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Abstract
We present the Local Self-Balancing sampler
(LSB), a local Markov Chain Monte Carlo
(MCMC) method for sampling in purely discrete
domains, which is able to autonomously adapt to
the target distribution and to reduce the number
of target evaluations required to converge. LSB is
based on (i) a parametrization of locally balanced
proposals, (ii) a newly proposed objective func-
tion based on mutual information and (iii) a self-
balancing learning procedure, which minimises
the proposed objective to update the proposal pa-
rameters. Experiments on energy-based models
and Markov networks show that LSB converges
using a smaller number of queries to the oracle
distribution compared to recent local MCMC sam-
plers.

1. Introduction
Sampling from complex and intractable probability distribu-
tions is of fundamental importance for learning and infer-
ence (MacKay, 2003). In this regard, MCMC methods are
promising solutions to tackle the intractability of sampling
in high dimensions. They have been successfully applied in
several domains, including Bayesian statistics and statistical
physics (Neal, 1993; Robert & Casella, 2013), bioinformat-
ics and computational biology (Altekar et al., 2004; Alexeev
et al., 2020) as well as machine learning (Andrieu et al.,
2003; Koller & Friedman, 2009; Nijkamp et al., 2020).

While MCMC is a general method, which can be used to
sample from any target distribution, its efficiency strongly
depends on the choice of the proposal. Indeed, the pro-
posal must be adapted to the distribution we want to sam-
ple from (Andrieu & Thoms, 2008; Hoffman & Gelman,
2014) and machine learning can help to automate this pro-
cess (Zhang et al., 2012; Pakman & Paninski, 2013; Af-
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shar et al., 2015; Dinh et al., 2017; Nishimura et al., 2020).
However, less effort has been devoted to devise strategies
for adapting the proposal distribution to a discrete target.
Most common solutions embed the discrete problem into
a continuous one, thus allowing to reuse sampling strate-
gies designed for the continuous domain. However, these
strategies are not always optimal, as they either require spe-
cific analytic forms for the target (Zhang et al., 2012), or
simply because the embeddings do not capture the topologi-
cal properties of the original domain (Pakman & Paninski,
2013; Afshar et al., 2015; Dinh et al., 2017; Nishimura et al.,
2020). We can avoid these issues by sampling directly in the
discrete domain and using local MCMC strategies (Zanella,
2020).

In this work, we propose an adaptation strategy for local
MCMC. Specifically, we introduce (i) a new parametrization
for locally balanced proposals, (ii) a new objective function
based on mutual information to compute the statistical de-
pendence between consecutive samples, and (iii) a learning
procedure to adapt the parameters of the proposal to the tar-
get distribution using our proposed objective. The resulting
procedure, called the Local Self-Balancing sampler (LSB),
automatically discovers a locally balanced proposal with
the advantage of reducing the number of target evaluations
required to converge. Furthermore, we show that our frame-
work generalizes over two recent works (Zanella, 2020)
and (Grathwohl et al., 2021). We conduct experiments on
energy-based models and Markov network, and show that
LSB queries the oracle distribution in a more efficient way
compared to recent local MCMC samplers.

In summary, the key contributions of the work are:

• A parametrization of locally balanced proposals, which
enable to convert the problem of proposal selection into
a learning problem.

• The use of mutual information as a criterion to learn
the proposal distribution and accelerate MCMC.

• An estimator to efficiently compute the mutual infor-
mation objective and to enable efficient learning.

We start by providing some background on locally balanced
proposal distributions (Section 2), we introduce LSB by de-
scribing the parametrizations, the objective and the learning
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procedure (Section 3), we discuss the related work (Sec-
tion 4) and the experiments (Section 5), and finally we
conclude by highlighting the main limitations of LSB and
the possible future directions (Section 6).

2. Background
We consider the problem of sampling from a distribution
p with a support defined over a large finite discrete sam-
ple space X , i.e. p(x) = p̃(x)/

∑
x′′∈X p̃(x′′), where the

normalization term cannot be tractably computed and only
p̃ can be evaluated. One solution to the problem consists
of sampling using MCMC (Neal, 1993). The main idea
of MCMC is to sequentially sample from a tractable surro-
gate distribution, alternatively called proposal, and to use
an acceptance criterion to ensure that generated samples
are distributed according to the original distribution. More
formally, MCMC is a Markov chain with a transition proba-
bility of the form:1

T (x′|x) = A(x′,x)Q(x′|x) (1)

where Q(x′|x) is the probability of sampling x′ given a
previously sampled x, namely the proposal distribution, and
A(x′,x) is the probability of accepting sample x′ given x,
e.g. A(x′,x) = min

{
1, p̃(x′)Q(x|x′)

p̃(x)Q(x′|x)
}

.2 In this work, we
consider the family of locally informed proposals (Zanella,
2020), which are characterized by the following expression:

Q(x′|x) =
g
( p̃(x′)

p̃(x)

)
1[x′ ∈ N(x)]

Z(x)
(2)

where N(x) is the neighborhood of x based on the Ham-
ming metric.3

Note that the choice of g has a dramatic impact on the per-
formance of the Markov chain, as investigated in (Zanella,
2020). In fact, there is a family of functions called balanc-
ing functions, satisfying the relation g(t) = tg(1/t) (for all
t > 0), which have extremely desirable properties, briefly
recalled hereunder.

Acceptance rate. The balancing property allows to
rewrite the acceptance function in a form that depends
only from the ratio Z(x)

Z(x′) , specifically A(x′,x) =

min
{
1, Z(x)

Z(x′)

}
. Therefore if p̃(x) is smooth enough, then

the ratio Z(x)
Z(x′) will be close to 1, as x,x′ are close to each

other. However, a proper choice of g can additionally influ-
ence the value of this ratio.

1For all x,x′ ∈ X such that x ̸= x′, see Eq. (7) in Appendix B
2Other choices are available (Neal, 1993) as well.
3In this work, N(x) is a set of points having Hamming distance

1 from x.

Detailed balance. Note that for all x′ = x, detailed bal-
ance trivially holds, viz. p(x)T (x′|x) = p(x′)T (x|x′). In
all other cases, detailed balance can be proved, by exploiting
the fact that T (x′|x) = A(x′,x)Q(x′|x) and by using the
balancing property (see the Appendix A for more details).
Detailed balance is a sufficient condition for invariance.
Consequently, the target p is a fixed point of the Markov
chain.

Ergodicity. Under mild assumptions, we have also ergod-
icity (we leave more detailed discussion to Appendix B). In
other words, the Markov chain converges to the fixed point
distribution p independently from its initialization.

Efficiency. The efficiency of MCMC is generally mea-
sured in terms of the resulting asymptotic variance for sam-
ple mean estimators. This is indeed a proxy to quantify
the level of correlation between samples generated through
MCMC. Higher levels of asymptotic variance correspond to
higher levels of correlation, meaning that the Markov chain
produces more dependent samples and it is therefore less
efficient. Balancing functions are asymptotically optimal
according to Peskun ordering (Zanella, 2020).

The work in (Zanella, 2020) proposes a pool of balancing
functions with closed-form expression together with some
general guidelines to choose one. However, this pool is
only a subset of the whole family of balancing functions
and several cases do not even have an analytical expression.
Consequently, it is not clear which function to use in order
to sample efficiently from the target distribution. Indeed, we
will see in the experimental section that (i) the optimality
of the balancing function depends on the target distribution
and that (ii) in some cases the optimal balancing function
may be different from the ones proposed in (Zanella, 2020).
In the next sections, we propose a strategy to automatically
learn the balancing function from the target distribution,
thus reducing the number of target evaluations in order to
achieve convergence compared to recent discrete MCMC
samplers.

3. LSB: Local Self-Balancing Strategy
We start by introducing two different parametrizations for
the family of balancing functions in increasing order of func-
tional expressiveness. Then, we propose an objective crite-
rion based on mutual information to learn the parametriza-
tion and to reduce the number of steps required to converge.
Finally, we introduce an approximate strategy to further
reduce the computational overhead of each step.

3.1. Parametrizations

We state the following proposition and then use it to devise
the first parametrization.
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Proposition 3.1. Given n balancing functions g(t) =
[g1(t), . . . , gn(t)]

T and any vector of scalar weights w =
[w1, . . . , xn]

T , the linear combination g(t)
.
= wTg(t) sat-

isfies the balancing property.

Proof. g(t) = wTg(t) =
∑n

i=1 wigi(t) =
t
∑n

i=1 wigi(1/t) = twTg(1/t) = tg(1/t)

Despite its simplicity, the proposition has important im-
plications. First of all, it allows to convert the problem
of choosing the optimal balancing function into a learning
problem. Secondly, the linear combination introduces only
few parameters (in the experiments we consider n = 4) and
therefore the learning problem can be solved in an efficient
way. Additionally, we consider only positive weights to
avoid negative values in Eq. 2, thus having a valid proposal
distribution.

The first parametrization (LSB 1) consists of the rela-
tions wi = eθi/

∑n
j=1 e

θj for all i = 1, . . . , n, where
θθθ = [θ1, . . . , θn] ∈ Rn. Note that the softmax is used
to smoothly select one among the n balancing functions.
Therefore, we refer to this parametrization as learning to
select among existing balancing functions.

The second parametrization (LSB 2) is obtained from the
following proposition.

Proposition 3.2. Given gθθθ(t)
.
= hθθθ(t)

2 + thθθθ(1/t)
2 , where

hθθθ is any real valued function parameterized by vector θθθ ∈
Rk (e.g. a neural network), gθθθ(t) satisfies the balancing
property. Furthermore, for any balancing function ℓ, there
always exists θ̃θθ ∈ Rk such that gθ̃θθ(t) = ℓ(t) for all t > 0.
In other words, LSB 2 parameterizes all possible balancing
functions.

Proof. The first part follows directly from the definition of
the balancing property.

Given any balancing function ℓ, we can always find a
θ̃θθ such that hθ̃θθ(t) = ℓ(t) for all t > 0 (because hθθθ is
a universal function approximator (Hornik et al., 1989)).
This implies that hθ̃θθ satisfies the balancing property, i.e.
hθ̃θθ(t) = thθ̃θθ(1/t) for all t > 0. Consequently, by the first
part of the proposition, we have that gθ̃θθ(t) = hθ̃θθ(t). Finally,
we can conclude that gθ̃θθ(t) = ℓ(t) for all t > 0.

The proposition enables to parameterize the whole family
of balancing functions, thus generalizing the result obtained
for LSB 1. Note that the increased level of expressiveness
of LSB 2 comes at the cost of a higher computation. How-
ever, in practice we can always trade-off expressiveness and
computation by specifying the capacity of the function ap-
proximator (e.g. the hyperparameters of the neural network).
We leave this discussion to the experimental section.

In the next paragraphs, we propose an objective and a learn-
ing strategy to train the parameters of LSB 1 and LSB 2.

3.2. Objective and Learning Algorithm

The goal here is to devise a criterion to find the balancing
function reducing the number of target likelihood evalua-
tions and increasing the convergence/mixing rate to distri-
bution p.

As already mentioned in previous section, MCMC based
on locally informed proposal converges to the true target
distribution independently of its initialization. Furthermore,
the rate of convergence and mixing is controlled by the bal-
ancing function. Importantly, we can speedup convergence
and mixing by minimizing the amount of statistical depen-
dence between consecutive samples. To this purpose, we
introduce the following mutual information-based criterion:

Iθθθ = KL
{
p(xxx)Tθθθ(xxx

′|xxx)∥p(xxx)p(xxx′)
}

(3)

where KL is the Kullback Leibler divergence and Tθθθ is the
transition probability with explicit dependence on parameter
θθθ. Now, we are ready to highlight some properties of Eq. 3
with the following theorem (see Appendix C for the proof).

Theorem 3.3. Consider X = {0, 1}d and p(xxx) = p̃(xxx)/Γ,
where Γ is a normalizing constant. Define two auxiliary
distributions Q1 and Q2, such that for all xxx ∈ X , Q1(xxx) >
0 whenever p̃(xxx) > 0, and for all xxx′ ∈ N (xxx), Q2(xxx

′) > 0
whenever Q(xxx′|xxx) > 0. Therefore,

(a) ifM(xxx)
.
= 1−

∑
xxx′′∈N(xxx) A(xxx′′,xxx)Q(xxx′′|xxx), then

Lθθθ =Exxx∼Q1

xxx′∼Q2

{
p̃(xxx)Q(xxx′|xxx)
Q1(xxx)Q2(xxx′)

A(xxx′,xxx)·

· log A(xxx′,xxx)Q(xxx′|xxx)
p̃(xxx′)

}
+ Exxx∼Q1

{
p̃(xxx)

Q1(xxx)
M(xxx) log

M(xxx)

p̃(xxx)

}
(4)

and Iθθθ = Lθθθ

Γ + log Γ
Γ .

(b) if M(xxx)
.
= 1 − A(xxx∗,xxx)Q(xxx∗|xxx), where xxx∗ is ran-

domly sampled according to a uniform distribution
over N(xxx), then

Lθθθ =Exxx∼Q1

xxx′∼Q2

{
p̃(xxx)Q(xxx′|xxx)
Q1(xxx)Q2(xxx′)

A(xxx′,xxx)·

· log A(xxx′,xxx)Q(xxx′|xxx)
p̃(xxx′)

}
+ Exxx∼Q1

{
M(xxx)

Q1(xxx)

[
ηM(xxx)− p̃(xxx)(log η + 1)

]}
(5)

and Iθθθ ≤ Lθθθ

Γ + log Γ
Γ , for η ∈ R+.
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Algorithm 1 Local Self-Balancing (LSB)

Input: Learning rate γ = 1e − 2, π = 1e − 8, initial
parameter θθθ0, burn-in iterations K and batch of samples
N
{x̂xx(i)}Ni=1 ∼ UX
for k = 1 to K do
{xxx(i)}Ni=1 ∼ Q1

{xxx′(i)}Ni=1 ∼ Q2

L̂θθθ ← Estimate Lθθθ using {xxx(i)}Ni=1, {xxx′(i)}Ni=1

θθθ ← θθθ − γ
N∇θθθL̂θθθ

Update η
Accept/Reject samples
Update {x̂xx(i)}Ni=1 with accepted samples
θθθ0 ← θθθ

end for

The theorem tells that for case (a), Lθθθ is equal to Iθθθ up to
a constant, whereas, for case (b) Lθθθ is an upper bound of
Iθθθ. In both cases, we can use Lθθθ as a surrogate objective to
minimize Eq. 3. However, note that computing the two ex-
pectations in Eq. 4 or Eq. 5 is generally intractable, but one
can estimate these two quantities by using Monte Carlo, for
instance by sampling first from Q1 and then sampling from
Q2. Also, note that the conditions on Q1 and Q2 in the the-
orem require that Q1 and Q2 are positive on the support of
p(x) and Q(xxx′|xxx), respectively. These conditions can be met
by choosing Q1(xxx) = πUX (xxx)+(1−π)δ(xxx−x̂xx), where U is
a uniform distribution over the whole spaceX , δ is the Dirac
delta function, x̂xx is the last accepted sample and π defines
the proportions of the mixture, and Q2(xxx

′) = Qθθθ0
(xxx′|xxx),

where Qθθθ0
(xxx′|xxx) is the proposal distribution with parame-

ter vector θθθ0. Importantly, while the choice of Q2 is quite
natural, we choose to use a mixture distribution including a
deterministic and a uniform distribution for Q1, as the deter-
ministic distribution remembers and exploits the previous
iterate in the current sampling step, whereas the uniform
distribution discards this information and acts as an unin-
formative prior on the support of p(x), thus enabling the
exploration of the whole input domain. Therefore, the mix-
ing proportion parameter π balances between exploration
and exploitation. In order to learn a balancing function,
there is no real need to have exploration (π is set to 1e− 8
in all our experiments). However, the mixing parameter and
the exploration term might play a more important role in
other learning settings, for instance when learning ”global”
proposal distributions. Once Lθθθ is estimated, we can up-
date the parameters of the two parametrizations by using an
off-the-shelf gradient-based optimizer.

In our training algorithm, we choose case (b) as our sur-
rogate objective to minimize the amount of target likeli-
hood evaluations. Indeed, note that the estimate for case
(a) requires O(d2) evaluations, because we need to com-

Algorithm 2 Fast Local Self-Balancing (FLSB).

Input: Learning rate γ = 1e − 2, π = 1e − 8, initial
parameter θθθ0, burn-in iterations K and batch of samples
N
{x̂xx(i)}Ni=1 ∼ UX
for k = 1 to K do
{xxx(i)}Ni=1 ∼ Q1

{xxx′(i)}Ni=1 ∼ Q2 (using the approximation)
L̂θθθ ← Estimate Lθθθ using {xxx(i)}Ni=1, {xxx′(i)}Ni=1

θθθ ← θθθ − γ
N∇θθθL̂θθθ

Update η
Accept/Reject samples (exact accept. score)
Update {x̂xx(i)}Ni=1 with accepted samples
θθθ0 ← θθθ

end for

pute Q(xxx′′|xxx) for all xxx′′ ∈ N(xxx), whereas the one for case
(b) requires only O(d) evaluations. Finally, we learn the
additional parameter η in case (b) using standard gradient
descent. The whole learning procedure is shown in Algo-
rithm 1.

3.3. Constant Target Evaluation

Without loss of generality, we can express p̃(xxx) = ef(xxx)

for some f : Rd → R and consider X = {0, 1}d.4

By definition of N(xxx), the proposal distribution in Eq. 2
can be written in an equivalent form as Q(xxx′|xxx) =∑d

i=1 Q(xxx′|xxx, i)Q(i|xxx), where Q(xxx′|xxx, i) = δ(xxx′ − xxx−i)
with xxx−i obtained by flipping i−bit in xxx, and

Q(i|xxx) = Cat
{

Norm
[
g
(
edf1(xxx), . . . , g

(
edfd(xxx)

)]}
i

where Cat stands for a categorical distribution, Norm is a
normalization operator acting on a d−dimensional vector
and dfi(xxx) = f(xxx−i) − f(xxx). It’s clear that computing
previous equation requires to evaluate f for O(d) times.
However, if we assume that f is known and differentiable
(which is true for instance in energy-based models), we can
use Taylor expansion to approximate the difference dfi(xxx).
Indeed, we have that

f(xxx−i)− f(xxx) ≈ ∇x̄xxf(x̄xx)|Tx̄xx=xxx(xxx−i − xxx)
.
= d̄f i(xxx)

which allows to evaluate the target only O(1) times. There-
fore, our new proposal distribution is defined as follows:

Q(i|xxx) = Cat
{

Norm
[
g
(
ed̄f1(xxx), . . . , g

(
ed̄fd(xxx)

)]}
i

Interestingly, if we choose g(t) =
√
t, we recover the exact

same proposal distribution of a recent sampler, called Gibbs-
With-Gradients (Grathwohl et al., 2021). Thanks to this

4p̃(xxx) is obviously defined over a discrete sample space. How-
ever, we can always identify a real-valued function which coincides
with log p̃(xxx) on the discrete support.
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Table 1. Summary comparing locally balanced proposals (LB)
of (Zanella, 2020), Gibbs-With-Gradients (GWG) (Grathwohl
et al., 2021) and our samplers (LSB and FLSB).

Name g(t) dfi Eval./step
LB Fixed Exact O(d)

GWG Fixed (g(t) =
√
t) Approx.* O(1)

LSB Learnt Exact O(d)
FLSB Learnt Approx.* O(1)
* Assumption: f is known and differentiable.

approximation, we can propose a more efficient version of
Algorithm 1, called Fast Local Self-Balancing procedure
(FLSB), shown in Algorithm 2.

Finally, we can summarize the main differences among
locally balanced proposals of (Zanella, 2020), Gibbs-With-
Gradients (Grathwohl et al., 2021) and our samplers in Ta-
ble 1.

4. Related Work
It’s important to devise strategies, which enable the au-
tomatic adaption of proposals to target distributions, not
only to reduce user intervention, but also to increase the
efficiency of MCMC samplers (Andrieu & Thoms, 2008;
Hoffman & Gelman, 2014). Recently, there has been a surge
of interest in using machine learning and in particular deep
learning to learn proposals directly from data, especially in
the continuous domain. Here, we provide a brief overview
of recent integrations of machine learning and MCMC sam-
plers according to different parametrizations and training
objectives.

Parametrizations and objectives in the continuous do-
main. The work in (Wang et al., 2018) proposes a strategy
based on block Gibbs sampling, where blocks are large mo-
tifs of the underlying probabilistic graphical structure. It
parameterizes the conditional distributions of each block
using mixture density networks and trains them using meta-
learning on a log-likelihood-based objective. The work
in (Song et al., 2017) considers a global sampling strategy,
where the proposal is parameterized by a deep generative
model. The model is learnt through adversarial training,
where a neural discriminator is used to detect whether or
not generated samples are distributed according to the target
distribution. Authors in (Habib & Barber, 2018) propose
a global sampling strategy based on MCMC with auxiliary
variables (Higdon, 1998). The proposals are modelled as
Gaussian distributions parameterized by neural networks
and are trained on a variational bound of a log-likelihood-
based objective. The works in (Levy et al., 2018; Gong et al.,
2019) propose a gradient-based MCMC (Duane et al., 1987;
Grenander & Miller, 1994), where neural models are used to

learn the hyperparameters of the equations governing the dy-
namics of the sampler. Different objectives are used during
training. In particular, the work in (Gong et al., 2019) uses
a log-likelihood based objective, whereas the work in (Levy
et al., 2018) considers the expected squared jump distance,
namely a tractable proxy for the lag-1 autocorrelation func-
tion (Pasarica & Gelman, 2010). The work in (Zhu, 2019)
proposes a global two-stage strategy, which consists of (i)
sampling according to a Gaussian proposal and (ii) updating
its parameters using the first- and second-order statistics
computed from a properly maintained pool of samples. The
parameter update can be equivalently seen as finding the
solution maximizing a log-likelihood function defined over
the pool of samples. Finally, the work in (Pompe, E. and
Holmes, C. and Łatuszyński, K. and others, 2020) extends
this last strategy to the case of Gaussian mixture proposals.
All these works differ from the current one in at least two
aspects. Firstly, it is not clear how these parametrizations
can be applied to sampling in the discrete domain. Sec-
ondly, the proposed objectives compute either a distance
between the proposal distribution and the target one, namely
using an adversarial objective or a variational bound on the
log-likelihood, or a proxy on the correlation between con-
secutive generated samples, namely the expected squared
jump distance. Instead, our proposed objective is more gen-
eral in the sense that it reduces the statistical dependence
between consecutive samples, as being closely related to
mutual information.

Sampling in the discrete domain. Less efforts have been
devoted to devise sampling strategies for a purely discrete
domain. Most of the works consider problem relaxations by
embedding the discrete domain into a continuous one, apply-
ing existing strategies like Hamiltonian Monte Carlo (Zhang
et al., 2012; Pakman & Paninski, 2013; Afshar et al., 2015;
Dinh et al., 2017; Nishimura et al., 2020) on it and then mov-
ing back to the original domain. These strategies are subopti-
mal, either because they consider limited settings, where the
target distribution has specific analytic forms (Zhang et al.,
2012), or because they make strong assumptions on the prop-
erties of the embeddings, thus not preserving the topologi-
cal properties of the discrete domain (Pakman & Paninski,
2013; Afshar et al., 2015; Dinh et al., 2017; Nishimura et al.,
2020).5. The work in (Zanella, 2020) provides an extensive
experimental comparison between several discrete sampling
strategies, including the ones based on embeddings, based
on stochastic local search (Hans et al., 2007) and the Ham-
ming ball sampler (Titsias & Yau, 2017), which can be re-
garded as a more efficient version of block Gibbs sampling.
Notably, the sampling strategy based on locally informed
proposals and balancing functions proposed in (Zanella,

5For example by considering transformations that are bijec-
tive and/or by proposing transformations which allow to tractably
compute the marginal distribution on the continuous domain.
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(a) Noisy (b) Clean

Figure 1. Examples of ααα in different settings of the Ising model
(30× 30), i.e noisy µ = 1, σ = 3 and clean µ = 3, σ = 3.

2020) can be considered as the current state of the art for
discrete MCMC. Our work builds and extends upon this
sampler by integrating it with a machine learning strategy.

It’s important to mention that there are a couple of neu-
ral approaches applied to the discrete domain. The first
one (Jaini et al., 2021) proposes to use normalizing flows
to (i) learn a continuous relaxation of the discrete domain
by dequantizing input data, and to (ii) learn a latent em-
bedding more amenable to MCMC sampling. Learning the
input-latent transformation is performed by maximizing the
log-likelihood computed on data sampled from the latent
space. The second one (Dai et al., 2020) proposes a strategy
to learn an initializing distribution for a fixed local discrete
MCMC sampler in the context of energy-based models. This
is achieved by forcing the distribution to be close enough
(in terms of KL divergence) to the fixed point of the MCMC
kernel. Both works differ from ours in at least three aspects.
Indeed, our work parameterizes the kernel of a local MCMC
sampler, while the others consider a more global approach.
Secondly, we are learning a one-dimensional real valued
function through a simple neural network, instead of learn-
ing a more complex deep latent variable model which must
transform input data. Finally, we are providing a mutual
information objective, which directly tackle the problem
of reducing the statistical dependence, and therefore also
correlation, of consecutive samples.

5. Experiments
Firstly, we analyze samplers’ performance on energy-based
models, including the 2D Ising model and Restricted Boltz-
mann Machines. Then, we perform experiments on addi-
tional UAI benchmarks. Code to replicate the experiments
is available at https://github.com/emsansone/
LSB.git.

5.1. 2D Ising Model

We consider the Ising model applied to image segmentation,
to identify an object from its background. Consider a binary
state space X = {−1, 1}V , where (V,E) defines a square
lattice graph of the same size of the analyzed image, namely
n × n. For each state configuration x = (xi)i∈V ∈ X ,

define a prior distribution

pprior(x) ∝ exp

{
λ

∑
(i,j)∈E

xixj

}

where λ is a non-negative scalar used to weight the depen-
dence among neighboring variables in the lattice. Then,
consider that each pixel yi is influenced only by the cor-
responding hidden variable xi and generated according to
a Gaussian density with mean µxi and variance σ2. Note
that each variable in the lattice tells whether the correspond-
ing pixel belongs to the object or to the background (1 or
-1, respectively). The corresponding posterior distribution
of a hidden state x given an observed image is defined as
follows:

p(x) =
1

Z
exp

{∑
i∈V

αixi + λ
∑

(i,j)∈E

xixj

}
(6)

where αi = yiµ/σ
2 is a coefficient biasing xi towards ei-

ther 1 or −1. Therefore, ααα = (αi)i∈V contains information
about the observed image. Figure 1 shows two synthetically
generated examples of ααα. We evaluate the sampling perfor-
mance on the distribution defined in Eq. 6. Importantly, the
topological graph structure of the lattice and the exponential
form of the posterior distribution allows to compute a locally
balanced proposals in O(1) target evaluations, without the
need of using a gradient-based approximation (cf. Section
3.3). Therefore, we consider only comparisons between LB
and LSB

Learning the balancing function. We consider the bal-
ancing functions proposed in (Zanella, 2020), namely
g(t) = t/(1+ t) (a.k.a Barker function),

√
t,min{1, t} and

max{1, t}.6 We compare these four balancing functions
with our two parametrizations on four different settings of
the Ising model, namely independent and noisy (λ, µ, σ) =
(0, 1, 3), independent and clean (λ, µ, σ) = (0, 3, 3), depen-
dent and noisy (λ, µ, σ) = (1, 1, 3) and dependent and clean
(λ, µ, σ) = (1, 3, 3) cases and show the corresponding per-
formance in Figure 2 and Table 2. We leave additional
details and results to the Appendices D and E.

From Figure 2, we can see that our first parametrization LSB
1 is able to always ”select” an unbounded balancing function
during burn-in, while when approaching convergence it is
able to adapt to preserve fast mixing, as measured by the
effective sample size (ESS) in Table 2. It’s interesting to
mention also that the softmax nonlinearity used in LSB 1
can sometimes slow down the adaptation due to vanishing

6As discussed in Section 3.3, the case g(t) =
√
t corresponds

to the exact version of GWG. Here there is no need for using the
approximation, as we can exploit the structure of the lattice and
the exponential form of the distribution to achieve constant target
evaluation.

https://github.com/emsansone/LSB.git
https://github.com/emsansone/LSB.git
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(a) Case 1 (b) Case 2 (c) Case 3 (d) Case 4

Figure 2. Samplers’ performance on four cases of the Ising model (30× 30) for the burn-in phase. (a) Case 1: Independent-noisy, (b) case
2: Independent-clean, (c) case 3: Dependent-noisy, (d) case 4: Dependent-clean

Table 2. Quantitative performance for mixing measured by effective sample size on the four cases of the Ising model (30×30). max{1, t}
is performing significantly worse in statistical terms than the other functions.

Setting t
1+t

√
t min{1, t} max{1, t} LSB 1 LSB 2

Case 1 2.55± 0.302.55± 0.302.55± 0.30 2.29± 0.232.29± 0.232.29± 0.23 2.43± 0.222.43± 0.222.43± 0.22 1.71± 0.13 2.32± 0.272.32± 0.272.32± 0.27 2.34± 0.232.34± 0.232.34± 0.23
Case 2 3.30± 0.363.30± 0.363.30± 0.36 2.89± 0.282.89± 0.282.89± 0.28 2.96± 0.302.96± 0.302.96± 0.30 1.68± 0.11 2.85± 0.282.85± 0.282.85± 0.28 2.30± 0.29
Case 3 2.39± 0.982.39± 0.982.39± 0.98 1.83± 0.561.83± 0.561.83± 0.56 2.31± 0.922.31± 0.922.31± 0.92 1.20± 0.10 2.01± 0.702.01± 0.702.01± 0.70 2.44± 0.962.44± 0.962.44± 0.96
Case 4 2.10± 0.91 7.08± 4.07 1.74± 0.26 1.74± 0.51 2.52± 1.11 20.11± 15.5820.11± 15.5820.11± 15.58

(a) Case 2 (b) Case 4

Figure 3. Realizations obtained after 300 burn-in iterations on the
Ising model.

gradients. This can be observed by looking at the case 4 of
Figure 2, where for a large part of the burn-in period the
strategy prefers max{1, t} over

√
t. Nevertheless, it is still

able to recover a solution different from max{1, t} at the
end of burn-in, as confirmed by the larger effective sample
size in Table 2 compared to the one achieved by max{1, t}.

Furthermore, we observe that our second parametrization
LSB 2, which is functionally more expressive compared
to LSB 1, allows to outperform all previous cases in terms
of number of target evaluations required to converge, as
shown in Figure 2 and Table 2. This provides evidence
that the optimality of the balancing function depends on
the target distribution and that exploiting information about
the target can lead to significant improvements (e.g. in
case 3 of Figure 2, LSB 2 converges twice time faster as
the best balancing function

√
t). Figure 3 provides some

realizations obtained by the samplers for the cases with
dependent variables λ = 1. We clearly see from these
pictures that convergence for LSB 2 occurs at an earlier
stage than the other balancing functions and therefore the
latent variables in the Ising model converge faster to their

ground truth configuration.

5.2. Sampling in Restricted Boltzmann Machines

We also evaluate the performance on the challenging task of
sampling from Restricted Boltzmann Machines, using the
experimental setup of (Grathwohl et al., 2021). In particular,
we train a RBM with 250 hidden units on the binary MNIST
dataset using contrastive divergence and use this model as
our base distribution for evaluating the samplers. Notably,
since the distribution has an analytic differentiable form, we
can exploit the gradient-based approximation explained in
Section 3.3. Therefore, we compare our sampler (FLSB)
against Gibbs-With-Gradients (GWG) (Grathwohl et al.,
2021), block Gibbs sampling (Gibbs 2) and the Hamming
Ball sampler (HB-10-1) (Titsias & Yau, 2017).7 We use two
scores to measure the performance. The first one consists of
the maximum mean discrepancy (MMD) distance between
the generated samples and the ground truth ones, obtained
through the block-Gibbs sampling procedure available in
RBMs. The second one consists of the effective sample size
(ESS) of a summary statistics computed on the sampling
trajectories (more details about the experiments are available
in Appendix D). We also provide the effective sample size
normalized over time (ESS/sec).

In Figure 4, we see that FLSB 1 recovers the performance
of GWG. FLSB 2 is able to adapt to the target distribution
and to converge using a much smaller number of target like-
lihood evaluations. Furthermore, we observe that FLSB
2 performs well also in terms of ESS. These experiments

7Gibbs-X refers to Gibbs sampling with block size of X,
whereas HB-X-Y refers to Hamming Ball sampler with block
size of X and a Hamming ball of size Y.
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Figure 4. Samplers’ performance on RBMs. On the top, burn-in
performance computed using MMD (in logarithmic scale). On
the bottom, mixing performance computed after burn-in using
log(ESS) (on the left) and ESS per seconds (on the right).

(a) MN 1 (b) MN 2

Figure 5. Samplers’ performance on Markov networks from UAI
competition (100 variables). (a)-(b) are the traceplots for the burn-
in phase.

provide further evidence that there is a clear advantage on
learning the balancing function. However, it is important to
mention that the improved performance comes with a com-
putational overhead. Indeed, when comparing the samplers
based on ESS/sec (Figure 4), we observe that, while FLSB
1 and GWG achieve comparable results, the performance
of FLSB 2 are inferior on average. This is explained by the
fact that each sampling iteration requires to evaluate a more
complex balancing function (i.e. a multilayer perceptron
network with one 10-neuron hidden layer, corresponding to
31 parameters vs. 4 parameters for FLSB 1). Clearly, there
is a distinction between the number of evaluations of the
likelihood and the number of evaluations for the balancing
function. Our proposed strategy reduces the first ones and
the introduced computational overhead affects only the sec-
ond kind of evaluations. This can be mitigated for example
by looking at more efficient block-wise implementations.
However, this is left to future work. Additional comparisons
of FLSB2 against block-wise sampling strategies together
with a summary of its benefits are provided in Appendix F.

5.3. Markov Networks: UAI data

Lastly, we evaluate how our strategy generalizes to different
graph topologies compared to the one of the Ising model.

In particular, we consider two Markov networks, with 100
discrete variables each and near-deterministic dependencies,
from the 2006 UAI competition.8 In this setting, we can’t
leverage the gradient-based approximation of Section 3.3, as
the distribution is specified in tabular form. Therefore, we
compare our sampler LSB with the four balancing functions
proposed in (Zanella, 2020). Similarly to previous exper-
iments, we analyze the convergence of the burn-in phase
(using traceplots) and the mixing performance according to
ESS. Further details about the simulations are available in
the Appendices D and G.

Also in this case, we observe that the proposed strategy
is able to adapt to the target distribution and reduce the
number of target likelihood evaluations required to converge
(Figure 5). In this case, we observe similar performance in
terms of ESS (cf. Table 3).

6. Conclusions and Future Work
We have presented a strategy to learn locally balanced pro-
posals for MCMC in discrete spaces. The strategy consists
of (i) a new parametrization of balancing functions and (ii)
a learning procedure adapting the proposal to the target
distribution. This allows to reduce the number of target like-
lihood evaluations required to converge. We believe that the
proposed strategy can play an important role on applications
where querying an oracle distribution is very expensive (like
in deep energy-based models). We will investigate this in
the future.

Note that the LSB sampler belongs to the family of local
sampling strategies, thus inheriting their limitations. The
locality assumption can be quite restrictive, for example
when sampling from discrete distributions with determinis-
tic dependencies among variables. In such situations, local
sampling might fail to correctly sample from the target in
a finite amount of time, as being required to cross regions
with zero probability mass. The locality assumption can be
relaxed for instance by leveraging a recent extension of the
works in (Zanella, 2020; Grathwohl et al., 2021), called Path
Auxiliary MCMC (Sun et al., 2022), which uses a trajec-
tory of samples generated by the repeated application of the
same base locally balanced proposal, and by adapting our
proposed strategy to this new setting. Alternatively, we can
consider block-wise implementations of locally balanced
proposals, as also suggested in (Zanella, 2020). However,
we leave all these extensions to future work.

To the best of our knowledge, we are the first to consider
using mutual information to accelerate MCMC. We have
focused on a local MCMC sampler for discrete domains. In
the future, it will be interesting to see the application of the
mutual information criterion to more global settings as well

8http://sli.ics.uci.edu/˜ihler/uai-data/

http://sli.ics.uci.edu/~ihler/uai-data/
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Table 3. Quantitative performance for mixing measured by effective sample size on two Markov networks from UAI competition.

Dataset t
1+t

√
t min{1, t} max{1, t} LSB 1 LSB 2

MN 1 2.90± 0.762.90± 0.762.90± 0.76 3.41± 0.773.41± 0.773.41± 0.77 2.54± 0.32 2.70± 0.632.70± 0.632.70± 0.63 3.19± 0.463.19± 0.463.19± 0.46 3.22± 0.383.22± 0.383.22± 0.38
MN 2 3.43± 0.753.43± 0.753.43± 0.75 3.92± 0.943.92± 0.943.92± 0.94 3.78± 0.503.78± 0.503.78± 0.50 3.63± 0.673.63± 0.673.63± 0.67 3.52± 0.423.52± 0.423.52± 0.42 3.44± 0.443.44± 0.443.44± 0.44

as its extension to the continuous case.

Lastly, further theoretical investigation is required to estab-
lish the local convergence of our training algorithm. Indeed,
standard results of gradient-based optimization do not apply
in this setting, as the iterates are correlated. This remains an
open challenge for future work.
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A. Detailed Balance
We want to prove that p(x)T (x′|x) = p(x′)T (x|x′) for all x′ ̸= x. We have that

p(x)A(x′,x)
g
( p̃(x′)

p̃(x)

)
1[x′ ∈ N(x)]

Z(x)
=

p(x′)A(x,x′)
g
( p̃(x)
p̃(x′)

)
1[x ∈ N(x′)]

Z(x′)

By observing that 1(x′ ∈ N(x)) = 1(x ∈ N(x′)) and using the balancing property, we can simplify previous equality to
obtain the following relation:

p(x)A(x′,x)
g
( p̃(x′)

p̃(x)

)
Z(x)

=

p(x′)A(x,x′)

p̃(x)
p̃(x′)g

( p̃(x′)
p̃(x)

)
Z(x′)

Therefore, we can apply standard algebra to simplify even more

p̃(x)A(x′,x) = p̃(x)A(x,x′)
Z(x)

Z(x′)

Finally, recall that for balancing functions A(x,x′) = min
{
1, p̃(x)Q(x′|x)

p̃(x′)Q(x|x′)

}
= min

{
1, Z(x′)

Z(x)

}
and therefore previous

equality becomes an identity, namely:

p̃(x)A(x′,x) = p̃(x)A(x′,x)

thus proving detailed balance.

B. Ergodicity
Let’s consider a Markov chain, namely

T (x′|x) = A(x′,x)Q(x′|x) + 1[x′ = x]
∑

x′′∈X

(
1−A(x′′,x)

)
Q(x′′|x)) (7)

with a proposal of the following form:

Q(x′|x) =
g
( p̃(x′)

p̃(x)

)
1[x′ ∈ N(x)]

Z(x)
(8)

We can prove the ergodicity of the Markov chain for the case where the fixed-point distribution p(x) > 0 for every x ∈ X
and then extend it to a general distribution p.

Now, assume that p(x) > 0 for any point x ∈ X , g(t) > 0 for any t > 0 and X is a d-dimensional discrete space. Then,
the Markov chain in Eq. 7 with proposal defined according to Eq. 8 can reach any state x′ from any state x in d steps with
non-zero probability. More formally, we can construct a new Markov chain by applying d times the original one and identify
its transition probability with T d(x′|x). We can easily check, thanks to our assumptions, that T d(x′|x) > 0 for any x,x′.
In other words, the original Markov chain is regular. This is sufficient to satisfy the assumptions of the fundamental theorem
of homogeneous Markov chains (Neal, 1993), thus proving ergodicity.

We can extend the previous result to any arbitrary p (namely considering cases where p(x) = 0 for some x ∈ X ). This can
be achieved by modifying our assumptions on g, namely considering that g(t) > 0 for any t ≥ 0 and reusing the same proof
strategy.

C. Proof of Theorem 1
We want to prove the following theorem.
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Theorem C.1. Consider X = {0, 1}d and p(xxx) = p̃(xxx)/Γ, where Γ is a normalizing constant. Define two auxiliary
distributions Q1 and Q2, such that for all xxx ∈ X , Q1(xxx) > 0 whenever p̃(xxx) > 0, and for all xxx′ ∈ N (xxx), Q2(xxx

′) > 0
whenever Q(xxx′|xxx) > 0. Therefore,

(a) ifM(xxx) = 1−
∑

xxx′′∈N(xxx) A(xxx′′,xxx)Q(xxx′′|xxx), then

Lθθθ =Exxx∼Q1

xxx′∼Q2

{
p̃(xxx)Q(xxx′|xxx)
Q1(xxx)Q2(xxx′)

A(xxx′,xxx) log
A(xxx′,xxx)Q(xxx′|xxx)

p̃(xxx′)

}
+ Exxx∼Q1

{
p̃(xxx)

Q1(xxx)
M(xxx) log

M(xxx)

p̃(xxx)

}
(9)

and Iθθθ = Lθθθ

Γ + log Γ
Γ .

(b) ifM(xxx) = 1−A(xxx∗,xxx)Q(xxx∗|xxx), where xxx∗ is randomly sampled according to a uniform distribution over N(xxx), then

Lθθθ =Exxx∼Q1

xxx′∼Q2

{
p̃(xxx)Q(xxx′|xxx)
Q1(xxx)Q2(xxx′)

A(xxx′,xxx) log
A(xxx′,xxx)Q(xxx′|xxx)

p̃(xxx′)

}
+ Exxx∼Q1

{
M(xxx)

Q1(xxx)

[
ηM(xxx)− p̃(xxx) log η − p̃(xxx)

]}
(10)

and Iθθθ ≤ Lθθθ

Γ + log Γ
Γ , for η ∈ R+.

Proof. Let’s start from the definition of Iθθθ and use the fact that Tθθθ(xxx′|xxx) = A(x′,x)Q(x′|x) + 1[x′ = x]
∑

x′′∈X
(
1 −

A(x′′,x)
)
Q(x′′|x)).

Iθθθ = KL
{
p(xxx)Tθθθ(xxx

′|xxx)∥p(xxx)p(xxx′)
}

=
∑
xxx∈X

∑
xxx′∈X

p(xxx)Tθθθ(xxx
′|xxx) log p(xxx)Tθθθ(xxx

′|xxx)
p(xxx)p(xxx′)

=
∑
xxx∈X

∑
xxx′∈X

p(xxx)Tθθθ(xxx
′|xxx) log Tθθθ(xxx

′|xxx)
p(xxx′)

=
∑
xxx∈X

∑
xxx′∈N(xxx)∪{xxx}

p(xxx)Tθθθ(xxx
′|xxx) log Tθθθ(xxx

′|xxx)
p(xxx′)

=
1

Γ

∑
xxx∈X

∑
xxx′∈N(xxx)∪{xxx}

p̃(xxx)Tθθθ(xxx
′|xxx) log Tθθθ(xxx

′|xxx)
p̃(xxx′)

+
log Γ

Γ

=
1

Γ

∑
xxx∈X

∑
xxx′∈N(xxx)

p̃(xxx)Tθθθ(xxx
′|xxx) log Tθθθ(xxx

′|xxx)
p̃(xxx′)

+
1

Γ

∑
xxx∈X

p̃(xxx)Tθθθ(xxx|xxx) log
Tθθθ(xxx|xxx)
p̃(xxx)

+
log Γ

Γ

=
1

Γ

∑
xxx∈X

∑
xxx′∈N(xxx)

p̃(xxx)A(x′,x)Q(x′|x) log A(x′,x)Q(x′|x)
p̃(xxx′)

+
1

Γ

∑
xxx∈X

p̃(xxx)Tθθθ(xxx|xxx) log
Tθθθ(xxx|xxx)
p̃(xxx)

+
log Γ

Γ

=
1

Γ

∑
xxx∈X

∑
xxx′∈N(xxx)

p̃(xxx)A(x′,x)Q(x′|x) log A(x′,x)Q(x′|x)
p̃(xxx′)

+

+
1

Γ

∑
xxx∈X

p̃(xxx)
∑

x′′∈X

[
1−A(x′′,x)

]
Q(x′′|x) log

∑
x′′∈X

[
1−A(x′′,x)

]
Q(x′′|x)

p̃(xxx)
+

log Γ

Γ

=
1

Γ

∑
xxx∈X

∑
xxx′∈N(xxx)

p̃(xxx)A(x′,x)Q(x′|x) log A(x′,x)Q(x′|x)
p̃(xxx′)

+

+
1

Γ

∑
xxx∈X

p̃(xxx)
[
1−

∑
x′′∈X

A(x′′,x)Q(x′′|x)
]
log

[
1−

∑
x′′∈X A(x′′,x)Q(x′′|x)

]
p̃(xxx)

+
log Γ

Γ

=
1

Γ

∑
xxx∈X

∑
xxx′∈N(xxx)

Q1(xxx)Q2(xxx
′)
p̃(xxx)Q(x′|x)
Q1(xxx)Q2(xxx′)

A(x′,x) log
A(x′,x)Q(x′|x)

p̃(xxx′)
+
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+
1

Γ

∑
xxx∈X

Q1(xxx)
p̃(xxx)

Q1(xxx)

[
1−

∑
x′′∈X

A(x′′,x)Q(x′′|x)
]
log

[
1−

∑
x′′∈X A(x′′,x)Q(x′′|x)

]
p̃(xxx)

+
log Γ

Γ
(11)

Now, by definingM(xxx) = 1−
∑

x′′∈X A(x′′,x)Q(x′′|x), we obtain case (a). Indeed, we have that

Iθθθ =
1

Γ

∑
xxx∈X

∑
xxx′∈N(xxx)

Q1(xxx)Q2(xxx
′)
p̃(xxx)Q(x′|x)
Q1(xxx)Q2(xxx′)

A(x′,x) log
A(x′,x)Q(x′|x)

p̃(xxx′)
+

+
1

Γ

∑
xxx∈X

Q1(xxx)
p̃(xxx)

Q1(xxx)

[
1−

∑
x′′∈X

A(x′′,x)Q(x′′|x)
]
log

[
1−

∑
x′′∈X A(x′′,x)Q(x′′|x)

]
p̃(xxx)

+
log Γ

Γ

=
1

Γ

∑
xxx∈X

∑
xxx′∈N(xxx)

Q1(xxx)Q2(xxx
′)
p̃(xxx)Q(x′|x)
Q1(xxx)Q2(xxx′)

A(x′,x) log
A(x′,x)Q(x′|x)
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+

+
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∑
xxx∈X

Q1(xxx)
p̃(xxx)

Q1(xxx)
M(xxx) log

M(xxx)

p̃(xxx)
+

log Γ

Γ

=
Lθθθ
Γ

+
log Γ

Γ
(12)

For case (b), we can explot the relation log y ≤ ηy − log η − 1 for all y > 0 we have that

Iθθθ =
1

Γ

∑
xxx∈X

∑
xxx′∈N(xxx)

Q1(xxx)Q2(xxx
′)
p̃(xxx)Q(x′|x)
Q1(xxx)Q2(xxx′)

A(x′,x) log
A(x′,x)Q(x′|x)

p̃(xxx′)
+

+
1

Γ

∑
xxx∈X

Q1(xxx)
p̃(xxx)

Q1(xxx)

[
1−

∑
x′′∈X

A(x′′,x)Q(x′′|x)
]
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[
1−

∑
x′′∈X A(x′′,x)Q(x′′|x)

]
p̃(xxx)

+
log Γ

Γ
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Γ
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Q1(xxx)Q2(xxx
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A(x′,x) log
A(x′,x)Q(x′|x)
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+

+
1

Γ

∑
xxx∈X

Q1(xxx)
p̃(xxx)

Q1(xxx)

[
1−

∑
x′′∈X

A(x′′,x)Q(x′′|x)
]{

η

[
1−

∑
x′′∈X A(x′′,x)Q(x′′|x)

]
p̃(xxx)

− log η − 1

}
+

log Γ

Γ

=
1

Γ

∑
xxx∈X

∑
xxx′∈N(xxx)

Q1(xxx)Q2(xxx
′)
p̃(xxx)Q(x′|x)
Q1(xxx)Q2(xxx′)

A(x′,x) log
A(x′,x)Q(x′|x)
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+

+
1

Γ

∑
xxx∈X

Q1(xxx)

[
1−

∑
x′′∈X A(x′′,x)Q(x′′|x)

]
Q1(xxx)

{
η
[
1−

∑
x′′∈X

A(x′′,x)Q(x′′|x)
]
− p̃(xxx) log η − p̃(xxx)

}
+

log Γ

Γ

(13)

Finally, we observe that 1 − A(x̃xx,xxx)Q(x̃xx|xxx) ≥ 1 −
∑

x′′∈X A(x′′,x)Q(x′′|x) for all x̃xx ∈ N(xxx) and for all xxx ∈ X .
Therefore,

Iθθθ ≤
1

Γ

∑
xxx∈X

∑
xxx′∈N(xxx)

Q1(xxx)Q2(xxx
′)
p̃(xxx)Q(x′|x)
Q1(xxx)Q2(xxx′)

A(x′,x) log
A(x′,x)Q(x′|x)

p̃(xxx′)
+

+
1

Γ

∑
xxx∈X

Q1(xxx)

[
1−

∑
x′′∈X A(x′′,x)Q(x′′|x)

]
Q1(xxx)

{
η
[
1−

∑
x′′∈X

A(x′′,x)Q(x′′|x)
]
− p̃(xxx) log η − p̃(xxx)

}
+

log Γ

Γ

≤ 1

Γ

∑
xxx∈X

∑
xxx′∈N(xxx)

Q1(xxx)Q2(xxx
′)
p̃(xxx)Q(x′|x)
Q1(xxx)Q2(xxx′)

A(x′,x) log
A(x′,x)Q(x′|x)

p̃(xxx′)
+

+
1

Γ

∑
xxx∈X

Q1(xxx)

[
1−A(x∗,x)Q(x∗|x)

]
Q1(xxx)

{
η
[
1−A(x∗,x)Q(x∗|x)

]
− p̃(xxx) log η − p̃(xxx)

}
+

log Γ

Γ
(14)

and by definingM(xxx) = 1−A(x∗,x)Q(x∗|x), we obtain case (b).
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Table 4. Summary of the properties of different approaches.
Method Target likelihood evaluations per sampling step Number of variables modified per sampling step

Gibbs 2 4 2
Gibbs 4 16 4
Gibbs 10 1024 10
HB-10-1 20 1
HB-10-2 180 2
HB-10-3 960 3
FLSB 2 1 1

D. Hyperparameters Used in the Experiments
• Learning rate η = 1e− 2 for SGD optimizer with momentum.

• Burn-in iterations K = 2000 (for Ising), K = 24000 (for RBM), K = 500 (for UAI).

• Iterations for sampling 30000 (for Ising), 120000 (for RBM), 10000 (for UAI).

• Batch size N = 30 (for Ising), N = 16 (for RBM), N = 5 (for UAI).

• MLP network with one hidden layer of 10 neurons (for ISING and RBM) and monotonic network with 20 blocks of 20
neurons (for UAI). Refer to Appendix G for additional experiments on UAI with MLP.

For experiments on RBM, we reused the code provided by (Grathwohl et al., 2021) .

E. Further Results for Ising
See Figure 6.

F. Additional Experiments for RBM
We provide additional comparisons of FLSB 2 against sampling strategies modifying more than 1 variable per step. In
particular, we compare FLSB 2 against Gibbs 2, Gibbs 4 and Gibbs 10 and also compare FLSB 2 against HB-10-1, HB-10-2
and HB-10-3. Results are shown in Figures 8 and 9, respectively. It is important to mention also that FLSB 2 uses a much
smaller number of target likelihood evaluations compared to these previous approaches, as summarized in Table 4.

G. Additional Experiments on UAI
We repeated the experiments on UAI using a MLP network with one hidden layer of 10 neurons, shown in Figure 10. We
found that in this domain characterized by large close-to-zero mass regions, the initial random input x is likely to fall outside
the distribution support. In such case, there is no need to have balancing functions with g(0) > 0. Notably, this doesn’t
occur when using a monotonic network, as inspected by the experiments in Figure 11, where we train the monotonic network
to match a function like max{1, t}.
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(a) Case 1 (b) Case 2

(c) Case 3 (d) Case 4

Figure 6. Traceplots on four cases of the Ising model (30 × 30) for the mixing phase. (a) Case 1: Independent-noisy, (b) case 2:
Independent-clean, (c) case 3: Dependent-noisy, (d) case 4: Dependent-clean

(a) MN 1 (b) MN 8

Figure 7. Traceplots on UAI benchmarks model (100 vars near-deterministic dependencies) for the mixing phase.
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Figure 8. Comparison of FLSB 2 against block Gibbs sampling with block size of 2, 4 and 10 variables on RBMs.

Figure 9. Comparison of FLSB 2 against the Hamming Ball sampler using 10 variables per block and updating 1, 2 and 3 variables per
step.

(a) MN 1 (Burn-in) (b) MN 2 (Burn-in) (c) MN 1 (mixing) (d) MN 2 (mixing)

Figure 10. Samplers’ performance on Markov networks from UAI competition (100 variables) with MLP network. (a)-(b) are the
traceplots for the burn-in phase, while (c)-(d) are the autocorrelation function for the mixing one

(a) Iteration 0 (b) Iteration 1000 (c) Iteration 2000 (d) Iteration 3000

(e) Iteration 4000 (f) Iteration 5000 (g) Iteration 6000

Figure 11. Training the monotonic network to match max{1, t} balancing function.


