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Abstract
With the development of graph kernels and graph
representation learning, many superior methods
have been proposed to handle scalability and
oversmoothing issues on graph structure learning.
However, most of those strategies are designed
based on practical experience rather than theoret-
ical analysis. In this paper, we use a particular
dummy node connecting to all existing vertices
without affecting original vertex and edge prop-
erties. We further prove that such the dummy
node can help build an efficient monomorphic
edge-to-vertex transform and an epimorphic in-
verse to recover the original graph back. It also
indicates that adding dummy nodes can preserve
local and global structures for better graph repre-
sentation learning. We extend graph kernels and
graph neural networks with dummy nodes and
conduct experiments on graph classification and
subgraph isomorphism matching tasks. Empiri-
cal results demonstrate that taking graphs with
dummy nodes as input significantly boosts graph
structure learning, and using their edge-to-vertex
graphs can also achieve similar results. We also
discuss the gain of expressive power from the
dummy in neural networks.

1. Introduction
Graph structures have been widely used in modeling the
interactions and connections in complex systems, such as bi-
ological networks, chemical molecules, and social networks.
In fact, these data contain rich information in their graph
structure beyond vertex and edge attributes. For example,
atoms are held together by covalent bonds, and different
molecular compounds (usually named isomers) with similar
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atoms may have distinct properties due to different struc-
tures. Thus, there has been a surge of interest in graph
similarity, graph comparison, and subgraph matching. In re-
cent years, numerous approaches have been proposed in ma-
chine learning and deep learning, among which algorithms
based on graph kernels (GKs) (Borgwardt et al., 2005; Sher-
vashidze et al., 2011; Morris et al., 2020) and graph neural
networks (GNNs) (Kipf & Welling, 2017; Vashishth et al.,
2020) are most notable. GKs tackle the graph comparison
by exploring and capturing the semantics inherent in graph-
structured data. The main idea behind graph kernels is that
graphs with similar properties are highly likely to have simi-
lar distributions of substructures. However, most GKs focus
on vertex-centric substructures while ignoring the edge sim-
ilarities. Instead, inductive GNNs automatically extract
higher-order information of graphs, sometimes leading to
more powerful features compared to hand-crafted features
used by GKs (Xu et al., 2019). Nevertheless, there are also
disadvantages of GKs and GNNs. The runtime complexity
of GKs when considering subgraphs of size up to k ≥ 2
is usually Ω(k · |V|2) at least and O(k · |V|k+1) at worst,
where |V| is the number of vertices in the smaller graph for
comparison (Kriege et al., 2020). The objective of GNNs
is highly non-convex, requiring careful hyper-parameter
tuning to stabilize the training procedure and avoid over-
smoothing. Besides, message passing in GNNs still faces
the limitation of the expressive power and the information
vanish upon 0-outdegree vertices in deeper networks.

To address the aforementioned problems, many strategies
have been designed. Morris et al. (2020) proposed the local
variants of Weisfeiler-Lehman Subtree Kernels (k-WL) to
vastly reduce the computation time without performance
decline. k-IGNs (Maron et al., 2019), k-GNNs (Morris
et al., 2019), and EASN (Bevilacqua et al., 2021) involve
high-order tensors in representing high-order substructures
with the expressive power as k-WL. Some kernels quan-
tify the similarity based on random walks to reduce the
complexity (Zhang et al., 2018). Li et al. (2018) and Rong
et al. (2019) addressed the GNNs’ oversmoothing by ran-
domly removing edges from graphs to make GNNs robust to
various structures. On the other hand, adding reversed edges
in heterogeneous graphs is popular in practice (Vashishth
et al., 2020; Hu et al., 2020). Some strategies are based on
experimental experience rather than theoretical analysis.



Boosting Graph Structure Learning with Dummy Nodes

To derive a theoretically guaranteed (sub)graph structure
modeling that is consistent in original GKs computation
and can improve GNNs, we use a particular dummy node
and connect it with all existing vertices without affecting
original vertex and edge properties. We start from the edge-
to-vertex transform to theoretically analyze the role of the
dummy in structure preserving. It turns out that an efficient
monomorphic transform LΦ to convert edges to vertices and
an epimorphic inverse L−1

Φ to recover the original graph
back make the edge-to-vertex transform lossless. It is in-
teresting to observe the transformed graph also contains
another dummy node. We extend vertex-centric GKs and
GNNs with dummy nodes to boost graph structure learning,
with a linear computation cost to the number of edges.

Our main contributions are highlighted as follows:

1. We prove that adding a special dummy node with links
to current existing vertices can help build an efficient
and lossless edge-to-vertex transform, which also indi-
cates that the edge information can be well preserved
during learning.

2. We utilize dummy nodes and edges to extend state-of-
the-art machine learning and deep learning models to
improve their abilities to capture (sub)graph structures.

3. Extensive experiments are conducted on graph classifi-
cation and subgraph isomorphism counting and match-
ing, and empirical results reveal the success of learning
with graphs with dummy nodes.

Code is publicly released at https://github.com/
HKUST-KnowComp/DummyNode4GraphLearning.

2. Related Work
Before the deep learning era, graph kernels (GKs) dom-
inated supervised graph structure learning through map-
ping graphs to Hilbert space and computing Gram matri-
ces. Different kernel functions focus on specific structural
properties of graphs. Shortest-path Kernel (Borgwardt &
Kriegel, 2005) decomposes graphs into shortest paths and
compares graphs according to their shortest paths, such as
path lengths and endpoint labels. Instead, Graphlet Ker-
nels (Shervashidze et al., 2009) compute the distribution
of small subgraphs under the assumption that graphs with
similar graphlet distributions are highly likely to be similar.
Another important kernel family considers subtrees. One
state-of-the-art kernel is Weisfeiler-Lehman Subtree Kernel
(k-WL) (Shervashidze et al., 2011), and some higher-order
variants (Morris et al., 2017) and local variants (Morris et al.,
2020) further strengthen the expressive power. However,
graph kernels are limited by non-inductive learning and the
super quadratic time complexity to the training data size.

With the rapid development of heterogeneous computing,
neural networks have attracted attention recently. Re-
searchers have successfully used relational inductive biases
within deep learning architectures to build graph neural net-
works (GNNs). End-to-end learning relieves the burden
of feature engineering and makes the structure learning so-
phisticated and flexible (Gilmer et al., 2017; Battaglia et al.,
2018). Ideas behind kernels are still referable for the de-
sign of GNNs (Morris et al., 2019). k-GNNs (Morris et al.,
2019) and EASN (Bevilacqua et al., 2021) align the k-WL
hierarchy to enhance the expressive power of GNNs. How-
ever, this involves high-order tensor computations. How to
efficiently boost the graph structure learning is also one of
the research frontiers. Ranking neighbors based on attention
scores enables explicit weights for information aggrega-
tion (Yuan & Ji, 2021). Besides, it also boosts learning to
consider multihop neighbors (Zhu et al., 2020; Teru et al.,
2020). On the other hand, dynamic high-order neighbor se-
lection (Yang et al., 2021) and dynamic pointer links (Velick-
ovic et al., 2020) illustrate the power of data-driven manipu-
lations. Moreover, differentiable pooling yields consistent
and significant performance improvement for end-to-end
hierarchical graph representation learning (Ying et al., 2018;
Zhang et al., 2019). Li et al. (2018) and Rong et al. (2019)
addressed the GNNs’ oversmoothing by randomly remov-
ing edges from graphs to make GNNs robust to various
structures. However, most of these strategies are based on
practical experience rather than theoretical analysis.

Some literature suggests utilizing “dummy” super-nodes to
explicitly learn subgraphs (Scarselli et al., 2009; Hamilton
et al., 2017a), but the node is served as a special readout to
conduct the representation of the target subgraph. On the
contrary, we directly add a dummy node as a part of the tar-
get graph to learn representations and capture similarities.

3. Lossless Edge-to-vertex Transforms
3.1. Preliminary

Let G = (VG , EG ,XG ,YG) be a directed connected het-
erogeneous multigraph with a vertex set VG , an edge set
EG ⊆ VG × VG , a label function XG that maps a vertex to
a set of vertex labels, and a label function YG that maps
an edge to a set of edge labels. Under this definition,
multiple edges with the same source and the same target
can be merged by extending Y , making G without multi-
edges for clarity. To simplify the statement, we also let
YG((u, v)) = ϕ if u, v ∈ VG but (u, v) ̸∈ EG . We use d−v
and d+v to denote the indegree and outdegree of vertex v.

In graph theory, the edge-to-vertex transform converts a
graph to its line graph where original vertex properties are
stored in edges, and original edge properties are stored in
vertices in the transformed graph (Harary, 1969).

https://github.com/HKUST-KnowComp/DummyNode4GraphLearning
https://github.com/HKUST-KnowComp/DummyNode4GraphLearning
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(a) one vertex with 0 indegree,
two vertices with 0 outdegree

(b) one vertex with 0 indegree,
three vertices with 0 outdegree

(c) two vertices with 0 indegree,
one vertex with 0 outdegree

(d) three vertices with 0 indegree,
one vertex with 0 outdegree

Figure 1. Examples of directed 3-claws and line graphs, where lowercased letters correspond to vertex labels of the original graphs (and
edge labels of the line graphs), capitalized letters correspond to edge labels of the original graphs (and vertex labels of the line graphs).
Note that line graphs in (b) and (d) are empty.

Definition 3.1 (Edge-to-vertex transform). A line graph
(also known as edge-to-vertex graph) H of a graph G is
obtained by a bijection g : EG → VH, where g associates a
vertex v′ ∈ VH with each edge e = g−1(v′) ∈ EG . And two
vertices u′, v′ ∈ VH are connected as (u′, v′) if and only if
the destination of d = g−1(u′) is the source of e = g−1(v′).
Formally, we have:

• ∀e = (u, v) ∈ EG ,YG(e) = XH(g(e)),

• ∀v′ ∈ VH,XH(v′) = YG(g
−1(v′)),

• ∀d, e ∈ EG , u′ = g(d) ∈ VH, v′ = g(e) ∈ VH,
(d.target = e.source = v) → (YH((u′, v′)) = XG(v))),

• ∀e′ = (u′, v′) ∈ EH, d = g−1(u′) ∈ VG , e = g−1(v′) ∈ VG ,
(d.target = e.source) ∧ (YH(e′) = XH(d.target)).

We write H as L(G) where L : G → H refers to the edge-
to-vertex transform. Based on the definition, the number of
vertices of H is the same as the number of edges of G, and
the number of edges of H equals to

∑
v∈VG

d−v · d+v . But
there are two worst cases: empty or complete line graphs.

3.2. Non-injective Edge-to-vertex Transforms

As the vertices of the line graph H corresponds to the edges
of the original graph G, some properties of G that depend
only on adjacency between edges may be preserved as equiv-
alent properties in H that depend on adjacency between
vertices. Intuitively, we have one question of whether we
can transform the line graph back to its original graph by a
function L−1 : H → G. The answer is no, because some
information may be lost. The reason behind is that some
vertices in the original graph are located in claw structures.
One classic case is a 3-claw structure and a triangle having
the same line graph in undirected scenarios. In fact, directed
cases are more general: an extreme case is that all directed
2-path structures (i.e., two vertices are connected by one
edge) with the same edge label have the same line graph.

Two claws with similar structures but different labels may
also result in the same line graph. Figure 1 demonstrates the
3-claw examples, and more complicated structures can be
enumerated by extending these claws. All these instances
have one thing in common: the information from those ver-
tices with 0 indegree or 0 outdegree gets lost during the
edge-to-vertex transform. It is easy to get the Lemma 3.2
from Definition 3.1.

Lemma 3.2. During the edge-to-vertex transform over a
directed graph G, the information of a vertex v is preserved
if and only if its indegree d−v is nonzero and its outdegree
d+v is nonzero. In particular, there are d−v · d+v copies in the
line graph H = L(G).

3.3. Injective and Inversive Edge-to-vertex Transforms

Liu & Song (2022) addressed the lost of information by
introducing reversed edges with specific edge labels. With
the help of reversed edges, all (non-isolated) vertices have
nonzero indegrees and nonzero outdegrees. However, this
strategy makes the graph and corresponding line graph
extremely dense. Assume a graph G and its line graph
H = L(G), then the modified graph doubles the number of
edges, and the corresponding line graph has 2|VH| vertices
and

∑
v∈VG

(d−v + d+v )
2 ≥ 4|EH| edges. As a result, the

line graph cannot be used directly in practice. To say the
least, it doubles the computation of graph convolutions and
quadruples that of line graph convolutions. Therefore, we
propose our efficient solution to eliminate the 0-indegree
vertices and 0-outdegree vertices by adding dummy edges
starting from and sinking to one particular dummy node.

Corollary 3.3. Given a directed graph G with n vertices,
the modified graph Gφ involves one dummy node φ and 2n
dummy edges where this special dummy node connects every
v ∈ VG by two dummy edges (φ, v) and (v, φ). During
the edge-to-vertex transform L over Gφ, the information of
each vertex v ∈ G is preserved. In particular, there are
(d−v + 1) · (d+v + 1) copies in the line graph Hφ = L(Gφ).
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(a) edge-to-vertex transform LΦ

(b) inverse edge-to-vertex transform L−1
Φ

Figure 2. Our proposed edge-to-vertex transforms LΦ over 3-claws
and the inverse transform L−1

Φ , where numbers located in circles
indicates the original vertex ids, numbers located in squares indi-
cates the pairs of original source id and original target id.

According to Definition 3.1, we have the statistics of the
line graph Hφ:

|VHφ | = m+ 2n = |VH|+ 2n, (1)

|EHφ
| =

∑
v∈VG′

d−v · d+v

= n2 +
∑
v∈VG

(d−v + 1) · (d+v + 1)

=
∑
v∈VG

d−v · d+v + n2 + n+m+m

= |EH|+ n2 + n+m+m. (2)

As Corollary 3.3, all original vertices are stored in the line
graph. But the costs are not negligible. The number of
vertices in the line graph obviously increases by 2n. But the
worst thing is dramatical growth of the number of edges in
an additional complexity O(n2). To investigate further, we
transform a directed 3-claw for demonstration. As shown
in Figure 2a, the step 2⃝ is the conventional edge-to-vertex
transform over Gφ. The edges in its line graph Hφ can be
divided into five categories:

• |EH| edges are connections through the original n ver-
tices, which can be preserved by the transform without
the help of dummy node;

• n2 edges are connections between dummy edges
through the dummy node;

• n edges are connections between dummy edges
through the original n vertices;

• m edges start from the original edges and sink to the
dummy edges;

• m edges start from the dummy and sink to the original.

In fact, the n2 edges plotted as dashed grey lines are useless
in original structure preserving since these edges does not
store any graph-specific properties. On the contrary, each
of the n edges marked in blue maintains original vertex
properties. However, Corollary 3.3 confirms that there are
(d−v + 1) · (d+v + 1) = (d−v · d+v + d−v + d+v ) + 1 copies for
an original vertex v ∈ VG . Since d−v · d+v + d−v + d+v > 0
holds for connected components except an isolated point, it
is also safe to remove these n edges when |EG | = m > 0.

After deleting the n2 + n edges, we find there is no
connections between dummy edges anymore. Thus, we
merge the corresponding 2n vertices as one dummy Φ and
finally get the new transformed graph HΦ with

|VHΦ
| = m+ 1 = |VH|+ 1, (3)

|EHΦ | =
∑
v∈VG

(d−v · d+v + d−v + d+v ) = |EH|+ 2m, (4)

where H is the line graph of the original graph G. The new
edge-to-vertex transform LΦ is shown in Figure 2a. And
we provide Algorithm 1 in Appendix A for details.

Since no vertex information or edge information gets lost,
the next is to find the inverse transform L−1

Φ . Because both
Gφ and HΦ contain a special dummy node, respectively, we
consider the same strategy to merge vertices. Before that,
original vertex ids are assigned as edge ids for HΦ. We are
surprised to find that it is easy to get vertices and edges of
G from L(HΦ) after removing dummy edges. The process
is shown in Figure 2b, and the algorithm is described in
Algorithm 2 in Appendix A. Theorem 3.4 shows that the
inverse of LΦ always exists.

Theorem 3.4. For any HΦ transformed by LΦ such that
HΦ = LΦ(G), L−1

Φ can always transform HΦ back to G,
i.e., L−1

Φ (LΦ(G)) = G.

Proof. Let G′ be L−1
Φ (LΦ(G)), G′

i⃝ be the resulting graph
of the step i⃝ (i ∈ {1, 2, 3}) of L−1

Φ .

Each vertex w of HΦ except the dummy Φ corresponds
to one edge (e.g., e = (u, v)) of G, and Φ connects w
with two edges where (Φ, w) is associated with label
XG(u) and (w,Φ) is associated with label XG(v). After
the step 1⃝, (Φ, w) is transformed as one vertex with id
u and label XG(u), and (w,Φ) is converted as one vertex
with id v and label XG(v). Similarly, other edges not
connecting Φ can also be transformed as vertices. We have:

|VG′
1⃝
| =

∑
v∈VG

(d−v · d+v + d−v + d+v ),

where vertex v in G appears d−v · d+v + d−v + d+v
times (that is nonzero) in G′

1⃝. On the other
hand, the indegree and the outdegree of w are
d−u + 1 and d+v + 1, respectively. Thus, we get:
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(a) one vertex with 0 indegree,
two vertices with 0 outdegree

(b) one vertex with 0 indegree,
three vertices with 0 outdegree

(c) two vertices with 0 indegree,
one vertex with 0 outdegree

(d) three vertices with 0 indegree,
one vertex with 0 outdegree

Figure 3. Examples of directed 3-claws and new transformed edge-to-vertex graphs by LΦ.

|EG′
1⃝
| =

∑
w∈HΦ

d−w · d+w

= m2 +
∑

(u,v)∈EG

(d−u + 1) · (d+v + 1)

= 2
∑
v∈VG

d−v · d+v +
∑

(u,v)∈EG

d−u · d+v +m2 +m,

where 2
∑

v∈VG
d−v · d+v says inedge (?, v) is copied d+v

times thanks to (w,Φ) and outedge (v, ?) is copied d+v
times due to (Φ, w),

∑
(u,v)∈EG

d−u · d+v refers to the
transformed edges by L(L(G)), m2 corresponds to dummy
edges, m indicates original edges recovered by (Φ, w) and
(w,Φ) directly.

As we store vertex ids and vertex labels from G in edges of
HΦ, we get VG′

2⃝
is exactly the same as VG after merging

vertices with same information. Since the step 3⃝ does not
remove vertices further, for VG′ = VG holds.

Edges are merged based on source ids and target ids in the
step 2⃝, and additional dummy edges are removed in the
step 3⃝. Therefore, EG ⊆ EG′ ⊆ EG′

1⃝
. Next, we prove

EG = EG′ by ∀(u′′, v′′) ∈ EL(L(G)),YL(L(G))((u
′′, v′′)) ⊆

YG((u
′′.id, v′′.id)). Beineke (1968) and Beineke & Zam-

firescu (1982) discussed L(L(G)) in more detail. We simply
prove in another direction. Let SG = {u′ ∈ VG |d−u′ = 0},
TG = {v′ ∈ VG |d+v′ = 0}, and UG = {v|d−v · d+v > 0} =
VG −SG ∪ TG then any edge e in SG × TG corresponds to a
isolated vertex in L(G) so that it gets lost in L(L(G)), i.e.,
ϕ ⊆ YG(e). For other vertices UG = {v|d−v + d+v > 0},
any edge e = (u, v) ∈ UG × UG ∩ EG is located in at least
one 3-diwalk, e.g., s → u → v → t where s, t ∈ VG . Then
L(G) converts this 3-diwalk to a 2-diwalk su′ → uv′ →
vt′, and L(L(G)) finally results in a 1-diwalk u′′ → v′′

where u′′ corresponds to u and v′′ corresponds to v, i.e.,
YL(L(G))((u

′′, v′′)) = YG((u, v)). Hence, ∀(u′′, v′′) ∈
EL(L(G)),YL(L(G))((u

′′, v′′)) ⊆ YG((u
′′.id, v′′.id)). That

is to say, both 2
∑

v∈VG
d−v ·d+v edges and

∑
(u,v)∈EG

d−u ·d+v
edges are going to be merged into m edges in the step 2⃝
and |EG′ | = m. Considering EG ⊆ EG′ and m = EG , we

have EG′ = EG . Clearly, G′ = G. And this finishes the
proof.

Considering the symmetry between Gφ and HΦ where the
dummy node serves as a hub to connect all other vertices,
we call Gφ and HΦ conjugate of each other.

Figure 3 illustrates the new transformed edge-to-vertex
graphs over 3-claws. As observed, all vertex information
is preserved in new transformed graphs, the union of line
graphs and six heterogeneous edges connecting dummy Φ.

3.4. Transforms and Morphisms

As LΦ is a structure-preserving map, we are also interested
in the connections between LΦ and morphisms. In graph
theory, one of the most important bijective morphisms is the
isomorphism.

Definition 3.5 (Isomorphism). A graph G1 is isomorphic to
a graph G2 if there is a bijection f : VG1

→ VG2
such that:

• ∀v ∈ VG1
,XG1

(v) = XG2
(f(v)),

• ∀v′ ∈ VG2 ,XG2(v
′) = XG1(f

−1(v′)),

• ∀(u, v) ∈ EG1
,YG1

((u, v)) = YG2
((f(u), f(v))),

• ∀(u′, v′) ∈ EG2
,YG2

((u′, v′)) = YG1
((f−1(u′), f−1(v′))).

We write G1 ≃ G2 for such the isomorphic property, and F
is named as an isomorphism. For two isomorphic graphs,
they are also regarded as both permutation.

LΦ and L−1
Φ are also morphisms from graphs to graphs. In

particular, L−1
Φ is an epimorphism based on Theorem 3.4.

The following Propositions 3.6 shows that LΦ is a monomor-
phism.

Proposition 3.6. LΦ is a monomorphism.

Proof. To prove that LΦ is a monomorphism, we seek to
show LΦ(G1) = LΦ(G2) → G1 = G2 for any G1,G2. Theo-
rem 3.4 shows that L−1

Φ always exists, and L−1
Φ (LΦ(G1)) =
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G1, L−1
Φ (LΦ(G2)) = G2 always holds. Given LΦ(G1) =

LΦ(G2), we have L−1
Φ (LΦ(G1)) = L−1

Φ (LΦ(G2)), which
implies G1 = G2. And this finishes the proof.

Propositions 3.6 is important because we can apply the
edge-to-vertex transform LΦ before other morphisms and
functions without breaking properties, such as Corollary 3.7.

Corollary 3.7. Isomorphisms hold after LΦ.

More generally, permutation-invariant functions are ex-
pected to acquire the same outputs among permutations.
In view of Corollary 3.7, we get the following consequence:

Corollary 3.8. If a function h is permutation-invariant, then
h ◦ LΦ is also permutation-invariant.

This helps us to apply vertex-centric graph kernel functions
and graph neural networks to learn edge-centric representa-
tions. And all above indicate that the graph with a dummy
node Gφ is better to learn structure information than G.

4. Methodology
In this section, we extend effective machine learning kernel
functions and deep graph neural networks with dummy
nodes and our proposed edge-to-vertex transform LΦ.

4.1. Extensions of Graph Kernel Functions

A graph kernel (GK) is a symmetric, positive semi-definite
function defined on the graph space. It is usually expressed
as an inner product in Hilbert space (Kriege et al., 2020)
such that k(G1,G2) = ⟨h(G1), h(G2)⟩, where k is the
kernel function and h is the permutation-invariant function
from graph space to Hilbert space. In general, k measures
the similarity between two graphs, and the graph simi-
larity is directly related to graph comparison in machine
learning. In this paper, we aim to explore the power of
dummy nodes, so we adopt graph-structure-sensitive and
attribute-sensitive kernels, like Weisfeiler-Lehman Subtree
Kernel (WL) (Shervashidze et al., 2011). We generalize
these kernels with dummy nodes (denoted as kφ) and the
edge-to-vertex transform (denoted as kΦ):

kφ(G1,G2) = k(G1,G2) + k(Gφ1 ,Gφ2)

= ⟨h(G1), h(G2)⟩+ ⟨h(Gφ1), h(Gφ2)⟩, (5)
kΦ(G1,G2) = k(G1,G2) + k(HΦ1 ,HΦ2)

= ⟨h(G1), h(G2)⟩+ ⟨h(LΦ(G1)), h(LΦ(G2))⟩, (6)

where Gφ1
and Gφ2

respectively correspond to graphs G1

and G2 with a dummy node φ and dummy edges, and
HΦ1

= LΦ(G1) and HΦ2
= LΦ(G2) are transformed by

the proposed LΦ, each of which contains a dummy node
Φ. We add the k(G1,G2) term in kφ and kΦ to enforce the
kernel functions to pay more attention to original structures;

otherwise, the dummy node and dummy edges may bring
some side effects.

4.2. Extensions of Graph Neural Networks

Many graph neural networks (GNNs) have been proposed
to learn graph structures, such as GCN (Kipf & Welling,
2017), GraphSAGE (Hamilton et al., 2017b), GIN (Xu
et al., 2019). Most can be unified in the Message Passing
framework (Gilmer et al., 2017):

∆(t+1)
v = Aggregate({Message(x(t)

v ,x(t)
u ,y(u,v))|u ∈ Nv}),

x(t+1)
v = Update(xv,∆

(t+1)
v ),

where x
(t)
v is the hidden state of vertex v at the t-th layer

network, Nv is v’s neighbor collection, y(u,v) is the edge
tensor for (u, v), ∆(t+1)

v is the aggregated message from
neighbors, Aggregate is a permutation-invariant functions
(e.g., Sum) to aggregate all messages as one, and Update

is a combination function (e.g., Add) to fuse ∆
(t+1)
v and

x
(t)
v as the new state x

(t+1)
v . After introducing a dummy

node to G, the neighbor collection is extended with a
dummy node φ, and the dummy node serves to aggregate
the global graph information in turn. Similarly, we feed
LΦ(G) as the input to learn the graph representation, where
such neural networks actually model the edges in G.

4.3. Efficiency of Extensions

4.3.1. LEARNING WITH Gφ

Even though we introduce one particular dummy node and
2n dummy edges to G (where n is the vertex size of G),
kernels’ complexities when the size respect graphlets or
tuples is not too large, denoted as k in Sec. 1. GNNs yield
additional computation of the 2n dummy edges, but it is still
efficient because we do not involve additional operations
upon existing n vertices and 2n is usually much less than
the existing m edges.

4.3.2. LEARNING WITH HΦ

The overhead of utilizing HΦ include the cost to obtain
and the cost to use. Sec. 3.3 analyzes the former part: H
is constructed in

∑
v∈VG

d−v · d+v = O(d̃ · m), and build-
ing HΦ also requires O((d̃ + 2) · m) = O(d̃ · m), where
d̃ is a coefficient depending on graph structures, which is
usually small and bounded by the maximum outdegree of
G. After transforming G to HΦ, kernels’ complexities in-
crease from O(k ·nk+1) to O(k ·mk+1), and k-layer GNNs’
complexities increase from O(k ·m) to O(k · d̃ ·m). Ker-
nel complexities dramatically increase, but using HΦ looks
more acceptable compared with increasing k; GNNs bene-
fit from parallelization, so the running time also increases
linearly. Overall, using HΦ as input is still efficient.
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Models PROTEINS D&D NCI109 NCI1
G Gφ HΦ G Gφ HΦ G Gφ HΦ G Gφ HΦ

Kernel

SP 73.48±3.93 74.20±3.23 73.39±3.04 80.50±3.66 79.58±3.91 81.51±3.91 73.65±2.34 73.84±2.07 74.11±2.22 74.18±1.67 74.70±1.74 74.40±1.74
GR 70.45±6.54 74.20±4.44 73.66±4.00 78.82±3.83 79.66±5.18 78.82±3.87 66.45±2.14 72.46±2.51 71.81±2.69 65.16±2.30 73.04±1.81 71.07±1.47
WLOA 72.59±2.46 73.84±3.29 74.02±3.47 79.24±3.61 79.24±3.81 78.57±3.59 85.43±1.51 84.61±1.52 84.81±1.11 85.96±1.82 86.33±1.77 86.37±1.75
1-WL 71.79±4.52 73.30±4.14 73.48±5.02 80.50±4.43 81.26±4.08 80.42±3.85 85.54±1.34 83.74±0.94 84.37±1.02 85.13±1.69 84.87±1.77 85.38±1.21
2-WL 74.11±5.19 75.27±4.67 OOM OOM OOM OOM 68.09±1.55 68.38±1.21 72.24±1.85 67.71±1.33 67.49±1.45 69.00±2.34
δ-2-WL 74.20±4.98 74.82±4.16 OOM OOM OOM OOM 68.00±1.94 68.26±1.59 70.34±1.87 67.32±1.34 67.37±1.40 69.20±2.18
δ-2-LWL 73.66±5.10 74.37±3.34 74.11±3.72 77.06±5.99 77.31±5.98 79.41±5.28 84.20±1.44 83.12±1.34 83.82±1.06 85.40±1.28 84.06±1.54 85.40±1.51
δ-2-LWL+ 78.12±4.75 83.48±4.34 84.55±3.62 77.14±6.05 77.56±6.30 79.58±6.24 88.79±0.94 89.42±1.37 88.57±0.97 91.92±1.93 93.67±0.84 91.65±1.96

Network

GraphSAGE 73.48±5.66 73.93±5.68 - 77.73±4.66 78.91±4.59 - 73.38±2.68 74.13±2.30 - 73.82±2.17 74.31±2.27 -
GCN 72.95±3.88 74.02±3.82 - 72.77±4.62 80.76±5.37 - 50.34±2.69 51.67±5.52 - 61.75±11.1 68.95±10.8 -
GIN 73.84±4.46 74.11±4.12 - 76.97±3.87 77.65±3.46 - 72.61±2.37 73.82±2.50 - 73.50±1.80 75.16±1.49 -
RGCN 73.30±4.90 74.98±4.50 75.09±4.03 69.16±9.97 69.24±10.0 78.47±5.24 50.29±2.08 51.52±4.37 71.71±7.59 52.75±4.75 57.27±9.49 74.04±1.15
RGIN 68.75±6.59 70.54±5.03 74.20±2.93 77.65±4.62 78.15±4.60 77.73±4.42 64.20±2.85 64.52±2.58 75.43±3.50 66.11±1.77 66.11±1.69 76.18±2.03
DiffPool 75.62±5.17 75.98±3.89 - 81.41±5.11 80.25±4.69 - 75.29±1.85 75.44±1.90 - 76.62±1.93 77.08±1.33 -
HGP-SL 71.25±7.13 74.46±3.77 - 74.62±3.19 82.07±2.11 - 74.78±2.37 74.32±1.84 - 74.94±0.88 76.08±1.94 -

Average 73.13±2.10 74.77±2.60 75.31±3.53 77.20±3.26 78.59±3.05 79.31±1.13 72.07±11.20 72.62±10.53 77.72±6.51 73.48±10.16 75.10±8.98 78.27±7.77

Table 1. Accuracies on graph classification, where “OOM” means out-of-memory, the best results are highlighted in bold, and the average
results are italicized.

5. Experiment
To evaluate the effectiveness of dummy nodes, we conduct
two (sub)graph-level tasks. On graph classification, we
use both kernel functions and graph neural networks; on
subgraph isomorphism counting and matching, we only em-
ploy neural methods upon the generalization. Appendix B
provides more details of experiments.

5.1. Graph Classification

Datasets. We select four benchmarking datasets where
current state-of-the-art models face overfitting problems:
PROTEINS (Borgwardt et al., 2005), D&D (Dobson & Doig,
2003), NCI109, and NCI1 (Wale et al., 2008). The highest
accuracies on these datasets are around 70% ∼ 90%, and
we want to explore the gain of dummy nodes.

Graph Kernels. We use the open-source GKs for a fair
comparison. Morris et al. (2020) released a toolkit with
an efficient C++ implementation of current best-performed
GKs.1 Based on their experiments, we choose eight ker-
nel functions: Shortest-path Kernel (SP) (Borgwardt &
Kriegel, 2005), Graphlet Kernel (GR) (Shervashidze et al.,
2009), Weisfeiler-Lehman Optimal Assignment Kernel
(WLOA) (Kriege et al., 2016), Weisfeiler-Lehman Subtree
Kernels (1-WL and 2-WL) (Shervashidze et al., 2011), their
proposed δ-2-WL, δ-2-LWL, and δ-2-LWL+. The kernel
functions for Gφ and HΦ are described in Sec. 4.1. Specifi-
cally, to handle G, Gφ and HΦ, GKs are equipped with their
original kernel functions, Eq. (5), and Eq. (6), respectively.

Graph Neural Networks. We adopt the PyG library (Fey &
Lenssen, 2019) to implement the neural baselines. We con-
sider the three most-famous networks, GraphSAGE (Hamil-
ton et al., 2017b), GCN (Kipf & Welling, 2017) and
GIN (Xu et al., 2019), as well as two state-of-the-art

1https://www.github.com/chrsmrrs/sparsewl

pooling-based networks, DiffPool (Ying et al., 2018) and
HGP-SL (Zhang et al., 2019). Seeing that edge-to-vertex-
transformed graphs (HΦ) involve edge labels, we use two
relational GNNs, RGCN (Schlichtkrull et al., 2018) and
RGIN (Liu et al., 2020), to better utilize edge type informa-
tion. Note that we do not concatenate features from G for
fairness, and we hope GNNs can learn from data.

Results and Discussion. Experimental results on graph clas-
sification benchmarks are shown in Table 1. Note that some
models (GCN, GIN, GraphSAGE, DiffPool, and HGP-SL)
are not designed to handle edge types. For a fair compari-
son, we do not evaluate these models’ performance on the
transformed graph HΦ. We observe consistent improvement
in performance after adding dummy nodes (Gφ) to the orig-
inal graphs (G) for most classifiers. When the input is the
graphs (HΦ) transformed by LΦ, we also see the further
improvement on average. Any progress on graph kernels
is not easy, but our kernel modification helps almost all
kernels over four datasets. And kernels with the 2-order
structures nearly surpass the 1-order kernels and classical
graph neural networks with the expressive power no more
than 1-WL. Obtaining global high-order structure statistics
is time-consuming, but the local variants δ-2-LWL, and δ-
2-LWL+ achieves the best tradeoff between efficiency and
effectiveness.2 GNNs with pooling capture the hierarchical
graph structures and outperform simple GNNs. GNNs with
Gφ can compete against DiffPool with Gφ, but DiffPool
and HGP-SL can further benefit from the artificial dummy
nodes. On the other hand, relational GNNs can handle vari-
ous edge types in HΦ. Accuracies get boosted again when
the input changes from Gφ to HΦ. We also notice the un-
stable performance in GCN and RGCN on D&D and NCI1.
Using Gφ instead of G cannot solve their oversmoothing

2Even for the fastest δ-3-LWL+, it either requires over 20,000
seconds (for NCI109 and NCI1) or causes the out-of-memory issue
(for PROTEINS and D&D), but there is no further improvement.

https://www.github. com/chrsmrrs/sparsewl


Boosting Graph Structure Learning with Dummy Nodes

Models
Homogeneous Heterogeneous

Erdős-Renyi Regular Complex MUTAG
RMSE MAE GED RMSE MAE GED RMSE MAE GED RMSE MAE GED

RGCN G 9.386 5.829 28.963 14.789 9.772 70.746 28.601 9.386 64.122 0.777 0.334 1.441
Gφ 7.764 4.654 24.438 14.077 9.511 71.393 26.389 7.110 55.600 0.534 0.191 1.052

RGIN G 6.063 3.712 22.155 13.554 8.580 56.353 20.893 4.411 56.263 0.273 0.082 0.329
Gφ 4.769 2.898 15.219 10.871 6.874 43.537 19.436 3.846 41.337 0.193 0.064 0.277

HGT G 24.376 14.630 104.000 26.713 17.482 191.674 34.055 8.336 70.080 1.317 0.526 3.644
Gφ 5.969 3.691 23.401 13.813 8.813 64.926 20.841 4.707 47.409 0.876 0.345 2.973

CompGCN G 6.706 4.274 25.548 14.174 9.685 64.677 22.287 5.127 57.082 0.300 0.085 0.278
Gφ 4.981 3.019 16.263 11.450 7.443 46.802 20.786 4.048 56.269 0.321 0.089 0.262

DMPNN G 5.330 3.308 23.411 11.980 7.832 56.222 18.974 3.992 56.933 0.232 0.088 0.320
Gφ 5.220 3.130 23.285 11.259 7.136 49.179 18.885 3.892 73.161 0.259 0.101 0.623

Deep-LRP G 0.794 0.436 2.571 1.373 0.788 5.432 27.490 5.850 56.772 0.260 0.094 0.437
Gφ 0.710 0.402 2.218 1.145 0.718 4.611 24.458 5.094 57.398 0.356 0.115 0.849

DMPNN-LRP G 0.475 0.287 1.538 0.617 0.422 2.745 20.425 4.173 32.200 0.196 0.062 0.210
Gφ 0.477 0.260 1.457 0.633 0.413 2.538 18.127 4.112 39.594 0.186 0.057 0.265

Table 2. Performance on subgraph isomorphism counting and matching.

problem, although their performance becomes slightly bet-
ter to a certain degree. As a comparison, GraphSAGE using
Max and GIN using Sum can provide the steady criterion
whenever the input graphs with dummy or not. One negative
observation is the over-parameterization problem in RGCN
and RGIN. They can perform as expected only when feed-
ing HΦ with numerous edge types. How to help relational
GNNs handle dummy edges is one of our future work. We
also think the combination of pooling with heterogeneous
information is promising.

Relevance to Over-smoothing. Adding dummy nodes to
graphs can help alleviate the over-smoothing issue. For
instance, on the NCI1 dataset, a 2-layer GIN achieves
73.50±1.80 (75.16±1.49) accuracy on G (Gφ); a 4-layer
model achieves 71.97±1.46 (75.11±1.88) accuracy on G
(Gφ). We can see that: (1) on G, the model performs worse
while its number of layers increases, indicating the over-
smoothing does exist, and (2) on Gφ, the model achieves
comparable performance after stacking layers, meaning
adding dummy nodes help overcome the over-smoothing.

To understand why, let’s take a look at a 2-layer GNN. The
first layer helps every vertex receive one-hop information.
At this time, the dummy node aggregates all vertex informa-
tion. The second layer helps every vertex receive two-hop
information (from its neighbors) and global information
(from the dummy node). The dummy provides every vertex
v with additional information of all vertices, helping v dif-
ferentiate the intersection of the one-hop and the two-hop,
and other vertices beyond two hops. In this way, with the
help of the “shortcut” by the dummy, the learned vertex
representations of are more distinct from each other. This
also applies for deeper layers, and we observe the models
with dummy nodes are more robust against over-smoothing.

5.2. Subgraph Isomorphism Counting and Matching

Datasets. We evaluate neural methods on two synthetic
homogeneous datasets with 4 graphlet patterns (Chen et al.,
2020), one synthetic heterogeneous dataset with 75 random
patterns up to eight vertices, and one mutagenic compound
dataset MUTAG with 24 artificial patterns (Liu et al., 2020).

End-to-end Framework Considering the complexity and
the generalization, we follow the neural framework pro-
posed by Liu et al. (2020) and employ their released imple-
mentation.3 The end-to-end framework includes four parts:
encoding, representation, fusion, and prediction. It sup-
ports sequence models (e.g., RNN) and graph models (e.g.,
RGCN). Based on their practical experience, we only con-
sider the effective graph models, including RGCN, RGIN,
CompGCN, DMPNN, Deep-LRP, and DMPNN-LRP (Liu
& Song, 2022). We also implement HGT (Hu et al., 2020)
to see whether relation-specific attention performs well and
whether dummy nodes can help it. The framework utilizes
one feed-forward network to make predictions at the graph
level, i.e., FFNcounting(Concat(xv,p,xv−p,xGv

⊙p)), and
another one feed-forward network to make predictions at the
vertex level, i.e., FFNmatching(Concat(g,p, g − p, g ⊙ p)),
where p is the pattern representation by applying pooling
over the pattern’s vertex representations, xv is the graph
vertex representation, and g is the sum of {xv|v ∈ VG}.

Evaluation Metric. The counting prediction is modeled
as regression, so RMSE and MAE are adopted to estimate
global inference skills. To evaluate the ability of local deci-
sion making, we require models to predict the frequency of
each node that how many times it appears in all isomorphic
subgraphs, so graph edit distance (GED) serves as a metric.

3https://github.com/HKUST-KnowComp/
DualMessagePassing

https://github.com/HKUST-KnowComp/DualMessagePassing
https://github.com/HKUST-KnowComp/DualMessagePassing


Boosting Graph Structure Learning with Dummy Nodes

Figure 4. RMSE of RGIN, DMPNN, and DMPNN-LRP with dif-
ferent input graph structures on the Complex dataset.

Results and Discussion. Table 2 lists the performance on
subgraph isomorphism counting and matching. Almost all
graph models consistently benefit from the dummy nodes. In
particular, RGIN outperforms other GNNs. Both RGCN and
RGIN use relation-specific matrices to transform neighbor
messages, but we still observe that RGIN has greater aver-
age relative error reductions (19.35% of RMSE and 24.06%
of GED) than RGCN (15.28% of RMSE and 13.75% of
GED). One interesting observation is that HGT has the most
prominent performance boost by a 49.02% relative error
reduction of RMSE, a 50.58% relative error reduction of
MAE, and a 49.59% relative error reduction of GED on
average. We can explain that the dummy nodes provide
an option to drop all pattern-irrelevant messages. Without
such dummy nodes and edges, irrelevant messages would
always be aggregated as side-effects. DMPNN, as the previ-
ous state-of-the-art model, has minor overall improvement
and even a slight drop of GED on heterogeneous data. The
possible reason is the star topology, making the edge repre-
sentation learning based on line graphs difficult. CompGCN
fixes edge presentations and focuses on graph structures,
yielding a 17.79% reduction of GED. On the other hand,
DMPNN-LRP combines dual message passing with pooling
on explicit neighbor permutations and obtains the lowest
errors on homogeneous data, but it still faces the same prob-
lem that matching errors increase on heterogeneous graphs.

We also consider adding reversed edges and dummy nodes
and edges simultaneously. Figure 4 illustrates the counting
error changes on the Complex data. We note that the two
strategies work together well on RGIN, but the boost of
DMPNN and DMPNN-LRP mainly comes from reversed
edges. We believe this issue can be addressed in the future
since we see their cooperation in DMPNN-LRP and the
success of graph classification with HΦ in Sec. 5.1.

6. Expressive Power of MPNNs with Dummy
Nodes and Transformers with CLS Tokens

In fact, the edge-to-vertex transform LΦ corresponds to the
construction of local 2-tuples in δ-2-LWL+ (Morris et al.,
2020). And we can conclude that message passing neu-
ral networks (MPNNs) with HΦ have the same expressive
power of δ-2-LWL+ with G. And it has been proven that
δ-k-LWL+ is strictly more powerful than k-WL. That is,

MPNNs with HΦ are more powerful than 2-WL with G.
And we also know that MPNNs are no more powerful than
2-WL (Chen et al., 2020) and usually as same powerful as
1-WL (Xu et al., 2019), so we have successfully empowered
the MPNNs to surpass 2-WL with the help of HΦ. The
inverse transform L−1

Φ can always recover G back if the
vertex id information is provided. This implies that MPNNs
with Gφ and vertex id information should have the same
expressive power as MPNNs with HΦ.

Graph attention networks (GATs) (Velickovic et al., 2018)
and heterogeneous graph transformers (HGTs) (Hu et al.,
2020) also belong to the message passing framework.
Therefore, the above discussions are applicable to them.
Transformer-based encoders (Vaswani et al., 2017) regard
the input as a fully-connected graph and adopt attention to
explicitly learn pair-wise connections and implicitly learn
global patterns. For each vertex (token), all other vertices
and itself are served as its neighbors, indicating a stronger
discriminative capability than GATs and HGTs. Thus, trans-
formers with dummy nodes (usually named CLS tokens)
should be more powerful than 2-WL. Based on the analyses
in (Chen et al., 2020), a 12-layer transformer encoder can
capture patterns size of at most 3 · 212 = 12288, and a 24-
layer model can almost learn any patterns. And that is the
reason why transformers dominate the sequence encoding.

7. Conclusion
In this paper, we analyze the role of dummy nodes in the
lossless edge-to-vertex transform. We further prove that a
dummy node with connections to all existing vertices can
preserve the graph structure. Specifically, we design an
efficient monomorphic edge-to-vertex transform and find
its inverse to recover the original graph back. We extend
graph kernels and graph neural networks with dummy nodes.
Experiments demonstrate the success of performance boost
on graph classification and subgraph isomorphism counting
and matching. Last, we discuss the capability of MPNNs
and Transformers with special dummy elements.
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Boosting Graph Structure Learning with Dummy Nodes

A. Algorithms for LΦ and L−1
Φ

Algorithm 1 Edge-to-vertex transform LΦ

input a connected directed graph G with n vertices and m edges
(m > 0), a special vertex label for dummy nodes xφ

1: let yφ as the special edge label for dummy edges
2: add one dummy node φ with label xφ

3: for each v in VG − {φ} do
4: add two dummy edges (v, φ) and (φ, v) with label yφ
5: end for // {end of step 1⃝}
6: get the line graphHΦ = L(G)
7: assign edge ids with original vertex ids // {end of step 2⃝}
8: add a single dummy node Φ
9: for each e = (u, v) in EHΦ do

10: if u is associated with label yφ and v is associated with
label yφ then

11: delete e
12: else if u is associated with label yφ then
13: add one edge (Φ, v) with e’s id and labels YHΦ(e)
14: delete e
15: else if v is associated with label yφ then
16: add one edge (u,Φ) with e’s id and labels YHΦ(e)
17: delete e
18: end if
19: end for
20: for each v in VHΦ do
21: if v is associated with label yφ then
22: delete v
23: end if
24: end for // {end of step 3⃝}
output the transformed graphHΦ

B. Details of Experiments
B.1. Environment

We conduct our experiments on one CentOS 7 server with 2
Intel Xeon Gold 5215 CPUs and 4 NVIDIA GeForce RTX
3090 GPUs. The software versions are: GNU C++ Compiler
5.2.0, Python 3.7.3, PyTorch 1.7.1, torch-geometric 2.0.2,
and DGL 0.6.0.

B.2. Graph Classification

B.2.1. DATASETS

Dataset statistics are listed in Table 3. To construct the
dataset with dummy node information, we add an extra
dummy node to each graph and connect it with all the other
vertices in the graph with bidirectional edges. When one
graph is undirected, we employ the common practice to
replace one undirected edge with one directed edge and its
reverse. Following previous work (Zhang et al., 2019), we
randomly split each dataset into the training set (80%), the
validation set (10%), and the test set (10%) in each run.

Algorithm 2 Inverse edge-to-vertex transform L−1
Φ

input a transformed graphHΦ obtained by LΦ, a special vertex
label for dummy nodes xφ

1: get the line graph G = L(HΦ)
2: assign vertex ids with the original edge ids // {end of step 1⃝}
3: create an empty mapping I
4: for each e = (u, v) in EG do
5: if u.id not in I and v.id not in I then
6: set I(u.id)← u and I(v.id)← v
7: else if u.id not in I then
8: add one edge (u, I(v.id)) with e’s id and labels
9: delete e

10: set I(u.id)← u
11: else if v.id not in I then
12: add one edge (I(u.id), v) with e’s id and labels
13: delete e
14: set I(v.id)← v
15: else if u ̸= I(u.id) or v ̸= I(v.id) then
16: add one edge (I(u.id), I(v.id)) with e’s id and labels
17: delete e
18: end if
19: end for
20: for each v in VG do
21: if v ̸= I(v.id) then
22: delete v
23: end if
24: end for // {end of step 2⃝}
25: for each e in EG do
26: if e is associated with label xφ then
27: delete e
28: end if
29: end for // {end of step 3⃝}
output the transformed graph G

B.2.2. IMPLEMENTATION DETAILS

• Kernel Methods. We compile kernel functions with
C++11 features and -O2 flag. After obtaining normal-
ized Gram matrices, SVM classifiers are trained based
on LibSVM4 and wrapped by sklearn.

• Graph Neural Network Based Methods. We imple-
ment and evaluate all our graph neural network based
models with the PyG library. For GraphSAGE, GIN
and DiffPool, we adapt the implementation by Errica
et al. (2020).5 To implement our RGCN, we modify the
PyG implementation6 by adding 3 fully connected lay-
ers after the convolutional layers. The RGIN convolu-
tional layer can be adapted from a RGCN convolutional
layer, by setting the aggregation function as Sum, and
followed by a multi-layer perceptron. For HGP-SL, we
use the official code.7 We observe a performance drop

4https://www.csie.ntu.edu.tw/˜cjlin/
libsvm

5https://github.com/diningphil/
gnn-comparison

6https://github.com/pyg-team/pytorch_
geometric/blob/master/examples/rgcn.py

7https://github.com/cszhangzhen/HGP-SL

https://www.csie.ntu.edu.tw/~cjlin/libsvm
https://www.csie.ntu.edu.tw/~cjlin/libsvm
https://github.com/diningphil/gnn-comparison
https://github.com/diningphil/gnn-comparison
https://github.com/pyg-team/pytorch_geometric/blob/master/examples/rgcn.py
https://github.com/pyg-team/pytorch_geometric/blob/master/examples/rgcn.py
https://github.com/cszhangzhen/HGP-SL


Boosting Graph Structure Learning with Dummy Nodes

Dataset # Graphs # Classes Avg. |VG | Avg. |EG | |XG | |YG |

PROTEINS
G 1,113 2 39.1 145.6 3 1
Gφ 1,113 2 40.1 223.7 4 2
HΦ 1,113 2 146.6 885.9 2 4

D&D
G 1,178 2 284.3 1431.3 82 1
Gφ 1,178 2 285.3 2000.0 83 2
HΦ 1,178 2 1432.3 10875.5 2 83

NCI109
G 4,127 2 29.7 64.3 38 1
Gφ 4,127 2 30.7 123.6 39 2
HΦ 4,127 2 65.3 285.8 2 39

NCI1
G 4,110 2 29.9 64.6 37 1
Gφ 4,110 2 30.9 124.3 38 2
HΦ 4,110 2 65.6 287.0 2 38

Table 3. Dataset statistics on graph classification.

compared with the results reported in their paper, either
when it runs with a newer version of torch-sparse (in
our setting, torch-sparse=0.6.9), or with the version re-
ported in their GitHub page (torch-sparse=0.4.0). For a
fair comparison with other baseline models, we choose
to use our current software versions.

B.2.3. HYPER-PARAMETER SETTINGS

For reproducibility, we run all the experiments 10 times
with random seeds {2020, 2021, · · · , 2029}, and report the
sample mean and standard deviation of test accuracies.

• Kernel Methods. For kernel methods, we
search for the regularization parameter C within
{10−7, 10−6, · · · , 103} for each seed and correspond-
ing training data. The best hyper-parameter setting is
chosen by the best validation performance.

• Graph Neural Network Based Methods. We use
the Adam optimizer (Kingma & Ba, 2015) to opti-
mize the models. Following Zhang et al. (2019), an
early stopping strategy with patience 100 is adopted
during training, i.e., training would be stopped when
the loss on validation set does not decrease for over
100 epochs. For GraphSAGE, GIN and DiffPool, the
optimal hyper-parameters are found using grid search
within the same search ranges in (Errica et al., 2020).
For HGP-SL, we follow the official hyper-parameters
reported in their GitHub repository. For models using
graph convolutional operator (Kipf & Welling, 2017)
(GCN, DiffPool, HGP-SL), we additionally impose a
learnable weight γ on the dummy edges. The weights
for all the other edges is set as 1, and γ is initialized
with different values in {0.01, 0.1, 1, 10}. For rela-
tional models RGCN and RGIN, we search for the
learning rate within {1e−2, 1e−3, 1e−4}, batch size
∈ {128, 512}, hidden dimension ∈ {32, 64}, dropout
ratio ∈ {0, 0.5}, and number of layers ∈ {2, 4}.

Erdős-Renyi Regular Complex MUTAG

# Train 6,000 6,000 358,512 1,488
# Valid 4,000 4,000 44,814 1,512
# Test 10,000 10,000 44,814 1,512

Max Avg. Max Avg. Max Avg. Max Avg.
|VP | 4 3.8±0.4 4 3.8±0.4 8 5.2±2.1 4 3.5±0.5
|EP | 10 7.5±1.7 10 7.5±1.7 8 5.9±2.0 3 2.5±0.5
|XP | 1 1±0 1 1±0 8 3.4±1.9 2 1.5±0.5
|YP | 1 1±0 1 1±0 8 3.8±2.0 2 1.5±0.5
|VG | 10 10±0 30 18.8±7.4 64 32.6±21.2 28 17.9±4.6
|EG | 48 27.0±6.1 90 62.7±17.9 256 73.6±66.8 66 39.6±11.4
|XG | 1 1±0 1 1±0 16 9.0±4.8 7 3.3±0.8
|YG | 1 1±0 1 1±0 16 9.4±4.7 4 3.0±0.1

Table 4. Dataset statistics on subgraph isomorphism experiments.
P and G corresponds to patterns and graphs.

B.3. Subgraph Isomorphism Counting and Matching

B.3.1. DATASETS

The statistics of datasets on the subgraph isomorphism
counting and matching task are listed in Table 4.

B.3.2. IMPLEMENTATION DETAILS

We adapt the DGL implementation provided by Liu &
Song (2022)8 to evaluate the effect of dummy nodes on neu-
ral subgraph isomorphism counting and matching. Apart
from that, we add a new implementation of HGT (Hu et al.,
2020). We learn from experience and lessons to jointly train
models for counting and matching in a multitask setting.

B.3.3. HYPER-PARAMETER SETTINGS

We follow the same paradigm for the training and evalua-
tion in the multitask learning setting. The best model over
validation data among three random seeds {0, 2020, 2022}
is reported.

The embedding dimensions and hidden sizes are set as 64
for all 3-layer networks. Deep-LRP and DMPNN-LRP
enumerate neighbor subsets by 3-truncated BFS. The HGT
model is also set as the same hyper-parameters. Residual
connections and Leaky ReLU are added between two layers.
We use the AdamW optimizer (Loshchilov & Hutter, 2019)
to optimize the models with a learning rate 1e − 3 and a
weight decay 1e− 5.

8https://github.com/HKUST-KnowComp/
DualMessagePassing
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