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Abstract
Hypergraphs are a common model for multi-
way relationships in data, and hypergraph semi-
supervised learning is the problem of assigning
labels to all nodes in a hypergraph, given labels on
just a few nodes. Diffusions and label spreading
are classical techniques for semi-supervised learn-
ing in the graph setting, and there are some stan-
dard ways to extend them to hypergraphs. How-
ever, these methods are linear models, and do not
offer an obvious way of incorporating node fea-
tures for making predictions. Here, we develop a
nonlinear diffusion process on hypergraphs that
spreads both features and labels following the
hypergraph structure. Even though the process
is nonlinear, we show global convergence to a
unique limiting point for a broad class of nonlin-
earities and we show that such limit is the global
minimum of a new regularized semi-supervised
learning loss function which aims at reducing a
generalized form of variance of the node features
across the hyperedges. The limiting point serves
as a node embedding from which we make pre-
dictions with a linear model. Our approach is
competitive with popular graph and hypergraph
neural network baselines, and also takes less time
to train.

1. Introduction
In graph-based semi-supervised learning (SSL), one has
labels on a small number of nodes, and the goal is to predict
labels for the remaining nodes. Diffusions, label spreading,
and label propagation are classical techniques for this prob-
lem, where known labels are diffused, spread, or propagated
over the edges in a graph (Zhou et al., 2004; Zhu et al., 2003).
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These methods were originally developed for graphs where
the set of nodes corresponds to a point cloud, and edges are
similarity measures such as ε-nearest neighbors; however,
they can also be used with relational data such as social
networks or co-purchasing (Chin et al., 2019; Gleich & Ma-
honey, 2015; Juan et al., 2020; Kyng et al., 2015). In the
latter case, diffusions are particularly well-suited because
they directly capture the idea of homophily (McPherson
et al., 2001) or assortativity (Newman, 2002), where labels
are smooth over the graph.

While graphs are widely-used models for relational data,
many complex systems and datasets are better described
by higher-order relations that go beyond pairwise interac-
tions (Battiston et al., 2020; Benson et al., 2018; Torres
et al., 2021). For instance, co-authorship often involves
more than two authors, people in social network gather in
small groups and not just pairs, and emails can have several
recipients. A hypergraph is a standard representation for
such data, where a hyperedge can connect any number of
nodes. Directly modeling higher-order interactions has led
to improvements in several machine learning settings (Zhou
et al., 2007; Benson et al., 2016; Li & Milenkovic, 2017;
2018; Yadati et al., 2019; Srinivasan et al., 2021).

Along this line, there are a number of diffusions or
Laplacian-like regularization techniques for SSL on hyper-
graphs (Zhou et al., 2007; Hein et al., 2013; Zhang et al.,
2017; Li et al., 2020; Liu et al., 2021; Veldt et al., 2020;
Tudisco et al., 2021), which are also built on principles
of similarity or assortativity. These methods are based on
the optimization of a quadratic Laplacian-based regularized
loss which enforces local and global consistency across
the hypergredges. This optimization formulation makes
it easy to interpret and to provide theoretical guarantees
on the learning strategy. However, unlike the graph case,
non-quadratic hypergraph consistency losses are typically
required to model real-world data interactions at higher-
order (Chan & Liang, 2020; Neuhäuser et al., 2022; Tudisco
& Higham, 2021). Thus, the corresponding diffusion al-
gorithms, based on e.g. gradient flow integration, are not
linear and are in general no longer easy to interpret nor to
analyze theoretically. Moreover, these methods are topically
designed for cases where only labels are available, and do
not take advantage of rich features or metadata associated
with hypergraphs that are potentially useful for making ac-
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curate predictions. For instance, co-authorship or email data
could have rich textual information.

Graph and hypergraph neural network (GNN) is a popular
approach that uses both features and network structure for
SSL (Yadati et al., 2019; Feng et al., 2019; Dong et al.,
2020; Chien et al., 2022; Huang & Yang, 2021; Zhang et al.,
2020a). Hidden layers of GNNs aggregate the features of
neighboring nodes via neural networks and learn the model
parameters by fitting to the labeled nodes. While combining
features according to the hypergraph structure is a key idea,
the loss function of typical GNNs does not take directly
into account of the fact that connected nodes likely share
similar labels. Moreover, GNNs can be expensive to train.
In contrast, diffusion methods work precisely because of
homophily and are typically fast. In the simple case of
graphs, combining these two ideas has led to several recent
advances (Klicpera et al., 2018; Huang et al., 2020; Jia &
Benson, 2022).

Here, we combine the ideas of GNNs and diffusions for SSL
on hypergraphs with a method that simultaneously diffuses
both labels and features according to the hypergraph struc-
ture. In addition to incorporating features, our new diffusion
can incorporate a broad class of nonlinearities to increase
the modeling capability, which is critical to the architectures
of both graph and hypergraph neural networks. The limiting
point of the process provides an embedding at each node,
which can then be combined with a simpler model such
as multinomial logistic regression to make predictions at
each node. This results into a method which is much faster
than typical GNNs as the training phase and embedding
computation are decoupled.

Remarkably, even though our model is nonlinear, we can
still prove a number of theoretical properties about the diffu-
sion process. In particular, we show that the limiting point
of the process is unique and provide a simple, globally con-
vergent iterative algorithm for computing it. Furthermore,
we show that this limiting point is the global optimum of
an interpretable hypergraph SSL loss function defined as
the combination of a data fitting term and a Laplacian-like
regularizer which aims at reducing a form of “generalized
variance” on each hyperedge. Empirically, we find that us-
ing the limiting point of our nonlinear hypergraph diffusion
as features for a linear model is competitive with a variety
of graph and hypergraph neural network baselines and other
diffusion algorithms on several real-world datasets. We also
study the effect of the input feature embedding on the clas-
sification performance by either removing or modifying the
node features. In particular, including the final embedding
of hypergraph GNNs as additional features in the diffusion
model does not improve accuracy, which provides evidence
that our model is sufficient for empirical data.

2. Problem Set-up
We consider the multi-class semi-supervised classification
problem on a hypergraph, in which we are given nodes with
features and hyperedges connecting them. A small number
of node labels are available and the goal is to assign labels
to the remaining nodes.

Let H = (V,E) be a hypergraph where V = {1, . . . , n}
is the set of nodes and E = {e1, . . . , em} is the set of
hyperedges. Each hyperedge e ∈ E has an associated
positive weight w(e) > 0. In our setting every node can
belong to an arbitrary number of hyperedges. Let δi denote
the (hyper)degree of node i ∈ V , i.e., the weighted number
of hyperedges node i participates in, δi =

∑
e:i∈e w(e), and

let D ∈ Rn×n be the diagonal matrix of the node degrees,
i.e., D = Diag(δ1, . . . , δn). Throughout we assume that
hypergraph has no isolated nodes, i.e., δi > 0 for all i. This
is a standard assumption, as one can always add self-loops or
remove isolated vertices. Let K denote the n×m incidence
matrix of H , whose rows correspond to nodes and columns
to hyperedges:

Ki,e =

{
1 i ∈ e
0 otherwise.

To include possible weights on hyperedges, we use a diago-
nal matrix W defined by W = Diag(w(e1), . . . , w(em)).

We will represent d-dimensional features on nodes in H
by a matrix X ∈ Rn×d, where row xi = Xi,: ∈ Rd is the
feature vector of i ∈ V . Suppose each node belongs to one
of c classes, denoted as {1, . . . , c}, and we know the label
of a (small) training subset T of the nodes V . We denote by
Y ∈ Rn×c the input-labels matrix of the nodes, with rows
yi entrywise defined by Yij = (yi)j = 1 if node i belongs
to class j, and (yi)j = 0 otherwise. Since we only know the
labels for the nodes in T , all the yi for i 6∈ T are zero, while
the for i ∈ T , yi has exactly one nonzero entry (one-hot
encoding).

3. Background and Related Work
We review basic ideas in hypergraph neural networks
(HNNs) for SSL and hypergraph label spreading (HLS),
which will contextualize the method we develop next.

3.1. Neural Network Approaches

Graph neural networks are broadly adopted methods for
semi-supervised learning on graphs. Several generalizations
to hypergraphs have been proposed, and we summarize the
most fundamental ideas here.

When |e| = 2 for all e ∈ E, the hypergraph is a standard
graph G. The basic formulation of a graph convolutional
network (GCN) (Kipf & Welling, 2017) is based on a first-
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order approximation of the convolution operator on graph
signals (Mallat, 1999). This approximation boils down to
a mapping given by the normalized adjacency matrix of
the graph A = I − L, where L is the (possibly rescaled)
normalized Laplacian L = I−D−1/2AD−1/2 and A is the
adjacency matrix. The forward model for a two-layer GCN
is then

Z = softmax(F ) = softmax(Aσ(AXΘ (1))Θ (2))

where X ∈ Rn×d is the matrix of the node features, Θ (1),
Θ (2) are the input-to-hidden and hidden-to-output weight
matrices of the network and σ is a nonlinear activation func-
tion. Here, the approximated graph convolutional filter A
combines features across nodes that are well connected in
the graph. For multi-class semi-supervised learning prob-
lems, the weights Θ (i) are then trained minimizing the cross-
entropy loss over the training set of known labels T .

Several hypergraph variations of this neural network model
have been proposed for the more general case |e| ≥ 2. A
common strategy is to consider a hypergraph Laplacian
L and define an analogous convolutional filter. One rel-
atively simple approach is to define L as the Laplacian
of the clique expanded graph of H (Agarwal et al., 2006;
Zhou et al., 2007), where the hypergraph is mapped to a
graph on the same set of nodes by adding a clique among
the nodes of each hyperedge. This is the approach used
in HGNN (Feng et al., 2019). Other variants use medi-
ators or general permutation-invariant aggregating func-
tions instead of cliques in the hypergraph to perform the
graph reduction (Chan & Liang, 2020; Huang et al., 2020),
or learn the hypergraph convolutional filter via a suitable
attention-based multi-set function architecture (Chien et al.,
2022). HyperGCN (Yadati et al., 2019) is based on the
nonlinear hypergraph Laplacian proposed in (Chan et al.,
2018; Louis, 2015). This model uses a GCN on a reduced
graph GX = (V,EX) that depends on the features, where
(u, v) ∈ EX if and only if (u, v) = arg maxi,j∈e ‖xi−xj‖,
for all hyperedges e of the original hypergraph. An approxi-
mate graph convolutional filter AX is then defined in terms
of the normalized Laplacian of GX as before. Thus, the
two-layer forward model for HyperGCN is

Z = softmax(AF (1)Θ (2)), F (1) = σ(AXΘ (1)) .

3.2. Laplacian Regularization and Label Spreading

Semi-supervised learning based on Laplacian-like regular-
ization strategies were developed in (Zhou et al., 2004) for
graphs and then in (Zhou et al., 2007) for hypergraphs. The
main idea of these approaches is to obtain a classifier F by
minimizing the regularized square loss function

min
F

`Ω := ‖F − Y ‖2 + λΩ(F ) (1)

where Ω is a regularization term that takes into account for
the hypergraph structure. (Note that only labels — and not
features — are used here.) In particular, if fi = Fi,: denotes
the i-th row of F , the clique expansion approach of (Zhou
et al., 2007) defines Ω = ΩL2 , with

ΩL2(F ) =
∑
e∈E

∑
i,j∈e

w(e)
|e|

∥∥∥ fi√
δi
− fj√

δj

∥∥∥2

,

while the total variation on hypergraph regularizer proposed
in (Hein et al., 2013) is Ω = ΩTV , where

ΩTV (F ) =
∑
e∈E w(e) maxi,j∈e ‖fi − fj‖2

The function ΩL2 is quadratic, so its gradient is a rescaled
version of the Laplacian of the clique expanded graph of
H . Thus, HGNN is implicitly applying this regularization.
Similarly, the graph construction in HyperGCN is implicitly
applying a regularization based on the hypergraph total
variation ΩTV .

These two choices of regularizing terms can be solved by
means of different strategies. As ΩL2 is quadratic, one
can solve (1) via gradient descent with the learning rate
α = λ/(1 + λ) to obtain the simple method

F (k+1) = αAHF
(k) + (1− α)Y, (2)

where AH is the normalized adjacency matrix of the clique-
expanded graph of H . The sequence (2) converges to the
global solution F? of (1) for any starting point and the limit
F? is entrywise nonnegative. This method is usually referred
to as Hypergraph Label Spreading (HLS) as the iteration
in (2) takes the initial labels Y and “spreads” or “diffuses”
them throughout the vertices of the hypergraphH , following
the edge structure of its clique-expanded graph.

The total variation inspired regularizer ΩTV is related to the
1-Laplacian energy (Bühler & Hein, 2009; Tudisco & Hein,
2018) and has advantages for hyperedge cut interpretations.
However, although ΩTV is convex, it is not differentiable,
and computing (1) requires more complex and computation-
ally demanding methods (Hein et al., 2013; Zhang et al.,
2017). Unlike HLS in (2), this is not easily interpreted as a
label diffusion.

4. Hyperedge Variance Regularization and
Nonlinear Diffusion

In this section, we propose a new hypergraph regulariza-
tion term Ωµ which, rather than minimizing the distance
between each node pair on a hyperedge, aims at reducing
the variance (or a generalized variance) across the hyper-
edge nodes. Precisely, consider the regularization term of
the form

Ωµ(F ) =
∑
e∈E

∑
i∈e

w(e)
∥∥∥ fi√

δi
− µ

({ fj√
δj

: j ∈ e
})∥∥∥2

(3)
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where µ(·) is a function that combines node embeddings on
each hyperedge. When µ is the mean µ({zj : j ∈ e}) =
1
|e|
∑
j∈e zj , the right hand side in (3) coincides exactly

with the variance of fi/
√
δi on the hyperedge e.

Note that, if F is the matrix with rows Fi,: = fi, the mean
of fi/

√
δi over the hyperedge e can be written as the e-th

row of the matrix D−1
E K>D−1/2F , where DE denotes the

m ×m diagonal matrix with diagonal entries De,e = |e|.
Here we use this observation to define a family of functions
µ that generalizes the mean. Precisely, let

µσ,%

({ fj√
δj

: j ∈ e
})

= σ(K>%(D−1/2F ))e,: (4)

where σ and % are (in general, nonlinear) operators that
describe the way an embedding F is transformed and com-
bined across the hyperedges. For example, when σ and %
are diagonal operators (similar to activation functions) —
i.e. they are such that σ(F )ij = σi(Fij) for some functions
σ1, σ2, · · · : R→ R (and the same for %) — we have that

µσ,%

({ fj√
δj

: j ∈ e
})

= σe

(∑
j∈e

%j
( fj√

δi

))
.

An important example of σ and % of this form, which we
will use in all our experiments, is

%(Z1) := Zp1 , σ(Z2) := (D−1
E Z2)1/p, (5)

where the powers are taken entry-wise and Zi are matrices
of appropriate size. With these choices, for every e ∈ E we
have that µσ,%({fi/

√
δi, i ∈ e}) = meanp{fi/

√
δi : i ∈

e} is the p-power mean of the normalized feature vectors
fi/
√
δi of the nodes i in the hyperedge e, where

meanp{zi : i ∈ e} =
(

1
|e|
∑
i∈e z

p
i

)1/p
.

With this choice of σ and % the regularization term (3) reads

Ωµσ,%(F ) =
∑
e∈E

∑
i∈e

w(e)
∥∥∥ fi√

δi
−meanp

{ fj√
δj

: j ∈ e
}∥∥∥2

(6)
that is, the embedding F that minimizes Ωµσ,% minimizes
the variation of each node embedding fi from the p-power
mean of the embeddings of the nodes in each hyperedge i
participates to. In particular, when p = 2, the regularization
term (6) computes the variance of all the nodes in each of
the hyperedges. Note that, for nonnegative embeddings,
other special cases of meanp include the geometric mean
(for p → 0), the harmonic mean (for p = −1) as well as
the minimum and maximum functions (for p → −∞ and
p→ +∞, respectively).

4.1. Nonlinear Diffusion Method

Consider the regularized loss function `Ω in (1) with
Ω = Ωµσ,% . Unlike the clique-expansion case, Ω = ΩL2 ,
`Ωµσ,% is non-quadratic and non-convex in general. Despite
this fact, we will show below that the global solution to
minF `Ωµσ,% (F ) can be computed via a simple hypergraph
diffusion algorithm similar to a nonlinear version of HLS
(2), provided we restrict to the set of embeddings with non-
negative entries. We introduce the diffusion model next.

Recall that in our setting each node i ∈ V has a label-
encoding vector yi (yi is the all-zero vector for the initially
unlabeled points i 6∈ T ) and a feature vector xi. Thus, each
node in the hypergraph has an initial (c+ d)-dimensional
embedding, which forms an input matrix U = [Y X].

The proposed hypergraph semi-supervised classifier uses
the normalized limit point of the nonlinear diffusion process

F (k+1) = αL(F (k)) + (1− α)U . (7)

where the nonlinear diffusion map L is a form of nonlinear
Laplacian operator defined as

L(F ) = D−1/2KWσ(K>%(D−1/2F )) . (8)

The limit point of the diffusion process (7) results in a new
embedding F? = [Y?X?] ∈ Rn×(c+d). We will show in
§4.3 that such limit exists, is unique and minimizes a nor-
malized version of the SSL regularized loss `Ωµσ,% . We will
then use F? to train a logistic multi-class classifier based on
the known labels i ∈ T and their new embedding F?. Thus,
unlike GNNs, the training phase and the computation of the
embedding F? are decoupled, and thus are much faster. The
overall SSL algorithm is detailed in Algorithm 1. Note that
the convergence of (7) is not trivial, due to the nonlinearity
of L. We further comment on this issue in the appendix.

4.2. Related Nonlinear Diffusion Models

Our nonlinear diffusion process (7) propagates both input
node label and feature embeddings through the hypergraph
in a manner similar to (2), but allowing for nonlinear ac-
tivations, which increases modeling power. Firstly, L is a
generalization of the normalized adjacency matrix of the
clique-expansion hypergraph AH (2). Secondly, for a stan-
dard graph, i.e., a hypergraph where all the edges have
exactly two nodes, KWK> = A+D where A is the adja-
cency matrix of the graph and D is the diagonal matrix of
the weighted node degrees. Similarly, for a general hyper-
graph H , we have the identity KWK> = AH +D, where
AH is the adjacency matrix of the clique-expanded graph
associated with H . Then, when σ = % = id, L coincides
with

D−1/2KWK>D−1/2 = AH + I , (9)
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Algorithm 1 HyperND: Nonlinear Hypergraph Diffusion

Input:
• Incidence matrix K and weights matrix W ;
• mixing mappings σ, % as in (5);
• normalization mapping ϕ as in (10);
• label Y ∈ {0, 1}n×c and feature X ∈ Rn×d matrices;
• regularization coefficient α ∈ (0, 1) and stopping toler-
ance tol.
Shift and scale U to obtain U > 0, e.g., via (12) when
X ≥ 0
U ← U/ϕ(U)
F (0) ← U
repeat
G← αL(F (k)) + (1− α)U
F (k+1) ← G/ϕ(G)

until ‖F (k+1) − F (k)‖/‖F (k+1)‖ < tol
New node embedding: F? = [Y? X?]← F (k+1)

Optimize Θ for Z? ← softmax(F?Θ) to minimize cross-
entropy.
Output:
Prediction arg maxc(Z?)i,c for class of unlabeled node i.

the normalized adjacency matrix of the clique-expansion
hypergraph (Zhou et al., 2007; Feng et al., 2019) as in (2).

When σ and % are not linear, L can represent a broad family
of nonlinear diffusion mappings, with special cases used in
different contexts. For example, in the graph case, if % = id
and σ(x) = |x|p−1sign(x), then L boils down to the graph
p-Laplacian operator (Saito et al., 2018; Elmoataz et al.,
2008; Bühler & Hein, 2009). Exponential and logarithmic
based choices of σ and % give rise to nonlinear Laplacians
used to model chemical reactions (Rao et al., 2013; Van der
Schaft et al., 2016) as well as to model consensus dynamics
and opinion formation in hypergraphs (Neuhäuser et al.,
2022). Trigonometric functions such as σ(x) = sin(x) are
used to model graph and hypergraph oscillators (Schaub
et al., 2016; Battiston et al., 2021; Millán et al., 2020). In
the context of semi-supervised learning, nonlinear diffu-
sion mappings based on entrywise powers and generalized
means are used, for example in (Ibrahim & Gleich, 2019;
Tudisco et al., 2021). Similarly to our proposed operator,
the diffusion map of (Tudisco et al., 2021) generalizes the
classical linear label spreading to 3-uniform hypergraphs by
considering an adjacency tensor-based model that combines
labels on hyperedges via p-power means. We notice that our
proposed diffusion operator (8) extends the one proposed
by Tudisco et al. (2021). In fact, when restricted to uniform
hypergraphs and for % = I , the two mappings coincide,
modulo relatively minor adjustments. However, extending
the model there proposed to the case of hyperedges of ar-
bitrary size would require one to split the hyperedges into
batches of same sizes and compute the corresponding adja-

cency tensors. Compared to our proposed incidence matrix
model, this is computationally significantly more demand-
ing both because it requires the computation of several high
order tensors and because the multiplication operations with
tensors are more expensive than those with matrices (which
use fast BLAS routines from, e.g., NumPy), especially when
used to propagate high-dimensional features rather than only
labels.

4.3. Convergence

The convergence of (7) is discussed in Theorem 4.1 below,
where we show that, under mild assumptions on σ and %,
(7) always converges, provided the embedding is suitably
normalized at each step. Moreover, the result shows that
the nonlinear hypergraph filter L eventually generates an
embedding that minimizes a regularized loss function of the
form (1), with regularization term Ω = Ωµσ,% . The proof of
Theorem 4.1 is based on Thm. 3.1 by Tudisco et al. (2021)
and is moved to the appendix.

In the following, we write F ≥ 0 (resp. F > 0) to indicate
that F has nonnegative (resp. positive) entries. Moreover,
we write σ ∈ hom+(a) to denote that σ is positive and
homogeneous of degree a, i.e. that the following holds for
σ: (1) σ(F ) > 0 for all F > 0; and (2) σ(λF ) = λaσ(F )
for all λ > 0 and all F > 0.

Note that the class of operators hom+(a) is quite general
and it includes, for example different forms of LeakyReLU
functions σ(F ) = max{0, F a} ± εmax{0,−F a} as well
as the family of homogeneous nonnegative generalized poly-
nomial (polynomial with real powers) operators, defined as

σ(F )i,: =

n∑
j=1

B(i,j)f
α

(i,j)
1

1 · · · fα
(i,j)
n

n

for any nonnegative coefficients α(i,j)
j and any nonnegative

matrices B(i,j), as long as
∑
α

(i,j)
1 + · · · + α

(i,j)
n = a,

i.e. the sum of the powers is constant for all i, j, to ensure
σ(λF ) = λaσ(F ) for all λ > 0.
Theorem 4.1. Let L be defined as in (8) and let µσ,% be
defined as in (4). Let fi = Fi,: denote the i-th row of F and
define the real-valued function

ϕ(F ) = 2

√∑
e∈E

w(e)
∥∥∥µσ,%({ fj√

δj
, j ∈ e

})∥∥∥2

. (10)

Assume that σ ∈ hom+(a) and ρ ∈ hom+(b) for some
a, b ∈ R. Let U be an entrywise positive input embedding
and let α ∈ [0, 1]. If ab = 1 and if L is differentiable and
such that L(F ) ≥ L(F̃ ) for all F ≥ F̃ > 0, then for any
starting point F (0) ≥ 0, the sequence{

F̃ (k) = αL(F (k)) + (1− α)U

F (k+1) = F̃ (k)/ϕ(F̃ (k))
(11)
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Table 1: Details for the real-world hypergraph datasets used in the experiments.

DBLP Pubmed Cora Cora Citeseer Foodweb
co-authorship co-citation co-authorship co-citation co-citation carbon-exchange

|V | (#nodes) 43413 19717 2708 2708 3312 122
|E| (#hyperedges) 22535 7963 1072 1579 1079 141233
d (#features) 1425 500 1433 1433 3703 0
c (#labels) 6 3 7 7 6 3

converges to a unique fixed point F? of (7), such that
ϕ(F?) = 1, F? > 0. Moreover, F? is the solution ofmin

F

∥∥∥F − U

ϕ(U)

∥∥∥2

+ λΩµσ,%(F )

subject to F ≥ 0, ϕ(F ) = 1,

where λ = α/(1− α).

Note that the choices of σ and % in (5), which lead to the p-
power mean regularization term (6), and the corresponding
diffusion operator L satisfy all the assumptions of Thm 4.1.

4.4. Algorithm Details and Limitations

Once the new node embedding F? is computed via (11), we
use it to infer the labels of the non-labeled data points via a
simple softmax output layer which minimizes cross-entropy
(see Algorithm 1).

Similar to HLS, the parameter α in Alg. 1 yields a convex
combination of the diffusion mapping L and the “bias” U ,
allowing to tune the contribution given by the homophily
along the hyperedges and the one provided by the input
features and labels. In other words, in view of Theorem 4.1,
α quantifies the strength of the regularization parameter λ,
which allows us to tune the contribution of the regularization
term Ωµσ,% over the data-fitting term ‖F − U/ϕ(U)‖.

A requirement for our main theoretical results is entrywise
positivity of the input embedding U . While this is a limita-
tion of the theory and the methods, it turns out to not be that
stringent in practice. If X ≥ 0, i.e. we have nonnegative
node features, we can easily obtain a positive embedding by
performing an initial label smoothing (Müller et al., 2019;
Szegedy et al., 2016), i.e. we choose a small ε > 0 and set

Uε = (1− ε)[Y X] + ε11 , (12)

being 11 the all-one matrix of the appropriate size. Note
that nonnegative input features X ≥ 0 are not uncommon.
For instance, bag-of-words, one-hot encodings, and binary
features in general are all nonnegative. In fact, for all of
the real-world datasets we consider in our experiments, the
features are nonnegative. Similarly, if some of the input
features have negative values (e.g., features coming from a
word embedding), one could perform other preprocessing
(e.g., shift on all embeddings) to get the required [Y X] >0.

Another implicit requirement of the proposed method is
the assumption that the hypergraph datasets at hand are
homophilic. This is a limitation shared by many graph
and hypergraph learning algorithms, although relevant het-
erophilic settings exist in the real-world, see e.g. (Zhu et al.,
2020).

5. Experiments
We now evaluate our method on several real-world hy-
pergraph datasets (Table 1). We use five co-citation and
co-authorship hypergraphs: Cora co-authorship, Cora co-
citation, Citeseer, Pubmed (Sen et al., 2008) and DBLP
(Rossi & Ahmed, 2015). All nodes in the datasets are
documents, features are given by the content of the ab-
stract and hyperedge connections are based on either co-
citation or co-authorship. The task for each dataset is to
predict the topic to which a document belongs. We also
consider a foodweb hypergraph, where the nodes are organ-
isms and hyperedges represent directed carbon exchange
in the Florida bay (foo). Here we predict the role of the
nodes in the food chain. This hypergraph has no features,
so only labels are used for HyperND while we use a one-
hot encoding for the baselines. The code implementing
the experiments is available at https://github.com/
compile-gssi-lab/HyperND.

We compare our method to six baselines. Two are hyper-
graph convolutional network, designed to work specifically
for hypergraphs:

• HGNN (Feng et al., 2019) This is a hypergraph neural
network model that uses the clique-expansion Laplacian
(Zhou et al., 2007; Agarwal et al., 2006) for the hyper-
graph convolutional filter.

• HyperGCN (Yadati et al., 2019) This is a hypergraph
convolutional network model with regularization simi-
lar to the total variation (see also §3). There are three
architectural variants (1-HyperGCN, FastHyperGCN, Hy-
perGCN), and we report whichever gives the best perfor-
mance.

One is a hypergraph Laplacian regularization method:

• HTV (Zhang et al., 2017) This is a confidence-interval
subgradient-based method that minimizes the 1-Laplacian

https://github.com/compile-gssi-lab/HyperND
https://github.com/compile-gssi-lab/HyperND
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Table 2: Accuracy (mean ± standard deviation) over five random samples of the training nodes T . We compare HyperND
and the six baseline methods (APPNP, HGNN, HyperGCN, SGC, SCE, HTV). Overall, HyperND is more accurate than the
baselines.

Method HyperND APPNP HGNN HyperGCN SGC SCE HTV

Data % labeled

Citeseer 4.2% 72.13 ±1.00 63.51 ±1.39 61.78 ±3.46 50.94 ±8.27 52.66 ±2.18 61.28 ±1.61 29.63±0.3
Cora-author 5.2% 77.33 ±1.51 71.34 ±1.60 63.11 ±2.73 61.27 ±1.06 30.46 ±0.22 71.96 ±2.18 44.55±0.6
Cora-cit 5.2% 83.13 ±1.11 82.08 ±1.61 62.88 ±2.26 62.78 ±2.73 29.08 ±0.25 79.85 ±1.91 35.60±0.8
DBLP 4.0% 89.63 ±0.12 88.94 ±0.07 73.82 ±0.71 70.02 ±0.10 43.61 ±0.17 87.50 ±0.19 45.19±0.9
Foodweb 5.0% 64.09 ±5.94 69.12 ±3.30 57.09 ±2.33 56.14 ±3.85 57.45 ±0.47 63.50 ±4.78 57.23±0.9
Pubmed 0.8% 82.81 ±2.16 81.50 ±1.18 72.57 ±1.03 78.11 ±0.99 54.30 ±1.11 77.57 ±2.34 47.04±0.8
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Figure 1: Performance of the proposed HyperND for varying p and α parameters.

inspired loss (1) with Ω = ΩTV . In our experiments, this
method outperformed other label spreading and Laplacian
regularization techniques such as the original PDHG strat-
egy of Hein et al. (2013), the HLS method (Zhou et al.,
2007) and the p-Laplacian approach of Saito et al. (2018).

The remaining three baselines, instead, are graph convolu-
tional networks designed for graph data, which we apply to
the clique-expanded version of the considered hypergraphs:

• APPNP (Klicpera et al., 2018) This is a graph convo-
lutional network model combined with PageRank. The
authors of this paper introduce a personalized propagation
of neural predictions and its approximation based on the
relationship between GCN and PageRank.

• SGC (Wu et al., 2019) This is a graph convolutional net-
work model without nonlinearities.

• SCE (Zhang et al., 2020b) This is a graph convolutional
network model inspired by a sparsest-cut problem, where
unsupervised network embedding is learned only using
negative samples for training.

Table 2 shows the size of the training dataset for each net-
work and compares the accuracy (mean ± standard devia-
tion) of HyperND against the different baselines. Precision
and recall are reported in Tables 3 and 4 in the appendix. For
each dataset, we use five trials with different samples of the
training nodes T . All of the algorithms that we use have hy-
perparameters. For the baselines we use the reported tuned
hyperparameters. For all of the neural network-based mod-
els, we use two layers and 200 training epochs, following
(Yadati et al., 2019) and (Feng et al., 2019). For our method
and HTV, which have no training phase, we run 5-fold cross

validation with label-balanced 50/50 splits to choose α from
{0.1, 0.2, . . . , 0.9} and p from {1, 2, 3, 5, 10}. Precisely,
we split the data into labeled and unlabeled points. We split
the labeled points into training and validation sets of equal
size (label-balanced 50/50 splits) and we choose the param-
eters based on the average performance on the validation set
over 5 random repeats. Then, we assess the performance on
the held out test set, which is comprised of all the initially
non-labeled points. We repeat this process 5 times and we
choose the value of α, p that gives the best mean accuracy.
These values differ across the different random samplings of
the training dataset. Thus, in order to highlight how the per-
formance is affected by different values of α and p, we show
in Figure 1 the mean accuracy over 10 runs of HyperND,
for all of the considered values of α and p.

All the datasets we use here have nonnegative input em-
bedding [Y X] which we preprocess via label smoothing
as in (12), with ε = 1e− 6. Our experiments have shown
that different choices of ε do not influence the classification
performance of the algorithm.

Due to its simple regularization interpretation, we choose
σ and % to be the p-power mean considered in (5), for var-
ious p. When varying p, we change the nonlinear acti-
vation functions that define the final embedding F?. Our
proposed nonlinear diffusion method performs overall very
well. Interestingly, the best competitors are not hypergraph-
oriented methods but rather graph methods directly applied
to the clique-expanded graph. In particular, APPNP is the
strongest baseline, and this method also strongly relies on
diffusions. Moreover, the poorer performance observed for
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Figure 2: Accuracy (mean and standard deviation) of multinomial logistic regression classifier, using different combinations
of features obtained from embeddings (E1)–(E4).
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Figure 3: Execution time on the largest dataset DBLP (for
one hyper-parameter setting in each case). All methods are
comparable on small datasets.

food web dataset (which has no features) highlights the abil-
ity of HyperND to create meaningful feature embeddings,
in addition to propagating labels.

We also point out that since HyperND is a forward model,
it can be implemented efficiently. The cost of each iteration
of (2) is dominated by the cost of the two matrix-vector
products with the matrices K and K>, both of which only
require a single pass over the input data and can be par-
allelized with standard techniques. Therefore, HyperND
scales linearly with the number and size of the hyperedges,
i.e. the size of the data. Thus, it is typically cheap to com-

pute (similar to standard hypergraph LS) and is overall faster
to train than a two-layer GCN. Training times are reported
in Figure 3, where we compare mean execution time over
ten runs for all the methods on DBLP. The execution times
are similar on other datasets. For HyperND, we show mean
execution time over the five random choices of p. HyperND
is up to 2 order of magnitudes faster than the baselines.

To further highlight the learning capabilities of the diffusion
map we are proposing, we present one more test below. The
diffusion map (2) generates a new embedding F? = [Y? X?]
from the fixed point of a purely forward model. This model
yields a new feature-based representation X?, similar to the
last-layer embedding of any neural network approach. A
natural question is whether or not X? is actually a better
embedding. To this end, in the next experiment we consider
four node embeddings F and train a classifier via cross-
entropy minimization of Z = softmax(FΘ), optimizing Θ .
Specifically, we consider the following:

(E1) F = Y?. We run a nonlinear “purely label” spreading
iteration, by setting U = Y in (7).By Theorem 4.1,
this embedding is a Laplacian regularization method.
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(E2) F = [Y? Xhgcn], where Xhgcn is the embedding gen-
erated by HyperGCN before the softmax.

(E3) F = F? = [Y? X?], the limit point (7) of our Hy-
perND. This is the embedding used for the results in
Table 2 and Figure 1.

(E4) F = [Y? X? Xhgcn]. This combines the representa-
tions of our HyperND and HyperGCN.

Figure 2 shows the accuracy for these embeddings with vari-
ous values of p for the p-power mean in HyperND. The best
performance is obtained by the two embeddings that contain
our learned features X?: (E3) and (E4). In particular, while
(E4) includes the final-layer embedding of HyperGCN, it
does not improve accuracy over (E3).

6. Conclusions
Graph neural networks and hypergraph label spreading are
two distinct techniques with different advantages for semi-
supervised learning with higher-order relational data. The
proposed diffusion approach (HyperND) tries to combine
advantages from both approaches: feature-based learning,
modeling flexibility, label-based regularization, and compu-
tational speed. Importantly, we can prove that the diffusion
converges to an embedding that is the global minimizer of
an interpretable regularized loss function which enforces
small variance across the hyperedges, and we have an algo-
rithm that can compute this optimal embedding. Overall,
HyperND outperforms a variety of baseline neural network
and label spreading based methods on several datasets.
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A. On the convergence of the nonlinear diffusion.
Our classification method is based on the nonlinear diffusion process on the hypergraph described in (7) and (8). Unlike the
linear case, where the long term behaviour of the discrete dynamical systems can be easily studied, when linear mappings
are combined with nonlinearities, neither the existence nor the uniqueness of a limit point is obvious for the nonlinear
discrete diffusion model (7). This makes the convergence result in Theorem 4.1 particularly remarkable. In fact, already in
the vector case, it is easy to find non convergent normalized iterates of the type x̃k+1 = L(xk) + y, xk+1 = x̃k+1/‖x̃k+1‖,
or iterates with multiple fixed points. Consider, for example the two iterations

zk+1 = A(Azk)1.5 + y , and

{
x̃k+1 = A(Axk)1.5 + y

xk+1 = x̃k+1/‖x̃k+1‖∞
(13)

where the power is taken component-wise and where A and y are 3-dimensional and chosen as follows:

A =

0 1 0
0 0 1
1 0 0

 , y =

0.1
0.2
0.3

.
None of the two sequences in (13) converge for most starting points x0. Figure 4 illustrates this issue by showing the
behaviour of the three coordinates of the iteration xk as in (13), for a random sampled starting point x0, sampled from a
uniform distribution in [0, 1]3. We observed the same behaviour for the sequence zk and for any starting point sampled this
way.
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Figure 4: Example of a nonconvergent nonlinear diffusion. Each panel shows the behaviour of one of the three coordinates
of xk in (13) as a function of k, for k = 1, . . . , 100.

B. Proof of Theorem 4.1.
Consider the iteration in (11). As σ ∈ hom+(a) and % ∈ hom+(b) we have

L(λF ) = D−1/2KWσ(K>%(λD−1/2F )) = D−1/2KWσ(λbK>%(D−1/2F ))

= λabD−1/2KWσ(K>%(D−1/2F )) = λL(F )

i.e. L is one-homogeneous. Moreover, as K and D are nonnegative matrices, L ∈ hom+(1). Similarly, as every node
appears in at least one hyperedge, we see that under the assumptions on σ and % it holds ϕ(F ) > 0 for all F > 0. Thus, a
similar computation as the one above shows that ϕ(F ) ∈ hom+(1). As a consequence, for any F with ϕ(F ) = 1, every
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component of L(F ) is bounded and positive, i.e. there exist constants Mi,j > 0 such that

max
F :ϕ(F )=1

L(F )ij = max
F

L(F )ij
ϕ(F )

≤Mij .

Hence, defining M = maxijMij > 0 we have that L(F ) ≤M entrywise, for all F such that ϕ(F ) = 1. As a consequence,
since U is entrywise positive, there exists a constant M̃ > 0 such that L(F ) ≤ M̃U entrywise, for all F such that
ϕ(F ) = 1. Using Theorem 3.1 in (Tudisco et al., 2021) we deduce that F (k) → F? as k →∞ with F? unique fixed point
F? = αL(F?) + (1− α)U such that ϕ(F?) = 1 and F? > 0.

Now we show that F? is also the only point where the gradient of

˜̀(F ) :=
∥∥∥F − U

ϕ(U)

∥∥∥2

+ λΩµσ,%(F )

vanishes. To this end, denoted by S(F ) is the m× (c+ d) matrix of the hyperedge embedding S(F ) = σ(K>%(F )) and
let B(F ) = KWS(F ) = KWσ(K>%(F )). Notice that, with this notation, as observed in (4), we can write

µσ,%({fi : i ∈ e}) = S(F )e,: .

As a consequence we get

Ωµσ,%(F ) =
∑
i∈V

∑
e:i∈e

w(e)
∥∥∥(D−1/2F )i,: −

1

2
S(D−1/2F )e,:

∥∥∥2

,

where, as it will be more convenient in the computation below, we are multiplying the µe term in the loss by 1/2. Of course
we can always do this by rescaling one of the two mappings σ or % by a factor two, without losing any of their relevant
properties nor generality in the proof. Thus, we have

Ωµσ,%(D
1/2F ) =

∑
i

∑
e:i∈e

w(e)
∑
j

(Fij −
1

2
S(F )ej)

2

=
∑
i

∑
e:i∈e

w(e)
∑
j

(F 2
ij − FijS(F )ej) +

1

4

∑
i

∑
e:i∈e

∑
j

w(e)S(F )2
ej

=
∑
i

∑
j

F 2
ijδi − FijB(F )ij + ϕ(D1/2F )2

= 〈F,DF −B(F )〉+ ϕ(D1/2F )2 ,

where 〈·, ·〉 denotes the matrix Frobenius scalar product. Therefore, it holds

Ωµσ,%(F )− ϕ(F )2 = 〈F, F −D−1/2B(D−1/2F )〉 = 〈F, F − L(F )〉 .

As L is 1-homogeneous and differentiable, by the Euler theorem for homogeneous functions we have that

d

dF
{Ωµσ,%(F )− ϕ(F )2} =

d

dF
〈F, F − L(F )〉 = 2(F − L(F )) .

Thus,

d

dF
{˜̀(F )− λϕ(F )2} = 2(F − U/ϕ(U) + λ(F − L(F )) = 2((1 + λ)F − λL(F )− U/ϕ(U))

which shows that the gradient of ˜̀(F )− λϕ(F )2 vanishes on a point F? if and only if F? is such that

F? =
λ

1 + λ
L(F?) +

1

1 + λ

U

ϕ(U)

i.e. F? is a fixed point of (11) for λ = α/(1−α) andU = U/ϕ(U). Finally, as the two loss functions ˜̀(F ) and ˜̀(F )−λϕ(F )
have the same minimizers on the slice {F : ϕ(F ) = 1}, we conclude.
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C. Additional results.
We present here additional performance results on the real-world datasets and the baseline methods considered in §5. In
particular, we report mean precision and mean recall with their deviation of all the methods considered.

Table 3: Precision (mean and standard deviation) over five random samples of the training nodes T . We compare HyperND
and the five baseline methods (APPNP, HGNN, HyperGCN, SGC, SCE). Overall, HyperND performs better than the others.

Method HOLS APPNP HGNN HyperGCN SGC SCE HTV

Data % labeled

Citeseer 4.2% 65.02 ±0.98 56.76 ±1.92 56.05 ±2.29 67.94 ±9.56 54.75 ±8.74 55.66 ±1.45 41.58 ±1.5
Cora-author 5.2% 74.81 ±1.66 68.15 ±3.12 58.62 ±1.89 67.72 ±1.39 60.7 ±21.98 70.72 ±1.02 66.72 ±2.42
Cora-cit 5.2% 81.44 ±2.18 80.74 ±2.2 58.17 ±1.64 74.19 ±3.44 37.88 ±7.31 79.25 ±1.3 43.38 ±1.2
DBLP 4.0% 87.88 ±0.28 88.3 ±0.14 71.45 ±1.75 85.68 ±0.18 61.34 ±0.29 86.84 ±0.3 60.57 ±2.05
Foodweb 5.0% 65.69 ±19.92 58.73 ±6.85 60.04 ±21.68 54.61 ±5.58 57.84 ±4.49 47.54 ±8.6 59.93 ±3.57
Pubmed 0.8% 81.52 ±2.73 81.63 ±0.74 71.78 ±1.68 76.73 ±1.06 67.62 ±1.4 77.67 ±2.04 64.58 ±7.59

Table 4: Recall (mean and standard deviation) over five random samples of the training nodes T . We compare HyperND
and the five baseline methods (APPNP, HGNN, HyperGCN, SGC, SCE). Overall, HyperND performs better than the others.

Method HyperND APPNP HGNN HyperGCN SGC SCE HTV

Data % labeled

Citeseer 4.2% 66.52 ±2.29 58.64 ±1.22 60.38 ±2.04 48.22 ±11.8 66.46 ±5.95 55.96 ±1.83 51.23 ±1.73
Cora-author 5.2% 76.76 ±2.81 70.13 ±1.65 62.92 ±1.46 63.57 ±1.39 55.08 ±14.43 69.92 ±2.62 59.58 ±1.15
Cora-cit 5.2% 82.56 ±0.74 81.47 ±1.85 61.43 ±3.12 63.91 ±2.64 71.23 ±6.86 78.98 ±2.05 64.07 ±2.21
DBLP 4.0% 88.52 ±0.11 88.41 ±0.23 74.0 ±0.75 70.99 ±0.22 77.42 ±0.03 87.32 ±0.3 73.85 ±1.27
Foodweb 5.0% 62.94 ±10.37 73.85 ±9.54 51.05 ±17.92 44.44 ±7.4 57.45 ±0.47 57.77 ±17.33 49.48 ±1.03
Pubmed 0.8% 81.21 ±1.8 80.49 ±1.43 72.9 ±0.75 78.88 ±1.43 57.51 ±5.94 77.52 ±1.74 58.93 ±1.91


