (Makarova et al.,
2021) for the same objective.

First, we provide confidence bounds for MV(ρ). Recall
that for n = 1, 2, χn denotes the function y 7→ yn.
For a distribution, the nth raw-moment mn(ρ) is defined
as mn(ρ) = Ey∼ρ [yn]. Then, MV(ρ) is rewritten as
MV(ρ) = m1(ρ) − cm2(ρ) + c (m1(ρ))

2. Similarly to
Proposition 4.1, we have the following concentration in-
equality for mn(ρ(x)), i.e., the following inequality holds
with probability at least 1− δ:∣∣∣mn(ρ(x))− 〈Θ̂t(x), χn〉

∣∣∣ ≤ ‖χn‖lβ(MV)
k,t (δ)σk,t(x),

(6)
for any x, t and n = 1, 2. Here β(MV)

k,t (δ) is defined as
βk,t(2δ). Here by the reproducing property, the inner prod-
uct 〈Θ̂t(x), χn〉 is given as

(yn1 , . . . , y
n
t )(k(x1:t, x1:t) + λ1t)

−1k(x1:t, x).

Using the concentration inequality, we can easily prove the
following proposition:
Proposition 5.1. For x ∈ X and observation history up to
time step t, we define M̂Vt(x) by

M̂Vt(x) = 〈Θ̂t(x), χ1〉 − c〈Θ̂t(x), χ2〉+ c〈Θ̂t(x), χ1〉2.

Then, with probability at least 1− δ, we have the following
inequality:∣∣∣MV (ρ(x))− M̂Vt(x)

∣∣∣
≤ Cβ

(MV)
k,t (δ)σk,t(x) + C′

(
β

(MV)
k,t (δ)

)2

σ2
k,t(x),

where C = ‖χ1‖l + c‖χ2‖l + 2cB‖χ1‖2l and C′ = c‖χ1‖2l .

We define UCBt,MV(x) by M̂Vt(x)+Cβ
(MV)
k,t (δ)σk,t(x)+

C′(β
(MV)
k,t (δ))2σ2

k,t(x). Then, by this proposition

UCBt,MV(x) is a high-probability upper bound of
MV(ρ(x)). Therefore, we consider a UCB-type algorithm
for MV, i.e., in each round t = 1, . . . , T , it selects an arm
x with the largest UCBt,MV(x). We call the algorithm
MVPKE-UCB and the following theorem provides regret
upper bound of it:
Theorem 5.2. Assume λ ≥ 1. Then, with probability at
least 1− δ, cumulative regret RMV(T ) of MVPKE-UCB is
upper bounded by

O

(
(1 + c)β

(MV)
k,T (δ)

√
Tγk,T + c

(
β

(MV)
k,T (δ)

)2

γk,T

)
.

Remark 5.3. Recently, (Makarova et al., 2021) also proved a
sublinear regret bound for the cumulative MV regret. How-
ever, we cannot directly compare our results to theirs since
theoretical assumptions are different. We note that ignoring
constants our regret upper bound is equivalent to that of
IGP-UCB (Chowdhury & Gopalan, 2017). Ignoring con-
stants B, λ, c, the upper bound in Theorem 5.2 is given as
O(γk,T

√
T + γ2

k,T ). On the other hand the regret upper
bound of IGP-UCB is given as O(γk,T

√
T ). Assuming that

this upper bound is sublinear, i.e., γk,T = o(
√
T ), the sec-

ond term γ2
k,T in our upper bound is dominated by the first

term γk,T
√
T . Therefore, regret upper bound in the theorem

is equivalent to that of IGP-UCB.

In the appendix (§D), we provide additional theoretical and
experimental results regarding cumulative MV regret mini-
mization.

6. Lower Bounds of Cumulative CVaR Regret
To evaluate the difficulty of a bandit problem, it is necessary
to give regret lower bounds of the problem. This section
provides lower bounds for cumulative CVaR regret in the
case of Matérn kernels. We focus on Matérn kernels since
the corresponding RKHS has a good mathematical interpre-
tation (i.e., Sobolev space) and Matérn-ν converges to an
SE kernel if ν →∞ (Rasmussen, 2003, section 4.2.1).

For any bandit algorithm π and an environment (ρ,Θ), we
denote by E [RCVaR,α(T ;π,ρ,Θ)] the expected cumula-
tive regret that algorithm π incurs up to time step T when
the environment is (ρ,Θ). Here, the expectation is taken
with respect to randomness of the outputs and decisions
made by the algorithm. Then, we have the following theo-
rem.
Theorem 6.1. Assume 0 < α < 1, X is the d-
dimensional cube [0, 1]d, and k is Matt́ern-ν kernel. Then
there exist positive constants B = B(l, α)1 T0 =
T0(α, k, l), C = C(α, k, l) satisfying the following state-
ment. For any T > T0, there exist environments

1We write B = B(l, α) to indicate that constant B depends
only on l and α.
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(ρ1,Θ1), . . . , (ρM ,ΘM ) with ‖Θm‖op ≤ B (for 1 ≤ m ≤
M ), where M = M(α, k, d, T ), such that for any algo-
rithm π, we have E [RCVaR,α(T ;π)] > CT

ν+d
2ν+d . Here

E [RCVaR,α(T ;π)] denotes the average expected cumula-
tive regret 1

M

∑M
m=1 E [RCVaR,α(T ;π,ρm,Θm)].

Remark 6.2. (i) This theorem can be proved in a similar man-
ner to the conventional setting (Scarlett et al., 2017). How-
ever, unlike in the conventional setting, we have to construct
probability kernels and bounded operators rather than func-
tions. We briefly provide a sketch of the proof. We divide
the cube X into M small cubes with width Θ(T 1/(d+2ν)),
where M = Θ(T d/(d+2ν)). For each m = 1, . . . ,M , we
define a Bernoulli distribution y ∼ ρm(x) by y = 0 with
probability pm(x) = α(1− fm(x)) and 1 otherwise. Here,
fm is a uniformly bounded function |fm(x)| ≤ 2ε, and
is “almost zero” except for the mth small cube. Since
CVaRα(ρm(x)) = max(fm(x), 0), any algorithm incurs
linear regret Ω(εT ) in average. In the Matérn kernel case,
it is enough to take ε = Θ(T−ν/(d+2ν)) to bound ‖Θm‖op

by a constant. Therefore, we have the lower bound stated in
Theorem 6.1.

(ii) If k is Matérn, then by Theorem 4.3 and γk,T =

Θ̃(T d/(2ν+d)) (c.f., Vakili et al. (2021); Scarlett et al.
(2017)), we see that CVPKE-UCB is not nearly optimal.
However, the same situation occurs in the well-studied, con-
ventional setting, i.e., IGP-UCB is not nearly optimal in the
case of Matérn kernels. On the other hand, we conjecture
that CVPKE-UCB is nearly optimal in the case of SE and
RQ kernels.

7. Nearly Optimal Algorithm for Kernelized
CVaR Bandits with Finitely Many Arms

In the last section, we provided lower bounds for cumulative
CVaR regret, and remarked that CVPKE-UCB is not nearly
optimal for Matérn kernels. This section provides a nearly
optimal algorithm for the kernelized CVaR bandit problem.
In the conventional setting, Valko et al. (2013) provided
a nearly optimal algorithm for SE and Matérn kernels in
the case when the arm set X is finite. The concentration
inequality proved by (Chowdhury & Gopalan, 2017) holds
uniformly on arm x and time step t, i.e., we can take an
event independent of x and t, on which the inequality holds.
On the other hand, Valko et al. (2013) used the classical
Azuma-Hoeffding inequality and took a union bound to
obtain a concentration inequality which holds uniformly
on X . To the best of our knowledge, even in the well-
studied conventional setting, one has to assume X is finite
to achieve a nearly optimal algorithm. Therefore, in this
section we assume X is finite (e.g., it is a discretization of a
bounded domain of a Euclidean space). Therefore, besides
Assumption 3.1, we assume X is a finite set in this section.

Algorithm 2 Phased Algorithm for Kernelized CVaR Ban-
dits with Finitely Many Arms and Discrete Distributions

Set X1 := X , J := blog2(T )c, tj = 2j−1 for 1 ≤ j ≤ J .
Set β̃k,T (δ) := B

√
λ+ 2

√
2 log(2|X ||Y|J/δ).

for j = 1, . . . , J do
for t = tj . . . ,min(tj+1 − 1, T ) do

Play xt := argmaxx∈Xj σ
(j)
t−1(x) and observe yt.

end for
s := min(tj+1 − 1, T )

b := maxx∈Aj

(
ĈVaR

(j)

s (x)− U
α β̃k,T (δ)σ

(j)
s (x)

)
.

Xj+1 := {x ∈ Xj : ĈVaR
(j)

s (x) +
U
α β̃k,T (δ)σ

(j)
s (x) ≥ b}.

end for

To apply the Azuma-Hoeffding inequality in kernelized or
linear bandit settings, the selected arms should be determin-
istically chosen without the knowledge of the observations
(Lattimore & Szepesvári, 2020, chapter 20). However, such
an assumption rarely holds for meaningful bandit algorithms.
To address the issue, existing methods divide time interval
into phases and select arms in the phase using only ob-
servations in the previous phase (Chu et al., 2011; Valko
et al., 2013). Inspired by methods for spectral bandits or
misspecified linear bandits (Valko et al., 2014; Lattimore
et al., 2020), we consider an algorithm that divides the time
interval into J phases and call it CVPKE-PH (Algorithm
2). Here J = blog2 T c and jth phase starts from tj th round,
where tj = 2j−1.

At the end of each phase, CVPKE-PH eliminates arms that
are supposed to be suboptimal using a confidence bound.
The following concentration inequality provides a tighter
bound than Proposition 4.1 in this special case.

Proposition 7.1. For each phase j = 1, . . . , J and t =

tj , . . . , sj , we define σ
(j)
t (x) as σk,t(x;xtj :t−1), where

sj := min(tj+1 − 1, T ). Similarly, we define ĈVaR
(j)

sj (x)
an estimation of CVaR(ρ(x)) by (5) but using only the
observation history {(xtj , ytj ), . . . , (xsj , ysj )} in the jth
phase. Then, for any δ ∈ (0, 1), we have the following
inequality that holds uniformly for x ∈ X and 1 ≤ j ≤ J:∣∣∣∣CVaR(x)− ĈVaR

(j)

sj (x)

∣∣∣∣ ≤ U

α
β̃k,T (δ)σ(j)

sj (x),

where β̃k,T (δ) = B
√
λ+ 2

√
2 log(2|X ||Y| log2(T )/δ).

Using Proposition 7.1, we obtain the following result:

Theorem 7.2. We put C := supx∈X CVaR(ρ(x)) < ∞
and assume λ ≥ 1. Then, Algorithm 2 achieves the fol-
lowing high probability regret bound, i.e., the following
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Figure 1. Cumulative CVaR Regret for Normal Environments
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Figure 2. Cumulative CVaR Regret for LogNormal Environments

inequality holds with probability at least 1− δ.

RCVaR,α(T ) ≤ 2C +
8U

α log 2
β̃k,T (δ)

√
Tγk,T log T .

By combining this theorem with Theorem 6.1, we see that
CVPKE-PH is a nearly optimal in the case of Matérn ker-
nels.

Corollary 7.3. Assume that k is a Matérn kernel. Then,
CVPKE-PH is a nearly optimal algorithm for the kernelized
CVaR bandit problem. More precisely, the lower bound
provided in Theorem 6.1 and the upper bound provided in
Theorem 7.2 matches up to a polylogarithmic factor of T .

8. Experiments
In this section, we empirically evaluate our proposed algo-
rithm in synthetic environments2. Since there is no existing
algorithm for the same problem formulation, we compare
CVPKE-UCB (Algorithm 1) with IGP-UCB (Chowdhury
& Gopalan, 2017) in two kinds (symmetric and skew out-
put distributions) of synthetic of environments for α ∈
{0.05, 0.1, 0.5, 0.9.0.95}. We demonstrate that the pro-
posed method significantly outperforms the baseline if α is
not close to 1.

We explain the experimental settings more in detail. In this
section, we assume that X is a discretization of the cube
[0, 1]d with d = 3, X = {i/10 : i = 0, 1, . . . , 10}3, and
k is Matérn-5/2 kernel with a length scale a = 0.5. We

2Source code is publicly available as a supplementary material.

consider two kinds of environments: symmetric and skew
distributions. For the first kind of environments, we consider
a family of normal distributions ρ(x) = N (µm(x), σm(x))
for 1 ≤ m ≤ 10. Here, we constructed functions µm, σm ∈
Hk(X ) independently randomly for 1 ≤ m ≤ 10 (we
provide details in the appendix). We note that unlike our the-
oretical assumptions, distribution ρ(x) is continuous. We
can compute the CVaR of normal distribution ρ = N (µ, σ)
explicitly. CVaRα(ρ) is given as µ − σ

α
√

2π
exp(−q2/2),

where q = Φ−1
SN(α) and ΦSN is the CDF of the standard

normal distribution. Since CVaR of a normal distribution
N (µ, σ) can be written as a linear combination of µ and
σ, we consider more complicated environments (skew dis-
tributions). For the second kind of environments, we con-
sider log-normal distributions LN (µ′m(x), σ′m(x)), where
1 ≤ m ≤ 10 and random functions µ′m, σ

′
m are defined sim-

ilarly to µm, σm. We note that the CVaR of ρ = LN (µ, σ)
is given as CVaRα(ρ) = exp(µ + σ2/2)ΦSN(q − σ)/α,
where q = Φ−1

SN(α).

We take λ = 1 for both the algorithms, δ = 10−2 for IGP-
UCB. To apply CVPKE-UCB to continuous distributions,
assuming there exists a discretization Y for support of ρ(x),
we let δ/|Y| = 10−2 in the definition of β(CV)

k,t (δ). Here,
we note that the only dependence of |Y| on CVPKE-UCB
is the log |Y| term in the definition of β(CV)

k,t (δ). To tune
parameters of the algorithms, we use different but the same
kind of the environments using the first 200 rounds. We
provide more details in the appendix.

For each α and m = 1, . . . , 10, we ran both algorithms
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in environment ρm(x) = N (µm(x), σm(x)). For each α
and environment, we normalize the cumulative CVaR regret
so that the cumulative CVaR regret of the uniform random
algorithm is equal to 1 at T = 1000 round. Then we plot
the mean cumulative CVaR regret for the ten environments
in Figure 1. We conducted similar experiments for the log-
normal environments and the results are displayed in Figure
2.

The experimental results indicate that the proposed method
CVPKE-UCB achieves sublinear cumulative regret for both
kinds of environments and any α while the baseline incurs
linear cumulative regret in some cases. In addition, the pro-
posed method CVPKE-UCB significantly outperforms the
baseline if α is not close to 1. However, if the environments
are normal distributions and α is close to 1, i.e., if CVaRα

is close to the expectation, then IGP-UCB is slightly better
than the proposed method.

9. Conclusion
In this paper, using an environment model called PKE, we
proposed a UCB-type algorithm for CVaR that improves
drawbacks of the recent method. We also provided a UCB-
type algorithm for MV, lower bounds for the cumulative
CVaR regret, and a nearly optimal algorithm for CVaR op-
timization. In the experimental section, we empirically
verified our theoretical result in synthetic environments.
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Appendix
In this appendix, we provide measure theoretic details of our model in §A, remarks on the concentration inequality (4) in
§B, proofs omitted in the main article in §C, additional theoretical and experimental results on MV optimization in §D,
details of the experimental setting in §E.

A. Measure Theoretic Details
In this section, following (Lattimore & Szepesvári, 2020, Chapter 2, 3), we provide measure theoretic details of our bandit
model. The objective of this section is to give more precise meaning of the assumption yt|Ft−1 ∼ ρ(xt) and to clarify the
relationship between the expectation with respect to ρ(xt) and the conditional expectation given Ft−1.

For a measurable space (Ω,F) and a measure µ on it, we write µ(dω) to emphasize that µ is a measure on (Ω,F), where
F is a σ-algebra. For simplicity, we sometimes omit σ-algebras from notation. We recall that for measurable spaces
(Ω,F), (Ω′,F ′), a probability kernel κ(·; dω′) is a map κ : Ω→M(Ω′) such that

∫
A
κ(·; dω′) is a measurable function for

any A ∈ F ′. We (implicitly) assumed X and Y are measurable spaces (X ,Fx) and (Y,Fy). For t = 1, . . . , T , we let X (t)

and F (t)
x ⊆ 2X

(t)

be copies of X and Fx respectively. We define Y(t) and F (t)
y similarly. We define a measurable space

(Ω,FΩ) by Ω :=
∏T
t=1 X (t) × Y(t) and FΩ :=

⊗T
t=1 F

(t)
x ⊗F (t)

y . We use letters ξ, ζ, ω to denote elements in X ,Y , and
X × Y respectively. In this section, we fix a bandit algorithm and environment model defined as follows. For t = 1, . . . , T ,
let κ(t)

x (ω1, . . . , ωt−1; dξt) be a probability kernel κ(t)
x :

∏t−1
s=1 X (s)×Y(s) →M(X (t)), where ωs = (ξs, ζs) ∈ X (s)×Y(s)

for s = 1, . . . , t− 1. If t = 1, we understand κ(1)
x is a probability measure on X (1). The probability kernel κ(t)

x determines
distribution of xt of the algorithm in round t. For t = 1, . . . , T , let κ(t)

y (ω1, . . . , ωt−1, ξt; dζt) be a probability kernel
κ

(t)
y :

(∏t−1
s=1 X (s) × Y(s)

)
× X (t) → M(Y(t)). The probability kernel κ(t)

y determines the output distribution of yt in
each round. The following theorem is a special case of the Ionescu-Tulcea theorem, which is a generalization of the product
measure theorem.

Theorem A.1 (c.f., Ash (2014) section 2.6, Lattimore & Szepesvári (2020) Theorem 3.3). Let notation be as above. Then
there exists a unique probability measure µ on (Ω,FΩ) such that for any Cs = As × Bs with As ∈ F (s)

x , Bs ∈ F (s)
y

(s = 1, . . . , T ),

µ

(
T∏
s=1

Cs

)
=

∫
A1

κ(1)
x (dξ1)

∫
B1

κ(1)
y (ξ1, dζ1)

∫
A2

κ(2)
x (ω1; dξ2)

∫
B2

κ(2)
y (ω1, ξ2; dζ2)

· · ·
∫
AT

κ(T )
x (ω1, . . . , ωT−1; dξT )

∫
BT

κ(T )
y (ω1, . . . , ωT−1, ξT ; dζT ).

We regard Ω as a probability space by this measure µ in the theorem and define random variables xt, yt for t = 1, . . . , T
by projections xt : Ω → X (t) and yt : Ω → Y(t). We also define σ-algebras Ft−1 by the σ-algebra generated by
x1, y1, . . . , xt−1, yt−1 and xt. For ξ ∈ X , we denote probability kernel ρ(ξ) by ρ(ξ; dζt) to emphasize that it is a measure
on Y(t). The assumption yt | Ft−1 ∼ ρ(xt) means that κ(t)

y (ω1, . . . , ωt−1, ξt; dζt) = ρ(ξt; dζt) for any ωs ∈ X (s) × Y(s)

(1 ≤ s ≤ t− 1) and any ξt ∈ X (t). By Theorem A.1 and definition of the conditional expectation, we have the following
result:

Corollary A.2. Assume yt | Ft−1 ∼ ρ(xt), or equivalently κ(t)
y (ω1, . . . , ωt−1, ξt; dζt) = ρ(ξt; dζt). For any measurable

f : Y(t) → R,

E [f(yt) | Ft−1] =

∫
Y
f(ζ)ρ(xt; dζ). (7)

That is, the conditional probability of Ω coincides with the probability kernel. Here, the RHS is a random variable defined
as Ω 3 ω 7→

∫
Y f(ζ)ρ(xt(ω); dζ).

B. Remarks on the Concentration Inequality (4)

As we remarked in the main article, the event on which inequality (4) holds depends on f . However, Chowdhury et al.
(2020) took the supremum for f to prove their main theorem. Thus, their proof appears to be mistaken. Although, we
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conjecture that (Chowdhury et al., 2020, Theorem 1) is true under suitable assumptions, the proof would not be trivial.
Therefore, we did not use the concentration inequality provided by (Chowdhury et al., 2020) and took a union bound for
f ∈ {ψν : ν ∈ Y} to derive Proposition 4.1.

We introduce the following proposition, which is a weaker version of the statement of (Chowdhury et al., 2020, Theorem 1).
Although it is unnecessary for our main results, it has a theoretical importance, since for example, it enables to estimate
MMD between two distributions ρ(x) and ρ(x′). We provide a sketch of a proof after the proof of Lemma C.2.

Proposition B.1. Assume |Y| < ∞. By normalizing, we also assume that Y ⊂ (0, 1). Let (x1, y1), . . . , (xt, yt) be an
observation history up to time step t. Assume l is a SE, RQ, or Matérn-ν with ν > 1/2. Then, there exists a constant
C = C(l) > 0 depending only on l such that the following inequality holds:

P
(∣∣∣〈f,Θ ◦ φk(x)〉l − 〈f, Θ̂t(x)〉l

∣∣∣ ≤ ‖f‖lβ′k,t(δ)σk,t(x), ∀f ∈ Hl(Y),∀x ∈ X , 1 ≤ ∀t ≤ T
)
≥ 1− δ,

where β′k,t(δ) = B
√
λ+ C

√
2(γk,t + log( |Y|δ )). In particular, with probability at least 1− δ, we have∥∥∥Θ ◦ φk(x)− Θ̂t(x)

∥∥∥
l
≤ β′k,t(δ)σk,t(x),

for any t and x.

C. Proofs
This section provides proofs of the results in the main article. We provide a proof of Theorem 4.3 in §C.1, that of Theorem
5.2 in §C.2, that of Theorem 6.1 in §C.4, and that of Theorem 7.2 in §C.3.

The following lemma seems well-known3. But, we provide a proof for completeness.

Lemma C.1. For any sequence x̃1, . . . , x̃t ∈ X , we have

log
(
det
(
1t + λ−1k(x̃1:t, x̃1:t)

))
=

t∑
s=1

log
(
1 + σ2

k(x̃t; x̃1:(t−1))
)
.

Proof. This can be proved by induction on t using Schur complement. First, we assume t = 1. Then the assertion follows
from the definition of σk(x̃t; x̃1:(t−1)). We assume that the assertion holds for any t′ with t′ ≤ t. By Schur complement, for
any t× t symmetric matrix A, t× 1 matrix B, a scalar matrix D, we have

det

(
A B
BT D

)
= detA det

(
D −BTA−1B

)
.

Applying this equality, we have

log det
(
1t+1 + λ−1k(x̃1:t+1, x̃1:t+1)

)
− log det

(
1t + λ−1k(x̃1:t, x̃1:t)

)
= log(D̃).

Here D̃ is given as

D̃ = 1 + λ−1k(x̃t+1, x̃t+1)− λ−1k(x̃1:t, x)T
(
1t + λ−1k(x̃1:t, x̃1:t)

)
λ−1k(x̃1:t, x)

= 1 + λ−1
(
k(x̃t+1, x̃t+1)− k(x̃1:t, x)T (λ1t + k(x̃1:t, x̃1:t)) k(x̃1:t, x̃t+1)

)
= 1 + σ2

k(x̃t+1; x̃1:t),

where the last equality follows from definition. Thus, by the induction hypothesis, the assertion of the lemma holds for t+ 1.
This completes the proof.

3For example, Srinivas et al. (2010) proved a similar result using an information theoretic definition of the information gain. Here, we
provide a more algebraic proof for less restrictive assumptions.
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C.1. Proof of Theorem 4.3

In this subsection, we prove regret upper bound for CVPKE-UCB.

First, we prove the following Lemma:

Lemma C.2. Let (x1, y1), . . . , (xt, yt) be an observation history up to time step t. For each f ∈ Hl(Y), we have the
following inequality:

P
(∣∣∣〈f,Θ ◦ φk(x)〉l − 〈f, Θ̂t(x)〉l

∣∣∣ ≤ ‖f‖lβk,t(δ)σk,t(x), ∀x ∈ X , 1 ≤ ∀t ≤ T
)
≥ 1− δ.

Proof. This can be proved in a similar way to (Chowdhury et al., 2020, Theorem 1). However, since the theoretical
assumptions are different, we provide a proof for completeness.

Since Θ is a bounded linear operator, it has adjoint operator Θ∗ : Hl(Y)→ Hk(X ). We put g = Θ∗(f) ∈ Hk(X ). Then,
we have ‖g‖l ≤ ‖Θ∗‖op‖f‖l ≤ B‖f‖l. By (2) and the property of KME (1), we have 〈f,Θ ◦ φk(x)〉l = Ey∼ρ(x) [f(y)].
On the other hand, by definition of Θ∗ and the reproducing property,

〈f,Θ ◦ φk(x)〉l = 〈g, φk(x)〉k = g(x). (8)

Thus, it follows that
g(x) = Ey∼ρ(x) [f(y)] . (9)

For s = 1, . . . , t, we define random variables zs and εs by zs = f(ys) and zs = g(xs) + εs. Then, by the reproducing
property, we have

〈f, Θ̂t(x)〉 = (z1, . . . , zt) (k(x1:t, x1:t) + λ1t)
−1

k(x1:t, x). (10)

Next, we show that εs is conditionally 2‖f‖l-sub-Gaussian given Fs−1 for s = 1, . . . , t. We refer to Durand et al. (2018)
for definition of sub-Gaussian random variables. It is enough to show that |εs| ≤ 2‖f‖l and E [εs | Fs−1] = 0. The first
condition follows from |εs| ≤ |f(ys)| + |g(xs)| ≤ |f(ys)| + Ey∼ρ(xs) [|f(y)|] and |f(y)| ≤ ‖f‖l‖φl(y)‖l ≤ ‖f‖l. The
last inequality holds since we assume supy∈Y l(y, y) ≤ 1. The second condition follows from E [f(ys) | Fs−1] =
Ey∼ρ(xs) [f(y)] = g(xs) by (7) and (9). Applying (Durand et al., 2018, Theorem 1) to function g and sequence
(x1, z1), . . . , (xt, zt), we have

|g(x)− (z1, . . . , zt) (k(x1:t, x1:t) + λ1t)
−1

k(x1:t, x)| ≤ ‖f‖lβk,t(δ)σk,t(x),

with probability at least 1− δ, uniformly on x and t. By (8) and (10), we have our assertion.

Although we do not require Proposition B.1 for our main results, we provide a sketch of the proof here.

Sketch of the Proof for Proposition B.1. We assume l is Matérn-ν with ν > 1/2 for simplicity. The other cases can be
proved similarly. Let n = |Y|. Then, Hl(Y) is an n-dimensional vector space. We take a special basis of Hl(Y) called
Newton basis {Ni}ni=1 with the P -greedy algorithm (Santin & Haasdonk, 2017; Pazouki & Schaback, 2011). This basis has
the following properties:

(i) {Ni}ni is an orthonormal basis ofHl(Y).

(ii) Let mi = supy∈Y Ni(y). Then, there exists a constant C ′ = C ′(l) > 0 such that mi ≤ C ′i−ν for i = 1, . . . , n.

Here, the second property follows from (Santin & Haasdonk, 2017, Theorem 4.1), (Pazouki & Schaback, 2011, Theorem
9.1).

For 1 ≤ i ≤ n and 1 ≤ s ≤ t, let gi = Θ∗(Ni) ∈ Hk(X ) and ε(i)
s = Ni(ys)− gi(xs) = Ni(ys)−Ey∼ρ(xs) [Ni(y)]. Then,

we have ‖gi‖ ≤ B, and we see that ε(i)
s is 2mi-sub-Gaussian by the proof of Lemma C.2. We denote by ξs the sth entry of

the following vector
(k(x1:t, x1:t) + λ1t)

−1
k(x1:t, x)
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for s = 1, . . . , t. Define random variable Zi by
∑t
s=1 ε

(i)
s ξs. Then by the proof of (Maillard, 2016, Corollay 5.6) or

(Chowdhury & Gopalan, 2017, Theorem 2), |Zi| ≤ 2miσk,t(x)
√

2(γk,t + log(1/δ)) with probability at least 1− δ. Taking
a union bound,

|Zi| ≤ 2miσk,t(x)
√

2(γk,t + log(n/δ)) (11)

holds uniformly on 1 ≤ i ≤ n, x, and t. Let f ∈ Hl(Y) be any element and write f =
∑n
i=1 aiNi. We put g = Θ∗(f) and

use the same notation as in Lemma C.2. Because of orthonormality, we have
∑n
i=1 a

2
i = ‖f‖2l . By the proof of Lemma C.2,

we note that ∣∣∣g(x)− (z1, . . . , zt) (k(x1:t, x1:t) + λ1t)
−1

k(x1:t, x)
∣∣∣ =

∣∣∣〈f,Θ ◦ φk(x)〉l − 〈f, Θ̂t(x)〉l
∣∣∣

Similarly to the proof of Lemma C.2, we apply g to the known concentration inequality (Chowdhury & Gopalan, 2017;
Maillard, 2016). By the proof of (Maillard, 2016, Corollay 5.6) or (Chowdhury & Gopalan, 2017, Theorem 2), we have

|g(x)− (z1, . . . , zt) (k(x1:t, x1:t) + λ1t)
−1

k(x1:t, x)| ≤ Bσk,t(x) +

t∑
s=1

ξsεs.

Since εs = f(ys)−Ey∼ρ(xt) [f(y)] and the linearity with respect to f , we have εs =
∑n
i=1 aiε

(i)
s . Therefore,

∑t
s=1 ξsεs =∑n

i=1 ai
∑t
s=1 ξsε

(i)
s =

∑n
i=1 aiZi. Thus, by inequality (11), with probability at least 1− δ, we have∣∣∣∣∣

t∑
s=1

ξsεs

∣∣∣∣∣ ≤
n∑
i=1

2|ai|miσk,t(x)
√

2(γk,t + log(n/δ))

≤ 2σk,t(x)
√

2(γk,t + log(n/δ))

√√√√ n∑
i=1

a2
i

√√√√ n∑
i=1

m2
i

≤ 2C ′‖f‖lσk,t(x)
√

2(γk,t + log(n/δ))

√√√√ n∑
i=1

i−2ν .

Since
√∑n

i=1 i
−2ν <

√
ζ(2ν), where ζ is the Riemann zeta, we have our assertion.

Next, we prove Proposition 4.1.

Proof of Proposition 4.1. By assumption ‖ψν‖l ≤ U uniformly on ν. Then by Lemma C.2 and taking a union bound, with
probability at least 1− δ, we have the following inequality:∣∣∣〈ψν ,Θ ◦ φk(x)〉l − 〈ψν , Θ̂t(x)〉l

∣∣∣ ≤ Uβ(CV)
k,t (δ)σk,t(x),

for any ν ∈ Y, x ∈ X , t = 1, . . . , T . By the commutativity (2) and the property of KME (1), we have 〈ψν ,Θ ◦
φk(x)〉l = Ey∼ρ(x) [ψν(y)]. By the reproducing property, we have 〈ψν , Θ̂t(x)〉l = ψν(y1:t)K

−1
t k(x1:t, x), where

Kt := k(x1:t, x1:t) + λ1t. Thus, it follows that

ν − 1

α
ψν(y1:t)K

−1
t k(x1:t, x)− U

α
β

(CV)
k,t (δ)σk,t(x)

≤ ν − 1

α
Ey∼ρ(x) [ψν(y)] ≤ ν − 1

α
ψν(y1:t)K

−1
t k(x1:t, x) +

U

α
β

(CV)
k,t (δ)σk,t(x).

Taking supremum for ν ∈ Y , we obtain the assertion of the proposition.

Proof of Theorem 4.3. This can be proved by a standard argument. Let E be an event on which the inequality in Proposition
4.1 holds. Then P(E) ≥ 1 − δ by Proposition 4.1. We define the best arm x∗ by argmaxx∈X CVaRα(ρ(x)). Then on
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event E, the following inequalities hold:

RCVaR,α(T ) =

T∑
t=1

{CVaRα(ρ(x∗))− CVaRα(ρ(xt))}

≤
T∑
t=1

{
ĈVaRα,t(x

∗) +
U

α
β

(CV)
k,t−1(δ)σk,t−1(x∗)− ĈVaRα,t(xt) +

U

α
β

(CV)
k,t−1(δ)σk,t−1(xt)

}

≤ 2U

α

T∑
t=1

β
(CV)
k,t−1(δ)σk,t−1(xt).

Here the first inequality follows the definition of E, and the second inequality holds because CVPKE-UCB selects the arm
with the largest UCB in each round. Since βk,t−1(δ) ≤ βk,T (δ) by Lemma C.1, we further have

RCVaR,α(T ) ≤ 2U

α
β

(CV)
k,T (δ)

T∑
t=1

σk,t−1(xt)

≤ 2U

α
β

(CV)
k,T (δ)

√
T

√√√√ T∑
t=1

σ2
k,t−1(xt)

≤ 2U

α
√

log(2)
β

(CV)
k,T

√
T

√√√√ T∑
t=1

log
(

1 + σ2
k,t−1(xt)

)
≤ 2U

√
2

α
√

log(2)
β

(CV)
k,T (δ)

√
Tγk,T .

Here the second inequality follows from the Cauchy-Schwartz inequality, the third inequality follows from log(1 + u) ≥
log(2)u for any 0 ≤ u ≤ 1, and the 4th inequality follows from Lemma C.1 and definition of the maximum information
gain γk,T . This completes the proof.

C.2. Proof Theorem 5.2

In this section, we prove theoretical results (Proposition 5.1 and Theorem 5.2) regarding the kernelized MV bandit problem.
First, we can prove inequality (6) by Lemma C.2 and taking a union bound. In this subsection, we fix an event E on which
inequality (6) holds. We can prove Proposition 5.1 using confidence bounds for raw moments (6) as follows.

Proof of Proposition 5.1. We assume the event E holds. By multiplying |m1(ρ(x)| of both sides of inequality (6) with
m = 1, we have∣∣∣m2

1(ρ(x))− 〈Θ̂t(x), χ1〉m1(ρ(x))
∣∣∣ ≤ |m1(ρ(x)| ‖χ1‖lβk,t(δ)σk,t(x) ≤ B‖χ1‖2l β

(MV)
k,t (δ)σk,t(x). (12)

Here the last inequality follows from boundedness |m1 (ρ(x))| = |〈Θ(φk(x)), χ1〉| ≤ ‖χ1‖lB. Again by inequality (6)
with m = 1, we have∣∣∣〈Θ̂t(x), χ1〉

∣∣∣ ≤ |〈Θ(φk(x)), χ1〉|+ ‖χ1‖lβ(MV)
k,t (δ)σk,t(x) ≤ B‖χ1‖l + ‖χ1‖lβ(MV)

k,t (δ)σk,t(x).

By this inequality and multiplying |〈Θ̂t(x), χ1〉| of both sides of inequality (6) with m = 1, we have∣∣∣〈Θ̂t(x), χ1〉2 − 〈Θ̂t(x), χ1〉m1(ρ(x))
∣∣∣ ≤ B‖χ1‖2l β

(MV)
k,t (δ)σk,t(x) + ‖χ1‖2l

(
β

(MV)
k,t (δ)

)2

σ2
k,t(x). (13)

By inequalities (12) and (13), we have∣∣∣m2
1(ρ(x))− 〈Θ̂t(x), χ1〉2

∣∣∣ ≤ 2B‖χ1‖2l β
(MV)
k,t (δ)σk,t(x) + ‖χ1‖2l

(
β

(MV)
k,t (δ)

)2

σ2
k,t(x).

Then, by MV(ρ(x)) = m1(ρ(x)) − cm2(ρ(x)) + c (m1(ρ(x)))
2 and inequality (6) with n = 1, 2, the assertion of the

proposition holds on even E, where P(E) ≤ 1− δ by definition.
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Then, we can prove Theorem 5.2 similarly to Theorem 4.3.

Proof of Theorem 5.2. Let E be an event with P(E) ≥ 1− δ on which the inequality in Proposition 5.1 holds. We define
x∗ by argmax MV(ρ(x)). Then, on event E, we have

RMV(T ) =

T∑
t=1

{MV(ρ(x∗))−MV(ρ(xt))}

≤
T∑
t=1

{
M̂Vt−1(x∗) + Cβ

(MV)
k,t−1(δ)σk,t−1(x∗) + C′

(
β

(MV)
k,t−1(δ)

)2

σ2
k,t−1(x∗)

−M̂Vt−1(xt) + Cβ
(MV)
k,t−1(δ)σk,t−1(xt) + C′

(
β

(MV)
k,t−1(δ)

)2

σ2
k,t−1(xt)

}
≤ 2C

T∑
t=1

β
(MV)
k,t−1(δ)σk,t−1(xt) + 2C′

T∑
t=1

(
β

(MV)
k,t−1(δ)

)2

σ2
k,t−1(xt).

Here the first inequality follows from Proposition 5.1 and the second inequality holds since the algorithm selects an arm xt
with the largest UCB in each round. By the proof of Theorem 4.3, we see that βk,t−1(δ) ≤ βk,T (δ),

∑T
t=1 σk,t−1(xt) =

O(
√
Tγk,T ), and

∑T
t=1 σ

2
k,t−1(xt) = O(γk,T ). Thus, we have the assertion of the theorem.

C.3. Proof of Theorem 7.2

In this section, we prove a regret upper bound of the phased algorithm CVPKE-PH.

The following proposition is essentially due to (Valko et al., 2013), but for the completeness, we give a proof.

Proposition C.3. Let θ ∈ Hk(X ) with ‖θ‖k ≤ B and x1, . . . , xt ∈ X . Assume random variables ε1, . . . , εt are bounded
|εs| ≤ R for 1 ≤ s ≤ t and a martingale difference with respect to a filtration {Gs}ts=1, i.e., there exists a sequence
{Gs}ts=1 of σ-algebras such that G1 ⊆ G2 · · · ⊆ Gt and εs is Gs-measurable for each 1 ≤ s ≤ t. We put ys = θ(xs) + εs
for s = 1, . . . , t. For x ∈ X , we define µ̂(x;x1:t, y1:t) = µ̂t(x) by

µ̂t(x) := (y1, . . . , yt) (k(x1:t, x1:t) + λ1t)
−1

k(x1:t, x).

Then, for each x, we have the following inequality:

P
(
|µ̂t(x)− θ(x)| ≤

(
R
√

2 log(2/δ) + λ1/2‖θ‖k
)
σk,t(x)

)
≥ 1− δ,

for any δ ∈ (0, 1).

Proof. In this proof, we sometimes use matrix notation for the inner product of RKHS as in the previous work (Valko
et al., 2013), i.e., we write φk(x)Tφk(x′) = 〈φk(x), φk(x′)〉k for x, x′ ∈ X . In addition, since we only consider RKHS
Hk(X ) (and notHl(Y)) in this proof, we sometimes drop k from notation. We put Kt := k(x1:t, x1:t) + λ1t and define
Φt by (φ(x1), . . . , φ(xt))

T . Then, Kt = ΦtΦ
T
t + λ1t. We define Ct := ΦT

t Φt + λI , where I is the identity map of
H(X ). More precisely, Ct : H(X )→ H(X ) is given as Ct(f) =

∑t
s=1〈f, φ(xs)〉φ(xs) + λf . Then, Ct is a finite-rank,

self-adjoint, positive-definite operator. Since λ > 0, Ct has its inverse C−1
t : H(X )→ H(X ) and C−1

t is also a self-adjoint,
bounded linear operator. Since (ΦT

t Φt +λI)ΦT
t = ΦT

t (ΦtΦ
T
t +λ1t), we have ΦT

t (ΦtΦ
T
t +λ1t)

−1 = (ΦT
t Φt +λI)−1ΦT

t .
Therefore, for any a = (a1, . . . , at)

T ∈ Rt, we have

C−1
t

(
t∑

s=1

φ(xs)as

)
= C−1

t ΦT
t a = ΦT

t K
−1
t a = aTK−1

t Φt. (14)

By definition of µ̂t(x) and the reproducing property, we have µ̂t(x) = 〈y1:tK
−1
t Φt, φ(x)〉. Thus, by (14), we have
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µ̂t(x) = 〈C−1
t

∑t
s=1 φ(xs)ys, φ(x)〉. Therefore,

µ̂t(x)− θ(x) =

〈
C−1
t

t∑
s=1

φ(xs)ys, φ(x)

〉
− 〈θ, φ(x)〉

=

〈
C−1
t

t∑
s=1

φ(xs) (〈θ, φ(xs)〉+ εs) , φ(x)

〉
− 〈θ, φ(x)〉

=

〈
C−1
t (Ct(θ)− λθ) + C−1

t

t∑
s=1

φ(xs)εs, φ(x)

〉
− 〈θ, φ(x)〉

= −〈λC−1
t θ, φ(x)〉+

t∑
s=1

〈
C−1
t φ(xs), φ(x)

〉
εs. (15)

Here the second and third equalities follows from definitions of ys and Ct. To apply the Azuma-Hoeffding inequality, we
compute

∑t
s=1〈C

−1
t φ(xs), φ(x)〉2. To do this, for f, g ∈ H(X ), we define an inner product 〈f, g〉C−1

t
:= 〈C−1

t f, g〉k
Then, since Ct is self-adjoint and λ > 0, 〈f, f〉C−1

t
≥ 0. Thus, we write ‖f‖C−1

t
:=
√
〈f, f〉C−1

t
. We also define a linear

operator Dt by letting λ = 0 in Ct, i.e., Dt(f) =
∑t
s=1〈φ(xs), f〉φ(xs). We define norms ‖f‖Dt and ‖f‖Ct in the same

way as ‖f‖C−1
t

. Then, for any f ∈ H(X ), we have ‖f‖Dt ≤ ‖f‖Ct because λ > 0. Thus, we have

t∑
s=1

〈C−1
t φ(xs), φ(x)〉2 =

t∑
s=1

〈φ(xs), C
−1
t φ(x)〉2 = ‖C−1

t φ(x)‖2Dt ≤ ‖C
−1
t φ(x)‖2Ct = ‖φ(x)‖2

C−1
t
.

Here, the first equality follows since C−1
t is self-adjoint, the second and the third equalities follows from defintion

of the norms. Next, we show that ‖φ(x)‖2
C−1
t

= σ2
t (x). By defition and reproducing property, we have Ctφ(x) =∑t

s=1 k(x, xs)φ(xs) + λφ(x). By applying C−1
t and (14), we obtain φ(x) = k(x, x1:t)K

−1
t Φt + λC−1

t φ(x). By this
equality and defition of ‖φ(x)‖C−1

t
, we see that ‖φ(x)‖2

C−1
t

= σ2
t (x) (c.f., (Valko et al., 2013)). Since 〈C−1

t φ(xs), φ(x)〉εs
is martingale difference with respect to the filtration {Gs}s, by the Azume-Hoeffding theorem, the absolute value of the
second term in (15) is bounded by R

√
2 log(2/δ)σt(x) with probability at least 1− δ. For the first term,

|〈λC−1
t θ, φ(x)〉| = |〈λθ, φ(x)〉C−1

t
| ≤ λ‖θ‖C−1

t
‖φ(x)‖C−1

t
≤ λ1/2‖θ‖kσt(x).

Here the first inequality follows from Cauch-Schwartz and the second inequality follows from the fact that all the eigenvalues
of C−1

t is less than or equal to λ−1.

Next, we prove Proposition 7.1.

Proof of Proposition 7.1. For t = tj , . . . , sj , let xt (resp. yt) be the arm selected by (resp. output observed by) CVPKE-PH
in round t, where sj := min(tj+1 − 1, T ). Denote by Θ(j)(x) the estimation Θ̂(x;xtj :sj , ytj :sj ) of Θ(φk(x)) using only
history {(xt, yt)}tj≤t≤sj in phase j defined by (3).

Since Θ is a bounded operator, the adjoint operator Θ∗ : Hl(Y) → Hk(X ) exists and satisfies ‖Θ∗‖op ≤ B. We take
any f ∈ Hl(Y) with ‖f‖l ≤ U and put g = Θ∗(f) ∈ Hk(X ). Then, we have ‖g‖k ≤ BU . Since Θ∗ is adjoint, we have
〈f,Θ ◦ φk(x)〉l = 〈g, φk(x)〉k = g(x). On the other hand, we have 〈f,Θ ◦ φk(x)〉l = 〈f, νl(ρ(x)) = Ey∼ρ(x) [f(y)]. By
the reproducing property, we have

〈f,Θ(j)(x)〉l = (f(ytj ), . . . , f(ysj )) (k(x1:t, x1:t) + λ1t)
−1

k(x1:t, x).

For each t = tj , . . . , sj , we put εt = g(xt) − f(yt). Then similarly to the proof of Lemma C.2, we see that εt satisfies
|εt| ≤ 2‖f‖l and E [εt | Ft−1] = 0. Thus, by Proposition C.3, for each f and x, we have∣∣∣g(x)− 〈f,Θ(j)(x)〉l

∣∣∣ =
∣∣∣Ey∼ρ(x) [f(y)]− 〈f,Θ(j)(x)〉l

∣∣∣ ≤ U (B√λ+ 2
√

2 log(2/δ)
)
σ(j)
sj (x), (16)
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with probability at least 1 − δ. More precisely, when deriving inequality (16), using notation in section A, we fix
ω1, . . . , ωtj−1, consider probability space

∏T
t=tj
X (t) × Y(t) by Theorem A.1, apply Proposition C.3, and take expectation

with respect to ω1, . . . , ωtj−1. The statement of the proposition follows from by taking a union bound for f ∈ {ψν : ν ∈ Y},
x ∈ X , j = 1, . . . , J in (16) and by definition of CVaR.

Lemma C.4. Assume λ ≥ 1. For any x ∈ Aj , we have

(
σ(j)
sj (x)

)2

≤ 2γT
(sj − tj + 1) log 2

.

Proof. For any x ∈ Xj , we have the following inequality:

(
σ(j)
sj (x)

)2

≤ 1

sj − tj + 1

sj∑
s=tj

(
σ

(j)
s−1(x)

)2

≤ 1

sj − tj + 1

sj∑
s=tj

(
σ

(j)
s−1(xs)

)2

≤ 1

(sj − tj + 1) log 2

sj∑
s=tj

log

(
1 +

(
σ

(j)
s−1(xs)

)2
)

Here, the first inequality follows from σ
(j)
sj (x) ≤ σ(j)

s−1(x), for any x ∈ Xj , tj ≤ s ≤ sj . The second inequality follows by
the choice of xs. By the assumption on the kernel supx∈X k(x, x) ≤ 1 and λ ≥ 1, we have σ(j)(xs) ∈ [0, 1]. Then, the
third inequality follows from log(1 +u) ≥ log(2)u for any u ∈ [0, 1]. The statement of the lemma follows from Lemma C.1
and definition of γT .

Proof of Theorem 7.2. Until the end of this subsection, we denote by E an event on which the following inequality holds:∣∣∣∣CVaR(x)− ĈVaR
(j)

sj (x)

∣∣∣∣ ≤ U

α
β̃T (δ)σ(j)

sj (x), ∀x ∈ X , 1 ≤ j ≤ J.

By Proposition 7.1 and taking union bounds for x ∈ X and j = 1, . . . , J , we have P(E) ≥ 1− δ.

Let 1 ≤ t ≤ T and assume that t is in the j + 1th phase with 0 ≤ j ≤ J − 1. In this proof, for simplicity, we denote σ(j)
sj by

σ(j), ĈVaR
(j)

sj by ĈVaR
(j)

, and β̃k,T (δ) by β̃. Put x∗ := argmaxx∈X CVaRα(ρ(x)). Since x∗ and xt are not eliminated
in the jth phase, we have

ĈVaR
(j)

(xt) +
Uβ̃

α
σ(j)(xt) ≥ max

x∈Xj

(
ĈVaR

(j)
(x)− Uβ̃

α
σ(j)(x)

)

≥ ĈVaR
(j)

(x∗)− Uβ̃

α
σ(j)(x∗). (17)

We put rt = CVaRα(x∗)− CVaRα(xt). Then on even E, we have

rt ≤ ĈVaR
(j)

(x∗)− ĈVaR
(j)

(xt) +
Uβ̃

α
(σ(j)(x∗) + σ(j)(xt))

≤ 2Uβ̃

α
(σ(j)(x∗) + σ(j)(xt)). (18)
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Here inequality (18) follows from (17). On event E, we have the following inequalities:

RCVaR,α(T ) =

T∑
t=1

rt ≤ 2C +

T∑
t=2

rt

≤ 2C +
√
T − 1

√√√√J−1∑
j=1

sj+1∑
t=tj+1

r2
t

≤ 2C +
4Uβ̃

α

√
(T − 1)γT

√√√√J−1∑
j=1

sj+1∑
t=tj+1

2

(sj − tj + 1) log 2

≤ 2C +
8Uβ̃

α log 2

√
(T − 1)γT log T .

Here, in the first inequality we decompose the sum
∑T
t=1 rt as r1 +

∑T
t=2 rt because the previous phase does not exist

for the first round t = 1. The second inequality follows from Cauchy-Schwartz, the third inequality follows from (18) and
Lemma C.4. The 4th inequality follows from J ≤ log2 T and sj+1 − tj+1 + 1 ≤ 2(sj − tj + 1).

C.4. Proof of Theorem 6.1

In this section following (Scarlett et al., 2017), we provide a proof of lower bounds for the cumulative CVaR regret.

Since we construct distributions {ρ(x)}x by a discrete distribution, we introduce the following lemma, which can be easily
proved by the definition of CVaR.

Lemma C.5. Let p, q ≥ 0 with p+ q = 1 and a, b ∈ Y . We define a discrete distribution ρ by y = a with probability p and
y = b with probability q. Then, we have

CVaRα(ρ) =

{
a if α ≤ p,
p
αa+ (1− p

α )b if p ≤ α.

For f ∈ L1(Rd), we define Fourier transform f̂ of f by

f̂(x) = (2π)−d/2
∫
Rd
f(y) exp(−ix · y)dy.

We define a compactly supported smooth function H : Rd → R by

H(x) :=

{
exp

(
− −1

1−‖x‖22

)
‖x‖22 ≤ 1

0 ‖x‖2 > 1.

We put h = Ĥ . Then, by definition of H , supx∈Rd h(x) ≤ h(0) > 0. Also, by the Riemann-Lebesgue lemma, there exists a
constant ζ > 0 such that |h(x)| < 1

2h(0) if ‖x‖∞ > ζ. For ε, w > 0, we define a function g on Rd by

g(x) =
2ε

h(0)
h

(
xζ

w

)
. (19)

Here, we choose ε and w later. For a ∈ Rd, we define ga(x) by g(x− a). By abuse of notation, we denote the restriction of
g or ga to X by the same symbol.

The following lemma is due to (Scarlett et al., 2017):

Lemma C.6. There exist constants C = C(d, k, κ), C ′ = C ′(d, k, κ), C ′′ = C ′′(d, k, κ), ε0 = ε0(d, k, κ) > 0 such that
the following statements are satisfied:

(i) If k is a Matérn kernel, w = Cε1/ν , and 0 < ε < ε0, then g ∈ Hk(X ) and ‖g‖k ≤ 1.
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(ii) If k is a SE kernel, w = C ′(log(1/ε) + C ′′)−1/2, and 0 < ε < ε0, then g ∈ Hk(X ) and ‖g‖k ≤ 1.

Moreover, the same statements hold for translations of ga for any a ∈ Rd.

We partition the d-dimensional cube X into M cubes R1, . . . , RM with width w, where M =
⌊(

1
w

)d⌋
. For 0 < ε < 1

and m = 1, . . . ,M , we define fm as a translation gam of g, where am is a point in Rm. We define a set of environments
{ρm}Mm=1 by ρm(x) = pm(x)δ0 + qm(x)δ1, where δ0 and δ1 are Dirac delta and pm(x) = α(1 − fm(x)), qm(x) =
1 − pm(x). We define ρ0(x) = p0(x)δ0 + q0(x)δ1, where p0(x) = α(1 − f0(x)), q0(x) = 1 − p0(x), and f0(x) = 0
(constant functions). Then, by Lemma C.5, we have

CVaRα(ρm(x)) = max(fm(x), 0).

Lemma C.7. Assume that k is a Matérn kernel, fm ∈ Hk(X ), and ‖fm‖k ≤ 1 for all m. Then, the following statements
hold:

(i) pm, qm ∈ Hk(X ) for all m.

(ii) For each m, we define a linear operator Θm : Hk(X )→ Hl(Y) by Θm(f) = 〈f, pm〉kφl(0) + 〈f, qm〉φl(1). Then,
there exists a constant B = B(d, k, l, α) > 0 such that ‖Θm‖op ≤ B for all m. Moreover, Θm ◦ φk = µl ◦ ρm for all
m.

Proof. Since k is a Matérn kernel, constant functions belong toHk(X ) (c.f. Wendland (2004, Corollary 10.48, Theorem
10.46))4. Thus, by definition of pm and qm we have assertion (i). By ‖Θm‖2op = sup‖f‖k=1 ‖Θm(f)‖2 ≤ ‖pm‖2k+‖qm‖2k+
2‖pm‖k‖qm‖kl(0, 1), and definitions of pm and qm, ‖Θm‖op is bounded by a constant B(d, k, l, α). Commutativity
Θm ◦ φk = µl ◦ ρm is obvious by definition.

We fix a bandit algorithm π = (πt(xt|y1, . . . , yt−1))t=1,...,T for the kernelized CVaR bandit problem, where
πt(xt|y1, . . . , yt−1) is a probability kernel. Let x1:T := (x1, . . . , xT ) and y1:T := (y1, . . . , yT ) be a random vector
of selected arms and observations respectively, if the algorithm is run with an environment. We introduce the following
notation as in (Scarlett et al., 2017).

• For m = 0, 1, . . . ,M , let Pm the density function of (x1:T , y1:T ) when the algorithm is run with environment ρm.
Similarly, let Em [·] be the expectation with respect to x1:T and y1:T when the algorithm is run with ρm. We denote by
Pm,y be the marginal distribution of y1:T and Em,y [·] is the expectation with the distribution Pm,y .

• Let Nj(y1, . . . , yT ) = Ex1,...,xT

[∑T
t=1 1(xt ∈ Rj)

]
, where the expectation is taken over xt ∼ πt(x|y1, . . . , yt−1)

for t = 1, . . . , T .

• For 1 ≤ j ≤M, 0 ≤ m ≤M , let vjm := supx∈Rj fm(x).

• For 1 ≤ j ≤M, 0 ≤ m ≤M , let ṽjm := supx∈Rj max(fm(x), 0).

• For 1 ≤ j ≤ M, 0 ≤ m ≤ M , let D
j

m := supx∈Rj D(ρ0(x)||ρm(x)), where D(·||·) is the Kullback-Leibler
divergence.

Since ρm is a Bernoulli distribution, then we easily have the following lemma:

Lemma C.8. Let 0 ≤ m ≤M . Then, there exists constants ε′0(α), C(α) > 0 such that the following inequality holds for
all j,m if ε < ε′0(α).

D
j

m ≤ C(α)
(
vjm
)2
.

Proof. This can be proved by D(ρ0(x)||ρm(x)) = p0(x) log
(
p0(x)
pm(x)

)
+ q0(x) log

(
q0(x)
qm(x)

)
and the Taylor expansion of

log.
4In the case of squared exponential kernels, constant functions does not belong to Hk(X ) (Minh, 2010). This is the main reason why

we assume k is a Matérn kernel in Theorem 6.1.
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The following lemma follows from (Scarlett et al., 2017, Lemma 5).

Lemma C.9. We have the following statements:

(i)
∑M
j=1 ṽ

j
m = O(ε) for all 0 ≤ m ≤M .

(ii)
∑M
m=1 ṽ

j
m = O(ε) for all 1 ≤ j ≤M .

(iii)
∑M
m=1

(
vjm
)2

= O(ε2) for all 1 ≤ j ≤M .

Proof of Theorem 6.1. In the following, we assume ε is sufficiently small i.e., ε < min(ε0(d, k, κ), ε′0(α)), so that assump-
tions in Lemma C.6, Lemma C.9, and Lemma C.8 are satisfied.

Let VT :=
∑T
t=1 CVaR(ρm(xt)). Then by Lemma C.5 and definition of ρm, we have VT =

∑T
t=1 max(fm(xt), 0). Then

similarly to (Scarlett et al., 2017, (66)-(69)), we have

Em [VT ] ≤
T∑
t=1

M∑
j=1

Pm(xt ∈ Rj)ṽjm =

M∑
j=1

ṽjmEm,y [Nj ]

≤
M∑
j=1

vjm

E0,y [Nj ] + T

√√√√ M∑
j′=1

E0,y [Nj′ ]D
j′

m

 .

Here the last inequality follows from (Scarlett et al., 2017, Lemma 3). Taking the average over m = 1, . . . ,M , we have

1

M

M∑
m=1

Em [VT ] ≤ 1

M

M∑
m=1

M∑
j=1

ṽjm

E0,y [Nj ] + T

√√√√ M∑
j′=1

E0,y [Nj′ ]D
j′

m

 .

By Lemma C.9 (ii), the first term can be bounded as follows:

1

M

M∑
m=1

M∑
j=1

ṽjmE0,y [Nj ] ≤ O
( ε

M

)
E0,y

 M∑
j=1

Nj

 = O

(
Tε

M

)
. (20)

Next, let us consider the second term. It can be bounded by the same argument to (Scarlett et al., 2017, (55)-(60)) as follows:

T

M

M∑
m=1

M∑
j=1

ṽjm

√√√√ M∑
j′=1

E0,y [Nj′ ]D
j′

m ≤ O(Tε)
1

M

M∑
m=1

√√√√ M∑
j′=1

E0,y [Nj′ ]D
j′

m

≤ O(Tε)
1

M

M∑
m=1

√√√√ M∑
j′=1

E0,y [Nj′ ] (vjm)2 ≤ O(Tε)

√√√√ 1

M

M∑
m=1

M∑
j′=1

E0,y [Nj′ ] (vjm)2

≤ O(Tε2)
1√
M

√√√√ M∑
j′=1

E0,y [Nj′ ] = O

(
ε2T
√
T√

M

)
. (21)

By inequalities (20), (21), we have the following upper bound:

1

M

M∑
m=1

Em [VT ] = O

(
Tε

(
1

M
+ ε

√
T

M

))
. (22)

Since CVaRα(ρm(x)) = max(fm(x), 0) and fm achieves its maximum 2ε at x = am by construction, there exists a
constant C ′ = C ′(d, k, κ, α) > 0 such that

1

M

M∑
m=1

RCVaR,α(T ;π, ρm) ≥ εT

(
2− C ′

M
− C ′ε

√
T

M

)
.
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If we take w = Cε1/ν as in Lemma C.6, then M →∞ as ε→ 0. Therefore, there exists a constant ε′′0 = ε′′0(d, k, κ, α) > 0
such that if ε < ε′′0 , then C ′/M < 1/2. We assume ε satisfies ε < min(ε0, ε

′
0, ε
′′
0). Then, we have

1

M

M∑
m=1

RCVaR,α(T ;π, ρm) ≥ εT

(
3

2
− C ′ε

√
T

M

)
. (23)

We take ε = Θ(T−
ν

d+2ν ). Thus, we put ε = C ′′T−
nu
d+2ν . Then, w = Cε1/ν = C(C ′′)1/νT−

1
d+2ν and there exists a

constant C(3) > 0 such that M ≥ C−1/d(C ′′)−d/νC(3)T d/(d+2ν). Thus, we have

C ′ε

√
T

M
≤ C ′Cd/2(C ′′)1+ d

2ν (C(3))−1/2. (24)

We take C ′′ > 0 so that the RHS of inequality (24) is less than 1/2. Then, by inequality (23), we have

1

M

M∑
m=1

RCVaR,α(T ;π, ρm) ≥ εT = Ω(T
d+ν
d+2ν ).

The assumption that ε is sufficiently small is satisfied if we take T sufficiently large. Therefore, we obtain our assertion.

Remark C.10. By the proof, we note that the statement of Theorem 6.1 remains true if we restrict the arm set to the set
consisting {am}Mm=1, where M = Θ(T d/(d+2ν)).

D. Additional Results on MV
In the main article, we mainly focused on optimization of CVaR, i.e., we only provided a UCB type algorithm for MV. In
this section, we consider a phased algorithm for MV and provide a lower bound for cumulative MV regret. We also conduct
experiments using synthetic environments for cumulative MV regret minimization.

D.1. Phased Algorithm for MV optimization

In this section, we provide a phased algorithm for MV and a regret upper bound of it.

We outline pseudocode of the phased algorithm for MV in Algorithm 3. Here, for each phase 1 ≤ j ≤ J , M̂V
(j)

s denotes
the estimation of MV(ρ(x)) defined in Proposition 5.1 but using only the observation history {(xtj , ytj ), . . . , (xsj , ysj )} in
the jth phase, where sj = min(tj+1 − 1, T ).

Algorithm 3 Phased Algorithm for Kernelized MV Bandits with Finitely Many Arms
Set X1 := X , J := blog2(T )c, tj = 2j−1 for 1 ≤ j ≤ J .
Set β̃(MV)

k,T (δ) := B
√
λ+ 2

√
2 log(4|X |J/δ).

Set
≈
β

(MV)
k,T (δ) := Cβ̃

(MV)
k,T (δ) + C′

(
β̃

(MV)
k,T (δ)

)2

.
for j = 1, . . . , J do

for t = tj . . . ,min(tj+1 − 1, T ) do
Play xt := argmaxx∈Xj σ

(j)
t−1(x) and observe yt.

end for
s := min(tj+1 − 1, T )

b := maxx∈Aj

(
M̂V

(j)

s (x)−
≈
β

(MV)
k,T (δ)σ

(j)
s (x)

)
.

Xj+1 := {x ∈ Xj : M̂V
(j)

s (x) +
≈
β

(MV)
k,T (δ)σ

(j)
s (x) ≥ b}.

end for

First, we provide a concentration inequality for MV(ρ(x)) similarly to Proposition 7.1.
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Proposition D.1. Assume λ ≥ 1. We define β̃(MV)
k,T (δ) = B

√
λ+2

√
2 log(4|X | log2(T )/δ) and

≈
β

(MV)
k,T (δ) = Cβ̃

(MV)
k,T (δ)+

C′
(
β̃

(MV)
k,T (δ)

)2

. The following inequality uniformly holds for 1 ≤ j ≤ J and x ∈ X with probability at least 1− δ:∣∣∣∣MV(ρ(x))− M̂V
(j)

sj (x)

∣∣∣∣ ≤ ≈
β

(MV)
k,T (δ)σ(j)

sj (x).

Here sj = min(tj+1 − 1, T ).

Proof. We use the same notation as in the proof of Proposition 7.1. By (16), the following inequality holds with probability
at least 1− δ for each f ∈ Hl(Y) with ‖f‖l ≤ U , 1 ≤ j ≤ J , and x ∈ X :∣∣∣Ey∼ρ(x) [f(y)]− 〈f,Θ(j)(x)〉l

∣∣∣ ≤ U (B√λ+ 2
√

2 log(2/δ)
)
σ(j)
sj (x).

By applying this inequality to the case of f = χ1 and f = χ2, and taking a union bound for f = χ1, χ2, 1 ≤ j ≤ J , and
x ∈ X , we have ∣∣∣mn(ρ(x))− 〈χn,Θ(j)(x)〉l

∣∣∣ ≤ ‖χn‖lβ̃(MV)
k,T (δ)σ(j)

sj (x)

uniformly on n ∈ {1, 2}, 1 ≤ j ≤ J , and x ∈ X . By the proof of Proposition 5.1, we have∣∣∣∣MV (ρ(x))− M̂V
(j)

sj (x)

∣∣∣∣ ≤ Cβ̃
(MV)
k,T (δ)σ(j)

sj (x) + C′
(
β̃

(MV)
k,T (δ)

)2 (
σ(j)
sj (x)

)2

. (25)

Since λ ≥ 1 and supx∈X k(x, x) ≤ 1, we have σ(j)
sj (x) ∈ [0, 1]. Thus, we have our assertion by

(
σ

(j)
sj (x)

)2

≤ σ(j)
sj (x).

Remark D.2. The factor β̃(MV)
k,T (δ) does not depend on the information gain γk,T . In fact, we have β̃

(MV)
k,T (δ) =

O
(√

log(log(T )/δ)
)

. Therefore, if we ignore constants and poly-logarithmic factor of T , the first term Cβ̃
(MV)
k,T (δ)σ

(j)
sj (x)

dominates in the right-hand side of (25). Thus unlike Proposition 5.1, Proposition D.1 does not involve the term
(
σ

(j)
sj (x)

)2

.

Using Proposition D.1, the following theorem can be proved in the same manner to Theorem 7.2.

Theorem D.3. With probability at least 1− δ, Algorithm 3 achieves the following regret upper bound:

RMV(T ) ≤ 2 sup
x∈X

MV(ρ(x)) +
8

log 2

≈
β

(MV)
k,T (δ)

√
Tγk,T log T .

D.2. Lower Bound for Cumulative MV Regret

In this subsection, we assume k is a Matérn-ν kernel. In Theorem 6.1, we provided lower bounds for cumulative CVaR
regret. The following theorem provides algorithm-independent lower bounds for cumulative MV regret:

Theorem D.4. Assume c > 0, X is the d-dimensional cube [0, 1]d, and k is Matt́ern-ν kernel. Then there exist positive
constants B = B(l, c) T0 = T0(c, k, d), C = C(c, k, d) satisfying the following statement. For any T > T0, there exist
environments (ρ1,Θ1), . . . , (ρM ,ΘM ) with ‖Θm‖op ≤ B (for 1 ≤ m ≤M ), where M = M(c, k, d, T ), such that for any
algorithm π, we have E [RMV(T ;π)] > CT

ν+d
2ν+d . Here E [RMV(T ;π)] denotes the average expected cumulative regret

1
M

∑M
m=1 E [RMV(T ;π,ρm,Θm)].

Let {fm}1≤m≤M be the set of functions defined in §C.4. We define a set of distributions {ρm(x)}1≤m≤M as follows.
We choose (p0, q0) ∈ R2 so that p0, q0 ≥ 0, p0 + q0 = 1, and 1 − c(−p0 + q0) > 0 (e.g., p0 = c

2c+2 , q0 = c+2
2c+2 ). For

1 ≤ m ≤ M , we define pm(x) = p0 + fm(x) and qm(x) = q0 − fm(x). We take ε in (19) sufficiently small so that
pm(x), qm(x) ∈ [0, 1] for all x ∈ X and 1 ≤ m ≤ M (this is possible since supx∈Rd |g(x)| ≤ 2ε). We let f0(x) = 1
(constant function). We define distribution ρm(x) by ρm(x) = pm(x)δ1 + qm(x)δ0. Since ρ0(x) = p0δ1 + q0δ0 does not
depend on x, we denote ρ0(x) by ρ0. Then, by definition, we obtain the following:

MV(ρm(x)) = MV(ρ0) + (1− c(−p0 + q0)) fm(x) + cf2
m(x). (26)

We can prove the following lemma similarly to C.7.
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Lemma D.5. Assume that k is a Matérn kernel, fm ∈ Hk(X ), and ‖fm‖k ≤ 1 for all m5 Then, the following statements
hold:

(i) pm, qm ∈ Hk(X ) for all m.

(ii) For each m, we define a linear operator Θm : Hk(X )→ Hl(Y) by Θm(f) = 〈f, pm〉kφl(0) + 〈f, qm〉φl(1). Then,
there exists a constant B = B(d, k, l, c) > 0 such that ‖Θm‖op ≤ B for all m. Moreover, Θm ◦ φk = µl ◦ ρm for all
m.

We define notations x1, . . . , xt, y1, . . . , yT , Nj(y1, . . . , yT ), vjm, and D
j

m in the same way as in §C.4. We define ṽjm as
follows:

ṽjm := sup
x∈Rj

MV(ρm(x))−MV(ρ0) = sup
x∈Rj

{
(1− c(−p0 + q0)) fm(x) + cf2

m(x)
}
.

The following lemma can be proved in the same way as Lemma C.8.

Lemma D.6. There exists a constant ε′ = ε′(c) > 0 such that the following statement holds. If ε < ε′, then we have

D
j

m = O
((
vjm
)2)

for all 0 ≤ m ≤M and 1 ≤ j ≤M .

Since supx∈X |fm(x)| = 2ε and we take ε sufficiently small (e.g., 2ε < 1), we have fm(x)2 = O(|fm(x)|) uniformly for
x ∈ X . Thus, the same statements to Lemma C.9 hold:

Lemma D.7. (i)
∑M
j=1 ṽ

j
m = O(ε) for all 0 ≤ m ≤M .

(ii)
∑M
m=1 ṽ

j
m = O(ε) for all 1 ≤ j ≤M .

(iii)
∑M
m=1

(
vjm
)2

= O(ε2) for all 1 ≤ j ≤M .

Remark D.8. Although fm(x) can take negative values, the proof of (Scarlett et al., 2017, Lemma 5) works even if we
replace fm(x) by |fm(x)| in the definition of vjm. Thus, by vjm = O(supx∈Rj |fm(x)|) and ṽjm = O(supx∈Rj |fm(x)|),
we have the statements of the lemma by (Scarlett et al., 2017, Lemma 5).

Proof of Theorem D.4. We take ε sufficiently small so that the assumptions of Lemma C.6, Lemma D.5, and Lemma D.7
are satisfied.

We put VT =
∑T
t=1 MV(ρ(xt)). Then, it follows that

Em [VT ] ≤ T MV(ρ0) +

T∑
t=1

M∑
j=1

Pm(xt ∈ Rj)ṽjm.

Then, by the same argument as (22), we have

1

M

M∑
m=1

Em [VT ] = T MV(ρ0) +O

(
Tε

(
1

M
+ ε

√
T

M

))
.

By (26) and supx∈X fm(x) = 2ε, we have supx∈X MV(ρ(x)) = MV(ρ0) + 2(1− c(−p0 + q0))ε+ 4ε2. Therefore, we
have

1

M

M∑
m=1

RMV(T ;π, ρm) ≥ εT

{
2(1− (−p0 + q0)) + 4ε− C ′

M
− C ′ε

√
T

M

}

≥ εT

{
2(1− (−p0 + q0))− C ′

M
− C ′ε

√
T

M

}
.

5This condition can be satisfied for appropriate choices of ε and w by Lemma C.6.
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Then, by the same argument as in the proof of Theorem 6.1, we obtain

1

M

M∑
m=1

RMV(T ;π, ρm) = Ω(T
d+ν
d+2ν ).

D.3. Experiments for Cumulative MV Regret Minimization

In this section, we empirically compare MVPKE-UCB to RAHBO (Makarova et al., 2021), which is also a kernelized bandit
algorithm for MV optimization. We use the same synthetic environments introduced in §8 and conducted experiments for
c = 1, where c is the parameter of MV. To evaluate RAHBO in our environments, we used our own implementation of it.
RAHBO (Makarova et al., 2021) repeatedly observe outputs at the same arm. In our experiments, we took the number of
repetition (denoted by k in (Makarova et al., 2021)) as 5 as in the Random Forest experiment in (Makarova et al., 2021). As
in (Makarova et al., 2021), we assume parameters βt, βvart of RAHBO are constants. Similarly, we assume Cβ

(MV)
k,t (δ) and

C′
(
β

(MV)
k,t (δ)

)2

are constants in the experiments and denote them by β1 and β2 respectively. We search optimal values

of βt, βvart , β1, β2 with in geometric sequence {β(1), . . . , β(4)} with β(1) = 10−2 and β(4) = 1.0 in different synthetic
environments from those for evaluation using the first 200 rounds and estimations of MV. To simplify the parameter search,
we assume ρ = 1.0 for RAHBO. We set λ = 1 for both the algorithms.

We compute normalized cumulative MV regret for both environments and the results are displayed in Figure 3. Here
we normalize cumulative MV regert so that uniform random policy incurs cumulative MV regret 1 at T = 1000. In
this experimental settings, for both kinds of environments, we found that RAHBO incurs larger cumulative regret than
MVPKE-UCB in average. Especially, the experimental results indicate that RAHBO is not better than the uniform random
policy for LogNormal environments. We suspect that this is because LogNormal distributions with mean 0 do not satisfy
sub-Gaussian assumption, but Makarova et al. (2021) assumes sub-Gaussian noise for their theoretical analysis.
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Figure 3. Cumulative MV Regret in Synthetic Environments

E. Details of the Experiments
This section details our experimental setting. We used Intel(R) Core(TM) i9-9920X CPU for our experiments. For each
m = 1, . . . , 10, we constructed functions µm and σm as follows. For each m, we randomly select n = 100 points
{ξ1, . . . , ξn} from X and real numbers a1, . . . , an from the interval (−1, 1), define µm(x) by a constant multiple of∑n
i=1 aik(x, xi) so that ‖µm‖k = 1. We similarly and independently define a random function σ̃m(x) and define σm(x) as√
σ0 + σ̃2

m(x), where σ0 = 10−3.

Our baseline algorithm is IGP-UCB (Chowdhury & Gopalan, 2017), and it selects arm x with the largest UCB µk,t(x) +

βIGP,k,t(δ)σk,t(x) at t + 1th round, where µk,t(x) = (y1, . . . , yt) (k(x1:t, x1:t) + λ1t)
−1

k(x1:t, x) and βIGP,k,t(δ) =

B + R
√

2(γk,t + 1 + log(1/δ)) with parameters B,R > 0. To ease computation and parameter tuning, we made the
following modification of βIGP,k,t(δ) and β

(CV)
k,t (δ). In the definitions of βIGP,k,t(δ) and β

(CV)
k,t (δ), we replace the



Distributionally-Aware Kernelized Bandit Problems for Risk Aversion

maximum information gain γk,t by γ̃k,t := 1
2 log det

(
1t + λ−1k(x1:t, x1:t)

)
. The value γ̃k,t can be updated in O(t2) time

by Lemma C.1. In addition, it is not difficult to see that IGP-UCB and CVPKE-UCB have the same regret upper bound
if we replace γk,t by γ̃k,t (c.f., Chowdhury & Gopalan (2017)). Since the term R

√
2(γk,t + 1 + log(1/δ)) is dominant

in the definition of βIGP,k,t(δ), we let B = 0.0 for the experiments. Similarly, we let B = 0.0 in the definition of
β

(MV)
k,t . To tune parameter R for IGP-UCB, for both two kinds of distributions, we generated five environments which are

different from the 10 environments for evaluation, and used the first 200 rounds for tuning. We tuned R for IGP-UCB so
that IGP-UCB maximizes

∑200
t=1 yt since it does not have an estimation of CVaR. We searched R in geometric sequence

{R1, . . . , R10} with R1 = 10−2 and R10 = 1.0. Similarly, we let R = U/α for CVPKE-UCB and tuned R in geometric
sequence {R′1, . . . , R′10} with R′1 = 10−3 and R10 = 10−1. We tuned R for CVPKE-UCB so that

∑200
t=1 ĈVaRα,t−1(xt)

is maximized.

Since we generated µm(x) and σm(x) using random elements ofHk(X ), we assumed the length scale of the kernel k was
known. We note that for any f ∈ Hl(Y), the function x 7→ Ey∼ρ(x) [f(y)] = 〈Θ ◦ φk(x), f〉l = 〈φk(x),Θ∗(f)〉k belongs
toHk(X ). Therefore, one possible way to tune the length scale is to apply the existing method (Rasmussen, 2003, chapter
5) to transformed observation history (x1, f(y1)), . . . , (xt, f(yt)) with f ∈ Hl(Y). If we take f(y) = y for y ∈ Y , then
the method is the same as the tuning method in the conventional setting.


