
Secure Quantized Training for Deep Learning

Marcel Keller 1 Ke Sun 1 2

Abstract
We implement training of neural networks in se-
cure multi-party computation (MPC) using quan-
tization commonly used in said setting. We are
the first to present an MNIST classifier purely
trained in MPC that comes within 0.2 percent
of the accuracy of the same convolutional neural
network trained via plaintext computation. More
concretely, we have trained a network with two
convolutional and two dense layers to 99.2% ac-
curacy in 3.5 hours (under one hour for 99% ac-
curacy). We have also implemented AlexNet for
CIFAR-10, which converges in a few hours. We
develop novel protocols for exponentiation and in-
verse square root. Finally, we present experiments
in a range of MPC security models for up to ten
parties, both with honest and dishonest majority
as well as semi-honest and malicious security.

1. Introduction
Secure multi-party computation (MPC) is a cryptographic
technique that allows a set of parties to compute a public
output on private inputs without revealing the inputs or any
intermediate results. This makes it a potential solution to
federated learning where the sample data stays private and
only the model or even only inference results are revealed.

Imagine a set of healthcare providers holding sensitive pa-
tient data. MPC allows them to collaboratively train a model.
This model could then either be released or even kept pri-
vate for inference using MPC again. See Figure 1 for an
illustration. Note that MPC is oblivious to how the input
data is split among participants, that is, it can be used for
the horizontal as well as the vertical case.

A more conceptual example is the well-known millionaires’
problem where two people want to find out who is richer
without revealing their wealth. There is clearly a difference

1CSIRO’s Data61, Sydney, Australia 2The Australian Na-
tional University. Correspondence to: Marcel Keller <mar-
cel.keller@data61.csiro.au>, Ke Sun <ke.sun@data61.csiro.au>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

between the one bit of information desired and the full
figures.

There has been a sustained interest in applying secure com-
putation to machine learning and neural networks going
back to at least Barni et al. (2006). More recent advances in
practical MPC have led to an increased effort in implement-
ing both inference and training.

A number of works such as Mohassel & Zhang (2017),
Mohassel & Rindal (2018), Wagh et al. (2019), Wagh et al.
(2021) implement neural network training with MPC at least
in parts. However, for the task of classifying MNIST digits,
they either give accuracy figures below 95% or figures ob-
tained using plaintext training. For the latter case, the works
do not clarify how close the computation for plaintext train-
ing matches the lower precision and other differences in the
MPC setting. Agrawal et al. (2019) achieved an accuracy of
99.38% in a comparable setting for a convolutional neural
network with more channels than we use. However, their ac-
tual implementation only uses dense layers, and we achieve
comparable accuracy in this model. All works use quantiza-
tion in the sense that a fractional number x is represented as
bx · 2fe where b·e denotes rounding to the nearest integer,
and f ∈ Z (Z: the set of integers) is a precision parame-
ter. This makes addition considerably faster in the secure
computation setting because it reduces to integer addition
(at the cost of compounding rounding errors). Furthermore,
some of the works suggest replacing the softmax function
that uses exponentiation with a ReLU-based replacement.
Keller & Sun (2020) discovered that this softmax replace-

Figure 1: Outsourced computation: Data holders (on the
left) secret-share their data to a number of computing
parties (on the right), who then return the desired result
(e.g., a model or inference results on further queries). All
communication except the outputs is secret-shared and
thus secure if no two computing parties collude.

Secure Quantized Training for Deep Learning

ment deteriorates accuracy in multilayer perceptrons to the
extent that it does not justify the efficiency gains.

The concurrent work of Tan et al. (2021) gives some figures
on the learning curves when trained with secure computa-
tion. However, they stop at five epochs for MNIST training
and achieve 94% accuracy, whereas we present the figures
up to 50 epochs and 99.2% accuracy using AMSGrad. Our
implementation using stochastic gradient descent (SGD) is
40% faster than theirs. Note that we use the CPU of one
AWS c5.9xlarge instance per party whereas Tan et al. use
one NVIDIA Tesla V100 GPU per party. We believe this
somewhat counter-intuitive result comes from MPC heavily
relying on communication, which is an aspect where GPUs
do not have an advantage over CPUs. While GPUs are very
efficient in computing on data in their cache, it is no more
efficient to transfer data in and out of these caches.

In this paper, we present an extensible framework for se-
cure deep learning based on MP-SPDZ by Keller (2020), a
software library for multi-party computation.1 Similar to
TensorFlow and PyTorch, our approach allows representing
deep learning models as a succession of layers. We then use
this implementation to obtain accuracy figures for MNIST
and CIFAR-10 training by utilizing the MP-SPDZ emula-
tor, which allows to run the plaintext equivalent of secure
computation, that is, the same algorithms with the same
precision. Finally, we run one of the most promising instan-
tiations in real secure computation in order to benchmark it,
confirming the results from the plaintext emulator. We use
less sophisticated datasets because the relatively high cost
of MPC makes is less feasible to use datasets with millions
of examples rather than tens of thousands.

For our implementation, we have designed novel proto-
cols for exponentiation and inverse square root computation.
Both play an important role in deep learning, the first in soft-
max, and the second in the Adam and AMSGrad optimizers.
Our protocols are based on mixed-circuit computation, that
is, we combine a protocol that works over ZM for some
large modulus M and thus integer-like computation with
a protocol in the same security model that works over Z2,
which allows computing binary circuits.2

There are several projects that integrate secure computation
directly into popular machine learning frameworks such
as CrypTen by Knott et al. (2021), PySyft by Ryffel et al.
(2018), and TF Encrypted by Dahl et al. (2018). Our ap-
proach differs from all of them by running the protocol as
native CPU code (implemented using C++). This allows for
much faster execution. For example, CrypTen provides an
MNIST training example (mpc_autograd_cnn), which

1Code available at https://github.com/data61/
MP-SPDZ.

2ZM = Z/MZ denotes integer computation modulo M .

we adapted to full LeNet (LeCun et al., 1998) training. It
took over three hours to run one epoch on one machine. In
comparison, our implementation takes 11 minutes to run
one epoch with the full dataset of 60,000 samples with the
same hardware across instances.

An alternative to MPC would be using purely homomorphic
encryption. Lou et al. (2020) trained an MNIST network to
98.6% accuracy in 8 days whereas we achieved the same
accuracy in less than 5 days when using a two-party protocol
based on homomorphic encryption.

A number of works (Juvekar et al., 2018; Mishra et al.,
2020; Rathee et al., 2020) only implemented deep learning
inference. None of them implements all building blocks
necessary for training. It is therefore not possible to make
any statement on the training performance of these works.

Another line of work (e.g., Quoc et al. 2021) uses trusted
execution environments that provide computation outside
the reach of the operating system. This is a different se-
curity model to multi-party computation that works with
distributing the information among several entities.

The rest of this paper is structured as follows: We highlight
some secure computation aspects in Section 2 and do the
same for machine learning in Section 3. Section 4 analyzes
the error introduced by the quantization. Finally, we present
our implementation and our experimental results for MNIST
and CIFAR-10 classification in Section 5.

2. Secure Computation Building Blocks
Our secure implementation has two layers of abstraction.
The lower level is concerned with a few basic operations that
depend on the actual protocol and security model. The basic
operations include integer addition and multiplication, input,
output, and domain conversion, that is converting between
integer-focused and bit-focused computation. Appendices A
and B give the details of our honest-majority three-party
protocol and our dishonest-majority protocol, respectively.
Honest and dishonest majority refer to how many computing
parties are being trusted. For an honest majority, strictly
more than half parties must follow the protocol and not
reveal information to anyone else. This setting allows for
more efficient protocols while the dishonest-majority setting
requires more expensive cryptographic schemes such as
homomorphic encryption to be used. See Keller (2020) for
a cost comparison between a range of protocols. The higher
level of abstraction is common to all protocol as it builds in
a generic way on the primitives in the lower level. Notable
operations on this level are division, exponentiation, and
inverse square root. Appendix C provides more details.

In this section, we focus on two aspects: How to implement
fractional-number computation with integers, and how to im-

https://github.com/data61/MP-SPDZ
https://github.com/data61/MP-SPDZ

Secure Quantized Training for Deep Learning

plement exponentiation. The former plays a crucial role in
efficient secure computation, and the latter presents a novel
protocol. We also contribute a novel protocol for inverse
square root computation, which is deferred to Appendix C
due to space constraints.

2.1. Quantization

While Aliasgari et al. (2013) showed that it is possible to
implement floating-point computation, the cost is far higher
than integer computation. It is therefore common to repre-
sent fractional numbers using quantization (also called fixed-
point representation) as suggested by Catrina & Saxena
(2010). A real number x is represented asQf (x) := bx·2fe
where f is a positive integer specifying the precision. The
linearity of the representation allows to compute addition
by simply adding the representing integers. Multiplication
however requires adjusting the result because it will have
twice the precision: (x · 2f) · (y · 2f) = xy · 22f . There are
two ways to rectify this:

• An obvious correction would be to shift the result by
f bits after adding 2f−1 to the integer representation,
as bxy · 2fe = b2−f · (xy · 22f + 2f−1)c, where b·c
is the floor function. This ensures rounding to the
nearest number possible in the representation, with the
tie being broken by rounding up.

• However, Catrina & Saxena found that in the context
of secure computation it is more efficient to use prob-
abilistic truncation. This method rounds up or down
probabilistically depending on the input. For exam-
ple, probabilistically rounding 0.75 to an integer would
see it rounded up with probability 0.75 and down with
probability 0.25.

Our quantization scheme is related to quantized neural net-
works (see e.g. Hubara et al. 2016). However, our consid-
eration is not to compress the model, but to improve the
computational speed and to reduce communication.

2.2. Exponentiation

Exponentiation is a core computational module in deep
learning and is useful to evaluate non-linear activation func-
tions such as the softmax. Mohassel & Zhang (2017) in-
troduced a simplification of softmax to avoid computing
exponentiation. In this section, we present an optimized
exponentiation protocol instead.

As noted by Aly & Smart (2019), exponentiation can by re-
duced to exponentiation with base two using ax = 2x log2 a.
Furthermore, if the base is public, this reduction only costs
one public-private multiplication, and it introduces an ac-

Algorithm 1 Exponentiation with base two (Aly & Smart,
2019)

Input: Secret share 〈x; f〉A with precision f where −(k −
f − 1) < x < k − f − 1

Output: 〈2x; f〉A with precision f and total bit length k
1: 〈s〉A ← 〈x; f〉A < 0 {sign}
2: 〈x; f〉A ← 〈x; f〉A − 2 · 〈s〉A · 〈x; f〉A {absolute value}

3: 〈i〉A ← Trunc(〈x; f〉A) {integer component}
4: 〈r; f〉A ← 〈x; f〉A − 〈i〉A {fractional component}
5: `← dlog2(k − f)e
6: 〈i0〉A, . . . , 〈i`−1〉A ← BitDec(〈r〉A, `) {bit decomposi-

tion}
7: 〈d〉A ←

∏`−1
j=0(〈ij〉A · 22

j

+ 1− 〈ij〉A) {integer expo-
nentiation}

8: 〈u; f〉A ← Approx2∗(〈r; f〉A) {polynomial approxima-
tion}

9: 〈g; f〉A ← 〈u; f〉A · 〈d〉A

10: return 〈s〉A ·
(

1
〈g;f〉A − 〈g; f〉

A
)
+ 〈g; f〉A {correct for

sign}

Algorithm 2 Exponentiation with base two (ours)

Input: Secret share 〈x; f〉A with precision f where x <
k − f − 1

Output: 〈2x; f〉A with precision f and total bit length k
1: 〈x0〉B, · · · , 〈xk−1〉B ← A2B(〈x; f〉A) {bit decomposi-

tion}
2: 〈z〉B ←

∑k−1
i=0 2i−f 〈xi〉B < −(k − f − 1) {binary

comparison with fixed-representation}
3: `← dlog2(k − f)e
4: for j = f, . . . , f + `− 1 do
5: 〈xj〉A ← Bit2A(〈xj〉B)
6: end for
7: 〈d〉A ←

∏`−1
j=0(〈xf+j〉A · 22

j

+ 1− 〈xf+j〉A) {integer
exponentiation}

8: 〈r〉A ← B2A(〈x0〉B, . . . , 〈xf−1〉B) {fractional compo-
nent}

9: 〈u; f〉A ← Approx2∗(〈r; f〉A) {polynomial approxima-
tion}

10: 〈g; f〉A ← 〈u; f〉A · 〈d〉A
11: 〈g′; f〉A ← Round(〈g; f〉A, f + 2`, 2`) {result for neg-

ative input}
12: 〈h; f〉A ← Bit2A(〈xk−1〉B) ·

(
〈g′; f〉A − 〈g; f〉A

)
+

〈g; f〉A {correct for sign}
13: return (1 − Bit2A(〈z〉B)) · 〈h; f〉A {output 0 if input

is too small}

ceptable error as

2x log2 a±2
−f

= 2x log2 a · 2±2
−f

.

Secure Quantized Training for Deep Learning

Algorithm 3 Procedures in Algorithms 1 and 2

〈x0〉B, . . . , 〈xk−1〉B ← A2B(〈x; f〉A) Arithmetic to binary
conversion of the k least significant bits, which can be
implemented using edaBits (Escudero et al., 2020) or
local share conversion (Demmler et al., 2015; Araki
et al., 2018) if available in the underlying protocol.

〈x〉A ← Bit2A(〈x〉B) Bit to arithmetic conversion, which
can be implemented using daBits (Rotaru & Wood,
2019).

〈x〉A ← B2A(〈x0〉B, . . . , 〈xk〉B) Binary to arithmetic con-
version of k-bit values, which can be implemented
using edaBits.

〈y; f〉A ← Round(〈x; f〉A, k,m) Truncate a k-bit value by
m bits with either nearest or probabilistic rounding,
corresponding to a division by 2m. Both also benefit
from mixed-circuit computation as shown by Dalskov
et al. (2021).

〈y; f〉A ← Approx2∗(〈x; f〉A) Approximate 2x for x ∈
[0, 1] using a Taylor series.

The second multiplicand on the right-hand side is easily
seen to be within [1− 2−f , 1 + 2−f].

Algorithm 1 shows the exponentiation method by Aly &
Smart. It uses 〈·〉A to indicate integer sharing and 〈·; f〉A to
indicate fixed-point sharing. We use the superscript A to in-
dicate that both secret sharing are in the arithmetic domain,
that is, in ZM for some large M . This distinguishes them
from the bit-wise secret sharing indicated by B used below.
The algorithm uses a number of standard components such
as addition, multiplication, comparison, and bit decomposi-
tion. Furthermore, it uses a polynomial approximation of 2x

for x ∈ [0, 1]. They propose to use the polynomial P1045 by
Hart (1978). However, we found that Taylor approximation
at 0 leads to better results than P1045.

Algorithm 1 suffers from two shortcomings. First, it is
unnecessarily restrictive on negative inputs because it uses
the absolute value of the input, the exponentiation of which
falls outside the representation range for values as small
as k − f − 1 where k is a parameter defining the range of
inputs ([−2k−f−1, 2k−f−1]). Second, the truncation used
to find the integer component resembles bit decomposition
in many protocols. It is therefore wasteful to separate the
truncation and the bit decomposition. Algorithm 2 fixes
these two issues. It also explicitly uses mixed circuits, with
binary secrets denoted using 〈·〉B.

The general structure of Algorithm 2 is the same as Algo-
rithm 1. It splits the input into an integer and a fractional

Table 1: Total communication in kbit for Algorithms 1
and 2 across a range of security models with one corrupted
party. “SH” stands for semi-honest security and “Mal.”
for malicious security.

3 Parties 2 Parties
SH Mal. SH Mal.

Aly & Smart (2019) 27 498 1,338 214,476
Algorithm 2 (ours) 16 323 813 121,747

part and then computes the exponential separately, using an
exact algorithm for the integer part and an approximation for
the fractional part. It differs in that it uses mixed circuits and
it allows any negative input. The biggest difference however
is in step 11, where the exponentiation of a negative num-
ber is not computed by inverting the exponentiation of the
absolute value. Instead, we use the following observation.
If −2` ≤ x < 0, x = −2` + y + r, where y = x+ 2` − r
and r is the fractional component of x. Then,

2x = 2−2
`

· 2y · 2r.

2y equals d in Algorithm 2 because y is the composi-
tion of the bits used in integer exponentiation, namely
y =

∑`−1
i=0 xf+i. Therefore, g ≈ 2y · 2r, and

g′ ≈ g

22`
≈ 2x

for g and g′ in steps 10 and 11 because rounding by 2` bits
implies division by 22

`

. This saves a relatively expensive
division compared to Algorithm 1.

Table 1 shows how the two algorithms compare in terms
of communication across a number of security models. All
figures are obtained using MP-SPDZ (Keller, 2020) with
f = 16, k = 31, computation modulo 264 for three-party
computation, and computation modulo a 128-bit prime for
two-party computation (as in Section 5.1.1). We use edaBits
for mixed-circuit computation in Algorithm 2. Across all
security models, our algorithm saves about 30 percent in
communication despite the improved input range. In the
context of the figures in Table 5 the improvement is less
than one percent because exponentiation is only used once
for every example per epoch, namely for the computation
of softmax.

3. Deep Learning Building Blocks
In this section, we give a high-level overview of our secure
deep learning framework, and how it builds upon our low-
level computational modules (implemented from scratch) to
tackle challenges in secure computation. Table 2 shows a
non-exhaustive list of basic operations that is our compu-
tational alphabet, with a rough estimation of their cost in

Secure Quantized Training for Deep Learning

Table 2: Basic operations and their cost. The column
“MPC Cost” shows the roughly approximated computa-
tional cost in MPC, as compared to integer multiplication.
The last column displays the computational and commu-
nication resource consumption. “�” means the cheapest
computation; “�” means the most expensive.

Operation MPC Cost (≈) Efficiency
Jx > yK 101 �
x± y 10−1 �

x× y (integer) 100 �
x× y (fractional) 101 �

x/y 102 �
1/
√
x 102 �

exp(x), log(x) 102 �

MPC. The “MPC Cost” column shows how an operation
relates to integer multiplication in terms of magnitude order
because integer multiplication is the most basic operation
that involves communication. Most notably, comparison is
not the basic operation as in silicon computation.

Linear Operations Matrix multiplication is the
workhorse of deep learning frameworks. The forward
and backward computation for both dense layers and
convolutional layers are implemented as matrix multi-
plication, which in turn is based on dot products. A
particular challenge in secure computation is to compute
a number of outputs in parallel to save communication
rounds. We overcome this challenge by having a dedicated
infrastructure that computes all dot products for a matrix
multiplication in a single batch of communication, thus
reducing the number of communication rounds. Another
challenge is the accumulated error when evaluating matrix
multiplication using quantized numbers. The following
Section 4 presents a careful analysis on our solution to this
potential issue. Our secure computation implementation
uses efficient dot products when available (Appendix A)
or efficient use of SIMD-style homomorphic encryption
(Appendix B).

Non-linear Operations A major part of the non-linear
computation is the non-linear neural network layers. Both
rectified linear unit (ReLU; Nair & Hinton 2010) and max
pooling are based on comparison followed by oblivious
selection. For example, ReLU(x) := max(x, 0) = (x >
0 ? x : 0), where the C expression (condition ? a : b)
outputs a if condition is true and outputs b if otherwise. In
secure computation, it saves communication rounds if the
process uses a balanced tree rather than iterating over all
input values of one maximum computation. For example,
two-dimensional max pooling over a 2x2 window requires
computing the maximum of four values. We compute the

maximum of two pairs of values followed by the maximum
of the two results. Our softmax and sigmoid activation func-
tions are implemented using the exponentiation algorithm
in section 2.2. Another source of non-linear computation
is the inverse square root 1/

√
x, which appears in batch

normalization (Ioffe & Szegedy, 2015), our secure version
of Adam (Kingma & Ba, 2015) and AMSGrad (Reddi et al.,
2018) optimizers, and Glorot initialization (Glorot & Ben-
gio, 2010) of the neural network weights. Our novel imple-
mentation of 1/

√
x (explained in Appendix C) is more effi-

cient than state-of-the-art alternatives (Aly & Smart, 2019;
Lu et al., 2020). It helps to avoid numerical division, which
is much more expensive than multiplication. Taking Adam
as an example, the increment of the parameter θi in each
learning step is altered to γgi/

√
vi + ε (γ: learning rate; gi

and vi: first and second moments of the gradient; ε = 10−8)
as compared to γgi/

(√
vi + ε

)
in Kingma & Ba’s original

algorithm, so that we only need to take the inverse square
root of vi + ε, then multiply by γ and gi.

Random Operations Our secure framework supports ran-
dom initialization of the network weights (Glorot & Ben-
gio, 2010), random rounding, random shuffling of the train-
ing samples, and Dropout (Srivastava et al., 2014). Our
implementation relies on uniform random samplers (Dal-
skov et al., 2021; Escudero et al., 2020) based on mixed-
circuit computation. Random rounding and Dropout re-
quire to draw samples from Bernoulli random variables. By
a reparameterization trick, a sample x from the distribu-
tion Prob(x = a) = p, Prob(x = b) = 1 − p (Prob(·):
probability of statement being true) can be expressed as
x = b + (a − b)bp + rc, where r ∼ U(0, 1) (uniform
distribution on [0, 1]).

4. An Analysis of Probabilistic Rounding
In this section, we analyze the rounding error of our secure
quantized representation for matrix multiplication. We show
that our rounding algorithm À is unbiased; Á has acceptable
error; Â is potentially helpful to training. Fixed point num-
bers (Lin et al., 2016) and stochastic rounding (Wang et al.,
2018) have been applied to deep learning. The rounding
error analysis presented here is potentially useful to similar
quantized representations.

Recall that any x ∈ R is stored as an integer (equivalently,
a fixed point number) Qf (x) := bx · 2fe. As the max-
imum error of the nearest rounding b·e is 1/2, we have
|x −Qf (x)2−f | = 2−f |x · 2f −Qf (x)| ≤ 2−f−1 = ε/2,
where ε := 2−f is the smallest positive number we can
represent. Our multiplication algorithm outputs Rf (xy),
the integer representation of the product xy. By definition,

Rf (xy) := bµc+ b,

µ := Qf (x)Qf (y)2−f , b ∼ B ({µ}) ,
(1)

Secure Quantized Training for Deep Learning

where {µ} is the fractional part of µ (0 ≤ {µ} < 1), the ran-
dom variable b ∈ {0, 1} means rounding down or up, and
B(·) denotes a Bernoulli distribution with given mean. No-
tice that the input Qf (x) and Qf (y) and the output Rf (xy)
are integers. They all have to be multiplied by 2−f to get
the underlying fixed point number. Eq. (1) can be computed
purely based on integer operations (see Appendix C). The
Bernoulli random variable b in Eq. (1) is sampled indepen-
dently for each numerical product we compute.

Given two real matrices Am×n and Bn×p represented by
Qf (A) and Qf (B), where Qf (·) is elementwisely applied
to the matrix entries, the integer representation of their prod-
uct is Rf (AB) :=

(∑
lR

f (AilBlj)
)
m×p. Its correctness

is guaranteed in the following proposition.
Proposition 4.1. ∀A ∈ Rm×n, ∀B ∈ Rn×p,
E(Rf (AB)) = 2−fQf (A)Qf (B), where E(·) denotes the
expectation with respect to the random rounding in Eq. (1).

The expectation of the random matrix Rf (AB) is exactly
the matrix product of Qf (A) and Qf (B) up constant scal-
ing. Hence, our matrix multiplication is unbiased. Product
of fixed point numbers can also be based on nearest rounding
by replacing Eq. (1) with R̃f (xy) := bQf (x)Qf (y)2−fe.
As a deterministic estimation, it is unbiased only if the
rounding error is absolutely zero, which is not true in gen-
eral. Therefore, matrix product by nearest rounding is bi-
ased.

We bound the worst case error during matrix multiplication
as follows.
Proposition 4.2. Assume A ∈ Rm×n, B ∈ Rn×p, and the
absolute value of all entries are bounded by 2k (k ≥ 0).
Then, ‖Rf (AB) − 2fAB‖ < √mp · n ·

(
2k + 1 + ε/4

)
,

where ε := 2−f , and ‖ · ‖ is the Frobenius norm.

In Proposition 4.2, k corresponds to the number of bits to
present the integer part of any x ∈ R. To get some intuition,
we have the trivial bound ‖AB‖ ≤ √mp · n · 2k+1. By
Proposition 4.2, the computational error ‖2−fRf (AB) −
AB‖ has a smaller order of magnitude, as it scales with
ε = 2−f . The precision f should be high enough to avoid a
large error. Let us remark that nearest rounding has similar
deterministic error bounds (omitted here).

The following proposition shows our rounding in eq. (1)
satisfies another probabilistic bound, which improves over
the above worst case bound.
Proposition 4.3. Let A ∈ Rm×n, B ∈ Rn×p. With proba-
bility at least 1− 1

4ι2 , the following is true

‖Rf (AB)− 2−fQf (A)Qf (B)‖ ≤ ι√mnp.

By Proposition 4.1, 2−fQf (A)Qf (B) is the expectation
of Rf (AB). Therefore the first term is the “distance” be-
tween the random matrix Rf (AB) and its mean. One can

roughly approximate 2−fQf (A)Qf (B) ≈ 2fAB to com-
pare Proposition 4.3 with Proposition 4.2. The probabilistic
bound scales the deterministic bound by a factor of 2−k/

√
n.

That means our matrix multiplication is potentially more
accurate than alternative implementations based on nearest
rounding, especially for large matrices (n is large).

One can write Dropout (Srivastava et al., 2014) in a sim-
ilar way to eq. (1): Dropout(A) = A � B, bij ∼ B(τ),
where � is Hadamard product, and τ > 0 is a dropout rate.
Our probabilistic rounding is naturally equipped with noise
injection, which is helpful to avoid bad local optima and
over-fitting. Based on our observations, one can achieve bet-
ter classification accuracy than nearest rounding in general.

5. Implementation and Benchmarks
We build our implementation on MP-SPDZ by Keller (2020).
MP-SPDZ not only implements a range of MPC protocols,
but also comes with a high-level library containing some
of the building blocks in Appendix C. We have added the
exponentiation in Section 2.2, the inverse square root com-
putation in Appendix C, and all machine learning building
blocks.

MP-SPDZ allows implementing the computation in
Python code, which is then compiled into a specific byte-
code. This code can be executed by a virtual machine per-
forming the actual secure computation. The process allows
optimizing the computation in the context of MPC.

The framework also features an emulator that executes the
exact computation in the clear that could be done securely.
This allowed us collecting the accuracy figures in the next
section at a lower cost. Our implementation is licensed
under a BSD-style license.

5.1. MNIST Classification

For a concrete measurement of accuracy and running times,
we train a multi-class classifier3 for the widely-used MNIST
dataset (LeCun et al., 2010). We work mainly with the
models used by Wagh et al. (2019) with secure computation,
and we reuse their numbering (A–D). The models contain
up to four layers. Network C is a convolutional neural
network that appeared in the seminal work of LeCun et al.
(1998) whereas the others are simpler networks used by
related literature on secure computation such as Mohassel
& Zhang (2017), Liu et al. (2017), and Riazi et al. (2018).
See Figures 5–8 in the Appendix for the exact network
structures.

Figure 2 shows the learning curves for various quantization
precisions and two rounding options, namely, nearest and

3Scripts are available at https://github.com/
csiro-mlai/deep-mpc.

https://github.com/csiro-mlai/deep-mpc
https://github.com/csiro-mlai/deep-mpc

Secure Quantized Training for Deep Learning

0 10 20 30 40 50

10−4

10−3

10−2

10−1

#epochs

tr
ai

ni
ng

lo
ss

f = 16, prob.
f = 32, prob.
f = 64, prob.
f = 16, nearest
f = 32, nearest

0 10 20 30 40 50

0.01

0.02

0.03

0.04

te
st

in
g

er
ro

r

Figure 2: Loss and accuracy for LeNet and various preci-
sion options when running SGD with a learning rate of
0.01. Interval only available for f = 32 and f = 16 with
probabilistic rounding.

0 10 20 30 40 50

10−5

10−4

10−3

10−2

10−1

#epochs

tr
ai

ni
ng

lo
ss

SGD, γ = 0.01
SGD, γ = 0.05
Adam, γ = 0.001
AMSGrad, γ = 0.001
AMSGrad, γ = 0.005
AMSGrad, γ = 0.001, Dropout
Quotient AMSGrad, γ = 0.001

0 10 20 30 40 50

0.01

0.02

0.03

te
st

in
g

er
ro

r

Figure 3: Loss and accuracy for LeNet with various op-
timizer options, f = 16, and probabilistic truncation. γ
is the learning rate. Interval only available for AMSGrad
with γ = 0.0001.

0 10 20 30 40 50

10−5

10−4

10−3

10−2

10−1

#epochs

tr
ai

ni
ng

lo
ss

secure, SGD, γ = 0.01
secure, AMSGrad, γ = 0.001
cleartext, SGD, γ = 0.01
cleartext, AMSGrad, γ = 0.001

0 10 20 30 40 50

0.01

0.02

0.03

te
st

in
g

er
ro

r

Figure 4: Comparison of cleartext training and secure
training for LeNet with f = 16 and probabilistic trunca-
tion. γ is the learning rate.

probabilistic rounding. We use SGD with learning rate
0.01, batch size 128, and the usual MNIST training/test split.
Most configurations perform similarly except for 16-bit
precision with nearest rounding which gives worse results.
We run the best-performing configurations several times.
The range of the performance scores is indicated by the
shaded area. For the rest of the paper, we focus on f = 16
with probabilistic rounding because it offers the best overall
performance in terms of accuracy and efficiency.

The choice of f = 16 (and k = 31) is informed on one hand
by the fact that it is close to the lower limit for reasonable
results. The works listed in Table 3 use values in the range
13–20, and we found that f = 8 leads to divergence. On
the other hand, Figure 2 shows that increasing the precision
does not lead to an increase in accuracy. Finally, the divi-
sion algorithm by Catrina & Saxena (2010) requires that
k is roughly twice f , and that k is half the domain size
(strictly less than half the domain size for efficiency). A
domain size of 64 is natural given the 64-bit word size of
common hardware. The choice of f and k follows from
these constraints. Learning rate and minibatch size are set
empirically based on satisfactory performance in plaintext
training.

Figure 3 reports the results with a variety of optimizers.
AMSGrad (Reddi et al., 2018) stands out in terms of con-
vergence and final accuracy. Agrawal et al. (2019) suggest
using normalized gradients in AMSGrad for training bi-
nary neural networks to improve performance. In our ex-
periments using quantized weights with higher precision,
similar improvements are not observed.

Furthermore, Figure 3 also shows that using a Dropout
layer as described in Figure 7 in Appendix E only slightly
improves the performance. This is possibly due to the fact
that the reduced precision and probabilistic rounding already
prevent overfitting to some degree.

Resources We run the emulator on AWS c5.9xlarge
instances. One epoch takes a few seconds to several minutes
depending on the model that is being trained. For all our
experiments, we used a few weeks of computational time
including experiments not presented here.

5.1.1. SECURE COMPUTATION

In order to verify our emulation results, we run LeNet with
precision f = 16 and probabilistic rounding in our actual
multi-party computation protocol. We could verify that it
converges on 99.2% accuracy at 25 epochs, taking 3.6 hours
(or one hour for 99% accuracy). Tables 3 and 4 compare
our results to previous works in a LAN setting.

Note that Wagh et al. (2019) and Wagh et al. (2021) give
accuracy figures. The authors have told us in personal com-

Secure Quantized Training for Deep Learning

Table 3: Benchmarks in the three-party LAN setting with one corruption. Accuracy N/A means that the accuracy
figures were not given or computed in a way that does not reflect the secure computation. (∗) Wagh et al. (2021) only
implemented their online phase.

Network Epoch time (s) Comm. per epoch (GB) Acc. (# epochs) Precision (f)

A

Mohassel & Rindal (2018) 180 N/A 94.0% (15) N/A
Wagh et al. (2019) 247 N/A N/A 13
Wagh et al. (2021)∗ 41 3 N/A 13
Ours (SGD) 31 26 97.8% (15) 16
Ours (AMSGrad) 88 139 98.1% (15) 16

B

Wagh et al. (2019) 4,176 N/A N/A 13
Wagh et al. (2021)∗ 891 108 N/A 13
Ours (SGD) 144 201 98.0% (15) 16
Ours (AMSGrad) 187 234 98.6% (15) 16

C

Wagh et al. (2019) 7,188 N/A N/A 13
Wagh et al. (2021)∗ 1,412 162 N/A 13
Tan et al. (2021) 1,036 534 94.0% (5) 20
Knott et al. (2021) 10,940 N/A 96.7% (4) 16
Ours (SGD) 343 352 98.5% (5) 16
Ours (AMSGrad) 513 765 99.0% (5) 16

D

Mohassel & Rindal (2018) 234 N/A N/A N/A
Wagh et al. (2021)∗ 101 11 N/A 13
Ours (SGD) 41 41 98.1% (15) 16
Ours (AMSGrad) 95 137 98.5% (15) 16

Table 4: Benchmarks in the two-party LAN setting. In the column “Epoch time (s)”, two numbers refer to online and
offline time. Accuracy N/A means that the accuracy figures were not given or computed in a way that does not reflect
the secure computation. Figures for Network C are estimates based on ten batch iterations.

Network Epoch time (s) Comm. per epoch (GB) Acc. (# epochs) Precision (f)

A

Mohassel & Zhang (2017) 283/19,333 N/A 93.4% (15) 13
Agrawal et al. (2019) 31,392 N/A 95.0% (10) N/A
Ours (SGD) 3,741 1,128 97.8% (15) 16
Ours (AMSGrad) 5,688 4,984 98.1% (15) 16

D Ours (SGD) 141,541 25,604 98.1% (15) 16
Ours (AMSGrad) 196,745 51,770 98.5% (15) 16

Table 5: Benchmarks for Network C (LeNet) with AMSGrad across a range of security models in the LAN setting.
Figures are mostly estimates based on ten batch iterations.

Protocol # parties # corruptions Malicious Time per epoch (s) Comm. per epoch (GB)

Appendix B 2 1 8 196,745 51,770
Appendix A 3 1 8 513 765
Dalskov et al. (2021) 3 1 4 4,961 9,101
Appendix B 3 2 8 357,214 271,595
Dalskov et al. (2021) 4 1 4 1,175 2,945
Appendix B.2 10 1/8 8 29,078 99,775
Goyal et al. (2021) 10 4 8 129,667 434,138
Appendix B 10 9 8 2,833,641 13,875,834

Secure Quantized Training for Deep Learning

munication that their figures do not reflect the secure compu-
tation. This is related to the fact that they do not implement
exponentiation and thus softmax but use the ReLU-based al-
ternative, which has been found to perform poorly by Keller
& Sun (2020). The same holds for Mohassel & Rindal
(2018) and Mohassel & Zhang (2017). Agrawal et al. (2019)
instead use ternary weights, which explains their reduced
accuracy.

Tan et al. (2021) rely entirely on Taylor series approximation
for exponentiation whereas we use approximation only for
the fractional part of the input (Algorithm 2). This might
explain their lower accuracy.

The figures for CrypTen (Knott et al., 2021) were obtained
by running an adaption of their mpc_autograd_cnn ex-
ample to the full LeNet with SGD and learning rate 0.01.
We found that it would eventually diverge even with a rela-
tively low learning rate of 0.001. The given accuracy is the
highest we achieved before divergence. We estimate that
this is due to the approximations used in CrypTen. It use
the following approximation for the exponential function:

(1 + x/2n)2
n

.

According to the CrypTen code4, n is set to 9. Furthermore,
they use a fixed-point precision of 16. This leads to a rel-
atively low precision. For x = −4, their approximation is
0.018030 when rounding to the nearest multiple of 2−16

at every step. In contrast, the correct value is 0.018315, a
relative error of more than one percent. In comparison, our
solution produces values in the range [0.018310, 0.018325],
a relative error of less than 10−3 and an absolute error of
less than the representation step of 2−16.

There are a number of factors that make it hard to com-
pare the performance. Wagh et al. (2021) have only im-
plemented their online phase, which makes their figures
incomplete. The implementation of Knott et al. (2021) is
purely in Python whereas all others use C/C++. Finally,
we rely on figures obtained using different platforms except
for Knott et al. (2021). In general, it is likely that MP-
SPDZ benefits from being an established framework that
has undergone more work than other code bases.

Further security models MP-SPDZ supports a wide
range of security models, that is, choices for the number
of (corrupted) parties and the nature of their corruption,
i.e., whether they are assumed to follow the protocol or not.
Table 5 shows our results across a range of security models.

5.1.2. COMPARISON TO CLEARTEXT TRAINING

Figure 4 compares the performance of our secure training
with cleartext training in TensorFlow. It shows that secure

4https://github.com/facebookresearch/
CrypTen

training performs only slightly worse with the same opti-
mizer.

5.2. CIFAR-10 Classification

In order to highlight the generality of our approach, we
have implemented training for CIFAR-10 with a network by
Wagh et al. (2021), which is based on AlexNet (Krizhevsky
et al., 2017). See Figure 9 in Appendix E for details. Unlike
the networks for MNIST, the network for CIFAR-10 uses
batch normalization (Ioffe & Szegedy, 2015). Table 6 shows
our results. Our results are not comparable with Wagh et al.
(2021) because they do not implement the full training. Fur-
thermore, Tan et al. (2021) do not provide accuracy figures
for training from scratch, which makes it unclear how their
less accurate approximations perform in this setting. Fig-
ure 12 in Appendix G shows that our secret training comes
within a few percentage points of cleartext training. Similar
figures for MPC training on CIFAR-10 are not widely seen
in the literature.

Table 6: Time (seconds) and communication (GB) per
epoch, accuracy after ten epochs, and fixed-point preci-
sion for CIFAR-10 training in the three-party LAN setting
with one corruption. Tan et al. (2021) do not train from
scratch, which is why we do include their accuracy fig-
ure. (∗)Wagh et al. (2021) only implemented their online
phase.

Network s/ep. GB/ep. Acc. f

Wagh et al. (2021)∗ 3,156 80 N/A 13
Tan et al. (2021) 1,137 535 N/A 20
Ours (SGD) 1,603 771 64.9% 16
Ours (Adam) 2,431 3,317 64.7% 16
Ours (AMSGrad) 2,473 3,285 63.6% 16

6. Conclusions
We implement deep neural network training purely in multi-
party computation, and we present extensive results of con-
volutional neural networks on benchmark datasets. We find
that the low precision of MPC computation increases the
error slightly. We only consider one particular implemen-
tation of division and exponentiation, which are crucial to
the learning process as part of softmax. Future work might
consider different approximations of these building blocks.

References
Agrawal, N., Shamsabadi, A. S., Kusner, M. J., and Gascón,

A. QUOTIENT: Two-party secure neural network train-
ing and prediction. In Cavallaro, L., Kinder, J., Wang, X.,
and Katz, J. (eds.), ACM CCS 2019, pp. 1231–1247. ACM
Press, November 2019. doi: 10.1145/3319535.3339819.

https://github.com/facebookresearch/CrypTen
https://github.com/facebookresearch/CrypTen

Secure Quantized Training for Deep Learning

Aliasgari, M., Blanton, M., Zhang, Y., and Steele, A. Secure
computation on floating point numbers. In NDSS 2013.
The Internet Society, February 2013.

Aly, A. and Smart, N. P. Benchmarking privacy preserving
scientific operations. In Deng, R. H., Gauthier-Umaña,
V., Ochoa, M., and Yung, M. (eds.), ACNS 19, volume
11464 of LNCS, pp. 509–529. Springer, Heidelberg, June
2019. doi: 10.1007/978-3-030-21568-2_25.

Araki, T., Furukawa, J., Lindell, Y., Nof, A., and Ohara, K.
High-throughput semi-honest secure three-party compu-
tation with an honest majority. In Weippl, E. R., Katzen-
beisser, S., Kruegel, C., Myers, A. C., and Halevi, S.
(eds.), ACM CCS 2016, pp. 805–817. ACM Press, Octo-
ber 2016. doi: 10.1145/2976749.2978331.

Araki, T., Barak, A., Furukawa, J., Keller, M., Lindell,
Y., Ohara, K., and Tsuchida, H. Generalizing the
SPDZ compiler for other protocols. In Lie, D., Man-
nan, M., Backes, M., and Wang, X. (eds.), ACM CCS
2018, pp. 880–895. ACM Press, October 2018. doi:
10.1145/3243734.3243854.

Barni, M., Orlandi, C., and Piva, A. A privacy-preserving
protocol for neural-network-based computation. In Pro-
ceedings of the 8th workshop on Multimedia and security,
pp. 146–151, 2006.

Beaver, D. Efficient multiparty protocols using circuit ran-
domization. In Feigenbaum, J. (ed.), CRYPTO’91, vol-
ume 576 of LNCS, pp. 420–432. Springer, Heidelberg,
August 1992. doi: 10.1007/3-540-46766-1_34.

Benaloh, J. C. and Leichter, J. Generalized secret shar-
ing and monotone functions. In Goldwasser, S. (ed.),
CRYPTO’88, volume 403 of LNCS, pp. 27–35. Springer,
Heidelberg, August 1990. doi: 10.1007/0-387-34799-2_
3.

Catrina, O. and Saxena, A. Secure computation with fixed-
point numbers. In Sion, R. (ed.), FC 2010, volume 6052
of LNCS, pp. 35–50. Springer, Heidelberg, January 2010.

Cock, M. d., Dowsley, R., Nascimento, A. C., and New-
man, S. C. Fast, privacy preserving linear regression
over distributed datasets based on pre-distributed data. In
Proceedings of the 8th ACM Workshop on Artificial In-
telligence and Security, AISec ’15, pp. 3–14, New York,
NY, USA, 2015. Association for Computing Machinery.
ISBN 9781450338264. doi: 10.1145/2808769.2808774.

Cramer, R., Damgård, I., and Nielsen, J. B. Multiparty
computation from threshold homomorphic encryption. In
Pfitzmann, B. (ed.), EUROCRYPT 2001, volume 2045
of LNCS, pp. 280–299. Springer, Heidelberg, May 2001.
doi: 10.1007/3-540-44987-6_18.

Dahl, M., Mancuso, J., Dupis, Y., Decoste, B., Giraud, M.,
Livingstone, I., Patriquin, J., and Uhma, G. Private ma-
chine learning in TensorFlow using secure computation.
CoRR, abs/1810.08130, 2018.

Dalskov, A., Escudero, D., and Keller, M. Fantastic four:
Honest-majority four-party secure computation with ma-
licious security. In 30th USENIX Security Symposium
(USENIX Security 21), 2021.

Dalskov, A. P. K., Escudero, D., and Keller, M. Secure eval-
uation of quantized neural networks. PoPETs, 2020(4):
355–375, October 2020. doi: 10.2478/popets-2020-0077.

Damgård, I., Fitzi, M., Kiltz, E., Nielsen, J. B., and Toft,
T. Unconditionally secure constant-rounds multi-party
computation for equality, comparison, bits and exponen-
tiation. In Halevi, S. and Rabin, T. (eds.), TCC 2006,
volume 3876 of LNCS, pp. 285–304. Springer, Heidel-
berg, March 2006. doi: 10.1007/11681878_15.

Damgård, I., Pastro, V., Smart, N. P., and Zakarias, S. Mul-
tiparty computation from somewhat homomorphic en-
cryption. In Safavi-Naini, R. and Canetti, R. (eds.),
CRYPTO 2012, volume 7417 of LNCS, pp. 643–662.
Springer, Heidelberg, August 2012. doi: 10.1007/
978-3-642-32009-5_38.

Damgård, I., Escudero, D., Frederiksen, T. K., Keller, M.,
Scholl, P., and Volgushev, N. New primitives for actively-
secure MPC over rings with applications to private ma-
chine learning. In 2019 IEEE Symposium on Security and
Privacy, pp. 1102–1120. IEEE Computer Society Press,
May 2019. doi: 10.1109/SP.2019.00078.

Demmler, D., Schneider, T., and Zohner, M. ABY - A
framework for efficient mixed-protocol secure two-party
computation. In NDSS 2015. The Internet Society, Febru-
ary 2015.

Eerikson, H., Keller, M., Orlandi, C., Pullonen, P., Puura, J.,
and Simkin, M. Use your brain! Arithmetic 3PC for any
modulus with active security. In Kalai, Y. T., Smith, A. D.,
and Wichs, D. (eds.), ITC 2020, pp. 5:1–5:24. Schloss
Dagstuhl, June 2020. doi: 10.4230/LIPIcs.ITC.2020.5.

Escudero, D., Ghosh, S., Keller, M., Rachuri, R., and Scholl,
P. Improved primitives for MPC over mixed arithmetic-
binary circuits. In Micciancio, D. and Ristenpart, T. (eds.),
CRYPTO 2020, Part II, volume 12171 of LNCS, pp. 823–
852. Springer, Heidelberg, August 2020. doi: 10.1007/
978-3-030-56880-1_29.

Glorot, X. and Bengio, Y. Understanding the difficulty of
training deep feedforward neural networks. In Interna-
tional conference on artificial intelligence and statistics
(AISTATS), pp. 249–256, 2010.

Secure Quantized Training for Deep Learning

Goldschmidt, R. E. Applications of division by convergence.
Master’s thesis, MIT, 1964.

Goyal, V., Li, H., Ostrovsky, R., Polychroniadou, A., and
Song, Y. ATLAS: Efficient and scalable MPC in the hon-
est majority setting. In Malkin, T. and Peikert, C. (eds.),
CRYPTO 2021, Part II, volume 12826 of LNCS, pp. 244–
274, Virtual Event, August 2021. Springer, Heidelberg.
doi: 10.1007/978-3-030-84245-1_9.

Halevi, S. and Shoup, V. Algorithms in HElib. In Garay,
J. A. and Gennaro, R. (eds.), CRYPTO 2014, Part I, vol-
ume 8616 of LNCS, pp. 554–571. Springer, Heidelberg,
August 2014. doi: 10.1007/978-3-662-44371-2_31.

Hart, J. F. Computer approximations. Krieger Publishing
Co., Inc., 1978.

Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., and
Bengio, Y. Binarized neural networks. In Advances
in Neural Information Processing Systems (NeurIPS),
volume 29. Curran Associates, Inc., 2016.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerat-
ing deep network training by reducing internal covariate
shift. In Bach, F. and Blei, D. (eds.), Proceedings of the
32nd International Conference on Machine Learning, vol-
ume 37 of Proceedings of Machine Learning Research,
pp. 448–456, Lille, France, 2015. PMLR.

Juvekar, C., Vaikuntanathan, V., and Chandrakasan, A.
GAZELLE: A low latency framework for secure neu-
ral network inference. In Enck, W. and Felt, A. P. (eds.),
USENIX Security 2018, pp. 1651–1669. USENIX Asso-
ciation, August 2018.

Keller, M. MP-SPDZ: A versatile framework for multi-party
computation. In Ligatti, J., Ou, X., Katz, J., and Vigna,
G. (eds.), ACM CCS 2020, pp. 1575–1590. ACM Press,
November 2020. doi: 10.1145/3372297.3417872.

Keller, M. and Sun, K. Effectiveness of MPC-friendly
softmax replacement. In Privacy Preserving Machine
Learning - PriML and PPML Joint Edition (NeurIPS
2020 workshop), 2020.

Keller, M., Pastro, V., and Rotaru, D. Overdrive: Making
SPDZ great again. In Nielsen, J. B. and Rijmen, V. (eds.),
EUROCRYPT 2018, Part III, volume 10822 of LNCS, pp.
158–189. Springer, Heidelberg, April / May 2018. doi:
10.1007/978-3-319-78372-7_6.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In International Conference on Learning
Representations (ICLR), 2015.

Knott, B., Venkataraman, S., Hannun, A., Sengupta, S.,
Ibrahim, M., and van der Maaten, L. CrypTen: Se-
cure multi-party computation meets machine learning.
In Beygelzimer, A., Dauphin, Y., Liang, P., and Vaughan,
J. W. (eds.), Advances in Neural Information Processing
Systems, 2021.

Kolesnikov, V., Sadeghi, A.-R., and Schneider, T. A system-
atic approach to practically efficient general two-party
secure function evaluation protocols and their modular
design. Journal of Computer Security, 21(2):283–315,
2013.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet
classification with deep convolutional neural networks.
Commun. ACM, 60(6):84–90, may 2017.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998.

LeCun, Y., Cortes, C., and Burges, C. MNIST hand-
written digit database. ATT Labs [Online]. Avail-
able: http://yann.lecun.com/exdb/mnist,
2, 2010. Creative Commons Attribution-Share Alike
3.0 license, https://creativecommons.org/
licenses/by-sa/3.0/.

Li, H., De, S., Xu, Z., Studer, C., Samet, H., and Goldstein,
T. Training quantized nets: A deeper understanding.
In Advances in Neural Information Processing Systems
(NeurIPS), volume 30. Curran Associates, Inc., 2017.

Lin, D., Talathi, S., and Annapureddy, S. Fixed point
quantization of deep convolutional networks. In Bal-
can, M. F. and Weinberger, K. Q. (eds.), Proceedings of
The 33rd International Conference on Machine Learning,
volume 48 of Proceedings of Machine Learning Research,
pp. 2849–2858, New York, New York, USA, 20–22 Jun
2016. PMLR.

Liu, J., Juuti, M., Lu, Y., and Asokan, N. Oblivious neural
network predictions via MiniONN transformations. In
Thuraisingham, B. M., Evans, D., Malkin, T., and Xu, D.
(eds.), ACM CCS 2017, pp. 619–631. ACM Press, Octo-
ber / November 2017. doi: 10.1145/3133956.3134056.

Lou, Q., Feng, B., Fox, G. C., and Jiang, L. Glyph: Fast and
accurately training deep neural networks on encrypted
data. In Proceedings of the 34th International Conference
on Neural Information Processing Systems, NIPS’20, Red
Hook, NY, USA, 2020. Curran Associates Inc. ISBN
9781713829546.

Lu, W.-j., Fang, Y., Huang, Z., Hong, C., Chen, C., Qu, H.,
Zhou, Y., and Ren, K. Faster secure multiparty computa-
tion of adaptive gradient descent. In Proceedings of the

http://yann.lecun.com/exdb/mnist
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/

Secure Quantized Training for Deep Learning

2020 Workshop on Privacy-Preserving Machine Learning
in Practice, PPMLP’20, pp. 47–49, 2020.

Mishra, P., Lehmkuhl, R., Srinivasan, A., Zheng, W., and
Popa, R. A. Delphi: A cryptographic inference service
for neural networks. In Capkun, S. and Roesner, F. (eds.),
USENIX Security 2020, pp. 2505–2522. USENIX Asso-
ciation, August 2020.

Mohassel, P. and Rindal, P. ABY3: A mixed protocol
framework for machine learning. In Lie, D., Mannan, M.,
Backes, M., and Wang, X. (eds.), ACM CCS 2018, pp.
35–52. ACM Press, October 2018. doi: 10.1145/3243734.
3243760.

Mohassel, P. and Zhang, Y. SecureML: A system for scal-
able privacy-preserving machine learning. In 2017 IEEE
Symposium on Security and Privacy, pp. 19–38. IEEE
Computer Society Press, May 2017. doi: 10.1109/SP.
2017.12.

Nair, V. and Hinton, G. E. Rectified linear units improve
Restricted Boltzmann machines. In International Confer-
ence on Machine Learning (ICML), pp. 807–814, 2010.

Quoc, D. L., Gregor, F., Arnautov, S., Kunkel, R., Bhato-
tia, P., and Fetzer, C. secureTF: A secure TensorFlow
framework. CoRR, abs/2101.08204, 2021.

Rathee, D., Rathee, M., Kumar, N., Chandran, N., Gupta,
D., Rastogi, A., and Sharma, R. CrypTFlow2: Practical
2-party secure inference. In Ligatti, J., Ou, X., Katz, J.,
and Vigna, G. (eds.), ACM CCS 2020, pp. 325–342. ACM
Press, November 2020. doi: 10.1145/3372297.3417274.

Reddi, S. J., Kale, S., and Kumar, S. On the convergence
of Adam and beyond. In International Conference on
Learning Representations (ICLR), 2018.

Riazi, M. S., Weinert, C., Tkachenko, O., Songhori, E. M.,
Schneider, T., and Koushanfar, F. Chameleon: A hy-
brid secure computation framework for machine learning
applications. In Kim, J., Ahn, G.-J., Kim, S., Kim, Y.,
López, J., and Kim, T. (eds.), ASIACCS 18, pp. 707–721.
ACM Press, April 2018.

Rotaru, D. and Wood, T. MArBled circuits: Mixing arith-
metic and Boolean circuits with active security. In Hao, F.,
Ruj, S., and Sen Gupta, S. (eds.), INDOCRYPT 2019, vol-
ume 11898 of LNCS, pp. 227–249. Springer, Heidelberg,
December 2019. doi: 10.1007/978-3-030-35423-7_12.

Ryffel, T., Trask, A., Dahl, M., Wagner, B., Mancuso, J.,
Rueckert, D., and Passerat-Palmbach, J. A generic frame-
work for privacy preserving deep learning. In Privacy
Preserving Machine Learning (NeurIPS 2018 Workshop),
2018.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R. Dropout: A simple way to prevent
neural networks from overfitting. Journal of Machine
Learning Research (JMLR), 15:1929–1958, 2014.

Tan, S., Knott, B., Tian, Y., and Wu, D. J. CryptGPU: Fast
privacy-preserving machine learning on the GPU. In
IEEE Symposium on Security and Privacy, 2021.

Wagh, S., Gupta, D., and Chandran, N. SecureNN: 3-
party secure computation for neural network training.
PoPETs, 2019(3):26–49, July 2019. doi: 10.2478/
popets-2019-0035.

Wagh, S., Tople, S., Benhamouda, F., Kushilevitz, E.,
Mittal, P., and Rabin, T. Falcon: Honest-majority
maliciously secure framework for private deep learn-
ing. PoPETs, 2021(1):188–208, January 2021. doi:
10.2478/popets-2021-0011.

Wang, N., Choi, J., Brand, D., Chen, C.-Y., and Gopalakr-
ishnan, K. Training deep neural networks with 8-bit
floating point numbers. In Advances in Neural Informa-
tion Processing Systems, volume 31. Curran Associates,
Inc., 2018.

Xiao, H., Rasul, K., and Vollgraf, R. Fashion-MNIST: a
novel image dataset for benchmarking machine learning
algorithms. CoRR, abs/1708.07747, 2017.

Secure Quantized Training for Deep Learning

A. An Efficient Secure Three-Party Computation Protocol
There is a wide range of MPC protocols with a variety of security properties (see Keller (2020) for an overview). In this
section, we focus on the setting of three-party computation with one semi-honest corruption. This means that, out of the
three parties, two are expected to behave honestly, i.e., they follow the protocol and keep their view of the protocol secret,
and one party is expected to follow the protocol but might try to extract information from their view. The reason for choosing
this setting is that it allows for an efficient MPC protocol while still providing secure outsourced computation. The protocol
does not easily generalize to any other setting. However, protocols exist for any number of parties, see Keller for an overview.
The concrete protocol we use goes back to Benaloh & Leichter (1990) with further aspects by Araki et al. (2016), Mohassel
& Rindal (2018), and Eerikson et al. (2020). We summarize the core protocol below. The mathematical building blocks in
the next section mostly use the aspects below.

Secret sharing The simplest variant of secure computation is only data-oblivious, that is, the participants are aware of the
nature of the computation (addition, multiplication, etc.) but not the values being operated on. In the context of machine
learning, this means that they know the hyper-parameters such as the layers but not the sample data or the neural network
weights. All of these values in our protocol are stored using replicated secret sharing. A secret value x is a represented as a
random sum x = x0 + x1 + x2, and party Pi holds (xi−1, xi+1) where the indices are computed modulo three. Clearly,
each party is missing one value to compute the sum. On the other hand, each pair of parties hold all necessary to reconstruct
the secret. For a uniformly random generation of shares, the computation domain has to be finite. Most commonly, this
domain is defined by integer computation modulo a number. We use 2k for k being a multiple of 64 as well as 2 as the
moduli. The first case corresponds to an extension of 64-bit arithmetic found on most processors. We will refer to the two
settings as arithmetic and binary secret sharing throughout the paper.

Input sharing The secret sharing scheme implies a protocol to share inputs where the inputting party samples the shares
and distributes them accordingly. Eerikson et al. (2020) propose a more efficient protocol where the inputting party only
needs to send one value instead of two pairs of values. If Pi would like to input x, xi is set to zero, and xi−1 is generated
with a pseudo-random generator using a key previously shared between Pi and Pi+1. Pi can compute xi+1 = x − xi−1
and send it to Pi−1. While the resulting secret sharing is not entirely random, the fact that Pi already knows x makes
randomizing xi obsolete.

Addition, subtraction, and scalar multiplication The commutative nature of addition allows to add secret sharings
without communication. More concretely, secret sharings x = x0 + x1 + x2 and y = y0 + y1 + y2 imply the secret
sharing x + y = (x0 + y0) + (x1 + y1) + (x2 + y2). The same works for subtraction. Furthermore, the secret sharing
x = x0 + x1 + x2 allows to compute λx = λx0 + λx1 + λx2 locally.

Multiplication The product of x = x0 + x1 + x2 and y = y0 + y1 + y2 is

x · y = (x0 + x1 + x2) · (y0 + y1 + y2)

= (x0y0 + x0y1 + x1y0) + (x1y1 + x1y2 + x2y1) + (x2y2 + x2y0 + x0y2).

On the right-hand side (RHS), each term in parentheses only contains shares known by one of the parties. They can
thus compute an additive secret sharing (one summand per party) of the product. However, every party only holding one
share does not satisfy the replication requirement for further multiplications. It is not secure for every party to pass their
value on to another party because the summands are not distributed randomly. This can be fixed by rerandomization: Let
xy = z0+z1+z2 where zi is known to Pi. Every party Pi computes z′i = zi+ri,i+1−ri−1,i where ri,i+1 is generated with
a pseudo-random generator using a key pre-shared between Pi and Pi+1. The resulting sum xy = z′0 + z′1 + z′2 is pseudo-
random, and it is thus secure for Pi to send z′i to Pi+1 in order to create a replicated secret sharing ((xy)i−1, (xy)i+1) =
(z′i, z

′
i−1).

Domain conversion

Recall that we use computation modulo 2k for k being a multiple of 64 as well as 1. Given that the main operations are
just addition and multiplication in the respective domain, it is desirable to compute integer arithmetic in the large domain
but operations with a straight-forward binary circuit modulo two. There has been a long-running interest in this going
back to least Kolesnikov et al. (2013). We mainly rely on the approach proposed by Mohassel & Rindal (2018) and Araki

Secure Quantized Training for Deep Learning

et al. (2018). Recall that x ∈ 2k is shared as x = x0 + x1 + x2. Now let {x(i)0 }
k−1
i=0 the bit decomposition of x0, that is,

x
(i)
0 ∈ {0, 1} and x0 =

∑k−1
i=0 x

(i)
0 2i. It is self-evident that x(i)0 = x

(i)
0 + 0 + 0 is a valid secret sharing modulo two (albeit

not a random one). Furthermore, every party holding x0 can generate x(i)0 . It is therefore possible for the parties to generate
a secret sharing modulo two of a single share modulo 2k. Repeating this for all shares and computing the addition as a
binary circuit allow the parties to generate a secret sharing modulo two from a secret sharing modulo 2k. Conversion in the
other direction can be achieved using a similar technique or using “daBits” described by Rotaru & Wood (2019). In the
following, we will use the term mixed-circuit computation for any technique that works over both computation domains.

Dot products Dot products are an essential building block of linear computation such as matrix multiplication. In light
of quantization, it is possible to reduce the usage of truncation by deferring it to after the summation. In other words, the
dot product in the integer representations is computed before truncating. This not only reduces the truncation error, but
also is more efficient because the truncation is the most expensive part in quantized secure multiplication. Similarly, our
protocol allows to defer the communication needed for multiplication. Let ~x and ~y be two vectors where the elements are
secret-shared, that is, {x(i)} = x

(i)
0 + x

(i)
1 + x

(i)
2 and similarly for y(i). The inner product then is∑

i

x(i) · y(i) =
∑
i

(x
(i)
0 + x

(i)
1 + x

(i)
2) · (y(i)0 + y

(i)
1 + y

(i)
2)

=
∑
i

(x
(i)
0 y

(i)
0 + x

(i)
0 y

(i)
1 + x

(i)
1 y

(i)
0) +

∑
i

(x
(i)
1 y

(i)
1 + x

(i)
1 y

(i)
2 + x

(i)
2 y

(i)
1)

+
∑
i

(x
(i)
2 y

(i)
2 + x

(i)
2 y

(i)
0 + x

(i)
0 y

(i)
2).

The three sums in the last term can be computed locally by one party each before applying the same protocol as for a single
multiplication.

Comparisons Arithmetic secret sharing does not allow to access the individual bits directly. It is therefore not straight-
forward to compute comparisons such as “less than”. There is a long line of literature on how to achieve this going back
to at least Damgård et al. (2006). More recently, most attention has been given to combining the power of arithmetic and
binary secret sharing in order to combine the best of worlds. One possibility to do so is to plainly convert to the binary
domain and compute the comparison circuit there. In our concrete implementation, we use the more efficient approach
by Mohassel & Rindal (2018). It starts by taking the difference between the two inputs. Computing the comparison then
reduces to comparing to zero, which in turn is equivalent to extracting the most significant bit as it indicates the sign. The
latter is achieved by converting the shares locally to bit-wise sharing of the arithmetic shares, which sum up to the secret
value. It remains to compute the sum of the binary shares in order to come up with the most significant bit.

Shifting and truncation Dalskov et al. (2021) present an efficient implementation of the deterministic truncation using
mixed-circuit computation, and Dalskov et al. (2020) present an efficient protocol for the probabilistic truncation.

The probabilistic truncation involves the truncation of a randomized value, that is the computation of b(x+ r)/2fc for a
random f -bit value r. It is easy to see that

b(x+ r)/2fc =

{
bx/2fc if (x mod 2f + r) < 2f

bx/2fc+ 1 otherwise.

Therefore, the larger (x mod 2f) is, the more likely the latter condition is true.

B. An Efficient Multi-Party Computation Protocol Based on Homomorphic Encryption
While the protocol in the previous is very efficient, the multiplication only works with an honest majority, that is, the number
of corrupted parties is strictly less than half of the total number. Multiplications with more corruptions than that requires
more involved cryptographic schemes. In this section, we present a semi-honest protocol based on homomorphic encryption
that tolerates n− 1 corrupted parties out of n.

Secret sharing The simplest secret sharing is additive secret sharing, which can be used in this setting. The share of party
i is a random element xi of the relevant domain such that the sum of all elements is the secret.

Secure Quantized Training for Deep Learning

Input sharing The canonical input sharing would be for the inputting party to generate random shares such that they add
up to the input and then distribute the shares. Using a one-time setup, it is possible to share without communication as
shown in Algorithm 4. It is easy to see that the resulting sharing is correct and that the unknown shares are indistinguishable
to random for an adversary corrupting any number of parties.

Algorithm 4 Additive input sharing without communication.

Setup: PRG key Kij known only to parties Pi and Pj
Input: Party Pi has input x.
Output: 〈x〉A

1: Party Pi sets xi ← x−
∑
j 6=i PRGKij

().
2: For all j 6= i, party Pj sets xj ← PRGKij ().

Addition, subtraction, and scalar multiplication As with any linear secret sharing scheme, these operation can trivially
be computed locally.

Multiplication We use Beaver’s technique (Beaver, 1992). Assume that a and b are random numbers in the domain, and
c = ab. Then, for any x, y, it holds that

xy = (x+ a− a) · (y + b− b)
= (x+ a) · (y + b)− (y + b) · a− (x+ a) · b+ c.

As a and b and random, they can be used to used to mask x and y, respectively. Once x+ a and y + b have been revealed,
the operation becomes linear in a and b:

[xy] = (x+ a) · (y + b)− (y + b) · [a]− (x+ a) · [b] + [c]

It remains to produce a fresh triple (a, b, c) for every multiplication. Keller et al. (2018) show how to do this using
semi-homomorphic encryption based on Learning With Errors (LWE), a widely used cryptographic assumption. They
make optimal use of the SIMD (single instruction, multiple data) nature of LWE-based encryption. Their protocol involves
pair-wise communication between parties, which scale quadratically in the number of parties. In the following section, we
propose a protocol that scales better, which is inspired by Cramer et al. (2001).

Matrix multiplication Cock et al. (2015) have extended Beaver’s technique to matrix multiplication by replacing x, a
with m× n and y, b with n× p matrices. Using the diagonal packing by Halevi & Shoup (2014) allows to implement the
matrix triple generation with O(m(n + l)) communication instead of the naïve O(mnl). Unlike Halevi and Shoup, we
only use the semi-homomorphic encryption, that is, only public-private multiplications. This avoids the need for cycling or
shifting because we can simply generate the necessary cleartexts as needed.

Domain conversion daBits (Rotaru & Wood, 2019) and edaBits (Escudero et al., 2020) are a generic method to convert
between integer and binary computation. For the special case of semi-honest two-party computation, Demmler et al. (2015)
have presented a more efficient protocol similar to the one in the previous section.

Comparison, shifting, and truncation Escudero et al. (2020) have shown how to use edaBits to implement these
computations. Essentially, they make minimal use of binary computation before switching back to integer computation so
that the result is available for further computation in the integer domain.

B.1. Linear-cost Triple Generation with Semi-homomorphic Encryption

Assume an encryption system that allows to multiply a ciphertext and a plaintext, that is, Dec(Enc(a) · b = a ∗ b where
a and b are vectors and ∗ denotes the Schur product. LWE allows the efficient creation of such a system. Furthermore,
assume a distributed key setup as used by Damgård et al. (2012). Since we only want to achieve semi-honest security, it
is straight-forward to generate without using any protocol to check the correctness. Algorithm 5 show the details of our
protocol.

Secure Quantized Training for Deep Learning

Algorithm 5 Triple Generation with distributed semi-homomorphic encryption

Input: Distributed key setup
Output: Random multiplication triples

1: Each party Pi samples ai and send Enc(ai) to P1.
2: P1 computes Ca =

∑
i Enc(ai) and broadcasts it.

3: Each Pi samples bi and sends Ci = Ca ∗ bi + Enc(0) to P1.
4: P1 computes Cc =

∑
i Ci and broadcasts it.

5: The parties run distributed the decryption to obtain the share ci.

By definition, ∑
ci = Dec(Cc)

= Dec(
∑
i

Ca ∗ bi + Enc(0))

= Dec(Ca ∗
∑
i

bi)

= Dec(
∑
i

Enc(ai) ∗
∑
i

bi)

= (
∑
i

ai) ∗ (
∑
i

bi).

This proves correctness. Furthermore, the distributed key setup hides encrypted values from all parties, and the addition of
Enc(0) in step 3 ensures that P1 only receives a fresh encryption of a ∗ bi.

B.2. Replacing Homomorphic Encryption by a Dealer

It is possible to generate all correlated randomness (triples, random bits, (e)daBits etc.) by one party. The security then
relies on the fact that either the dealer is trusted or all of the remaining parties. The offline phase simply consists of the
dealer generating the necessary randomness (for example, a random triple (a, b, ab)) and then sending an additive secret
sharing to the remaining parties.

C. High-Level Secure Computation Building Blocks
In this section, we will discuss how to implement computation with MPC with a focus on how it differs from computation
on CPUs or GPUs. Most of the techniques below are already known individually. To the best of our knowledge, however,
we are the first to put them together in an efficient and extensible framework for secure training of deep neural networks.

Oblivious Selection Plain secure computation does not allow branching because the parties would need to be aware of
which branch is followed. Conditional assignment can be implemented as follows. If b ∈ {0, 1} denotes the condition,
x+ b · (y − x) is either x or y depending on b. If the condition is available in binary secret sharing but x and y in arithmetic
secret sharing, b has to be converted to the latter. This can be done using a daBit (Rotaru & Wood, 2019), which is a secret
random bit shared both in arithmetic and binary. It allows to mask a bit in one world by XORing it. The result is then
revealed and the masking is undone in the other world.

Division Catrina & Saxena (2010) show how to implement quantized division using the algorithm by Goldschmidt (1964).
It mainly uses arithmetic and the probabilistic truncation already explained. In addition, the initial approximation requires
a full bit decomposition as described above. The error of the output depends on the error in the multiplications used for
Goldschmidt’s iteration, which compounds in particular when using probabilistic truncation. Due to the nature of secure
computation, the result of division by zero is undefined. One could obtain a secret failure bit by testing the divisor to zero.
However, that is unnecessary in our algorithm, because so far we only use division by secret value for the softmax function,
where the divisor is guaranteed to strictly positive.

Secure Quantized Training for Deep Learning

Algorithm 6 Separation (Sep) (Lu et al., 2020)

Input: Secret share 〈x̃; f〉A where 2−f+1 ≤ x̃ ≤ 2f−1.
Output: 〈ũ; f〉A and 〈z0〉B, . . . , 〈zk−1〉B such that ze+f = 1, zi = 0 for i 6= e+ f , and ũ = x̃−1 · 2e+1 ∈ [0.25, 0.5).

1: 〈z0〉B, . . . , 〈zk−1〉B ← NP2(〈x̃; f〉A)
2: 〈2e−1; f〉A ← B2A(〈z2f−1〉B, . . . , 〈z0〉B)
3: 〈ũ; f〉A ← 〈x̃; f〉A · 〈2e−1; f〉A
4: return 〈ũ; f〉A, (〈z0〉B, . . . , 〈zk−1〉B

Algorithm 7 Square-root compensation (SqrtComp)

Input: Secret share 〈z0〉B, . . . , 〈zk−1〉B such that ze+f = 1, zi = 0 for i 6= e+ f
Output: 〈2−(e−1)/2; f〉A

1: k′ ← k/2, f ′ ← f/2, c0 ← 2f/2+1, c1 = 2(f+1)/2+1

2: for i = 0, . . . , k’ do
3: 〈ai〉B ← 〈z2i〉B ∨ 〈z2i+1〉B {only ae′ = 1 for e′ = b(e+ f)/2c}
4: end for
5: 〈2−e′−2); f〉A ← B2A(〈a2f ′−1〉B, . . . , 〈a0〉B)
6: 〈b〉B =

⊕k′−1
i=0 〈z2i〉B {b = LSB(e+ f)}

7: return 〈2−(e−1)/2; f〉A ← MUX(c0, c1, 〈b〉B) · 〈2−e
′−2; f〉A

Algorithm 8 InvertSqrt (Lu et al., 2020)

Input: Share 〈x̃; f〉A where 2−f+1 ≤ x̃ ≤ 2f−1 where 2e−1 ≤ x̃ ≤ 2e for some e ∈ Z
Output: Share 〈ỹ; f〉A such ỹ ≈ 1/

√
x̃

1: 〈ũ; f〉A, 〈z0〉B, . . . , 〈zk−1〉B ← Sep(〈x̃; f〉A) {ze+f = 1}
2: 〈c̃; f〉A ← 3.14736 + 〈ũ; f〉A · (4.63887 · 〈ũ; f〉A − 5.77789)
3: 〈2−(e−1)/2; f〉A ← SqrtComp(〈z0〉B, . . . , 〈zk−1〉B)
4: return 〈c̃; f〉A · 〈2−(e−1)/2; f〉A

Algorithm 9 Procedures in Algorithms 6–8

〈x0〉B, . . . , 〈xk−1〉B ← NP2(〈x; f〉A) Next power of two. This returns a one-hot vector of bits such indicating the closes
larger power of two. We adapt Protocol 3.5 by Catrina & Saxena (2010) for this.

〈x〉A ← B2A(〈x0〉B, . . . , 〈xk−1〉B) Domain conversion from binary to arithmetic as above.

〈cb; f〉A ← MUX(c0, c1, 〈b〉B) Oblivious selection as in Appendix C.

Logarithm Computation logarithm with any public base can be reduced to logarithm to base two using logx y =
log2 y · logx 2. Aly & Smart (2019) propose to represent y as y = a · 2b, where a ∈ [0.5, 1) and b ∈ Z. This then allows to
compute log2 y = log2 a+ b. Given the restricted range of a, log2 a can be approximated using a division of polynomials.
Numerical stability and input range control are less of an issue here, because we only use logarithm for the loss computation,
which does not influence the training.

Inverse square root Aly & Smart (2019) propose to compute square root using Goldschmidt and Raphson-Newton
iterations. We could combine this with the division operator introduced above. However, Lu et al. (2020) propose a more
direct computation that avoids running two successive iterations. We have optimized their algorithm SqrtComp computing
the square root of a power of two as shown in Algorithm 7. As an essential optimization, we compute the least significant bit
of e+ f by simply XORing every other zi in step 6 of Algorithm 7. Given that XOR does not require communication with
binary secret sharing, this is much more efficient than computing the least significant bit of a sum of oblivious selections
done by Lu et al. Remarkably, our optimization cuts the cost by roughly half. This is due to the reduction in conversions

Secure Quantized Training for Deep Learning

Table 7: Total communication in kbit for inverse square root across a range of security models with one corrupted
party. “SH” stands for semi-honest security and “Mal.” for malicious security.

3 Parties 2 Parties
SH Mal. SH Mal.

Lu et al. (2020) 19 160 481 25,456
Ours 9 114 342 21,522

from binary to arithmetic. Furthermore, we correct some issues which result in outputs that are off by a multiplication with a
power of two. We present the rest of their approach in Algorithms 6 and 8 (unchanged) for completeness. Unlike Lu et al.
(2020), we do not explicitly state the truncation after fixed-point multiplication.

Table 7 shows how our approach compares to Lu et al. (2020). In the context of the Figures in Table 5, this implies an
improvement of up one quarter. The importance of inverse square root stems from the fact that it is computed for every
iteration and trainable parameter in the parameter update.

Uniformly random fractional number Limiting ourselves to intervals of the form [x, x+ 2e) for a potentially negative
integer e, we can reduce the problem to generate a random (f + e)-bit number where f is the fixed-point precision. Recall
that we represent a fractional number x as bx · 2−fe. Generating a random n-bit number is straightforward using random
bits, which in our protocol can be generated as presented by Damgård et al. (2019). However, Dalskov et al. (2021) and
Escudero et al. (2020) present more efficient approaches that involve mixed-circuit computation.

Communication cost Table 8 shows the total communication cost of some of the building blocks in our three-party
protocol for f = 16. This setting mandates the modulus 264 because the division protocol requires a bit length of 4f .

Table 8: Communication cost of select computation for f = 16 and integer modulus 264.

Bits

Integer multiplication 192
Probabilistic truncation 960
Nearest truncation 2,225
Comparison 668
Division (prob. truncation) 10,416
Division (nearest truncation) 24,081
Exponentiation (prob. truncation) 16,303
Exponentiation (nearest truncation) 43,634
Invert square root (prob. truncation) 9,455
Invert square root (nearest truncation) 15,539

D. Deep Learning Building Blocks
In this section, we will use the building blocks in Appendix C to construct high-level computational modules for deep
learning.

Fully connected layers Both forward and back-propagation of fully connected layers can be seen as matrix multiplications
and thus can be implemented using dot products. A particular challenge in secure computation is to compute a number of
outputs in parallel in order to save communication rounds. We overcome this challenge by having a dedicated infrastructure
in our implementation that computes all dot products for a matrix multiplication in a single batch of communication, thus
reducing the number of communication rounds.

2D convolution layers Similar to fully connected layers, 2D convolution and its corresponding gradient can be imple-
mented using only dot products, and we again compute several output values in parallel.

Secure Quantized Training for Deep Learning

ReLU Given the input x ∈ R, a rectified linear unit (ReLU Nair & Hinton 2010) outputs

ReLU(x) := max(x, 0) = Jx > 0K · x.

It can thus be implemented as a comparison followed by an oblivious selection. For back-propagation, it is advantageous to
reuse the comparison results from forward propagation due to the relatively high cost of secure computation. Note that the
comparison results are stored in secret-shared form and thus there is no reduction in security.

Max pooling Similar to ReLU, max pooling can be reduced to comparison and oblivious selection. In secure computation,
it saves communication rounds if the process uses a balanced tree rather than iterating over all input values of one maximum
computation. For example, two-dimensional max pooling with a 2x2 window requires computing the maximum of four
values. We compute the maximum of two pairs of values followed by the maximum of the two results. For back-propagation,
it again pays off to store the intermediate results from forward propagation in secret-shared form.

Dropout Dropout layers (Srivastava et al., 2014) require generating a random bit according to some probability and
oblivious selection. For simplicity, we only support probabilities that are a power of two.

Batch normalization As another widely used deep learning module, batch normalization (BN, Ioffe & Szegedy 2015).
Based on a mini-batch B = {xi} of any input statistic x, the BN layer outputs

yi = γ
xi − µB√
σ2
B + ε

+ β, (2)

where µB and σ2
B are the first and second central moments of x, and γ, β and ε are hyper-parameters. In addition to basic

arithmetic, it requires inverse square root, which is not trivial in MPC.

Softmax output and cross-entropy loss For classification tasks, consider softmax output units exp(xi)∑
j exp(xj)

, where x =

(x1, x2, · · ·) is the linear output (logits) of the last layer, and the cross-entropy loss ` = −
∑
i yi log

exp(xi)∑
j exp(xj)

=

−
∑
i xiyi + log

∑
j exp(xj), where y = (y1, y2, · · ·) is the ground truth one-hot vector. This usual combination requires

computing the following gradient for back-propagation:

h

i

:=
∂`

∂xi
=

∂

∂xi

(
−
∑
k

yk · xk + log
∑
j

exp(xj)
)

= −yi +
exp(xi)∑
j exp(xj)

. (3)

On the RHS of the above eq. (3), the values in the denominator are potentially large due to the exponentiation. This is
prone to numerical overflow in our quantized representation, because the latter puts strict limits on the values. We therefore
optimize the computation by first taking the maximum of the input values: xmax = maxi xi. Then we evaluate

`
i based on

h

i

=
exp(xi − xmax)∑
j exp(xj − xmax)

− yi.

As ∀j, xj ≤ xmax, we have 1 ≤
∑
j exp(xj − xmax) ≤ L, where L is the number of class labels (L = 10 for MNIST).

Hence numerical overflow is avoided. The same technique can be used to compute the sigmoid activation function, as
sigmoid(x) := 1

1+exp(−x) =
exp(0)

exp(0)+exp(−x) is a special case of softmax.

Stochastic gradient descent The model parameter update in SGD only involves basic arithmetic:

θj ← θj −
γ

B

B∑
i=1

∂`i
∂θj

, (4)

where θj is the parameter indexed by j, γ > 0 is the learning rate, B is the mini-batch size, `i is the cross-entropy loss with
respect to the i’th sample in the mini-batch. To tackle the limited precision with quantization, we defer dividing by the

Secure Quantized Training for Deep Learning

batch size B to the model update in eq. (4). In other words, the back-propagation computes the gradient ∂`i∂θj
, where the

back-propagated error terms are not divided by B. Division by the batch size B only happens when the parameter update is
performed. Since the batch size is a power of two (128), it is sufficient to use probabilistic truncation instead of full-blown
division. This both saves time and decreases the error.

Adam (Kingma & Ba, 2015) and AMSGrad (Reddi et al., 2018) Optimizers in this category perform a more sophisti-
cated parameter update rule5:

θj ← θj −
γ

√
vj + ε

gj ,

where ε > 0 is a small constant to prevent division by zero, and gj and vj are the first and second moments of the gradient
∂`
∂θj

= 1
B

∑B
i=1

∂`i
∂θj

, respectively. Division by the batch size B can be skipped in computing ∂`
∂θj

, because scaling of the
gradient leads to the same scaling factor of gj and √vj . Both gj and vj are computed from the back-propagation result
using simple arithmetic and comparison (in the case of AMSGrad). We compute the inverse square root as described in
Section C above.

Parameter initialization We use the widely adopted initialization method proposed by Glorot & Bengio (2010). Each
weight w between two layers with size din and dout is initialized by

w ∼ U
[
−
√

6

din + dout
,

√
6

din + dout

]
,

where U [a, b] means the uniform distribution in the given range [a, b]. Besides basic operations, it involves generating a
uniformly distributed random fractional value in a given interval, which is introduced in the previous section C. All bias
values are initialized to 0.

E. Models
The neural network structures investigated in this paper are given by the following Figures 5, 6, 7, 8 and 9. The structure of
each network is formatted in Keras6 code.

tf.keras.layers.Flatten(),
tf.keras.layers.Dense(128, activation=’relu’),
tf.keras.layers.Dense(128, activation=’relu’),
tf.keras.layers.Dense(10, activation=’softmax’)

Figure 5: Network A used by Mohassel & Zhang (2017)

tf.keras.layers.Conv2D(16, 5, 1, ’same’, activation=’relu’),
tf.keras.layers.MaxPooling2D(2),
tf.keras.layers.Conv2D(16, 5, 1, ’same’, activation=’relu’),
tf.keras.layers.MaxPooling2D(2),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(100, activation=’relu’),
tf.keras.layers.Dense(10, activation=’softmax’)

Figure 6: Network B used by Liu et al. (2017)

F. Fashion MNIST
We run our implementation on Fashion MNIST (Xiao et al., 2017) for a more complete picture. Figure 10 shows our results.
See Xiao et al. (2017) for an overview on how other models perform in cleartext.

5Our implementation is slightly different from the original Adam and AMSGrad, as we put ε inside the square root. This is because
the inverse square root is implemented as a basic operation that can be efficiently computed in MPC.

6https://keras.io

Secure Quantized Training for Deep Learning

tf.keras.layers.Conv2D(20, 5, 1, ’valid’, activation=’relu’),
tf.keras.layers.MaxPooling2D(2),
tf.keras.layers.Conv2D(50, 5, 1, ’valid’, activation=’relu’),
tf.keras.layers.MaxPooling2D(2),
tf.keras.layers.Flatten(),
tf.keras.layers.Dropout(0.5),
tf.keras.layers.Dense(100, activation=’relu’),
tf.keras.layers.Dense(10, activation=’softmax’)

Figure 7: Network C used by LeCun et al. (1998) (with optional Dropout layer)

tf.keras.layers.Conv2D(5, 5, 2, ’same’, activation=’relu’),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(100, activation=’relu’),
tf.keras.layers.Dense(10, activation=’softmax’)

Figure 8: Network D used by Riazi et al. (2018)

#1st Convolutional Layer
Conv2D(filters=96, input_shape=(32,32,3), kernel_size=(11,11), strides=(4,4),

padding=9),
Activation(’relu’),
MaxPooling2D(pool_size=3, strides=(2,2)),
BatchNormalization(),

#2nd Convolutional Layer
Conv2D(filters=256, kernel_size=(5, 5), strides=(1,1), padding=1),
Activation(’relu’),
BatchNormalization(),
MaxPooling2D(pool_size=(2,2), strides=1),

#3rd Convolutional Layer
Conv2D(filters=384, kernel_size=(3,3), strides=(1,1), padding=1),
Activation(’relu’),

#4th Convolutional Layer
Conv2D(filters=384, kernel_size=(3,3), strides=(1,1), padding=1),
Activation(’relu’),

#5th Convolutional Layer
Conv2D(filters=256, kernel_size=(3,3), strides=(1,1), padding=1),
Activation(’relu’),

#Passing it to a Fully Connected layer
1st Fully Connected Layer
Dense(256),
Activation(’relu’),

#2nd Fully Connected Layer
Dense(256),
Activation(’relu’),

Secure Quantized Training for Deep Learning

#Output Layer
Dense(10)

Figure 9: AlexNet for CIFAR-10 by Wagh et al. (2021). Note that our implementation allows any padding
unlike Keras.

0 10 20 30 40 50

0

0.2

0.4

0.6

#epochs

tr
ai

ni
ng

lo
ss

secure, SGD, γ = 0.01
secure, AMSGrad, γ = 0.001
cleartext, SGD, γ = 0.01
cleartext, AMSGrad, γ = 0.001

0 10 20 30 40 50

0.08

0.1

0.12

0.14

0.16

0.18

te
st

in
g

er
ro

r
Figure 10: Learning curves for image classification using network C on the Fashion MNIST dataset, with
f = 16 and probabilistic truncation. γ is the learning rate.

G. More Experimental Results
For the task of classifying MNIST digits, Figure 11 shows the learning curves for all networks used by Wagh et al. (2019).
Among all the investigated structures, LeNet (network C) performs the best. Furthermore, AMSGrad consistently improves
the classification performance as compared to SGD.

Figure 12 shows the comparison of cleartext training and secure training for CIFAR-10 with f = 16 and probabilistic
truncation. Our MPC implementation has gained similar performance with the cleartext counterpart.

H. Hyperparameter Settings
In the following we discuss our choice of hyperparameters.

Number of epochs As we found convergence after 100 epochs, we have run most of our benchmarks for 150 epochs,
except for the comparison of optimizers where we stopped at 100.

Early stop We have not used early stop.

Mini-batch size We have used 128 throughout as it is a standard size. We briefly trialed 1024 as suggested by Li et al.
(2017), but did not found any improvement.

Reshuffling training samples At the beginning of each epoch, we randomly re-shuffle the training samples using the
Fisher-Yates shuffle with MP-SPDZ’s internal pseudo-random number generator as randomness source.

Learning rate We have tried a number of learning rates as documented in Figure 3. As a result, we settled for 0.01 for
SGD and 0.001 for AMSGrad in further benchmarks.

Learning rate decay/schedule We have not used either.

Random initialization The platform uses independent random initialization by design.

Secure Quantized Training for Deep Learning

0 10 20 30 40 50

10−5

10−4

10−3

10−2

10−1

100

#epochs

tr
ai

ni
ng

lo
ss

Network A (SGD)
Network A (AMSGrad)
Network B (SGD)
Network B (AMSGrad)
Network C (SGD)
Network C (AMSGrad)
Network D (SGD)
Network D (AMSGrad)

0 10 20 30 40 50

0.02

0.04

0.06

te
st

in
g

er
ro

r

Figure 11: Loss and accuracy for various networks, f = 16, and probabilistic truncation.

2 4 6 8 10

0.2

0.4

0.6

#epochs

ac
cu

ra
cy

secure, SGD, γ = 0.01
secure, Adam, γ = 0.001
secure, AMSGrad, γ = 0.001
cleartext, SGD, γ = 0.01
cleartext, AMSGrad, γ = 0.001

Figure 12: Comparison of cleartext training and secure training for CIFAR-10 with f = 16 and probabilistic
truncation. γ is the learning rate.

Secure Quantized Training for Deep Learning

Dropout We have experimented with Dropout but not found any improvement as shown in Figure 3.

Input preprocessing We have normalized the inputs to [0, 1].

Test/training split We have used the usual MNIST split.

Hyperparameters for Adam/AMSGrad We use the common choice β1 = 0.9, β2 = 0.999, and ε = 10−8.

I. List of Symbols

Table 9: List of Symbols

R the set of real numbers
Z the set of integers

x, y, λ real numbers in R
x, y real vectors
bxe nearest rounding of x: bxe := argminz∈Z |x− z|
bxc floor function: bxc := max{z ∈ Z | z ≤ x}
{x} the fractional part of x: {x} := x− bxc
Qf (x) the integer representation of x: Qf (x) = bx · 2fe
U(a, b) uniform distribution on [a, b]
B(p) Bernoulli distribution (with probability p the random variable equals 1)
JcK Iverson bracket (JcK = 1 if c is true otherwise 0)
| · | absolute value
‖ · ‖ Frobenius norm

Prob(·) probability of the parameter statement being true
(condition ? a : b) oblivious selection

J. Proofs
J.1. Proof of Proposition 4.1

Proof. By Eq. (1),
E(b) = 0× (1− {µ}) + 1× {µ} = {µ}.

Therefore

E(Rf (xy)) = E(bµc+ b) = bµc+ E(b) = bµc+ {µ} = bµc+ (µ− bµc) = µ = Qf (x)Qf (y)2−f .

Notice that Qf (A) is simply obtained through entry-wise quantization Qf (aij). By our matrix multiplication algorithm,

E(Rfij(AB)) = E

(∑
k

Rf (AikBkj)

)
=
∑
k

E(Rf (AikBkj))

=
∑
k

Qf (Aik)Q
f (Bkj)2

−f

= 2−f
∑
k

Qfik(A)Q
f
kj(Bkj)

= 2−f (Qf (A)Qf (B))ij .

In matrix form, it gives
E(Rf (AB)) = 2−fQf (A)Qf (B).

Secure Quantized Training for Deep Learning

J.2. A Lemma of Probabilistic Rounding

Lemma J.1. Given x, y ∈ (−2k, 2k) ⊂ R,∣∣xy −Rf (xy)2−f ∣∣ < (max{|x|, |y|}+ 1)ε+ ε2/4 < (2k + 1)ε+ ε2/4,

where ε := 2−f .

Proof. We have

|xy −Rf (xy)2−f | ≤ |xy − µ2−f |+ |Rf (xy)2−f − µ2−f | = |xy − µ2−f |+ 2−f |Rf (xy)− µ|.

By the definition of Rf (xy),

|Rf (xy)− µ| = |bµc+ b− µ| = |b− (µ− bµc)| = |b− {µ}| < 1.

Therefore, we have

|xy −Rf (xy)2−f | < |xy − µ2−f |+ 2−f = |xy − µ2−f |+ ε.

Now we only need to bound the deterministic term |xy − µ2−f |. We have

|xy − µ2−f | = |xy −Qf (x)Qf (y)2−2f |
= |Qf (x)Qf (y)2−2f − xy|
= |(Qf (x)2−f − x)(Qf (y)2−f − y) + 2−fQf (x)y + 2−fQf (y)x− 2xy|
= |(Qf (x)2−f − x)(Qf (y)2−f − y) + (2−fQf (x)− x)y + (2−fQf (y)− y)x|
≤ |Qf (x)2−f − x| · |Qf (y)2−f − y|+ |2−fQf (x)− x| · |y|+ |2−fQf (y)− y| · |x|.

We notice that ∀x ∈ R,

|2−fQf (x)− x| = |2−fbx · 2fe − x| = 2−f |bx · 2fe − x · 2f |

≤ 2−f × 1

2
= 2−f−1 =

ε

2
.

Then, we get

|xy − µ2−f | ≤ ε

2
· ε
2
+
ε

2
· (|x|+ |y|) = ε2

4
+
ε

2
· (|x|+ |y|)

≤ ε2

4
+
ε

2
· (2max{|x|, |y|}) = ε2

4
+ max{|x|, |y|}ε.

In summary,

|xy −Rf (xy)2−f | < |xy − µ2−f |+ ε ≤ ε2

4
+ max{|x|, |y|}ε+ ε = (max{|x|, |y|}+ 1)ε+

ε2

4
.

The second “<” is trivial by noting our assumption

max{|x|, |y|} < 2k.

Secure Quantized Training for Deep Learning

J.3. Proof of Proposition 4.2

Proof. The proof is based on Lemma J.1.

‖AB −Rf (AB)2−f‖ =
√∑

i,j

(
(AB)ij −Rfij(AB)2−f

)2

=

√√√√∑
i,j

(∑
l

AilBlj −
∑
l

Rf (AilBlj)2−f

)2

=

√√√√∑
i,j

∣∣∣∣∣∑
l

(AilBlj −Rf (AilBlj)2−f)

∣∣∣∣∣
2

≤

√√√√∑
i,j

(∑
l

|AilBlj −Rf (AilBlj)2−f |

)2

<

√√√√∑
i,j

[∑
l

(
(2k + 1)ε+

ε2

4

)]2

=

√
mp · n2 ·

(
(2k + 1)ε+

ε2

4

)2

=
√
mpn

(
(2k + 1)ε+

ε2

4

)
.

Multiplying both sides by 2f , we get

‖Rf (AB)− 2fAB‖ < √mpn
(
(2k + 1) +

ε

4

)
.

J.4. Proof of Proposition 4.3

Proof. Note that the variance, denoted as σ2(·), of Rf (xy) is

σ2(Rf (xy)) = σ2(b) = E(b2)− (E(b))2 = E(b)− (E(b))2 = {µ} − ({µ})2 = {µ}(1− {µ})

≤
(
{µ}+ (1− {µ})

2

)2

=
1

4
.

Therefore,

σ2(Rfij(AB)) = σ2

(∑
k

Rf (AikBkj)

)
=
∑
k

σ2
(
Rf (AikBkj)

)
≤
∑
k

1

4
=
n

4
.

In matrix form, the element-wise variance of the random matrix Rf (AB) is

σ2(Rf (AB)) ≤ n

4
11>,

where 1 is the column vector of 1’s. Note all mp entries in Rf (AB) are independent. By the Chebyshev inequality, with
probability at least 1− mp

ρ , the following is true

‖Rf (AB)− E(Rf (AB))‖2

n/4
≤ ρ,

Secure Quantized Training for Deep Learning

which can be re-written as

‖Rf (AB)− E(Rf (AB))‖ ≤
√
ρn

2
.

Let ι := 1
2

√
ρ
mp . Then ρ = 4ι2mp. In conclusion, with probability at least

1− mp

ρ
= 1− mp

4ι2mp
= 1− 1

4ι2
,

the following is true:

‖Rf (AB)− E(Rf (AB))‖ ≤
√
ρn

2
=

√
4ι2mp · n

2
= ι
√
mnp.

Based on Proposition 4.1, the statement can be equivalently written as

‖Rf (AB)− 2−fQf (A)Qf (B)‖ ≤ ι√mnp.

	Introduction
	Secure Computation Building Blocks
	Quantization
	Exponentiation

	Deep Learning Building Blocks
	An Analysis of Probabilistic Rounding
	Implementation and Benchmarks
	MNIST Classification
	Secure computation
	Comparison to Cleartext Training

	CIFAR-10 Classification

	Conclusions
	An Efficient Secure Three-Party Computation Protocol
	An Efficient Multi-Party Computation Protocol Based on Homomorphic Encryption
	Linear-cost Triple Generation with Semi-homomorphic Encryption
	Replacing Homomorphic Encryption by a Dealer

	High-Level Secure Computation Building Blocks
	Deep Learning Building Blocks
	Models
	Fashion MNIST
	More Experimental Results
	Hyperparameter Settings
	List of Symbols
	Proofs
	Proof of Proposition 4.1
	A Lemma of Probabilistic Rounding
	Proof of Proposition 4.2
	Proof of Proposition 4.3

