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Abstract

The optimization of multi-objective submodular
systems appears in a wide variety of applications.
However, there are currently very few techniques
which are able to provide a robust allocation to
such systems. In this work, we propose to de-
sign and analyse novel algorithms for the robust
allocation of submodular systems through lens of
quantile maximization. We start by observing that
identifying an exact solution for this problem is
computationally intractable. To tackle this issue,
we propose a proxy for the quantile function using
a softmax formulation, and show that this proxy is
well suited to submodular optimization. Based on
this relaxation, we propose a novel and simple al-
gorithm called SOFTSAT. Theoretical properties
are provided for this algorithm as well as novel
approximation guarantees. Finally, we provide nu-
merical experiments showing the efficiency of our
algorithm with regards to state-of-the-art meth-
ods in a test bed of real-world applications, and
show that SOFTSAT is particularly robust and
well-suited to online scenarios.

1. Introduction
The maximization of submodular functions appears in many
practical scenarios, including feature selection (Das &
Kempe, 2018), network monitoring (de Badyn & Mesbahi,
2016), news article recommendation (El-Arini et al., 2009),
sensor placement (Tzoumas et al., 2016), influence maxi-
mization (Kempe et al., 2003) and document summarization
(Lin & Bilmes, 2011). In these applications, submodularity
allows the use of fast optimization algorithms while retain-
ing strong theoretical guarantees (Krause & Golovin, 2014).
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While it is widely known that greedy methods work well
for a single objective (Nemhauser et al., 1978), the problem
becomes much harder when there are multiple objectives to
handle. In this paper, we focus on the case where the system
we wish to optimize is described by multiple submodular
functions F1, . . . , Fd and we wish to provide a robust alloca-
tion among the objectives. In practice, standard approaches
(Kempe et al., 2003; Krause et al., 2008) to solve this prob-
lem consists of either aggregating the system through the
(possibly weighted) average-case (1/d)

∑
i Fi(S) or the

worst-case mini Fi(S) of the objectives. However, only
focusing on the average-case can lead to many objectives
with poor values, while considering the worst-case may be
too pessimistic to reflect the overall system and drastically
reduces their use in practice (more specifically when there
are outliers that naturally present low values). In this work,
we propose to tackle these limitations by following the risk
literature (Ben-Tal & Teboulle, 2007; Rostek, 2010) and
propose to use the maximization of the quantiles of the ob-
jectives Qp(F1(S), . . . , Fd(S)). Indeed, maximizing the
p-th quantile of the objectives has already been shown to be
a reliable measure for robustness in the risk literature and
allows to discard the p× d outliers of the system with the
worst objectives from the optimization while still robustly
allocating the resources among the remaining objectives.
Unfortunately, the major drawback of this approach is that
the quantiles do not preserve submodularity and their direct
maximization is thus not trivial. In this work, we show how
to tackle this problem by introducing a novel tool: biased
expectations that act as proxies for quantiles and allows to
design provable algorithms. Up to our knowledge, our work
provides the first algorithm that is designed to solve the
robust submodular problem through quantile maximization.
More precisely, our contribution can be summarized as fol-
lows: (1) a novel formulation of the robust multi-objective
submodular maximization problem through the lens of quan-
tile optimization; (2) an introduction to biased expectations
as generic aggregate functions for robustness as well as its
generic properties; (3) a novel algorithm called SOFTSAT
which relies on biased expectations and comes, to the best
of our knowledge, with the first approximation guarantees
for quantile robustness; (4) an application of SOFTSAT to
three motivating real-world optimization problems in natu-
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ral language processing, vision and graph illustrating that it
outperforms state-of-the-art methods.

The rest of the paper is organized as follows. We start with
definitions and preliminaries in Section 2. In Section 3, we
introduce the concept of biased expectations and present
its applications in submodular optimization. In Section 4,
we introduce the SOFTSAT algorithm and its associated ap-
proximation guarantees. Finally, the empirical performance
of our algorithm is compared in Section 5. All proofs can
be found in the appendix.

Related work. Perhaps, the closest work related to our
analysis is the work of (Krause et al., 2008) where they
focus on the problem of maximizing the worst-case objec-
tive Fwc(S) = mini=1...d Fi(S) where Fi are submodu-
lar. They show that this problem is inapproximable unless
P = NP and provide an algorithm that sequentially runs a se-
ries of greedy algorithms over the proxy function of the min-
imum S 7→ (1/d)

∑d
i=1 min(Fi(S), c) for some constant

c. Using the results of (Wolsey, 1982), they show that their
algorithm returns a set with a better worst-case objective
value than the optimal solution (i.e. an approximation error
of 1) by violating the cardinality constraint. In the continua-
tion of this work, (Anari et al., 2019) considered the same
problem under matroid constraints and provide an extension
of the greedy algorithm that returns a union of O(log(d/ε))
sets that provide an approximation error of (1− ε) by relax-
ing the algorithm’s constraint set. Interestingly, they also
use a soft-min operator similar to ours to extend their algo-
rithm to the adversarial case. At the same time, (Chekuri
et al., 2009) proposed a randomized polynomial time al-
gorithm with (1 − 1/e − ε) approximation guarantee for
the problem of finding a set S such that Fi(S) ≥ Vi for
some values Vi set as input, as an application of a new tech-
nique for rounding over a matroid polytope called swap
rounding. Later, (Udwani, 2018) improved the runtime
of the algorithm using multiplicative-weight-updates and
(Iyer, 2019) analyzed the worst and best case objective prob-
lem under a broad range of combinatorial constraints such
as cardinality, knapsack and matroid constraints. Finally,
a second line of works related to our analysis considers
the problem of maximizing the conditional value at risk
CVaRp(S) = E[F (S,X)|F (S,X) < Qp(F (S,X))] of
a system F (S,X) under uncertainty where X is a ran-
dom variable. In (Wilder, 2018), they give a (1 − 1/e)-
approximation algorithm for maximizing the CVaR of a
continuous submodular function relying on gradient descent.
In (Ohsaka & Yoshida, 2017), they consider a specific in-
fluence maximization problem for cascade models and use
the greedy algorithm to provide guarantees on the CVaR.
In (Maehara, 2015), they consider the discrete CVaR maxi-
mization problem and provide hardness results. Finally, the
approach we propose is also closely related to the works

on generalization of submodular functions such as (Das &
Kempe, 2011; Ghadiri et al., 2020; 2021).

2. Problem Statement and Preliminaries
In this section, we introduce the problem considered in the
analysis as well as preliminary results.

Setup. Let V = {1, ..., n} be a set of n ≥ 1 elements,
called the ground set and let F1, . . . , Fd be a collection of
d ≥ 2 non-negative non-decreasing submodular set func-
tions defined over the power set of V . In this paper, we focus
on the problem of finding a subset S?K ⊆ V of at most K
elements which maximizes the p-th quantile of the values of
the objective functions for some parameter p ∈ (0, 1), i.e.,

S?K ∈ argmax
S⊆V:|S|≤K

Qp(F1(S), . . . , Fd(S)) (1)

where Qp(x) := min{u ∈ R : p ≤ (1/d) ·
∑d
i=1 I{xi ≤

u}} for all x ∈ Rd denotes the p-th quantile. Informally
speaking, the p-th quantile of the collection of functions
F1(S), . . . , Fd(S) is the cut-off point that divides the col-
lection in two parts: dp × de functions that have values
below or equal to this threshold and d− dp× de functions
that have values above this threshold. Thus, maximizing
the p-th quantile allows to find the allocation for which this
cut-off point is maximal, providing the best value to at least
(1−p) percent of the collection of d functions. In this paper,
our goal is to develop an algorithm that approximates such
a solution by making a minimum number of evaluations of
the collection of functions F (S) = [F1(S), . . . , Fd(S)].

Motivating Examples. We present here three applica-
tions that require a robust allocation of resources in multi-
dimensional systems. (1) Resource Allocation: the first
example corresponds to the case where we have a collec-
tion of d users (or players) and we wish to share at most
K resources from the ground set V among the users. Then,
if the utility function Fi(S) of each user i ∈ {1, . . . , d}
is described by a submodular function when a set S ⊆ V
is selected, this problem consists in solving an instance of
Problem (1) if one wishes to provide a fair allocation of the
resources among the users except the p× d worst users. An
instance of this problem in the telecommunication domain
is described in the next paragraph. (2) Multi-objective Op-
timization: the second example corresponds to the plain
multi-objective optimization problem (Ostfeld et al., 2008).
In this case, a system is naturally described by a collection
of submodular functions F1, . . . , Fd and one wishes to have
at least (1− p)d objectives with a maximum minimal value
with a maximum budget ofK actions taken from the ground
set V . The balanced news feed problem of Section 5 is a
practical example of this problem. (3) Robustness: the last
application covered by this framework is the case where
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Figure 1. Profile of the average throughput per user and the alloca-
tions of resources maximizing the 20%-quantile, worst-case and
average-case criterions. The first graph displays the rewards of the
users. Note that the y-axis scales vary for each allocations.

there is a single submodular objective function F (S,X)
subject to uncertainty, captured by a random variable X . In
this case, one often seeks to optimize over the worst-case
realizations of the uncertain objective, resulting in an in-
stance of multi-objective submodular maximization where
the (potentially infinite) functions Fi(S) = F (S,Xi) de-
note realizations of the uncertain objective. This covers the
case of diffusion processes over graphs and Value-at-Risks
(Kempe et al., 2003; Zhou & Tokekar, 2018).

Quantile vs. Worst and Average Cases. The key ap-
proach of the paper is to consider the quantile as a robust ver-
sion of the worst-case criterion in multi-objective systems.
This methodology of using quantiles instead of worst-cases
and means has been widely used in mathematical finance
and industrial science because they are less susceptible than
means and worst-cases to explode or vanish under long-
tailed distributions and outliers (Zhou & Tokekar, 2018;
Wilder, 2018). Intuitively, quantiles provide a simple metric
to find a good balance between the conflicting objectives of
average performance and robustness. As an example, we
consider the task of ensuring good communication quality
over a wireless network. A natural objective is to ensure
that all users enjoy the best communication quality possible.
Unfortunately, users i ∈ {1, . . . d} are not equal in their ac-
cess to the wireless network due to their distance, and some
may experience poor communication quality described by
their average throughput ri no matter how much effort is
put into improving it. Each time the network allocates
one resource to one user, it receives its average through-
put ri. Thus, the total signal received by user i when an
allocation SK ⊆ {1, . . . , n} has been selected is defined
by Fi(SK) =

∑
e∈SK

riI{e mod d = i − 1} which is
submodular. Figure 1 displays the allocations among the

different users obtained by maximizing the different crite-
rions with d = 8 and K = 100. As it can be seen, the
average-case criterion puts all its efforts on a single user
and focusing on the worst-case would significantly down-
grade the performance for all other users by giving the entire
communication channel to this single user. Using quantiles
allows to find a better balance between the overall perfor-
mance of the network and equality of treatment between
users, and is thus a common metric in real-world applica-
tions. Note that in real settings, the users with low values
are paired with a different and closest station to ensure an
overall good performance for all users.

Preliminaries. A natural approach to solve Problem (1)
would be to perform an exhaustive search by evaluating the
function Qp(F (S)) over all the sets S ⊆ V of size K. How-
ever, this strategy would require to make

(|V|
K

)
evaluations

of the collection of functions F (S) = [F1(S), . . . , Fd(S)],
which is often dissuasive in practice. Another more practi-
cal approach would be to use the greedy algorithm over the
function S 7→ Qp(F (S)) to build an approximation of the
solution ŜK by making Ω(K × |V|) function evaluations.
However, this strategy also presents some limitations. In-
deed, following the arguments of (Krause et al., 2008), it
can be shown that the quantile function does not preserve
submodularity, and the classical (1− 1/e) approximation
ratio cannot be achieved for Qp(F (ŜK)) with greedy opti-
mization, as shown below.

Proposition 2.1. Consider any ground set V of n ≥ 4 el-
ements, any cardinality constraint K ∈ {2, . . . , |V| − 2}
and any quantile parameter p ∈ (0, 1 − 1/d). Then, for
any constant ε > 0 arbitrarily small, there exists a col-
lection F1, . . . , Fd of non-negative, monotone, submodular
functions such that the greedy algorithm returns a set ŜK
satisfying:

Qp(F (ŜK)) ≤ ε× max
|S|≤K

Qp(F (S)) .

More strikingly, it can also be shown that it is not possible to
design a universal algorithm that achieves a positive approx-
imation ratio in polynomial time for Problem (1), unless
P = NP.

Proposition 2.2. Under the assumptions of Proposition 2.1,
if there exists a positive function γ : R+ → R+ and
an algorithm that is guaranteed to find a set ŜK of size
K such that for all n, K and d, in time polynomial to
the problem instance n we have Qp(F (ŜK)) ≥ γ(n) ·
max|S|≤K Qp(F (S)), then P = NP.

To tackle this limitation, we propose in this work to relax
the optimization objective by using biased expectations as a
proxy for the quantiles.
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Figure 2. Computation of the biased expectation over a sample
x = (x1, . . . , xd) of d independant Gaussian random variables
with s = −2.

3. Approximation of the Quantiles
As shown in Section 2, the quantiles do not preserve sub-
modularity and are ill-suited to greedy algorithms. We thus
propose to approximate quantiles via biased expectations,
a notion first introduced in the context of non-convex opti-
mization by (Scaman & Malherbe, 2020), and connected to
softmax operators (Boyd & Vandenberghe, 2004).

Definition 3.1 (Biased Expectation). Let x =
(x1, . . . , xd) ∈ Rd be a sample of d ∈ N? real val-
ues. Then, for any s ∈ R, we define the biased expectation
of the sample x with parameter s as follows:

µs(x) = φ−1
s

(
1

d

d∑
i=1

φs(xi)

)

where φs(x) = (esx − 1)/s if s 6= 0 and x otherwise.

This criterion is a particular instance of quasi-arithmetic
means first analyzed by (Hardy et al., 1952), and is
tightly connected to the cumulant generating function
κx(s) = log((1/d)

∑d
i=1 e

sxi) and the LogSumExp op-
erator LSE(x) = log(

∑d
i=1 e

xi). It can be seen as a
generalization of the standard expectation (1/d) ·

∑d
i=1 xi

parametrized by a function φs(·). Indeed, µ0(x) = (1/d) ·∑d
i=1 xi, and φs will put more weight on the large values

of the sample when s > 0 and less weight on large val-
ues when s < 0, hence the name biased expectation. A
visual example of the computation of biased expectations is
provided in Figure 2.

3.1. Generic Properties of Biased Expectations

Biased expectations play a central role in our analysis as
they play the role of a smooth proxy function for the quan-
tile function Qp(·). These connections can be seen in the
following property:

Proposition 3.2 (Biased expectation specific values). Let
x = (x1, . . . , xd) ∈ Rd be any sample of real values.
Then, the function s 7→ µs(x) is continuous and non-
decreasing. Moreover, lims→−∞ µs(x) = mini=1...n xi,
lims→0 µs(x) = 1

d

∑d
i=1 xi and lims→+∞ µs(x) =

maxi=1...d xi.

Thus, biased expectations interpolate between the minimum
(when s → −∞) and maximum (when s → +∞) of the
sample (x1, . . . , xd) depending on the value of s. A crucial
consequence of the latter observation is that for any quantile
parameter p ∈ (1/d, 1− 1/d), one can recover the quantile
of the sample x by observing that there exists s? ∈ R such
that Qp(x) = µs?(x). Keeping this observation in mind,
we also cast an intermediate result about quantile control.

Proposition 3.3 (Control of quantiles). Let x =
(x1, . . . , xd) ∈ Rd+ be a sample of non-negative values.
Then, for any s ∈ R? and p ∈ (0, 1), we have:

Qp(x) ≤ 1

s
log

(
1 +

esµs(x) − 1

1− p

)
.

3.2. Properties in Submodular Optimization

Now, we present the advantages of using biased expectations
in the case of submodular optimization. First, we show that,
similarly to quantiles, using biased expectation allows to
have a solution that interpolates between the solution of the
worst-case and average-case problem.

Proposition 3.4. Let F1, . . . , Fd be a collection of non-
negative monotone submodular functions and define f :
s 7→ max|S|≤K µs(F (S)). Then, f is non-decreasing,
lims→−∞ f(s) = max|S|≤K(mini=1...d Fi(S)) and
lims→0 f(s) = max|S|≤K( 1

d

∑d
i=1 Fi(S)).

Thus, it is possible to find a balance between the worst-
case and average-case solutions by tuning the parameter
s and maximizing the biased expectation of the objectives.
Finally, the last key characteristic of biased expectations that
makes them suitable for submodular optimization is that—
as opposed to quantiles—they preserve submodularity in
the following sense:

Proposition 3.5 (Submodularity conservation). Let
F1, . . . , Fd be non-decreasing, non-negative submodu-
lar functions and s < 0 negative. Then, the function
µs(F (S)) = g(h(S)) where g is non-negative and increas-
ing, and h is a non-decreasing non-negative submodular
function.

This result shows that the problem of finding a set maxi-
mizing biased expectations is equivalent to the problem of
finding a set maximizing a single submodular function h
(since arg max|S|≤K g(h(S)) = arg max|S|≤K h(S)), and
can thus be done using the greedy algorithm.
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Algorithm 1 SOFTSAT
Require: Ground set V , cardinality constraintK, functions

F (·) = [F1(·), . . . , Fd(·)], parameter s ∈ R
1: Ŝ0 ← ∅
2: for t = 0 to K − 1 do
3: et+1 ← arg maxe∈V/Ŝt

µs(F (Ŝt ∪ {e}))
4: Ŝt+1 ← Ŝt ∪ {et+1}
5: end for
6: return ŜK

Remark 3.6 (Positive Values of s). We point out that the re-
sults presented in the paper can be adapted to the case s > 0.
In this case, it can be shown that the function h(S) exhibited
in Proposition 3.5 is not submodular, but has a submodular-
ity ratio γ ≥ mini=1...d(s

∑
e∈V Fi(e))/(e

s
∑

e∈V Fi(e)−1)
which enjoys an approximation error of (1−e−γ) for greedy
optimization (Das & Kempe, 2018). Thus, the results pre-
sented below can be extended to the case where s > 0 at a
performance cost, but we only focus here on the results for
s < 0 for simplicity and since in most application we want
an allocation more robust than the allocation maximizing
the average case (s = 0).

4. The SOFTSAT Algorithm
In this section, we introduce the SOFTSAT algorithm and
provide its approximation guarantees.

4.1. Definition of SOFTSAT

The SOFTSAT algorithm (Algorithm 1) takes as input the
ground set V , the cardinality constraint K, the collection of
functions F (S) = [F1(S), . . . , Fd(S)] and a real-valued pa-
rameter s. It returns a set ŜK ⊆ V of cardinality at most K
as an output. The algorithm proceeds sequentially in order
to build the output set. It starts with an empty set Ŝ0 = ∅ and
adds, at each iteration t ≥ 0, a single element et+1 among
the set of elements that have not been selected yet V/Ŝt
(cf. line 3 and 4). To explain the selection process, observe
first that since the arg-max function is stable by constant ad-
dition, then we have et+1 ∈ arg maxe∈V/Ŝt

µs(F (Ŝt ∪
{e})) = arg maxe∈V/Ŝt

µs(F (Ŝt ∪ {e})) − µs(F (Ŝt)).
Thus, at each iteration, the algorithm adds the element et+1

from the remaining set which provides the best improvement
over the current marginal value of the biased expectation
∆µ◦F (e|Ŝt) = µs(F (Ŝt ∪ e)) − µs(F (Ŝt)), which cor-
responds to the loop of the greedy algorithm (Nemhauser
et al., 1978). In other words, the main idea behind the SOFT-
SAT algorithm is (1) to turn a multi-dimensional problem
defined by the components F1, . . . , Fd into a single objec-
tive optimization problem using biased expectations as a
an aggregate function and (2) using the greedy algorithm
to optimize this objective by sequentially maximizing the

marginal value of the biased expectation.
Remark 4.1 (Connection with SATURATE). By Proposi-
tion 3.5, we know that µs(F (S)) = g(

∑d
i=1 φs(Fi(S)))

where g is non-decreasing. Hence, running SOFTSAT is
equivalent to running the greedy algorithm over the func-
tion

∑d
i=1 φs(Fi(S)). Now, observing that (1) the function

x 7→ φs(x) can be seen as a smooth approximation of the
function x 7→ min(x,−1/s) and (2) SATURATE (Krause
et al., 2008) runs a series of greedy algorithms over the
aggregate function

∑d
i=1 min(Fi(S), 1/s) for some s > 0,

it is easy to see that SOFTSAT can be seen as a soft version
of SATURATE.
Remark 4.2 (Computational Aspects). Running SOFTSAT
with parameter K requires to make Ω(K × |V|) calls to the
oracle F (·), which can be prohibitive when the cardinality
of the ground space |V| becomes too large. Up to our knowl-
edge, two solutions can be used to reduce its computational
time in practice. The first solution consists of maintain-
ing an upper bound of the marginal gains for each element
e ∈ V by using the fact that ∆F (e|St+1) ≤ ∆F (e|St) by
submodularity (see, e.g., (Minoux, 1978)), allowing to make
fewer calls to the oracle F . Second, another solution con-
sists of randomly sampling only |V|/K log(1/ε) elements
from the remaining set in the maximization process (line 3)
for a given ε > 0 and selecting the one that provides the
best marginal improvement, allowing to reduce the complex-
ity to Ω(|V| × log(1/ε)) at a performance cost (see, e.g.,
(Mirzasoleiman et al., 2015)).

4.2. Approximation Guarantees

Recall first that the problem of finding a set that presents
a constant approximation error with regards to the optimal
quantile is not feasible unless P = NP (Proposition 2.2). We
tackle this issue by: (1) first analyzing biased expectations
instead of quantiles, (2) adding assumptions on the optimal
parameter s and (3) finally relaxing the cardinality constraint
K to obtain universal bounds.

Control on Biased Expectations. We start to provide an
approximation guarantee between the difference of the result
provided by SOFTSAT and the value of the optimal biased
expectation.

Proposition 4.3 (Biased Expectation Approximation). Let
F1, . . . , Fd be a collection of d non-negative monotone sub-
modular functions and fix any K ≥ 1. Then, if ŜK denotes
the output of the SOFTSAT algorithm tuned with parameter
s < 0, we have the following guarantee:

µs(F (ŜK)) ≥
(

1− 1

f(s)

)
· max
|S|≤K

µs(F (S))

where the function f(s) = −sµ̄/ log(1/ee−sµ̄ + (1− 1/e))
is strictly increasing and we have lims→0 f(s) = e and
lims→−∞ f(s) = 1 where µ̄ = max|S|≤K

∑d
i=1 Fi(S)/d.
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Figure 3. Values of the approximation error (1−1/f(s)) provided
in the bound of Proposition 4.3 for different values of s.

This result shows that SOFTSAT does indeed provide an
approximation of the maximizer of the biased expectation
tuned with the same parameter s. The control provided is
similar (in form) to the one obtained with a greedy algorithm
over a single submodular function where the approximation
error is equal to (1 − 1/e) (see (Nemhauser et al., 1978)).
However, since here the function µs(·) is a composition
of a strictly increasing function and a submodular function
(Proposition 3.5), the approximation error varies with the
value of the parameter s and the quantity µ̄which is problem-
specific. As an example, the values of the approximation
error (1−1/f(s)) are displayed in Figure 3. It is interesting
to note that when s→ 0, we recover the standard approxi-
mation error (1− 1/e) ≈ 0.63, which can be explained by
the fact that µs(F (S))→ (1/d)

∑d
i=1 Fi(S). Thus, using

biased expectation allows to have a non-zero approximation
ratio below the average-case regime, as opposed to the direct
use of quantiles.

Control on Quantiles (Additional Assumptions). In the
continuation of Proposition 4.3, we now show that one can
recover a bound for the quantiles given a proper choice
of parameter s. Indeed, as discussed in Section 3, biased
expectations can approximate quantiles, and, for any p ∈
(0, 1) and x ∈ Rd, there exists s∗ ∈ R ∪ {−∞,+∞} such
that µ∗s(x) = Qp(x), which allows to obtain:

Corollary 4.4. Let S?K ∈ arg max|S|≤K Qp(F (S)) be a
solution of Problem (1) with p ∈ (1/d, 1 − 1/d) and let
s? be a value such that µs?(F (S?K)) = Qp(F (S?K)). Then,
assuming that s? < 0, the SOFTSAT algorithm tuned with
parameter s? returns a set ŜK satisfying:

Qp(F (ŜK)) ≥ Ĉ ·
(

1− 1

f(s?)

)
· max
|S|≤K

Qp(F (S)) ,

where Ĉ = mini Fi(ŜK)/maxi Fi(ŜK), and f(·) is de-
fined in Proposition 4.3.

This result shows that SOFTSAT does provide an approx-

imation of the maximizer of the quantile, given a proper
choice for the parameter s. In addition to Proposition 4.3,
this result involves problem-specific constants through the
terms s?, µ̄ and also Ĉ. Here, the constant Ĉ controls the
spread of the function values of F (ŜK) after a run, and will
be large for particularly symmetric problems. Thus, this
results allows to recover approximation results for an inap-
proximable problem (i.e. Proposition 2.2) at the extra cost
that (1) it uses a parameter s? that requires the knowledge of
the optimal set S?K and (2) its approximation ratio depends
on the output set via the term Ĉ. We will see in the next sec-
tion how to select a parameter s in practice and below how
to obtain a universal constant that is not problem-specific.

Control on Quantiles (Cardinality Relaxation). Finally,
similary to (Krause et al., 2008), we show that relaxing the
cardinality constraint (which is generally not possible in
practice) allows to achieve a universal approximation ratio
for the quantile problem. The next result shows that an
approximation ratio of order Ω(1/d ln(d)p) can be achieved
if we allow the set to be logarithmically larger than the
optimal solution.
Proposition 4.5. Let S?K ∈ arg max|S|≤K Qp(F (S)) be
a solution of Problem (1) with p ∈ [1/d, 1 − 1/d] and
set s? = − ln(4d)/Qp(F (S?K)). Then, SOFTSAT tuned
with cardinality constraint K ′ = Kdln(4d)e and s? finds a
solution ŜK′ such that

Qp(F (ŜK′)) ≥ ln(2)

dpde ln(4d)
· max
|S|≤K

Qp(F (S)) .

Interestingly, this result suggests that independently of the
functions F1, . . . , Fd the quantile maximization problem
becomes linearly harder as the quantile parameter p is small
and linearly harder with the dimensionality d. It is also
interesting to compare this result to that of (Krause et al.,
2008) which obtains an approximation ratio of 1 for the
worst-case problem (p = 1/d) using approximately ln(d)
times as many elements as in the optimal solution at making
O(n2d log(d)) function evaluations. Here, for the worst-
case, we obtain an approximation ratio of Ω(1/ ln(4d)) us-
ing approximately ln(d) times as many elements and mak-
ing O(n2) function evaluations. Thus, for the worst-case,
we have a trade-off and using biased expectations instead of
SATURATE allows to make less function evaluations at the
cost of a lower approximation error. Lastly, recall also that
SOFTSAT is designed to optimize the whole quantiles as
opposed to SATURATE which only focuses on worst-cases.

4.3. Choice of the Parameter s in Practice

Here, we present two heuristics that can be used to tune the
parameter s in practice.

Quantile as Threshold. The first method consists of using
the estimate s = −1/Qp(F (S?K)) which comes from Propo-
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sition 4.5 and the fact that the function x 7→ 1− esx used in
biased expectations can be seen as a soft approximation of
the function x 7→ min(−sx, 1) that plays the role of thresh-
old function at −1/s. Thus, setting the threshold around
the quantile Qp(F (S?K)) helps to prevent the algorithm to
put too much effort a single objective that already reached
the specified quantile value. This estimate can be computed
from (1) the result of a previous experiments that provided a
set Ŝ and then setting s = −1/Qp(F (Ŝ)) or (2) in a online
fashion by setting at each iteration st = −1/Qp(F (Ŝt))

where Ŝt denotes the set computed at each iteration in Al-
gorithm 1.

Grid Search. The second method we propose consists
of evaluating the performance of the algorithm for sev-
eral values for s that belong to a grid such as G =
[−100,−10,−1,−0.1,−0.01] and keeping the value of s
that provides the best results.

In the experiments, we considered both (1) an adaptive
version of SOFTSAT which estimates s along with the op-
timization and has complexity Ω(K × |V|) and (2) a ver-
sion that estimates s with a grid search and has complexity
Ω(|G| ×K × |V|) where |G| is the size of the grid.

5. Numerical Eexperiments
In this section, we compare the empirical performance of
the SOFTSAT algorithm.

Algorithms. Seven different algorithms that are commonly
used to solve multi-objective submodular problems were
used in the benchmark. SOFTSAT is displayed in Algo-
rithm 1 and we performed a grid search for the parameter s
over the grid G = [−100,−10,−1,−0.1,−0.01]. Ada-
SOFTSAT is the adaptive version of SOFTSAT, where
we start with the value s0 = 0 and then update at each
iteration the value of the parameter st using the rule:
st = −1/Qp(F (Ŝt)) described in Section 4.3. SATU-
RATE (Krause et al., 2008) which performs a bisection
over the value of max|S|≤K mini=1...d Fi(S) by running a
series of greedy algorithms. This algorithm is specifically
designed to solve the 1/d-th quantile problem. AdaSAT-
URATE which is an adaptive version of SATURATE and
uses at each step Qp(Ŝt) as an estimate of the threshold.
It is used to compare the performance of AdaSOFTSAT.
GreedyQuantile which consists of running the standard
greedy algorithm (Nemhauser et al., 1978) over the quan-
tileQp(F (S)). GreedyMean which consists of running the
greedy algorithm over the average-case (1/d)·

∑d
i=1 Fi(S).

Random which performs a series of random set evaluations.
An implementation of the algorithms can be found in the
Appendix.

Balanced News Feed. The first problem consists in se-
lecting a subset of news articles that fairly covers a given
number of topics. More formally, we have access to a set
V = {1, . . . , n} of n articles that cover d different topics
(sport, politics, economy, etc.). For each article e ∈ V ,
we have a feature vector f(e) = [f1(e), . . . , fd(e)] ∈
[0, 1]d that represents the proportion of the article that is
dedicated to each topic i ∈ {1, . . . , d}. For instance,
we may have f(1) = [0.1, 0.1, 0, 0, 0, 0.9] and f(2) =
[0.3, 0.1, 0.3, 0, 0, 0.9] where the summation can be ≥ 1
due to overlapping topics. Given a subset of articles S ⊆ V ,
the proportion of the articles that cover a given topic i is
given by

Fi(S) =
∑
e∈S

fi(e)

which is a non-negative monotone (sub)modular function.
Hence, if one wants to select a subset of K articles that
cover fairly at most p× d topics, one can solve the problem
max|S|≤K Qp(F1(S), . . . , Fd(S)) which is an instance of
Problem (1). In practice, we took the BBC news data set
(Greene & Cunningham, 2006) that contains n = 2250
articles and we used the uClassify topic classification API
(Kagström et al., 2014) to obtain the feature vectors with
d = 10 topics for each article.

Images Summarization. The second task consists in select-
ing a subset of K images from a collection V = {1, . . . , n}
of n images that fairly represents most of the images without
considering outliers (images that appear few times or are
not relevant in the dataset). More formally, given a subset
of images S ⊆ V and a non-negative distance D(·, ·) over
images, one can measure if an image i ∈ V is well taken
into account in a subset S ⊆ V by measuring the similarity
to the closest image to the subset S through the function

Fi(S) = 1−min
e∈S

D(i, e)

which is non-negative, monotone and submodular. Hence, if
one wants to have a subset of K images that represents most
the dataset except the p× n outliers, one can solve the prob-
lem max|S|≤K Qp(F1(S), . . . , Fd(S)) where p correspond
to the proportion of the images we want to discard. In prac-
tice, we used the pokemon dataset (Churchill, 2017) that
contains n = d = 151 images and we used the normalized
cosine similarityD(i, e) = vi ·ve/|vi ·ve|+mine,e′∈V2 ve ·
ve′/|ve · ve′ | where the vectors ve are the centered and nor-
malized img2vec embeddings computed from an AlexNet
tuned over the ImageNet data set (Krizhevsky et al., 2017)
and the second term is added to prevent non-negativity.

Graph Covering. The last application consists in selecting
a subset of source nodes from a graph that can fairly com-
municate with the best (1− p) percentage of the remaining
nodes of the graph. More formally, let G = (V, E) be a
connected graph, let D(·, ·) denotes the minimal distance
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Figure 4. Results of the numerical experiments. The graph displays the values of quantiles Qp(F (Ŝ)) provided by each algorithm over
the test problems of the benchmark for different values of K and p.

between two nodes. Then, if the ground set is the set of all
nodes V = {1, . . . , n} and one selects a subset S ⊆ V of
source nodes from the graph, the minimum distance from
the subset of source nodes S to a given node i ∈ V is given
by S 7→ mine∈S D(e, i) which is non-increasing and super-
modular (i.e. −F is submodular). To ensure non-negativity
and submodularity, one can thus use the function

Fi(S) = max
(e,e′)∈V2

D(e, e′)−min
e∈S

D(e, i).

Hence, if one wants to select a subset of K source
nodes that can fairly communicate with 1 − p per-
cent nodes of the graph, one can solve the problem
max|S|≤K Qp(F1(S), . . . , Fd(S)) where p correspond to
the proportion of the nodes we want to discard. In practice,
we used the USAirport 500 dataset (Colizza et al., 2007)
which is a graph that contains the 500 largest commercial
airports in the United States.

Protocol. For each problem, we ran the seven algorithms
with different values of p ∈ {0, 0.2, 0.4, 0.5} and K ∈
{1, . . . ,Kmax} where Kmax = 100 (balanced news feed),
100 (images summarization) and 300 (graph covering). For
each algorithm A and pair of values p and K, we recorded
the value of the quantile Qp(F (ŜA,p,K)) provided by each
algorithm where ŜA,p,K denotes the output of the algorithm

A with values set to K and p. Results are collected in
Figure 4.

Remarks. First, observe that, independently of the algo-
rithm, considering quantile maximization (i.e. p > 0) in-
stead of the worst-case maximization (p = 0.0) can drasti-
cally improve the optimization performance. For instance,
in images summarization, the best algorithm can only reach
the value of 0.7 with K = 100 images when p = 0.0, while
discarding 20% of outliers (p = 0.2) allows to reach the
maximum value of 1.0 with only K = 64 images. Second,
it is interesting to note that as the value of p increases, the
random strategy tends to match the best algorithms (e.g.,
graph covering and balanced news feed when p = 0.5).
This can be interpreted as the fact that the problem becomes
harder as the quantiles grow large. Last, as discussed in Sec-
tion 2, observe that directly maximizing the quantiles of the
objectives—that do not preserve submodularity— with the
greedy algorithm (GreedyQuantile) does not generally lead
to optimal performance (e.g., graph covering with p = 0.2
where quantile maximization performs worst than the ran-
dom strategy). As one can see, the SOFTSAT algorithm
displays consistent results over the three test problems of
the benchmark in the sense that it constantly achieves the
best performance (e.g., balanced news feed, images sum-
marization and graph covering with p = 0.2), while most
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methods fail on at least one problem (e.g., GreedyMean on
balanced news feed and GreedyQuantile on graph covering).
More strikingly, for the images summarization problem with
p = 0.4 and p = 0.5, the SOFTSAT algorithm only requires
K = 41 and K = 36 images to successfully summarize the
dataset (i.e. reaching 1) while other methods may require
up to K = 50 images. Moreover, it is also interesting to
note that the adaptive version of the algorithm with a lower
complexity of K × |V | performs similarly to SOFTSAT
in most test problems (e.g., balanced news feed and graph
covering). More specifically, for the worst-case (i.e. p = 0),
SOFTSAT algorithm displays similar results to SATURATE
which is specifically tailored to solve this problem, while
AdaSOFTSAT always outperfoms AdaSATURATE, vali-
dating the fact that using soft approximations lead to more
robust results in online settings.

6. Conclusion
In this paper, we introduced a robust formulation of the
multi-objective submodular maximization problem through
the use of quantiles as well as the concept of biased ex-
pectations. We showed how to adapt the greedy algorithm
with biased expectation, leading us to an efficient algorithm
assessed in a test bed of real-world applications.
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A. Algorithms Used in the Benchmark
Here, we provide the detailed implementations of the algorithms considered in the benchmark. We start by giving the
definition of the simple greedy algorithm (Algorithm 2).

Algorithm 2 Greedy algorithm
Require: Ground set V , cardinality constraint K, a set function F : 2V → R

1: Ŝ0 ← ∅
2: for t = 0 to K − 1 do
3: et+1 ← arg maxe∈V/Ŝt

F (Ŝt ∪ {e})− F (Ŝt)

4: Ŝt+1 ← Ŝt ∪ {et+1}
5: end for
6: return ŜK

In the benchmark, the GreedyMean algorithm consists in running Algorithm 2 over the average-value of the objectives
Fac : S 7→ (1/d) ·

∑d
i=1 Fi(S), while the GreedyQuantile consists in running Algorithm 2 over the quantile of the objectives

S 7→ Qp(F1(S), . . . , Fd(S)). Note that the GreedyMean algorithm does not depend on the value of p. On the other hand,
the RandomQuantile algorithm is defined as follows (see Algorithm 3). Remark that it makes exactly the same number of
calls to the function F (S) than the standard greedy algorithm which is Ω(K × |V|).

Algorithm 3 RandomQuantile
Require: Ground set V , cardinality constraint K, submodular functions F (·) = [F1(·), . . . , Fd(·)], parameter p ∈ [0, 1]

1: ŜK ← ∅
2: Qmax ← 0
3: for t = 0 to K − 1 do
4: for i = 1 to |V| − t do
5: Stest ← U({S ⊆ V : |S| = i})
6: if Qp(F (Stest)) ≥ Qmax then
7: ŜK ← Stest
8: Qmax ← Qp(F (Stest))
9: end if

10: end for
11: end for
12: return ŜK

Finally, for the SATURATE algorithm, we used the same implementation as the one provided in (Krause et al., 2008) with
the parameter α set to 1 as advised in the paper. Note that for this algorithm the author provide an upper bound on its
complexity that is of order O(|V|2 × d× log(dmini Fi(V))). The implementation we used can be found in Algorithm 4.

B. Proofs of the Theoretical Results
In this section, we provide the detailed proofs of the results presented in the paper.

Proof of Proposition 2.1. Consider without loss of generality the ground set V = {e1, . . . , e|V|}, set any constant C > 1,
set i? = d(1− p)de and let F1, . . . , Fd be the collection of d ≥ 2 non-negative, monotone (sub)modular functions defined
as follows:

Fi(S) =
∑
e∈S

Fi({e})

where for the first element e1, we have:

Fi({e1}) =

{
C if i = 1

0 otherwise
(2)
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Algorithm 4 SATURATE
Require: Ground set V , cardinality constraint K, submodular functions F (·) = [F1(·), . . . , Fd(·)], parameter α = 1

1: cmin ← 0
2: cmax ← mini F (V)
3: ŜK ← ∅
4: while cmax − cmin ≥ 1/d do
5: c← (cmax + cmin)/2
6: Ŝ ← 0
7: Define Fc : S 7→ (1/d)

∑d
i=1 min(Fi(S), c)

8: while Fc(Ŝ) < c do
9: ê← arg maxe∈V/Ŝ Fc(Ŝ ∪ {e})

10: Ŝ ← Ŝ ∪ {ê}
11: end while
12: if |Ŝ| > αK then
13: cmax ← c
14: else
15: cmin ← c
16: ŜK ← Ŝ
17: end if
18: end while
19: return ŜK

for the second element e2, we have:

Fi({e2}) =

{
C if i ∈ {2, . . . , i?}
0 otherwise

(3)

and for the remaining elements e ∈ {e3, . . . , e|V|}, we have:

Fi({e}) = 1 for all i ∈ {1, . . . , d}

and Fi(∅) = 0 for all i ∈ {1, . . . , d}. The values of the functions are summarized in Table 1. Clearly, Qp(F ({e1})) =
Qp(F ({e2})) = 0 and Qp(F ({e})) = 1 for all the remaining elements e ∈ {e3, . . . , eK}. Hence, the greedy algorithm
will start by creating a set Ŝ1 = {e} with e ∈ {e3, . . . , e|V|}. Now, as for any set S ⊆ V such that e1 /∈ S and e2 /∈ S,
we have Qp(F (S ∪ {e1})) = Qp(F (S ∪ {e2})) = Qp(F (S)) and Qp(F (S ∪ {e})) = 1 + Qp(F (S ∪ {e})) for any
e ∈ {e3, . . . , eK}/S, then the greedy algorithm will never add the elements e1 and e2 to its set Ŝ. Hence, the output of the
greedy algorithm ŜK will only contain K elements from {e3, . . . , e|V|} and we have Qp(F (ŜK)) = K. Finally, since

max
|S|≤K

Qp(F (S)) ≥ Qp(F ({e1, e2})) = C,

setting C = K/ε, it follows that

Qp(F (ŜK)) = ε ·
(
K

ε

)
≤ ε× max

|S|≤K
Qp(F (S))

F1 F2 · · · Fi? Fi?+1 · · · Fd
∅ 0 · · · · · · · · · · · · · · · 0
{e1} C 0 · · · · · · · · · · · · 0
{e2} 0 C · · · C 0 · · · 0
{e3} 1 · · · · · · · · · · · · · · · 1

...
... · · · · · · · · · · · · · · ·

...
{e|V|} 1 · · · · · · · · · · · · · · · 1

Table 1. Values of the collection of functions F1, . . . , Fd designed to prove the result with C > 1
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which proves the result.

Proof of Proposition 2.2. The proof is a direct extension of Theorem 3 in (Krause et al., 2008). More specifically, for
any value of d ≥ 2, if p ∈ [0, 1/d], then Qp(F (S)) = mini=1...d Fi(S) and the result directly follows from Theorem 3
in (Krause et al., 2008). Now, if p ∈ (1/d, 1− 1/d), set d? = d(1− p)de and consider any collection F1, . . . , Fd? of d?

non-negative, submodular, monotone functions and define the extended collection of d > d? functions F1, . . . , Fd where
Fd?+1(S) = · · · = Fd(S) = 0 for any set S ⊆ V . Now, since the functions Fd?+1(S) = · · · = Fd(S) = 0, it follows that
Qp(F (S)) = mini=1...d? Fi(S). Hence, if there exists an algorithm, which returns a set Ŝ, in polynomial time with regards
to the problem instance n, satisfying Qp(F (Ŝ) ≥ γ(n) max|S|≤K Qp(F (S)), it follows that the algorithm can return a
set Ŝ such that mini=1...d? Fi(Ŝ) ≥ γ(n) min|S|≤K mini=1...d? Fi(S) for any collection F1, . . . , Fd? of d? functions in
polynomial time which implies that P = NP according to Theorem 3 in (Krause et al., 2008) and completes the proof.

Proof of Proposition 3.2. First, observe that since lims→0 φs(x) = lims→0 φ
−1
s (x) = x where φ(x) = (esx − 1)/s

and φ−1
s (x) = ln(1 + sy)/s for any x ∈ R, we know by l’Hôpital rule that both s 7→ φs(x) and s 7→ φ−1(s) are

continuous over R. Thus, since µs(x) = φ−1
s (
∑d
i=1 φs(xi)/d) where the functions s 7→ φs(x) = (esx − 1)/s and

s 7→ φ−1
s (y) = ln(1 + sy)/s are continuous over their domain and at s = 0 then s 7→ µs(x) is continuous and we obtain

that µs(x)→
∑d
i=1 xi/d when s→ 0. Now, considering s > 0, observe that since µs(x) = (1/s) ln((1/d)

∑d
i=1 e

sxi) =

ln

((
(1/d)

∑d
i=1 e

sxi

)1/s
)

, then µs(x) = ln
(
(E
[
|eX |s

]
)1/s

)
where X denotes the random variable taking value xi

with probability 1/d for i ∈ {1, . . . , d}. Hence, we have µs(x) = ln ‖eX‖s where ‖ · ‖s denotes the standard Lp-norm.
Since Lp-norms are strictly increasing over Rd+ (by Jensen’s inequality), it directly follows that the function s 7→ µs(x) is
non-decreasing over R+ and since ‖ex‖s → maxi=1...d e

xi when s→ +∞, we obtain that µs(x) 7→ maxi=1...d xi. Finally,
using the fact that µs(x) = −µ−s(−x) and max(−x) = −min(x), we obtain the remaining result as a direct consequence
of the previous remarks when s < 0.

Proof of Proposition 3.3. First, define the random variable I ∼ U({1, . . . , d}) which returns an index uniformly distributed
over the dimensions of x and let xI be the random variable that returns uniformly a component of x. Now, observing that (1)
Qp(x) = Qp(xI), (2) the function x 7→ (esx − 1)/s is positive and non-decreasing and (3) applying Markov’s inequality,
we obtain that

1− p ≤ P(xI ≥ Qp(xI))
= P(xI ≥ Qp(x))

= P
(

(esxI − 1)/s ≥ (esQp(x) − 1)/s
)

≤ E[(esxI − 1)/s]

(esQp(x) − 1)/s

=
(1/d

∑d
i=1 e

sxi − 1)/s

(esQp(x) − 1)/s
.

Finally, noticing that (1/d)
∑d
i=1 e

sxi = esµs(x), we obtain that

esQp(x) − 1

s
≤ esµs(x) − 1

s(1− p)
,

and carefully rearranging the previous equation depending on the sign of s leads to the desired result.

Proof of Proposition 3.4. Fix any s < s′ and let Ss ∈ arg max|S|≤K µs(F (S)), then, using the fact that for any x ∈ Rd+, the
function s 7→ µs(x) is continuous and non-decreasing, we have that max|S|≤K µs(F (S)) = µs(F (Ss)) ≤ µs′(F (Ss)) ≤
max|S|≤K µs′(F (S)) proving the first part of the result. Finally, using the fact that for all S ∈ {S ∈ V : |S| ≤ K}
the function s 7→ µs(F (S)) is continuous and that lims→−∞ µs(F (S)) = mini=1...d Fi(S) and lims→0 µs(F (S)) =∑d
i=1 Fi(S)/d gives the second part of the result.

Proof of Proposition 3.5. To prove the result we use the fact that µs(F (S)) = g(h(S)) where g(y) = φ−1
s (y) =

1
s ln(1 + sy) is non-negative and increasing for s < 0 and h(S) = 1

d

∑d
i=1

esFi(S)−1
s . Now, to prove that the set function

h(S) is submodular, fix any sets A ⊆ B ⊆ V and pick any element e ∈ V/B, any index i ∈ {1, . . . , d} and consider any
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s < 0. By submodularity of the function Fi, we have that:

Fi(A ∪ {e})− Fi(A) ≥ Fi(B ∪ {e})− Fi(B).

Hence, as the function x 7→ 1− esx is non-decreasing, it follows that:

1− es(Fi(A∪{e})−Fi(A)) ≥ 1− es(Fi(B∪{e})−Fi(B))

Observe now that by monotonicity of Fi we have esFi(A) ≥ esFi(B) since A ⊆ B. Thus, respectively multiplying the
non-negative left-hand (resp. right-hand) side of the previous equation by esFi(A) (resp. esFi(B)), we obtain that:

esFi(A) − esFi(A∪{e}) ≥ esFi(B) − esFi(B∪{e}),

which proves that the function S 7→ −esFi(S) is submodular. Now, since the sum of submodular functions is submodular
and the constant function S 7→ d is also submodular, summing the previous inequality over each component i ∈ {1, . . . , d}
and adding d proves that the function S 7→ d −

∑d
i=1 e

sFi(S) =
∑d
i=1(1 − esFi(S)) is submodular. Finally, since (1)∑d

i=1(1 − esFi(S)) ≥ 0 as the functions Fi are non-negative and (2) multiplying a submodular function by a positive
constant d|s| > 0 preserves submodularity, we know that S 7→ (1/d)

∑d
i=1(1− esFi(S))/|s| = (1/d)

∑d
i=1(esFi(S)−1)/s

which proves the result.

Proof of Proposition 4.3. First, by virtue of Proposition 3.5, we know that µs(F (S)) = φ−1
s

(
(
∑d
i=1 e

sFi(S)/d− 1)/s
)

where the function y 7→ φ−1
s (y) is strictly increasing over its domain. Hence, the set ŜK returned by the SOFTSAT

algorithm is the same as the one returned by the greedy algorithm run over the function S 7→ (1/d
∑d
i=1 e

sFi(S) − 1)/s.
Now, as this function is non-negative, monotone and submodular (see Proposition 3.5), it follows from the standard result of
the greedy algorithm that the set ŜK satisfies:(

1− 1

d

d∑
i=1

esFi(ŜK)

)
≥
(

1− 1

e

)
·

(
1− 1

d

d∑
i=1

esFi(S
?)

)

where S? ∈ arg max|S|≤K µs(F (S)), which can be re-written as follows:

1

d

d∑
i=1

esFi(ŜK) ≤ 1−
(

1− 1

e

)(
1− 1

d

d∑
i=1

esFi(S
?)

)
.

Now, simply using the fact that (1/d)
∑d
i=1 e

sFi(ŜK) = esµs(F (ŜK)) and that (1/d)
∑d
i=1 e

sFi(S
?) = esµ

?
s where µ?s =

µs(F (S?)), the previous inequality can be written as:

esµs(F (ŜK)) ≤ 1−
(

1− 1

e

)(
1− esµ

?
s

)
which gives:

µs(F (ŜK)) ≥ 1

s
ln

(
1−

(
1− 1

e

)
(1− esµ

?
s )

)
Thus, using the fact that µ?s = −1/s ln(e−sµ

?
s ) and the previous inequality, we obtain that:

µ?s − µs(F (ŜK)) = −1

s
ln(e−sµ

?
s )− µs(F (ŜK))

≤ −1

s
ln

(
e−sµ

?
s −

(
1− 1

e

)
(e−sµ

?
s − 1)

)
= −1

s
ln
(

1/ee−sµ
?
s + (1− 1/e)

)
(4)

and dividing both sides by µ?s gives us:

µ?s − µs(F (ŜK))

µ?s
≤ − 1

sµ?s
log
(

1/ee−sµ
?
s + (1− 1/e)

)
.
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Finally, by Proposition 3.4, we know that µ?s ≤ µ̄ = max|S|≤K
∑d
i=1 Fi(S)/d which translates to the fact that sµ?s ≥ sµ̄

since s < 0. Now observing that the function x ∈ R− 7→ −1/x log(e−x/e+ (1− 1/e)) is non-increasing, we thus obtain:

µ?s − µs(F (S))

µ?s
≤ − 1

sµ̄
log
(
1/ee−sµ̄ + (1− 1/e)

)
=

1

f(s)
(5)

where f(s) = −sµ̄/ log (1/ee−sµ̄ + (1− 1/e)) and re-arranging the previous equation gives:

µs(F (ŜK)) ≥
(

1− 1

f(s)

)
µ?s

which proves the result.

Proof of Corollary 4.4. Using Proposition 4.3 with s set to s? and using the fact that max|S|≤K µs?(F (S)) ≥
µs?(F (S?p)) = max|S|≤K Qp(F (S)) directly gives that:

µs?(F (ŜK)) ≥
(

1− 1

f(s?)

)
Qp(F (S?p)).

Now, using the fact that there exists s′ ∈ R such that Qp(F (ŜK)) = µs′(F (ŜK)) and the fact that µs?(F (ŜK)) =

µs?(F (ŜK))× µs′(F (ŜK))/µs′(F (ŜK)), we obtain that:

Qp(F (ŜK)) ≥ µs′(F (ŜK))

µs?(F (ŜK))

(
1− 1

f(s?)

)
Qp(F (S?p)).

Finally, using the fact that µs′(F (ŜK)) ≥ mini=1...d Fi(ŜK) and that µs?(F (ŜK)) ≤ maxi=1...d Fi(ŜK) gives the result.

Proof of Proposition 4.5. Set K ′ = Kdln(4d)e, let s = − ln(4d)/Qp(F (S?)), let ŜK′ be the output of SOFTSAT tuned
with K ′ and s and set the notations Q̂ = Qp(F (ŜK′)) and Q? = Qp(F (S?K)). First, observe that for any non-negative
(ranked) vector x = (x1, . . . , xd) ∈ Rd with xi ≤ xi+1 for all i ≥ 1, we have Qp(x) = xddpe and:

(1) (d− ddpe+ 1)φs(Qp(x)) ≤
d∑
i=1

φs(xi)

and

(2)

d∑
i=1

φs(xi) ≤ ddpeφs(Qp(x)) + (d− ddpe)φs(+∞).

Now using Proposition 3.5, the standard result for the greedy algorithm (Krause & Golovin, 2014) and the fact that
K ′/K = dln(4d)e ≥ ln(4d), we have

d∑
i=1

φs(Fi(ŜK′)) ≥
(

1− e−K
′/K
)
· max
|S|≤K

d∑
i=1

φs(Fi(S))

≥
(

1− e−K
′/K
)
·
d∑
i=1

φs(Fi(S
?
K))

≥
(

1− 1

4d

)
·
d∑
i=1

φs(Fi(S
?
K))

Now, using the fact that φs(+∞) = 1/|s| and combining (1) and (2) with the previous equation, we obtain that:

ddpeφs(Q̂) ≥ (1− 1

4d
)(d− ddpe+ 1)φs(Q

?)− (d− ddpe)
|s|
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Now using the fact that φ−1
s (y) = −1/|s| ln(1− |s|y) and plugging the value of s = − ln(4d)/Q?, we obtain:

Q̂ ≥ − Q?

ln(4d)
ln

(
d− (d− dpde+ 1)(1− 1/4d)2

dpde

)
= − Q?

ln(4d)
ln

(
1− 1

dpde
+ (d− dpde+ 1)(

1

2d
− 1

(4d)2
)

)
Finally, using the fact that 1

dpde−(d−dpde+1)( 1
2d−

1
16d2 ) ≥ 1/(2dpde) and the fact that, by convexity of x 7→ − ln(1−x),

we have − ln(1− ax) ≥ − ln(1− a)x for a, x ∈ [0, 1], we obtain that:

Q̂ ≥ ln(2)

dpde ln(4d)
Q? .


