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Abstract

Important problems in causal inference, eco-
nomics, and, more generally, robust machine
learning can be expressed as conditional moment
restrictions, but estimation becomes challenging
as it requires solving a continuum of uncondi-
tional moment restrictions. Previous works ad-
dressed this problem by extending the general-
ized method of moments (GMM) to continuum
moment restrictions. In contrast, generalized em-
pirical likelihood (GEL) provides a more general
framework and has been shown to enjoy favor-
able small-sample properties compared to GMM-
based estimators. To benefit from recent devel-
opments in machine learning, we provide a func-
tional reformulation of GEL in which arbitrary
models can be leveraged. Motivated by a dual for-
mulation of the resulting infinite dimensional op-
timization problem, we devise a practical method
and explore its asymptotic properties. Finally, we
provide kernel- and neural network-based imple-
mentations of the estimator, which achieve state-
of-the-art empirical performance on two condi-
tional moment restriction problems.

1. Introduction
Moment restrictions identify a parameter of interest by re-
stricting the expectation value of so-called moment func-
tions, which depend on the parameter and random variables
representing the underlying noisy data generating process.
Important problems in causal inference, economics, and
generally robust machine learning can be cast in this form
(Newey, 1993; Ai and Chen, 2003; Bennett and Kallus,
2020b; Dikkala et al., 2020). Particularly challenging are
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problems formulated as conditional moment restrictions
(CMR), which constrain the conditional expectation of the
moment function. Such problems appear, e.g., in instru-
mental variable (IV) regression (Newey and Powell, 2003;
Angrist and Pischke, 2008), where the expectation of the
residual of the prediction conditioned on so-called instru-
ments is restricted to be zero. Other applications are policy
learning (Bennett and Kallus, 2020a) and off-policy evalu-
ation in reinforcement learning (Kallus and Uehara, 2020;
Bennett et al., 2021; Chen et al., 2021) and double/debiased
machine learning (Chernozhukov et al., 2016; 2017; 2018).

As conditional moment restrictions are difficult to handle
directly, a common approach is to transform them into an
infinite number of corresponding unconditional moment
restrictions (Bierens, 1982). Generalizing the correspond-
ing estimation methods from the finite dimensional case
to the infinite case is an active area of research (Carrasco
and Florens, 2000; Carrasco et al., 2007; Chaussé, 2012;
Carrasco and Kotchoni, 2017; Muandet et al., 2020; Bennett
and Kallus, 2020b; Zhang et al., 2021).

One of the most popular approaches to learning with mo-
ment restrictions is Hansen’s celebrated generalized method
of moments (GMM) (Hansen, 1982). In order to improve
the small sample properties of GMM estimators, alternative
methods have been proposed and are generally known as
generalized empirical likelihood (GEL) estimators (Smith,
1997; 2005; Newey and Smith, 2004). GEL generalizes
the original empirical likelihood framework developed by
Owen (1988; 1990); Qin and Lawless (1994) to different
divergence functions and contains many related estimators
as special cases. While closely related to GMM, the esti-
mators from the GEL family have been shown theoretically
to exhibit smaller higher-order-biases than those of GMM
(Newey and Smith, 2004) and therefore promise to have
favorable small sample properties. With increasing number
of overidentifying restrictions, i.e., when the number of re-
strictions exceeds the number of parameters, this advantage
has been shown theoretically to become more significant
(Newey and Smith, 2002; Donald et al., 2003). Therefore,
we expect the framework to be particularly suited for the
case of infinitely many restrictions. We leverage this poten-
tial for conditional moment restrictions by developing the
theoretical foundation for a GEL framework with continua
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of moment restrictions.

Our contributions The major contributions can be sum-
marized as follows: First, we extend the GEL framework
to conditional moment restrictions by generalizing it to
functional-valued moment restrictions. Second, building on
a result from infinite optimization we derive a dual form
which allows us to employ modern machine learning mod-
els in the GEL context. This generalizes existing results
not only to functional-valued moment restrictions but also
to general f -divergences beyond the Cressie-Reed family.
Third, we prove theoretical results on the asymptotic proper-
ties of our estimators and show that by placing the moment
restrictions into a reproducing kernel Hilbert space, our
method provides a consistent estimator for conditional mo-
ment restriction problems. Finally, we discuss the relation
to existing methods and provide experimental results.

Compared to previous extensions of GEL (Kitamura et al.,
2004; Tang and Leng, 2010; Chaussé, 2012; Carrasco and
Kotchoni, 2017), our approach combines the idea of a con-
tinuum generalization of GEL (Chaussé, 2012; Carrasco
and Kotchoni, 2017) with the flexibility of machine learning
models such as neural networks and kernel methods. Our
general framework contains related estimators such as a one-
step/continuous updating version of the variational method
of moments (VMM) estimator (Bennett and Kallus, 2020b)
as special cases. In contrast to VMM, our method allows
the use of divergences other than the χ2-divergence.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the method of moments framework (Hall,
2004) and two popular relaxations. Section 3 presents
our main contributions, the theoretical development of our
FGEL estimator, followed by experimental results in Sec-
tion 4. Finally, we discuss related works in Section 5.

2. Learning with Moment Restrictions
Let X ∈ X ⊆ Rr be a random variable with distribution P0

and let ψ(x; θ) ∈ Rm denote a vector ofm functions, the so-
called moment functions, with parameters θ ∈ Θ ⊂ Rp. We
denote with EP [·] the expectation over all random variables
that are not conditioned on with respect to a distribution
P and refer to the population distribution P0 whenever we
omit the subscript. Further, we assume that there exists a
unique parameter θ0 ∈ Θ such that E[ψ(X; θ0)] = 0. For
instance, E[X − θ0] = 0 characterizes the mean of P0. Our
goal is to estimate θ0 based on a sample {xi}ni=1 from P0.
The corresponding empirical moment restrictions become

EP̂n
[ψ(X; θ)] = 0, θ ∈ Θ. (1)

where P̂n =
∑n

i=1
1
nδxi is the empirical distribution. This

is a system of m estimating equations for p parameters

which can be fulfilled exactly as long as m ≤ p. For exam-
ple, EP̂n

[X − θ] = 0 gives θ = 1
n

∑n
i=1 xi as an empirical

estimate of the mean of P0. However, in the over-identified
case, i.e., when the number of non-redundant moment re-
strictions exceeds the number of parameters (m > p), it is
generally impossible to fulfill all moment restrictions (1) ex-
actly. To obtain a feasible problem, the constraints (1) need
to be relaxed. Below we discuss two popular approaches,
namely, the generalized method of moments (Hansen, 1982)
and maximum (generalized) empirical likelihood estimation
(Owen, 1988; 1990; Qin and Lawless, 1994).

Generalized method of moments (GMM) The GMM
relaxes the constraint (1) into a minimization of a quadratic
form of the empirical expectation over the moment func-
tions, i.e., θGMM

W = argminθ∈Θ ψ̂(θ)⊤Wψ̂(θ), where
ψ̂(θ) := EP̂n

[ψ(X; θ)] and W ∈ Rm×m denotes the
so-called weighting matrix. Asymptotic normality theory
shows that an efficient estimator, i.e., an estimator with
minimal asymptotic variance among the class of GMM esti-
mators, is obtained by choosingW as the inverse covariance
matrix of the moment functions, W = Ω̂−1

θ (Hansen, 1982),
where Ω̂θ := EP̂n

[ψ(X; θ)ψ(X; θ)⊤], which itself a func-
tion of θ. The resulting estimator, i.e.,

θCUE = argmin
θ∈Θ

ψ̂(θ)⊤Ω̂−1
θ ψ̂(θ), (2)

is the continuous updating estimator (CUE) of Hansen et al.
(1996) which results from a non-convex optimization prob-
lem and can exhibit unfavorable convergence properties if
Ω̂θ is ill-conditioned (Hall, 2007). Therefore, one often re-
sorts to a 2-step procedure: first, an inefficient but consistent
estimate θ̃ of θ0 is obtained, e.g., by settingW = I . Second,
this estimate is used to compute Ω̂−1

θ̃
which is kept fixed dur-

ing the second optimization step. This yields the so-called
optimally weighted GMM estimator (Hansen, 1982):

θOWGMM = argmin
θ∈Θ

ψ̂(θ)⊤Ω̂−1

θ̃
ψ̂(θ). (3)

A more in-depth exposition of the GMM framework can be
found in Hall (2004).

Generalized empirical likelihood (GEL) The empiri-
cal likelihood framework (Owen, 1988; 1990; Qin and
Lawless, 1994) relaxes the restrictions (1) by requiring
EP [ψ(X; θ)] = 0 to be fulfilled exactly but allowing
the distribution P to deviate from the empirical distribu-
tion P̂n. For a continuous function f : R → R we de-
fine the f -divergence between distributions P and Q as
Df (P ||Q) =

∫
f
(
dP
dQ

)
dQ, where dP

dQ denotes the Radon-
Nikodym derivative ofP with respect toQ. Then, we can de-
fine the profile divergence with respect to this f -divergence
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as

R(θ) = inf
P≪P̂n

Df (P ||P̂n)

s.t. EP [ψ(X; θ)] = 0 EP [1] = 1, (4)

where P ≪ P̂n describes the set of measures P that are ab-
solutely continuous with respect to the empirical distribution
P̂n. In other words, P describes multinomial distributions
on the sample, i.e., re-weightings of the data points. The
maximum empirical likelihood estimator (MELE) for θ is
then given by θEL = argminθ∈ΘR(θ). The framework,
originally proposed as empirical likelihood by Owen for
the case f(p) = −2 log(p), has been generalized to other
divergence measures for which it is known as minimum dis-
crepancy (MD) (Corcoran, 1998) or generalized empirical
likelihood (Smith, 1997; 2011). The latter corresponds to
its dual formulation. It contains many related estimators
as special cases. For example, by choosing the function f
from the Cressie-Read family of non-parametric discrepancy
measures (Cressie and Read, 1984):

fγ(p) =
1

γ(γ + 1)

(
pγ+1 − 1

)
, (5)

one retrieves the CUE for γ = 1 (Newey and Smith, 2004),
the exponential tilting estimator for γ → 0 (Kitamura and
Stutzer, 1997) and finally the original empirical likelihood
estimator for γ → −1 (Qin and Lawless, 1994). Detailed
exposition of the GEL framework can be found in Smith
(1997) and Owen (2001).

3. Functional Generalized Empirical
Likelihood

In this work, we are concerned with problems that can be
expressed by infinitely many moment restrictions, especially
those that arise from conditional moment restrictions (CMR)
of the form (Newey, 1993; Ai and Chen, 2003)

E[ψ(X; θ0) |Z] = 0, PZ-a.s., (6)

where Z ∈ Z is an additional random variable with
marginal distribution PZ . By the law of iterated expec-
tation, the CMR (6) implies the following unconditional
moment restrictions (Bierens, 1982):

E[ψ(X; θ0)
⊤h(Z)] = 0, ∀h ∈ H, (7)

whereH denotes the space of bounded measurable functions
h : Z → Rm. As (7) has to hold for all functions inH, this
implies an uncountable infinite number, i.e., a continuum, of
moment restrictions (m =∞). For example, the instrumen-
tal variable regression problem can be described by a CMR
via E[Y − f(X; θ0) |Z] = 0 where Z is an instrumental
variable and θ ∈ Θ parameterizes a function f : X → Y .
Motivated by this example, in the following, we will refer to
Z and h as instrument and instrument function, respectively,
in the context of general CMR.

3.1. Our Method

Maximum empirical likelihood estimation is based on min-
imizing a profile divergence R : Θ→ R over a parameter
space Θ. Let P denote the set of distributions that are abso-
lutely continuous with respect to the empirical distribution,
P := {P ≪ P̂n : EP [1] = 1}. For conditional moment
restrictions of the form (6), we can define the profile diver-
gence as

R(θ) := min
P∈P

Df (P ∥ P̂n) (8)

s.t. EP [ψ(X; θ) |Z] = 0, PZ-a.s.,

where Df is defined in terms of the f -divergence (see Table
1). LetH be a sufficiently large Hilbert space of functions
such that (7) implies (6). Let H∗ be the corresponding
dual space of bounded functionals H → R equipped with
the dual norm ∥ · ∥H∗ defined for H ∈ H∗ as ∥H∥H∗ =
sup{H(h) : ∥h∥H ≤ 1}. Then, we can define the moment
functional, a statistical functional H(X,Z; θ) ∈ H∗, as

H(X,Z; θ) : H → R
h 7→ H(X,Z; θ)(h) = ψ(X; θ)⊤h(Z),

which can be seen as a weighted evaluation functional with
respect to the conditioning variable Z. With this defini-
tion, we can express (7) as the functional-valued constraint
∥EP0

[H(X,Z; θ0)]∥H∗ = 0. The computation of the pro-
file likelihood thus becomes a functionally constrained opti-
mization problem

R(θ) = inf
P∈P

Df (P ||P̂n) (9)

s.t. ∥EP [H(X,Z; θ0)]∥H∗ = 0

The FGEL problem arises from the dual formulation of (9).
For the case of finite dimensional moment restrictions, the
duality relationship has been extensively explored by nu-
merous works (Smith, 1997; 2011; Kitamura et al., 2004;
Newey and Smith, 2004). However, as shown by Borwein
(1993) these duality results do not carry over to infinite
dimensional restrictions. Following the approach of Bor-
wein (1993) and Carrasco and Kotchoni (2017), we define a
regularized version of the functionally constrained profile
likelihood (9) with relaxation parameter λ > 0 as

Rλ(θ) := inf
P∈P

Df (P ||P̂n) (10)

s.t. ∥EP [H(X,Z; θ)]∥H∗ ≤ λ.

With this relaxation, a constraint qualification condition
holds and (10) admits a strongly dual form as formalized in
the following theorem.

Theorem 3.1. Let f∗(v) = supp∈Rn⟨v, p⟩ − f(p) denote
the Legendre-Fenchel conjugate function of a strongly con-
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vex function f . Then the problem

Rλ(θ) = inf
p∈Rn

n∑
i=1

1

n
f(npi)

s.t. ∥ 1
n

n∑
i=1

piH(xi, zi; θ)∥H∗ ≤ λ,
n∑

i=1

pi = 1

admits the dual form

Rλ(θ) = sup
h∈H
µ∈R

µ− 1

n

n∑
i=1

f∗(µ+H(xi, zi; θ)(h))− λ∥h∥H

(11)

and strong duality holds between these formulations. More-
over, the unique minimizer of the primal problem is given
by

pi =

(
d

dv
f∗
)(

H(xi, zi; θ)(ĥ) + µ̂
)
,

where ĥ, µ̂ are any solutions of the dual problem. Moreover,
as λ→ 0, Rλ(θ)→ R(θ).

Remark 3.2. Theorem 3.1 can be seen as a generalization
of the duality result of Newey and Smith (2004) not only to
functional-valued moment restrictions but also to general
strongly convex divergence functions beyond the Cressie-
Reed family.

Equation (11) provides a regularized functional generaliza-
tion of the profile divergence. Motivated by (11), we define
our functional generalized empirical likelihood estimators
by making two modifications: Firstly, we substitute the
norm term in (11) for a differentiable quadratic version,
which as we argue below does not change the asymptotic
behavior. Secondly, we introduce an additional relaxation
of the problem by fixing µ = 0, i.e., dropping the nor-
malization constraint

∑n
i=1 pi = 1, which corresponds to

optimizing a lower bound of the exact formulation (11). The
reason for this is twofold: Firstly, it significantly simplifies
the analysis and computation of our estimator, while pre-
serving its consistency and asymptotic normality properties.
In this context it has been shown that GEL estimators based
on the exact formulation (11) admit similar asymptotic prop-
erties as ours (Carrasco and Kotchoni, 2017). Secondly, by
setting µ = 0 one retrieves a regularized form of the fi-
nite dimensional GEL estimator defined by Smith (1997)
and Kitamura and Stutzer (1997). While the duality result
provides a motivation for the definition of our estimator,
its definition is equally motivated by the finite dimensional
GEL formulation provided in these works, which do not
explicitly rely on duality but implicitly also correspond to
the choice µ = 0.

Definition 3.3. Let V ⊆ R be an open interval containing
zero and ϕ : V → R be a twice differentiable concave

MD f(p) GEL ϕ(v) dom(ϕ)
CUE 1

2 (p− 1)2 − 1
2 (1 + v)2 R

EL − log(p) − log(1− v)
(
−∞, 1− 1

n

]
ET p log(p) −ev R

Table 1. Common choices for the f -divergence and the correspond-
ing GEL function ϕ with constrained domain leading to the conti-
nous updating (CUE), the empirical likelihood (EL) and exponen-
tial tilting (ET) estimators respectively.

function with first and second derivatives ϕ1(0) ̸= 0 and
ϕ2(0) < 0. Then we define the empirical FGEL objective
G : Θ× Ĥθ → R as

Gλn
(θ, h) :=

1

n

n∑
i=1

ϕ (H(xi, zi; θ)(h))−
λn
2
∥h∥2H, (12)

where H(xi, zi; θ)(h) = ψ(xi; θ)
⊤h(zi) and Ĥθ := {h ∈

H : ψ(xi; θ)
⊤h(zi) ∈ dom(ϕ), 1 ≤ i ≤ n}. The FGEL

estimate θ̂ of θ0 results from a saddle point of Gλn
(θ, h)

θ̂ = argmin
θ∈Θ

sup
h∈Ĥθ

Gλn
(θ, h). (13)

Remark 3.4. The modification of the norm term in the def-
inition of our FGEL problem compared to Theorem 3.1 is
solely to simplify the analysis. Later we will choose the
regularization parameter to be λn = op(1) and find that
∥h∥H = op(1). Hence we can always find a χ′ > 0 and
λ′n = Op(n

−χ′
) such that λn/2∥h∥2 → 0 and λ′n∥h∥ → 0

at the same rate which implies that the estimators based on
(11) and R′(θ) = maxh∈HGλn(θ, h) from (12) are asymp-
totically equivalent.

Within the FGEL framework, the regularization term is re-
sponsible for regularizing an originally ill-posed operator
estimation problem, which results from the optimization of
Gλn

(θ, h) over the instrument functions h ∈ H. We will
demonstrate this here exemplarily for the χ2-divergence,
which admits a closed form solution. Note that a similar ar-
gument has been provided earlier by Carrasco and Kotchoni
(2017). Let Hi(θ) := H(xi, zi; θ) ∈ H∗ and H∗

i ∈ H
denote its dual which can be identified with a function in
H by the self-duality property of Hilbert spaces (Zeidler,
2012). Then the first order condition for h reads

0 = − 1

n

n∑
i=1

[H∗
i (θ)− (H∗

i (θ)Hi(θ) + λnI ⊗ I) (h)]

⇒ h = −
(
Ω̂θ + λnI ⊗ I

)−1 1

n

n∑
i=1

H∗
i (θ),

where Ω̂θ = 1
n

∑n
i=1H

∗
i (θ)Hi(θ) denotes the empirical

covariance operator of the moment functional. By the uni-
form weak law of large numbers Ω̂θ

p→ Ωθ. However, the
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covariance operator Ωθ is a compact operator and thus not
invertible. Therefore, regularization is required in order to
solve the optimization over h ∈ H. This highlights the fact
that the regularization parameter in the FGEL framework is
not merely an artefact of the restoration of the strong duality
between the primal and dual GEL problems, but a fundamen-
tal requirement for any definition of a functional/continuum
GEL extension.

The general formulation (13) allows us to employ a wide
range of function classes H and generally for finite sam-
ples, the choice ofH will influence the obtained estimator.
Building on recent developments in machine learning, we
can represent h by a flexible deep neural network (Hartford
et al., 2017; Lewis and Syrgkanis, 2018) or a random forest
model (Athey et al., 2019), for example. In this work, we
mainly focus our discussion on instrument functions from
reproducing kernel Hilbert spaces for their favorable theoret-
ical properties and computational efficiency. Additionally,
we consider neural network function classes.
Remark 3.5. The FGEL framework admits an interesting
relation to distributionally robust optimization and as such
can be used for (distributionally) robust learning. Refer to
Section A.1 of the appendix for a more detailed account of
this connection.

3.2. Asymptotic Properties

In this section, we establish asymptotic properties of our
estimator given in (13). The proofs generalize the ones of
Newey and Smith (2004) for the GEL estimator with finite
dimensional moment restrictions to our regularized problem
with functional-valued moment restrictions.

Theorem 3.6 (Consistency). Assume that a) θ0 ∈ Θ is the
unique solution to E[H(X,Z; θ)] = 0 ∈ H∗; b) Θ is com-
pact; c) H(x, z; θ) is a continuous operator at each θ ∈ Θ
with probability one; d) E[(supθ∈Θ ∥H(X,Z; θ)∥H∗)

ν
] <

∞ for some ν > 2; g) ϕ is twice continuously differen-
tiable in a neighborhood of zero and ϕ1(0) ̸= 0, ϕ2(0) < 0;
f) λn = Op(n

−ξ) with 0 < ξ < 1/2 − 1/ν. Let θ̂ denote
the FGEL estimator for θ0, then θ̂

p→ θ0 and

∥E[H(X,Z; θ̂)]∥H∗ = Op(n
−1/2+ξ),

∥EP̂n
[H(X,Z; θ̂)]∥H∗ = Op(n

−1/2+ξ).

The following theorem shows that the limiting distributions
of the variables follow a normal distribution N with covari-
ance matrix Σθ and Gaussian process N with kernel Σh

respectively. To simplify notation, letH = E[H(X,Z; θ0)]
and H∗ = E[H(X,Z; θ0)

∗] denote the expectation of the
moment functional and its adjoint evaluated at the true pa-
rameter.

Theorem 3.7 (Asymptotic normality). Let the conditions
of Theorem 3.6 be satisfied. Additionally, assume that

H(x, z; θ) is continuously differentiable in a neighbor-
hood Θ̄ of θ0 and E[supθ∈Θ̄ ∥H(X,Z; θ)∥H∗ ] < ∞.
Define the regularized covariance operator, Ω̂λn

:=

EP̂n
[H(X,Z, θ0)H(X,Z, θ0)

∗] + λnI ⊗ I p→ Ω. Then,

√
n(θ̂ − θ0) d→ N(0,Σθ),

√
n(ĥ− h) d→ N (0,Σh),

where Σθ = ((∇θH
∗)Ω−1(∇θ⊤H))−1 and Σh = Ω−1 −

Ω−1(∇θ⊤H)Σθ(∇θH
∗)Ω−1.

Remark 3.8. Due to the general treatment, the asymptotic
variance Σθ in Theorem 3.7 is expressed in terms of the mo-
ment functional H and its gradients, which impedes a direct
comparison to related methods which usually express the
asymptotic variance in terms of the CMR. Once one chooses
an instrument function class which is flexible enough to ex-
press the CMR as unconditional moment restrictions (e.g.
a reproducing kernel Hilbert space), one can derive a re-
fined expression for Σθ in terms of the CMR. We leave the
analysis of such special cases for future work.

3.3. Kernel-FGEL

The definition of our FGEL estimator contains a supremum
over a function spaceH. In order to address the conditional
moment restriction problem, the function space must be
expressive enough to exhibit an equivalent unconditional
formulation. At the same time, optimization over function
spaces is generally intractable and thus requires approxima-
tions. Selecting instrument functions from a reproducing
kernel Hilbert space, one obtains a computationally efficient
formulation involving finite dimensional parameters.

Reproducing kernel Hilbert spaces Let X be a non-
empty set and H a Hilbert space of functions f : X → R.
Let ⟨·, ·⟩H and ∥ · ∥H denote the inner product and norm
on H respectively. Then H is called a reproducing kernel
Hilbert space (RKHS) if there exists a symmetric function
k : X × X → R such that k(x, ·) ∈ H for all x ∈ X
and ⟨f, k(x, ·)⟩H = f(x) for all f ∈ H and x ∈ X .
Every positive (semi-)definite kernel is the unique repro-
ducing kernel of an RKHS. We call a reproducing ker-
nel k integrally strictly positive definite (ISPD) if addi-
tionally for any f ∈ H with 0 < ∥f∥22 < ∞ we have∫
X f(x)k (x, x

′) f (x′) dx dx′ > 0. See, e.g., Schölkopf
and Smola (2002) for a comprehensive introduction.

LetH =
⊕m

i=1Hi denote the direct sum of m RKHS cor-
responding to universal kernels ki (Micchelli et al., 2006).
The following theorem which is based on Theorem 3.2 of
Muandet et al. (2020) shows that the RKHS corresponding
to universal ISPD kernels is expressive enough to repre-
sent the conditional moment restriction (6) in terms of a
continuum of unconditional restrictions.
Theorem 3.9. Let H =

⊕m
i=1Hi denote the direct sum

of m RKHS unit balls Hi corresponding to ISPD kernels
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ki, i = 1, . . . ,m. Let P denote a distribution over random
variables X ∈ X and Z ∈ Z with marginal distributions
PX and PZ . Then

EPX
[ψ(X; θ)|Z] = 0, PZ-a.s., (14)

if and only if

EP [ψ(X; θ)⊤h(Z)] = 0, ∀h ∈ H. (15)

Applying the representer theorem (Schölkopf et al., 2001) to
the supremum over the instrument functions h in equation
(13) allows us to represent the RKHS function in terms of
finite dimensional parameters αr ∈ Rn, r = 1, . . . ,m, and
yields a finite dimensional and convex optimization problem
as formalized by the following lemma.

Lemma 3.10. Let H =
⊕m

i=1Hi be an RKHS corre-
sponding to m universal kernels ki, i = 1, . . . ,m. Let
Kr ∈ Rn×n, r = 1, . . . ,m denote the kernel matrices and
let α = {αr}mr=1 with αr ∈ Rn. Then the maximization
over the instrument functions in the FGEL objective (13)
can be expressed as

Rλn
(θ) := max

α∈Âθ

{
1

n

n∑
i=1

ϕ (vi(θ, α))−
λn
2

m∑
r=1

α⊤
r Krαr

}
,

with vi =
∑m

r=1(α
⊤
r Kr)iψr(xi; θ) and Âθ = {α : vi ∈

dom(ϕ), 1 ≤ i ≤ n}. The kernel-FGEL estimator is then
defined as the solution of θ̂ = argminθ∈ΘRλn

(θ).

We provide details on the optimization algorithm in Sec-
tion A.2 of the appendix. Combining Theorem 3.9 with
Theorem 3.6 yields the following consistency result for the
kernel-FGEL estimator in the conditional case.

Corollary 3.11. Assume that a) θ0 ∈ Θ is the unique solu-
tion to E[ψ(X; θ)|Z] = 0; b) Θ is compact; c) ψ(x; θ)
is continuous at each θ ∈ Θ with probability one; d)
E[supθ∈Θ ∥ψ(X; θ)∥ν ] < ∞ for some ν > 2; g) ϕ is
twice continuously differentiable in a neighborhood of zero
and ϕ′(0) = −1, ϕ′′(0) = −1; f) λn = O(n−ξ) with
0 < ξ < 1/2− 1/ν. Then for the kernel-FGEL estimator θ̂
we have θ̂

p→ θ0 and E[ψ(X; θ̂)|Z] p→ 0, PZ-a.s..

Note that the related sieve-based methods by Donald et al.
(2003), Kitamura et al. (2004) and Chaussé (2012) only
achieve consistency for the conditional case if the number
of hand-picked instrument functions goes to infinity, which
cannot be achieved in practice.

3.4. Neural-FGEL

As expressed by universal approximation theorems (Yarot-
sky, 2017), neural networks can represent arbitrarily large
function classes and have shown state-of-the-art perfor-
mance on related tasks (Hartford et al., 2017; Lewis and

Syrgkanis, 2018; Bennett et al., 2020). As such, they provide
a particularly interesting choice of instrument function class.
Let hω : Z → Rm denote a feed-forward neural network
with parameters ω. Then we can define the neural-FGEL
estimator as a saddle point of

Gλn(θ, ω) :=
1

n

n∑
i=1

ϕ
(
ψ(xi; θ)

⊤hω(zi)
)

− λn
2n

n∑
i=1

∥hω(zi)∥2Rm ,

where the regularization term penalizes the magnitude of the
output as in Dikkala et al. (2020) and Bennett and Kallus
(2020b). We leave the theoretical analysis of the neural-
FGEL estimator for future work.

3.5. Other Instrument Function Classes

FGEL estimators can be defined for arbitrary instrument
function classes H under mild conditions: Let P denote a
reference measure overX ∈ X , then we can place a classH
of functions f : X → Rm into the Hilbert space of square-
integrable functions L2(H, P ) as long as any f ∈ H is
bounded on any set with non-zero measure, which is a real-
istic assumption for many model classes. The corresponding
norm with respect to the empirical measure is then given
via ∥h∥2H = 1

n

∑n
i=1 ∥h(zi)∥2Rm . If the underlying problem

of interest is a conditional moment restriction (instead of a
general functional moment restriction),H additionally must
be expressive enough such that an equivalence between the
conditional (6) and unconditional (7) formulations holds.

3.6. Choice of Divergence Function

In this section, we explore various choices of divergences
and establish connections to existing methods. In the finite
dimensional case, it is well known that for any quadratic
discrepancy function, the GEL estimator coincides with the
continuous updating GMM (CUE) estimator (Newey and
Smith, 2004). An interesting special choice of divergence
function is given below.

Proposition 3.12. Choosing the GEL function as ϕ(v) =
−(1± v

2 )
2 and rescaling the regularization parameter λ̃n =

2λn, the FGEL estimator becomes equivalent to the solution
of the optimization problem

min
θ∈Θ

sup
h∈H

{
EP̂n

[ψ(X; θ)⊤h(X)]

− 1

4
EP̂n

[(
ψ(X; θ)⊤h(X)

)2]− λ̃n
4
∥h∥2H

}
.

This resembles the objective of the VMM estimator of Ben-
nett and Kallus (2020b) with the only difference that the
covariance term contains the decision variable θ instead of a
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first-stage estimate θ̃. In this sense, with this special choice
of divergence function our FGEL estimator and the VMM
estimator are related in the same way as the continuous
updating estimator (CUE) (2) and the optimally weighted
2-step GMM estimator (3). With the kernel version of our
FGEL estimator, we can carry out the optimization over
h ∈ H in closed form and similarly obtain a continuous
updating version of the kernel-VMM estimator.

A functional generalization of the original empirical likeli-
hood estimator is retrieved by setting ϕ(v) = − log(1− v).
The empirical likelihood estimator has many desirable prop-
erties. It has been shown by Newey and Smith (2004) that
the ordinary EL estimator has the smallest higher order bias
among the family of GEL estimators (including GMM).
Further, Corcoran (1998) shows that confidence intervals
constructed from the EL-based profile likelihood admit a
Bartlett correction which by a simple subtraction allows to
reduce the coverage error from O(n−1) to O(n−2). This
property of the EL framework is unique among the family
of GEL estimators (Corcoran, 1998).

Using the GEL function corresponding to the Kullback-
Leibler (KL) divergence ϕ(v) = −ev one obtains a func-
tional generalization of the exponential tilting estimator
of Kitamura and Stutzer (1997) and Imbens et al. (1998)
which shows good empirical performance on many tasks
(Imbens et al., 1998). In contrast to the χ2-divergence,
the KL-divergence enjoys great popularity as a distribu-
tional divergence measure in machine learning (Blei et al.,
2017). Therefore, a functional moment restriction estima-
tor based on the KL-divergence instead of the dominating
χ2-divergence (GMM) could be of particular interest.

4. Experiments
For all experiments we use radial basis function kernels
ki(x, x

′) = exp(−γ∥x − x′∥2), i = 1, . . . ,m and set the
bandwidth parameter γ via the common median heuris-
tic (Schölkopf and Smola, 2002; Garreau et al., 2018).
If not stated otherwise, we tune the remaining hyperpa-
rameters of all methods by evaluating the MMR objective
ℓ(θ) = 1/n2

∑n
i,j=1 ψ(xi; θ)

⊤Kijψ(xj ; θ) (Zhang et al.,
2021) on a validation set of the same size as the training
set (refer to Section A.3 of the appendix for details). We
compare the performance of our kernel- and neural network-
based methods with regular least-squares (LSQ), sieve min-
imum distance (SMD) (Ai and Chen, 2003), kernel maxi-
mum moment restrictions (MMR) (Zhang et al., 2021) and
the kernel- and neural network versions of the variational
method of moments (K-VMM and NN-VMM) (Bennett
and Kallus, 2020b; Bennett et al., 2020) on two conditional
moment restriction problems. Code for reproducing our
experimental results is available at https://github.
com/HeinerKremer/Functional-GEL.

4.1. Linear Regression under Heteroskedastic Noise

We define a simple data generating process for a one-
dimensional estimation problem. Let θ = 1.7 ∈ R and

y = x⊤θ + ε, x ∼ Uniform([−1.5, 1.5]),

where ε describes heteroskedastic noise such that ε|x ∼
N (0, σ = 5x2). We can formulate the regression task
as the conditional moment restriction E[Y − X⊤θ|X] =
0 PX -a.s.. As ε is a mean zero random variable, here, we
can use prediction mean-squared error as an unbiased vali-
dation metric to tune the hyperparameters of all methods.

Figure 1 shows the mean-squared error (MSE) of the es-
timated parameters using different versions of FGEL and
other state-of-the-art estimators for conditional moment re-
strictions in dependence on the sample size. In the left
figure we treat the choice of divergence as an additional
hyperparameter. We observe that both our methods yield the
lowest parameter MSE and even outperform the recently pro-
posed state-of-the-art VMM estimator (Bennett and Kallus,
2020b). In the right panels we evaluate the effect of the
divergence function. We observe that while the average
performance is largely independent of the choice of diver-
gence function, a comparison with the results shown in the
left figure reveals that for any fixed sample the different
divergences apparently yield estimators of different quality.
Thus, treating the divergence as hyperparameter and choos-
ing the estimator with the lowest validation loss, allows
us to exceed the performance of the FGEL estimator with
fixed divergence. As GMM-based methods implicitly build
on the χ2-divergence, this highlights an advantage of our
method which can leverage any f -divergences. Note that
for any fixed divergence function the performance of our
FGEL estimators are roughly on par with the corresponding
VMM estimators.

4.2. Instrumental Variable Regression

We adopt a slightly modified version of the IV regression
experiment of Lewis and Syrgkanis (2018), which has also
been used by Bennett et al. (2020) and Zhang et al. (2021).
Let the data generating process be given by

y = f0(x) + e+ δ, x = z + e+ γ,

z ∼ Uniform([−3, 3]),
e ∼ N(0, 1), γ, δ ∼ N(0, 0.1),

where f0 is picked from the following simple functions

sin: f0(x) = sin(x), abs: f0(x) = |x|,
linear: f0(x) = x, step: f0(x) = I{x≥0}.

We approximate f0 by a shallow neural network fθ(x) with
2 layers of [20, 3] units and leaky ReLU activation functions

https://github.com/HeinerKremer/Functional-GEL
https://github.com/HeinerKremer/Functional-GEL


Functional Generalized Empirical Likelihood Estimation

102 103

sample size

10−5

10−4

10−3

10−2

10−1

100

||θ
−
θ 0
||2

LSQ
SMD
MMR
K-VMM
NN-VMM
K-FGEL
NN-FGEL

102 103

10−4

10−3

10−2

||θ
−
θ 0
||2

Kernel-FGEL

χ2

KL
Log

102 103

sample size

10−4

10−3

10−2

||θ
−
θ 0
||2

Neural-FGEL

χ2

KL
Log

Figure 1. Estimation error over sample size for the heteroskedastic regression experiment. The left panel shows the MSE of the estimated
parameters for different estimation methods. The right panels compare the performance of the kernel (K-FGEL) and neural (NN-FGEL)
estimators for different divergence functions. Lines and shaded regions represent the mean and plus and minus one standard deviation of
the mean over 70 runs respectively.

Table 2. Prediction MSE for the instrumental variable task. Mean and standard deviation of the mean are computed over 50 random runs
and multiplied by 10 for ease of presentation.

LSQ SMD MMR K-VMM NN-VMM K-FGEL NN-FGEL
abs 3.72± 0.30 2.97± 0.97 2.78± 0.60 0.43± 0.15 0.45± 0.10 0.17± 0.01 0.23± 0.06
step 3.03± 0.03 0.37± 0.04 0.71± 0.03 0.31± 0.01 0.41± 0.01 0.41± 0.03 0.34± 0.01
sin 3.28± 0.04 1.01± 0.06 3.61± 0.07 1.55± 0.12 1.72± 0.11 1.97± 0.16 1.66± 0.12
linear 2.76± 0.06 0.97± 0.72 1.98± 0.38 0.31± 0.06 0.34± 0.05 0.32± 0.05 0.20± 0.03

and base the estimation on the conditional moment restric-
tions E[Y − fθ(X)|Z] = 0 PZ-a.s.. As generally the true
model is not contained in this model class, this provides a
typical case of model mis-specification and theoretical prop-
erties of the our method (and equally all baseline methods)
for this setting have yet to be developed (see Dikkala et al.
(2020) for recent progress in this direction). We use training
and validation sets of size n = 2000 and evaluate the pre-
diction error on a test set of 20000 samples. The results are
visualized in Table 2. We observe that with the exception
of one task the FGEL and VMM estimators outperform all
other baselines. Compared to each other NN-FGEL seems
to be preferable over NN-VMM but the kernel versions of
both methods exhibit similar performance without showing
a clear advantage of one over the other for this task.

Our experiments show that the FGEL estimator is a viable
alternative to previously proposed continuum method of
moments estimators for conditional moment restrictions
and can surpass the previous state-of-the-art on some tasks.
However, further empirical evidence needs to be collected
to verify its predicted superior finite sample properties for
infinitely many moment restrictions. We leave a comprehen-
sive experimental evaluation to future work.

5. Related Work
Learning with conditional or infinite dimensional moment
restrictions respectively has been an active field of research
in econometrics and more recently in machine learning. In
the former context, seminal work on extending the general-
ized method of moments to continua of moment restrictions
has been carried out by Carrasco and Florens (2000); Car-
rasco et al. (2007) by placing the constraints in an RKHS. In
the machine learning community, GMM-related estimators
have been developed by casting the infinite dimensional
moment restriction problem as a minimax game and repre-
senting the adversarial player by an RKHS function (Zhang
et al., 2021; Bennett and Kallus, 2020b) or a flexible neural
network (Hartford et al., 2017; Lewis and Syrgkanis, 2018;
Dikkala et al., 2020; Bennett et al., 2020). While the neural
network-based methods often achieve good performance in
practice, they generally are computationally more expen-
sive and lack the theoretical properties of traditional GMM
estimators. In contrast, Bennett and Kallus (2020b)’s kernel-
VMM estimator comes with strong theoretical guarantees
but results from a 2-step procedure and thus depends on
an initial parameter estimate. As discussed in Section 3.6,
our framework contains a continuous updating version of
VMM as a special case but allows for using alternative f -
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divergence functions.

As an alternative to GMM estimation, sieve-based meth-
ods (Newey and Powell, 2003; Donald et al., 2003; Ai and
Chen, 2003; Chen and Pouzo, 2012) address conditional mo-
ment restrictions by growing the number of unconditional
restrictions with the sample size by manually selecting an
increasing number of basis functions. While these often
come with desirable efficiency results, in practice they can
be hard to tune and computationally demanding (Bennett
and Kallus, 2020b). Another line of work implicitly esti-
mates optimal instrument functions via a kernel-smoothed
localized empirical likelihood function (Tripathi and Kita-
mura, 2003; Kitamura et al., 2004). Their use of kernels is
very different from our approach as we do not smooth the
profile divergence but use RKHS functions as instrument
functions.

Several works extended the generalized empirical likelihood
framework to handle infinite dimensional moment restric-
tions and thus conditional moment restrictions (Donald et al.,
2003; Chaussé, 2012; Carrasco and Kotchoni, 2017). The
GEL estimator of Chaussé (2012) is based on approximately
imposing a continuum of moment restrictions using a param-
eterized basis of functions and solving a regularized version
of the GEL first order conditions. While it is theoretically
closely related to our method, the regularization scheme
and computational approach differs from ours. Similarly,
closely related to our method is the regularized GEL esti-
mator of Carrasco and Kotchoni (2017), which is defined
via a set of optimality conditions and solved using a pro-
cedure motivated by the Three-Steps Euclidean Likelihood
procedure of Antoine et al. (2007). In contrast to these
methods, our estimator is defined as a saddle point of an
objective function and thus benefits from recent advances in
mini-max optimization (Daskalakis et al., 2018; Lin et al.,
2020). To the best of our knowledge, our work is the first
to combine GEL estimation with modern machine learning
and in particular kernel methods and neural networks.

6. Conclusion
Several long-established problems in machine learning can
naturally be expressed as a risk minimization problem. On
the other hand, emerging areas such as causal inference,
algorithmic decision making, and robust learning often in-
volve problems that are formulated as (potentially infinite)
moment restrictions and require different algorithmic frame-
works for estimation and inference. Recent works have
advanced this development by combining classical tech-
niques from econometrics such as generalized method of
moments (GMM) with modern machine learning models
such as deep neural networks and kernel machines. Like-
wise, our work contributes to this endeavour by equipping
the more general generalized empirical likelihood (GEL)

framework with such powerful models. While the econo-
metrics community enjoys the new class of algorithms, we
believe the machine learning community will likewise ben-
efit from new perspectives on causal inference and robust
learning which will be explored in future works.

This paper laid the theoretical foundation of the functional
GEL framework, but there remain open questions that im-
pede real-world applications. Firstly, more efficient opti-
mization procedures need to be developed that allow for
large scale applications. Secondly, theoretical properties
of the framework with specific function classes need to be
explored. Lastly, the framework needs to be tested for the
training of more complex models for real-world applications
(e.g. robust learning). Our goal is to address some of these
problems in future work.
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ters. Anchor regression: heterogeneous data meets causal-
ity, 2020.

B. Schölkopf and A. J. Smola. Learning with kernels: sup-
port vector machines, regularization, optimization, and
beyond. MIT press, 2002.

B. Schölkopf, R. Herbrich, and A. J. Smola. A generalized
representer theorem. In Computational Learning Theory,
pages 416–426, 2001.

R. Smith. Local GEL methods for conditional moment
restrictions. 12 2005. doi: 10.1017/CBO9780511493157.
007.

R. J. Smith. Alternative semi-parametric likelihood ap-
proaches to generalised method of moments estimation.
The Economic Journal, 107(441):503–519, 1997.

R. J. Smith. GEL criteria for moment condition models.
Econometric Theory, 27(6):1192–1235, 2011. ISSN
02664666, 14694360.

C. Y. Tang and C. Leng. Penalized high-dimensional empir-
ical likelihood. Biometrika, 97(4):905–920, 2010.

G. Tripathi and Y. Kitamura. Testing conditional moment
restrictions. The Annals of Statistics, 31(6):2059–2095,
2003.

D. Yarotsky. Error bounds for approximations with deep
relu networks. Neural Networks, 94:103–114, 2017.

E. Zeidler. Applied functional analysis: applications to
mathematical physics, volume 108. Springer Science &
Business Media, 2012.

R. Zhang, M. Imaizumi, B. Schölkopf, and K. Muandet.
Maximum moment restriction for instrumental variable
regression, 2021. arXiv 2010.07684.



Functional Generalized Empirical Likelihood Estimation

A. Additional Information
A.1. Distributional Robustness of FGEL

It is well-known that the profile divergence is a dual for-
mulation to the distributionally robust optimization (DRO)
formulation (Lam, 2019; Duchi et al., 2018). In the context
of this paper, one can show that Rλn

(θ) ≤ ρ if and only if

λn ≥ inf
P∈P
∥EP [H(X,Z; θ)]∥H∗ s.t. Df (P ||P̂n) ≤ ρ.

However, we do not simply rely on the divergence-ball cen-
tered at the empirical data distribution {P | Df (P ||P̂n) ≤
ρ} (referred to as an ambiguity set in the DRO literature) for
robustness. Since that robustness is often used to account
for the statistical error due to finite samples. Instead, we are
concerned with a second and stronger layer of robustness.

First, note that the quantity EP [H(X,Z; θ)] is used to ap-
proximate the conditional moment constraint in our original
formulation (8). Since the goal of FGEL is to satisfy the
the conditional moment restrictions EP [ψ(X; θ) |Z] = 0
almost everywhere in the domain, in robust optimization
terms, we are robustifying against the instrument Z. The
instrument Z can create much stronger distribution shifts in
the data-generating process than the mere statistical fluctua-
tion described by divergence-ball-based DRO works follow-
ing Ben-Tal et al. (2013) and Duchi et al. (2018). We leave
an alternative DRO algorithm against such strong distribu-
tion shifts for future work.

From another perspective, our method can also be seen as en-
forcing independence betweenZ and the moment restriction,
e.g., for IV regression the residual ψ(X; θ) = Y − fθ(X).
Intuitively, we want the residual Y − fθ(X) to be small
and invariant to transformations of the Z variable (marginal
shift). This kind of robust learning strategy has also been
studied in works such as Greenfeld and Shalit (2020);
Rothenhäusler et al. (2020); Heinze-Deml and Meinshausen
(2019).

A.2. Computing the FGEL Estimator

Problem (13) is generally a non-convex-convex min-max
problem in the parameter θ and function h. Let h = hα be
described by a finite dimensional set of parameters α ∈ A,
which is the case, e.g., for neural network function classes
or RKHS after using a representer theorem. Furthermore
let the set of parameters A be compact. If additionally the
parameterization leaves the convexity of the inner problem
intact (e.g., in the case of kernel-FGEL) we can use a sim-
plified version of Danskin’s theorem (Danskin, 1966) to
compute gradients of Rλn

(θ) := suph∈Ĥθ
Gλn

(θ, h) in a
principled way.

Lemma A.1 (Danskin). Let ĥ(θ) denote the solution of the
inner convex optimization over h ∈ Hθ such that ĥ(θ) =

argmaxh∈Ĥθ
Gλn

(θ, h). Then the gradient of the profile
divergence Rλn(θ) with respect to the parameters θ ∈ Θ is
given by

∇Rλn
(θ) = ∇Gλn

(θ, ĥ(θ)).

Therefore, we can adopt a gradient-based strategy for the
outer optimization problem over θ using in each step the
gradient estimate obtained from the solution of the inner
maximization over h. Depending on the GEL function ϕ the
optimization of both, the outer and inner problem can then
be solved efficiently with an off-the-shelf solver e.g. using
LBFGS (cf. Algorithm 1).

For the case of a neural network instrument function classes,
we build on the recent progress in mini-max optimization
and employ the optimistic Adam optimizer (Daskalakis
et al., 2018) which has been developed to solve similar
saddle point problems for training generative adversarial
networks (Goodfellow et al., 2014) (cf. Algorithm 2).

A.3. Hyperparameter selection

Tuning the hyperparameter of our method, i.e., the regu-
larization parameter λn (and, e.g., learning rates) requires
a data-driven performance measure of the obtained model
parameters. We know that for the true distribution P0 and
true parameter θ0 we obtain ∥EP0 [H(X,Z; θ0)]∥2H∗ = 0.
Let β denote the set of hyperparameters and θ̂(β) the
corresponding solution to (13). Then we can define a
performance measure of the solution candidate θ̂(β) as
ℓ(β) = ∥EP0

[H(X,Z; θ̂(β))]∥2H∗ . As we do not have ac-
cess to the true distribution P0 we can define a natural surro-
gate loss ℓ̂ using a validation set with empirical distribution
P̂val as

ℓ̂(β) = ∥EP̂val
H(X,Z; θ̂(β))∥2H∗ (16)

ChoosingH as an RKHS, this can be expressed as the kernel
maximum of moment restriction objective of Muandet et al.
(2020) and (Zhang et al., 2021) evaluated on the validation
data as shown by the following lemma.

Lemma A.2. Let {xi, zi}ni=1 denote the validation data
and define ψψψj(xxx; θ) = vec({ψj(xi; θ)}ni=1). Let Kj denote

Algorithm 1 Kernel-FGEL

Input: data (xi, yi, zi), hyperparameter λ
while not converged do

while not converged do
α← LBFGS(Gλ(θ, hα))

end while
θ ← LBFGS(Gλ(θ, hα))

end while
Output: Parameter estimate θ
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Algorithm 2 Neural-FGEL

Input: data (xi, yi, zi), hyperparameter λ
while not converged do
α← OAdam(Gλ(θ, hα))
θ ← OAdam(Gλ(θ, hα))

end while
Output: Parameter estimate θ

the kernel Gram matrix with entries (Kj)pq = kj(zp, zq),
p, q = 1, . . . , n, j = 1, . . . ,m. Then we can express (16)
as

ℓ̂(β) =
1

n2

m∑
j=1

ψψψj(xxx; θ)
TKjψψψj(xxx; θ). (17)

Here we assume that possible hyperparameters of the kernel
are already set via commonly employed heuristics like the
median heuristic (Schölkopf and Smola, 2002; Garreau et al.,
2018) for the kernel bandwidth and only tune the remaining
parameters of our method.

B. Proofs
B.1. Preliminaries

For ease of notation we define some expressions first. De-
fine Hi(θ) := H(xi, zi; θ) and denote ϕi(v) = di

(dv)iϕ(v)

and ϕi = ϕi(0). Without loss of generality we assume
that ϕ1(0) = ϕ2(0) = −1, as any ϕ with ϕ1 ̸= 0 and
ϕ2 < 0 can be rescaled to achieve this (see Newey and Smith
(2004)). Define the empirical objective as Ĝλn

(θ, h) =∑n
i=1 ϕ(H(xi, zi; θ)(h))− λ∥h∥2H and the empirical con-

straint set as Ĥn(θ) = {h ∈ H : H(xi, zi; θ)(h) ∈
dom(ϕ) ∀(xi, zi), i = 1, . . . , n}. Throughout the proofs
we will make use of functional derivatives and a functional
version of Taylor’s theorem with Lagrange remainder, which
we define and state next, respectively.

Definition B.1 (Functional Derivative). LetH be a vector
space of functions. For a functional G : H → R and a pair
of functions h, h̃ ∈ H, we define the derivative operator
DhG(h)[h̃] =

d
dtG(h+ th̃)

∣∣∣
t=0

. Likewise, we define

Dk
hG(h) [h1, . . . , hk]

=
∂k

∂t1 . . . ∂tk
G (h+ t1h1 + . . .+ tkhk)

∣∣∣∣
t1=···=tk=0

.

Similarly, when considering a function of a vector-valued
parameter, G : Θ ⊆ Rp → R, we denote the k-th standard
directional derivative at θ ∈ Θ as Dk

θG(θ)(θ1, . . . , θk).

Proposition B.2 (Taylor’s theorem). Let G : H → R,
whereH is a vector space of functions. For any h, h′ ∈ H,

if t 7→ G (th+ (1− t)h′) is (k + 1)-times differentiable
over an open interval containing [0, 1], then there exists
h̄ ∈ conv ({h, h′}) such that

G (h′) = G(h) +

k∑
i=1

1

i!
Di

hG(h)[h
′ − h, . . . , h′ − h︸ ︷︷ ︸

i times

]

+
1

(k + 1)!
Dk+1

h G(h̄)[h′ − h, . . . , h′ − h︸ ︷︷ ︸
k+1 times

].

Equally, using the notation of Definition B.1 the same result
holds for functions of vector-valued parameters G : Θ ⊆
Rp → R.

Our duality result builds on Theorem 3.1 of Borwein (1993).
For completeness, we will state it here adapted to our nota-
tion. Note that while the theorem is already closely related
to our result, a direct application of the theorem to our case
is impeded as we additionally need to take into account the
normalization constraint for p, i.e.,

∑n
i=1 pi = 1.

Proposition B.3 (Borwein’s theorem). Consider the prob-
lem ((10) without the normalization of p)

P = inf
p∈Rn

n∑
i=1

1

n
f(npi) (18)

s.t. ∥ 1
n

n∑
i=1

piH(xi, zi; θ)∥H∗ = 0

and assume the infimum is attained (when finite). Consider
for λ > 0 the relaxed problem

Pλ = min
p∈Rn

n∑
i=1

1

n
f(npi) (19)

s.t. ∥ 1
n

n∑
i=1

piH(xi, zi; θ)∥H∗ ≤ λ.

Then the value Pλ equals the value of the dual program

Dλ = max
h∈H
− 1

n

n∑
i=1

f∗(H(xi, zi; θ)(h))− λ∥h∥H, (20)

and the unique optimal solution of (19) is given by

(pλ)i =

(
d

dv
f∗
)(

H(xi, zi; θ)(ĥ)
)
, i = 1, . . . , n,

where ĥ is any solution of (20). Moreover, as λ → 0, pλ
converges in mean to unique solution of (18) and Pλ → P .

Proof of Theorem 3.1

Proof. The proof follows almost directly from application
of Proposition B.3 by taking into account the additional
constraint

∑n
i=1 pi = 1.
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The dual problem can be derived by introducing Lagrange
parameters ν > 0 and µ ∈ R and defining the Lagrangian

L(θ, p, µ, ν) =

n∑
i=1

1

n
f(npi)− µ

(
n∑

i=1

pi − 1

)

+ ν

(
∥

n∑
i=1

piH(xi, zi; θ)∥H∗ − λ
)
.

Using the definition of the dual norm and the fact that triv-
ially λ = max∥h∥=1 ∥h∥λ = min∥h∥=1 ∥h∥λ, we have

L =

n∑
i=1

1

n
f(npi)− µ

(
n∑

i=1

pi − 1

)

+ sup
∥h̃∥H=1

(
n∑

i=1

⟨νh̃, piH(xi, zi; θ)⟩ − ∥νh̃∥Hλ
)
.

By defining new dual Lagrange parameters h = νh̃ ∈ H,
we thus obtain

L(θ, p, µ, h) =

n∑
i=1

1

n
f(npi)− µ

(
n∑

i=1

pi − 1

)

+

n∑
i=1

⟨h, piH(xi, zi; θ)⟩ − ∥h∥Hλ.

Now, redefining pi → npi and optimizing the Lagrangian
with respect to p we get

min
p

{
µ− 1

n

n∑
i=1

[[µ−H(xi, zi; θ)(h))] pi − f(pi)]

− λ∥h∥H
}

= µ− 1

n

n∑
i=1

[
max
pi

[µ−H(xi, zi; θ)(h))] pi − f(pi)
]

− λ∥h∥H

= µ− 1

n

n∑
i=1

f∗(µ−H(xi, zi; θ)(h))− λ∥h∥H,

where we used the definition of the Legrendre-Fenchel (con-
vex) conjugate function f∗(v) = supx⟨v, x⟩− f(x). As for
any h ∈ H, −h ∈ H, we can redefine h→ −h and finally
obtain the result. Finally from Proposition B.3 it follows
that strong duality holds and the unique minimizer of the
primal problem is given by

pi =

(
d

dv
f∗
)(

H(xi, zi; θ)(ĥ) + µ̂
)
, i = 1, . . . , n,

where ĥ, µ̂ are any solutions of the dual problem.

B.2. Proof of Theorem 3.6

For the proof of Lemma B.5 we will need the following
result whose proof closely follows a similar result for vector-
valued moment restrictions of Owen (1990) and Kitamura
et al. (2004) (Lemma D.2):

Lemma B.4. Let X be a RV taking values in X , for
a bounded functional H : X × Θ × H → R
with E [(supθ∈Θ ∥H(X; θ)∥H∗)

m
] < ∞, it follows that

max1≤j≤n supθ∈Θ ∥H (xj ; θ)∥H∗ = o
(
n1/m

)
with proba-

bility 1.

Proof. For ease of notation define the random variable Y :=
supθ∈Θ ∥H (X; θ)∥ and let for i ∈ N, Yi denote indepen-
dent copies of Y . Then as E[Y m] ≤ ∞, we must have that∑∞

i=1 P (Y
m
i > n) < ∞ or equivalently

∑∞
i=1 P (Yi >

n1/m) <∞. Hence by the Borel-Cantelli Lemma the event
Yi > n1/m happens only finitely often with probability 1
which likewise implies Zn := max1≤i≤n Yi > n1/m hap-
pens only finitely often with probability 1. By the same
argument the event Zn = ϵn1/m happens only finitely often
for any ϵ > 0 and thus

lim supZn/n
1/m ≤ ϵ

with probability 1 and thus Zn = o(n1/m) with probability
1.

The following Lemma shows that if we constrain the space
of the dual parameter to a ball of radius ζ with 1/ν < ζ <
1/2− ξ, the largest value the empirical moment functional
evaluated on the dual parameter can take converges to zero
in probability. Furthermore any such ball is contained in the
empirical constraint set Ĥn(θ).

Lemma B.5. Let the assumptions of Theorem 3.6 be
satisfied, then for any ζ with 1/ν < ζ < 1/2 −
ξ define Hn = {h : ∥h∥H ≤ n−ζ}. Then
supθ∈Θ,h∈Hn,1≤i≤n |H(xi, zi; θ)(h)| p→ 0 and w.p.a.1,
Hn ⊆ Ĥn(θ) for all θ ∈ Θ.

Proof. Using the Cauchy-Schwarz inequality together with
Lemma B.4 we have

sup
θ∈Θ,h∈Hn,1≤i≤n

|H(xi, zi; θ)(h)|

≤ sup
θ∈Θ,h∈Hn,1≤i≤n

(∥h∥H · ∥H(xi, zi; θ)∥H∗)

≤ n−ζ sup
θ∈Θ,1≤i≤n

∥H(xi, zi; θ)∥H∗

= Op(n
−ζ+1/ν)

p→ 0.

As V = dom(ϕ) is an open interval containing zero it
follows that H(xi, zi; θ))(h) ∈ dom(ϕ) w.p.a.1 for all θ ∈
Θ and h ∈ Hn.
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Next we assume we have an estimator θ̄ that converges to
the solution θ0 in probability and for which the empirical
moment functional converges to 0 in the dual norm. We
show that then the inner maximization of the regularized
empirical objective Ĝλn

(θ, h) (with the empirical constraint
set Ĥn(θ)) over the dual function h has a solution w.p.a.1
which converges to 0 in the function space norm. Likewise
the unregularized empirical objective evaluated at this solu-
tion converges to ϕ(0). The proof generalizes Lemma A2
of Newey and Smith (2004) to our regularized continuum
formulation. It is different from a similar proof in Chaussé
(2012) (Lemma 2), as our regularization procedure differs
from theirs.

Lemma B.6. Let the assumptions of Theorem 3.6 be
satisfied. Additionally let θ̄ ∈ Θ, θ̄

p→ θ0, and
∥EP̂n

[H(X,Z; θ̄)]∥H∗ = Op

(
n−1/2

)
, further let λn =

Op(n
−ξ) where 0 < ξ < 1/2 − 1/ν. Then

h̄ = argmaxh∈Ĥn(θ̄)
Ĝλn

(θ̄, h) exists w.p.a.1, ∥h̄∥H =

Op

(
n−1/2+ξ

)
, and Ĝλn

(θ̄, h̄) ≤ ϕ(0) +Op

(
n−1+2ξ

)
.

Proof. Let H̄i := Hi(θ̄) and H̄ = 1
n

∑n
i=1 H̄i. Let

Ω̂(θ) = 1
n

∑n
i=1H(xi, zi; θ)⊗H(xi, zi; θ) denote the em-

pirical covariance operator evaluated at θ. By Lemma B.5
and twice continuous differentiability of ϕ(v) in a neigh-
borhood of zero, Ĝλn

(θ̄, h) is twice continuously differen-
tiable on Hn w.p.a.1., with Hn = {h : ∥h∥H ≤ n−ζ} as
in Lemma B.5. Then h̃ = argmaxh∈Hn

Ĝλn
(θ̄, h) exists

w.p.a.1. Using Taylor’s theorem (Proposition B.2) we can
expand the regularized GEL objective about h = 0 and
obtain

ϕ0 = Ĝλn
(θ̄, 0)

≤ Ĝλn
(θ̄, h̃)

= ϕ0 − H̄(h̃)

+
1

2

[
1

n

n∑
i=1

ϕ2(H̄i(ḣ))(H̄i ⊗ H̄i)− λnI ⊗ I
]
(h̃, h̃)

for some ḣ on the line between 0 and h̃. With Lemma B.5
and ϕ2(0) = −1 we have that max1≤i≤n ϕ2(H̄i(ḣ)) <
−1/2 w.p.a.1. Using this and subtracting ϕ0 on both sides
yields

0 ≤ −H̄(h̃)− 1

4
(Ω̂(θ̄) + 2λnI ⊗ I)(h̃, h̃)

By the uniform weak law of large numbers we have Ω̂(θ̄)
p→

Ω(θ̄). As Ω(θ) is a positive semi-definite compact operator
for all θ, its smallest eigenvalue is not bounded away from
zero. However, with λn > 0 the smallest eigenvalue Cλn

of
Ω̂(θ̄) + 2λnI ⊗ I is bounded away from zero, i.e., Cλn > 0

w.p.a.1, and Op(λn). Inserted in above inequality we get

0 ≤ −H̄(h̃)− 1

4
(Ω̂(θ̄) + 2λnI ⊗ I)(h̃, h̃)

≤ ∥H̄∥H∗∥h̃∥H − Cλn∥h̃∥2H,

where in the second line we used the Cauchy-Schwarz in-
equality for the first term. This means we have C∥h̃∥H ≤
∥H̄∥H∗ w.p.a.1. As by assumption ∥H̄∥ = Op(n

−1/2)

it follows that ∥h̃∥ = Op(λ
−1
n n−1/2) = Op(n

−ζ), with
ζ = 1/2 − ξ. Now, as 0 < ξ < 1/2 − 1/ν, we
have 1/ν < ζ < 1/2 and and therefore h̃ ∈ int(Hn)
w.p.a.1. Moreover, as h̃ is a maximizer contained in the
interior of the domain Hn, it must correspond to a sta-
tionary point of Ĝλn

, i.e., ∂Ĝλn
(θ̄, h̃)/∂h = 0. However,

from Lemma B.5 it follows that w.p.a.1 h̃ ∈ Ĥn(θ̄) and
as Ĝλn

(θ̄, h) is concave and Ĥn(θ̄) is convex we must
have Ĝλn(θ̄, h̃) = suph∈Ĥn(θ̄)

Ĝλn(θ̄, h), which directly

implies h̄ = h̃ and proves the first conclusion. The sec-
ond conclusion follows directly as h̄ ∈ int(Hn) and thus
h̄ = Op(n

−ζ). Finally as ∥H̄∥H∗ = Op(n
−1/2) by assump-

tion, we have Ĝλn(θ̄, h̄) ≤ ϕ0+∥H̄∥H∗∥h̄∥H−C∥h̄∥2H =
ϕ0 +Op

(
n−1+2ξ

)
, which completes the proof.

The following lemma which builds on Lemma B.5 and B.6
shows that the empirical moment functional 1

n

∑n
i=1Hi(θ̂)

evaluated at the FGEL estimator θ̂ converges to zero in the
dual norm. The proof is almost identical to the one provided
by Newey and Smith (2004) (Lemma A3) but takes into
account the regularized rates. Note that Chaussé (2012)
provides a slightly different and shortened version of this
proof.

Lemma B.7. Let the assumptions of Theorem 3.6 be
satisfied and denote θ̂ the corresponding FGEL esti-
mator θ̂ = argminθ∈Θ suph∈Ĥn(θ̄)

Ĝλn(θ, h). Then

∥EP̂n
[H(X,Z; θ̂)]∥H∗ = Op

(
n−1/2+ξ

)
.

Proof. Similarly as is in the proof of Lemma B.6, define
Ĥi := Hi(θ̂) and Ĥ = 1

n

∑n
i=1 Ĥi. Let µ(Ĥ) be the Riesz

representer of Ĥ ∈ H∗ in H. Further, let ζ be defined as
in Lemma B.5 and consider h̃ = −n−ζµ(Ĥ)/∥µ(Ĥ)∥H,
which implies h̃ ∈ Hn and therefore by Lemma B.5
max1≤i≤n ∥Ĥ(h̃)∥ p→ 0 and h̃ ∈ Ĥn w.p.a.1. Using the
same steps as in the proof of Lemma B.6 we can Taylor
expand the empirical FGEL objective about h = 0,

Ĝλn(θ̂, h̃) = ϕ(0)− Ĥ(h̃)

+
1

2

[
1

n

n∑
i=1

ϕ2(Ĥi(ḣ))(Ĥi ⊗ Ĥi)− λnI ⊗ I
]
(h̃, h̃),

for some ḣ on the line between 0 and h̃. Note that for any
ḣ on the line between 0 and h̃ we have ϕ2(Ĥi(ḣ)) ≥ −C1,
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i = 1, . . . , n, for some constant C1 > 0. Further, as the
covariance operator is a compact operator, its largest eigen-
value can be bounded by a constant C2 > 0. Putting this
together, the third term above can be bounded by −C∥h̃∥2H,
where C > 0 is another constant. Therefore, we have
w.p.a.1,

Ĝλn(θ̂, h̃) ≥ ϕ(0) + n−ζ∥Ĥ∥H∗ − Cn−2ζ ,

where for the second term we have used the definition of h̃.
Consider θ̄ = θ0 in Lemma B.6, for which the requirements
are fulfilled as with ∥E[H(X,Z; θ0)]∥H∗ = 0, by the cen-
tral limit theorem we have that ∥EP̂n

[H(X,Z; θ0)]∥H∗ =

Op

(
n−1/2

)
. Moreover, being the solution to the mini-max

problem, (θ̂, ĥ) correspond to a saddle point of the empirical
FGEL objective Ĝλn . Using this and Lemma B.6 we have

ϕ(0) + n−ζ∥Ĥ∥H∗ − Cn−2ζ ≤ Ĝλn(θ̂, h̃)

≤ Ĝλn
(θ̂, ĥ)

≤ sup
h∈Ĥn

Ĝλn
(θ0, h) ≤ ϕ(0) +Op(n

−1+2ξ).

Now, subtracting ϕ(0) on both sides and solving for ∥Ĥ∥H∗ ,
we obtain

∥Ĥ∥H∗ ≤ Op(n
ζ−1+2ξ) + Cn−ζ = Op(n

−ζ), (21)

which follows as ζ < 1/2− ξ and therefore ζ − 1 + 2ξ <
ξ−1/2 ≤ −ζ . Consider any ϵn → 0 and let h̃ = −ϵnµ(Ĥ).
Then by (21), h̃ = op(n

−ζ) and therefore h̃ ∈ Hn w.p.a.1.
Then as previously we have

ϕ(0)− Ĥ(h̃)− C∥h∥2H
= ϕ(0) + ϵn∥Ĥ∥2H∗ − Cϵ2n∥Ĥ∥2H∗

≤ ϕ(0) +Op(n
−1+2ξ).

As 1 − ϵnC is bounded away from zero, for all n large
enough, we have ϵn∥Ĥ∥2H∗ = Op(n

−1+2ξ). As this holds
for all ϵn → 0, it follows that ∥Ĥ∥H∗ = Op(n

−1/2+ξ).

Proof of Theorem 3.6

Proof. Define Ĥi = H(xi, zi; θ̂) and Ĥ = 1
n

∑n
i=1 Ĥi. As

Ĥ is the average of n i.i.d. random variables Ĥi, by the
central limit theorem and absolute homogeneity of the dual
norm, we have ∥Ĥ(θ)− E[H(X,Z; θ)]∥H∗ = Op(n

−1/2)

for any θ ∈ Θ. From Lemma B.7 we also have ∥Ĥ∥H∗ =
Op(n

−1/2+ξ) and thus using the triangle inequality we get∥∥∥E[H(X,Z; θ̂)]
∥∥∥
H∗

=
∥∥∥E[H(θ̂)]− Ĥ + Ĥ

∥∥∥
H∗

≤
∥∥∥E[H(X,Z; θ̂)]− Ĥ

∥∥∥
H∗

+
∥∥∥Ĥ∥∥∥

H∗

= Op(n
−1/2+ξ)

p→ 0.

As by assumption θ0 is the unique parameter for which
∥E[H(X,Z; θ)]∥H∗ = 0 it follows that θ̂

p→ θ0.

Proof of Theorem 3.7 The proof generalizes Theorem 3.2
of Newey and Smith (2004) to our regularized continuum
estimator.

Define Hi(θ) := Hi(xi, zi; θ) and H(θ) = 1
n

∑n
i=1Hi(θ)

and analogous H∗
i (θ) = H∗

i (xi, zi; θ) and H∗(θ) =
1
n

∑n
i=1H

∗
i (θ). Let θ̂, ĥ denote the FGEL estimates of

the parameters θ and Lagrange multiplier function h. The
first order optimality conditions are given by

DhGλn
(θ, h) =

1

n

n∑
i=1

ϕ1(Hi(θ)(h))H
∗
i (θ)− λnh = 0

∇θGλn
(θ, h) =

1

n

n∑
i=1

ϕ1(Hi(θ)(h))(∇θHi(θ))(h) = 0,

where ∇θHi(θ) ∈ Θ × H∗ is the gradient of the func-
tion θ 7→ Hi(θ) w.r.t. θ. By Lemma B.5 we know that
max1≤i≤n |H(xi, zi; θ̂)(ĥ)| p→ 0, and thus the first order
optimality conditions conditions are fulfilled for θ̂, ĥw.p.a.1.
Let β = (θ, h). Now using Taylor’s theorem (Proposi-
tion B.2) we can linearize the first order conditions about
the true parameters β0 = (θ0, 0) which yields

0 =−H∗(θ0) +
1

n

n∑
i=1

ϕ2(Hi(θ̇)(ḣ))H
∗
i (θ̇)Hi(θ̇)(ĥ)

− λnĥ+
1

n

n∑
i=1

ϕ1(Hi(θ̇)(ḣ))∇θH
∗
i (θ̇)(θ̂ − θ0)

+
1

n

n∑
i=1

ϕ2(Hi(θ̇)(ḣ))H
∗
i (θ̇)(∇θHi(θ̇))(ḣ)(θ̂ − θ0),

for the first condition, where (θ̇, ḣ) lies on the line between
(θ̂, ĥ) and (θ0, 0). For the second condition we obtain

0 =
1

n

n∑
i=1

ϕ1(Hi(θ̄)(h̄))(∇θHi(θ̄))(ĥ)

+
1

n

n∑
i=1

ϕ2(Hi(θ̄)(h̄))(∇θHi(θ̄))(h̄)H
∗
i (θ̄)(ĥ)

+

{
1

n

n∑
i=1

ϕ2(Hi(θ̄)(h̄))(∇θHi(θ̄))(h̄)(∇θHi(θ̄))(h̄)

+
1

n

n∑
i=1

ϕ1(Hi(θ̄)(h̄))D
2
θ(Hi(θ̄))(h̄)

}
(θ̂ − θ0),

where again (θ̄, h̄) lies on the line between (θ̂, ĥ) and (θ0, 0).
Now as ĥ = op(1) we have h̄ = op(1) and ḣ = op(1).
Therefore for n→∞ most terms go to zero and we are left
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with

0 =−H∗(θ0) +
1

n

n∑
i=1

ϕ2(Hi(θ̇)(ḣ))H
∗
i (θ̇)Hi(θ̇)(ĥ)

− λnĥ+
1

n

n∑
i=1

ϕ1(Hi(θ̇)(ḣ))∇θH
∗
i (θ̇)(θ̂ − θ0)

+ op(1)

and

0 =
1

n

n∑
i=1

ϕ1(Hi(θ̄)(h̄))(∇θHi(θ̄))(ĥ) + op(1).

As ĥ = Op(n
−1/2+ξ) and 1/2 − ξ < 1/2

the conditions of Lemma B.5 are fulfilled
and hence max1≤i≤n |Hi(θ̄)(h̄)| p→ 0 and
max1≤i≤n |ϕ1(Hi(θ̄)(ḡ)) + 1| p→ 0 as well as
max1≤i≤n |ϕ2(Hi(θ̄)(ḡ)) + 1| p→ 0 and the
same equivalently holds for θ̇ and ḣ. Further
1
n

∑n
i=1 ϕ2(Hi(θ̇)(ḣ))H

∗
i (θ̇)Hi(θ̇)

p→ ϕ2Ω(θ0), where
Ω denotes the covariance operator of the moment func-
tional, by the uniform weak law of large numbers and
Slutsky’s theorem. Ω is a compact operator and thus
its smallest eigenvalue is not bounded away from zero.
However, as λn = Op(n

−χ) with χ < 1/2− 1/ν, we can
define the regularized empirical covariance operator as
Ω̂λn

:= Ω̂ + λnI ⊗ I p→ Ωλn
which is a positive definite

operator with smallest eigenvalue bounded away from zero
and Op(λn). Finally inserting into the linearized first order
conditions and using ϕ1 = ϕ1(0) = −1 = ϕ2 we have

0 =−H∗(θ0)− Ωλn(θ0)(ĥ)−∇θH
∗(θ0)(θ̂ − θ0)

+ op(1)

and

0 = −∇θH(θ0))(ĥ) + op(1).

Define H = H(θ0) and Ωλn
= Ωλn

(θ0). Further let
β̂ = (θ̂, ĥ) and β0 = (θ0, 0). Then, with a slight abuse
of notation, we can write the conditions in matrix form as

0 =

(
0
−H∗

)
+M(β̂ − β0) + op(1) (22)

with M = −
(

0 ∇θH
∗

∇θTH Ωλn

)
. Now using standard ma-

trix algebra, which carries over to our operator formulation
as Ωλn

is invertible, we get:

M−1 = −
(
−B C
C∗ D

)
(23)

with B = ((∇θH
∗)Ω−1

λn
(∇θTH))−1, C = B(∇θH

∗)Ω−1
λn

and D = Ω−1
λn
−Ω−1

λn
(∇θTH)B(∇θH

∗)Ω−1
λn

. Solving (22)
for β̂ − β0 finally yields

√
n(θ̂ − θ) = −√nCH∗ + op(1) (24)
√
n(ĥ− h) = −√nDH∗ + op(1) (25)

and the result follows by a number of matrix manipulations
as in Newey and Smith (2004) Theorem 3.2.

Proof of Theorem 3.9

Proof. The proof follows the proof of Theorem 3.2 in Muan-
det et al. (2020). Equation (15) follows from (14) directly
by the law of iterated expectation. To see this, assume
EPX

[ψ(X; θ)|Z] = 0, PZ-a.s., then ∀h ∈ H
E[H(X,Z; θ)(h)] = E[ψ(X; θ)h(Z)]

= E[E[ψ(X; θ)h(Z)|Z]]
= E[E[ψ(X; θ)|Z]h(Z)]
= 0.

For the other direction note that E[H(X,Z; θ)(h)] = 0
∀h ∈ H implies suph∈HE[H(X,Z; θ)(h)] = 0 and thus

0 = sup
h∈H

E[H(X,Z; θ)(h)]

=

m∑
j=1

sup
∥hj∥H≤1

E[ψj(X; θ)hj(Z)]

=

m∑
j=1

sup
∥hj∥H≤1

⟨E[ψj(X; θ)kj(Z, ·)], hj⟩

=

m∑
j=1

∥E[ψj(X; θ)kj(Z, ·)]∥H

=

m∑
j=1

∥EZ [EX [ψj(X; θ)|Z]︸ ︷︷ ︸
:=ξj(Z)

kj(Z, ·)]∥H

=

m∑
j=1

∥
∫
Z
ξj(z)kj(z, ·)p(z)dz∥H

As each element of the sum is non-negative, we must have
for j = 1, . . . ,m,

0 = ∥
∫
Z
ξj(z)kj(z, ·)p(z)dz∥H

= ∥
∫
Z
ξj(z)kj(z, ·)p(z)dz∥2H

=

∫
Z×Z

ξj(z)⟨kj(z, ·), kj(z′, ·)⟩Hξj(z′)

p(z)p(z′)dzdz′

=

∫
Z×Z

ξj(z)kj(z, z
′)ξj(z

′)p(z)p(z′)dzdz′.
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By definition of ISPD kernels (see Section 3) this directly
implies ∥ξj(z)p(z)∥22 = 0. It follows that ξj(z) = 0 a.e. on
the support of p(z) and thus PZ({z ∈ Z : ξj(z) = 0}) = 1.
Finally this implies

ξj(Z) = E[ψj(X; θ)|Z] = 0 PZ-a.s., j = 1, . . . ,m,

which completes the equivalence between (14) and (15).

Proof of Lemma 3.10

Proof. The profile divergence can be written as

Rλn
(θ) = inf

h∈Ĥ
−

n∑
i=1

ϕ(H(xi, zi; θ)(h) +
λn
2
∥h∥H.

As −ϕ is a convex function and Ĥ is convex it follows
that this is a convex optimization problem. Therefore, we
can employ the representer theorem Schölkopf et al. (2001)
and express each component r of the m-dimensional vector
of RKHS functions as hr(·) =

∑n
i=1(αr)ikr(zi, ·), with

αr ∈ Rn. Therefore

H(xi, zi; θ)(h) =

m∑
r=1

n∑
i,j=1

(αr)j (Kr)ji ψr(xi, zi; θ)

and

∥h∥2H =

m∑
r=1

n∑
i,j=1

(αr)i⟨kr(zi, ·), kr(zj , ·)⟩(αr)j

=

m∑
r=1

α⊤
r Krαr

Inserting this back into Rλn
(θ) yields the result.

Proof of Corollary 3.11

Proof. Using Theorem 3.9 we can express the conditional
moment restrictions in functional form as

E[H(X,Y ; θ)] = 0 ∈ H∗.

It remains to be shown that the assumptions imposed on
ψ are sufficient for H to fulfill the conditions of Theo-
rem 3.6. For ease of presentation, assume w.l.o.g. that
m = 1. Using the Riesz representation theorem we can
express the linear functional H ∈ H∗ as the RKHS function
h = ψ(x; θ)k(z, ·) ∈ H. By the definition of reproducing
kernel Hilbert spaces all evaluation functionals in H are
continuous and bounded and thus k(z, ·) is a continuous
bounded function. As the product of a continuous func-
tions and a continuous functional H(x, y; θ) is a continuous

functional and assumption c) is fulfilled. Assumption d) for
Theorem 3.6 follows directly as

E[sup
θ∈Θ
∥H(X,Z; θ)∥νH∗ ]

= E[sup
θ∈Θ
∥ψ(X; θ)k(Z, ·)∥νH∗ ]

≤ E[sup
θ∈Θ
∥ψ(X; θ)∥ν∥k(Z, ·)∥νH∗ ]

≤ CνE[sup
θ∈Θ
∥ψ(X; θ)∥ν ] ≤ ∞,

where we used that the evaluation functional can be
bounded by some positive constant C. Therefore the
conditions of Theorem 3.6 are fulfilled and it follows
that E[H(X,Z; θ̂)]

p→ 0 and hence by Theorem 3.9
E[ψ(X; θ̂)|Z] p→ 0, PZ-a.s..

Proof of Proposition 3.12

Proof. The result follows directly by inserting ϕ(v) =(
1± v

2

)2
into (12) and using that as H is a vector space,

for every h ∈ H, its negative −h is also contained in H.
Therefore the first order conditions agree for the positive
and negative sign in ϕ.


