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Abstract
Despite the ubiquitous use of stochastic opti-
mization algorithms in machine learning, the
precise impact of these algorithms and their dy-
namics on generalization performance in realis-
tic non-convex settings is still poorly understood.
While recent work has revealed connections be-
tween generalization and heavy-tailed behavior in
stochastic optimization, this work mainly relied
on continuous-time approximations; and a rigor-
ous treatment for the original discrete-time itera-
tions is yet to be performed. To bridge this gap,
we present novel bounds linking generalization
to the lower tail exponent of the transition ker-
nel associated with the optimizer around a local
minimum, in both discrete- and continuous-time
settings. To achieve this, we first prove a data-
and algorithm-dependent generalization bound in
terms of the celebrated Fernique–Talagrand func-
tional applied to the trajectory of the optimizer.
Then, we specialize this result by exploiting the
Markovian structure of stochastic optimizers, and
derive bounds in terms of their (data-dependent)
transition kernels. We support our theory with em-
pirical results from a variety of neural networks,
showing correlations between generalization error
and lower tail exponents.

1. Introduction
Fundamental to the operation of modern machine learning
is stochastic optimization: the process of minimizing an
objective function via the simulation of random elements.
Its practical utility is matched by its theoretical depth; for
decades, optimization theorists have sought to explain the
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Figure 1: Discrete sample path approximations of a heavy-
tailed α-stable Lévy process (α “ 1.5), and standard
Brownian motion. Estimates of our normalized Fernique–
Talagrand functional γ1

2 p¨q is reported under each figure
(see Section 2.3). Observe this functional is reduced with
smaller tail index and “tighter clustering" of the trajectory.

surprising generalization ability of stochastic gradient de-
scent (SGD) and its various extensions for non-convex prob-
lems — most recently in the context of neural networks
and deep learning. Classical convex optimization-centric
approaches fail to explain this phenomenon.

There has been an increasing number of attempts for de-
veloping generalization bounds for non-convex learning
settings. This work has approached the problem from
different perspectives, such as information theory, com-
pression/sparsity/intrinsic dimension, or implicit (algorith-
mic) regularization (details to be provided in Section 1.2).
Among these approaches, a promising direction has been to
consider optimization trajectories, rather than single point
estimates obtained during (or at the end of) the optimiza-
tion process (e.g., Neyshabur et al. (2017); Xu & Raginsky
(2017); Arora et al. (2018)). This addresses a plausible
concern that single points may not necessarily be able to
capture all the information regarding generalization. There
has also been significant empirical evidence (using a wide
variety of approaches) supporting this idea (Jastrzebski et al.,
2018; Xing et al., 2018; Martin & Mahoney, 2021a; Martin
et al., 2021; Jastrzebski et al., 2020; 2021). Of particular
interest to us are the recent empirical developments link-
ing heavy-tailed fluctuations in optimization trajectories to
generalization performance (Simsekli et al., 2019b; Gur-
buzbalaban et al., 2020; Hodgkinson & Mahoney, 2020).

The heavy-tailed dynamics observed in SGD exhibit qual-
itatively different behavior from Gaussian dynamics (see
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Figure 1), and it typically coincides with improved perfor-
mance (Martin & Mahoney, 2019). As a first step in provid-
ing theoretical justification for these observations, Şimşekli
et al. (2020) used fractal dimension theory to prove a gen-
eralization bound involving the tail exponent of the iterates
obtained from a stochastic optimizer. While they brought
a new perspective, their analysis unfortunately assumes a
continuous-time Feller process model as an approximation
for the optimizer trajectories, and it is unclear how their
techniques can be extended beyond this setting. Of course,
optimization procedures used in machine learning are not
continuous-time, and a rigorous treatment for the original
discrete-time setting is still missing.

In this study, we address this issue and present a new math-
ematical framework that is sufficiently flexible to treat the
discrete-time setting and to recover (and improve) the re-
sults of Şimşekli et al. (2020) in the continuous-time setting.
Similar to Şimşekli et al. (2020), our underlying strategy
is to explicitly include all the information surrounding the
dynamics of the optimizer near the optimum as it applies
to generalization performance. Therefore, the quantity of
interest in this work is an accumulated generalization gap
over the trajectory of the optimizer:

sup
tPrt1,t2s

|EnpWtq| “ sup
wPtWtu

t2
t“t1

|Enpwq|, (1)

where tWtu
t2
t“t1 denotes the optimizer trajectory from ‘time’

t1 to t2, Enpwq :“ Rnpwq´Rpwq is the generalization gap
(or the generalization error), and R and Rn denote the
population and empirical risk functions, respectively. As the
generalization error towards the end of training is of greatest
interest, t1 will typically be chosen so that tWtu

t2
t“t1 lies in

the domain of attraction of a local optimum. The advantage
of considering (1) is that the presence of the supremum
enables tools from analytic probability theory surrounding
uniform error bounds. Therefore, to bound and estimate (1),
we will draw from this literature — in particular, a certain
functional of Fernique (1971) and Talagrand (1996).

1.1. Contributions

Recalling that any practical stochastic optimization algo-
rithm can be written as a Markov process (Hodgkinson &
Mahoney, 2020), our main contribution is encapsulated in
the following informal theorem, with the precise statement
resulting from combining Theorem 1 and Corollary 2 (see
Section 3).

Theorem (Informal). Assume that an optimizer satisfies
the following in the neighborhood of a local minimum w˚ :
there is a lower tail exponent α such that for any k,

Pp}Wk`1 ´ w
˚} ď r |Wk “ w˚q « Oprαq, as r Ñ 0`,

where Wk is the kth iterate of the optimizer. Then, the

expected accumulated generalization gap (1) in the neigh-
borhood of w˚ is approximately bounded by the sum of
C
a

α{n and the mutual information between the data and
the trajectory of the weights, where C ą 0 is a constant.

To prove this result, we develop a theoretical framework for
investigating the generalization properties of stochastic opti-
mizers, in two parts. In the first part, (I), the generalization
gap attributable to optimizer dynamics is effectively reduced
to a normalized Fernique–Talagrand (FT) functional. This
functional is introduced in Section 2; and in Theorem 1,
we obtain a sharp (up to constants) bound on the accumu-
lated generalization gap (1) in terms of our normalized FT
functional applied to the trajectory of the optimizer, and the
mutual information. In the second part, (II), we proceed to
bound the normalized FT functional in two ways:

1. Hausdorff dimension: By considering the trajectory of a
continuous-time stochastic optimization model and con-
ducting a similar fractal dimension analysis to Şimşekli
et al. (2020), we recover and sharpen their results in
Corollary 1. In particular, using our framework, we
remove many nontransparent assumptions while im-
proving convergence rates in generalization for heavy-
tailed continuous-time processes from Opn´1{2 log nq
to Opn´1{2q.

2. Transition kernel: In Theorem 2, we bound the expected
normalized FT functional of the optimizer trajectory in
terms of the transition kernel of the optimizer. Similar re-
sults are obtained for continuous-time Markov models as
well. Our result illustrates effective dimension reduction
through properties (e.g., variance) of the kernel.

Finally, assuming that the behavior of the optimizer in a
neighborhood of a local minimum can be well-approximated
by a random walk, we bound the expected normalized FT
functional in terms of the lower tail exponent of the tran-
sition kernel, thereby obtaining our main result. Smaller
values of the lower tail exponent correspond to tighter “clus-
tering" behavior in iterates of the optimizer (Figure 1). Intu-
itively, this translates to a form of compression in the oth-
erwise possibly high dimensional search space, leading to
better generalization performance. While our analysis relies
on the randomness in stochastic optimizers, for sufficiently
large step sizes, deterministic optimizers (i.e., full-batch
gradient descent) are known to also exhibit stochastic behav-
iors (Kong & Tao, 2020), and so our results extend to these
cases. Our contributions here are predominantly theoreti-
cal, motivated by recent empirical work on state-of-the-art
neural network models (Martin & Mahoney, 2021a; Martin
et al., 2021; Martin & Mahoney, 2021b). However, due to
the relative tractability of estimating the local tail exponent,
in Section 4, we demonstrate how these quantities correlates
with generalization in practice.
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1.2. Related Work

For motivation and comparison, we discuss some important
previous efforts and adjacent concepts in the literature.

Generalization bounds. Naturally, there is a substantial
literature involved in the development of “generalization
bounds,” which we can only briefly summarize here. For
more details, see Jiang et al. (2019) and references therein.
Almost universally, these bounds consider a “single-point
generalization gap,” that is |Rnpwq ´ Rpwq|, for fixed
weights w. Earlier bounds were typically dependent only
on properties of the model, including Vapnik–Chervonenkis
theory (Vapnik & Chervonenkis, 2015), and other norm-
based bounds (Bartlett et al., 2017). Most of these can be
derived or sharpened through generic chaining (Audibert
& Bousquet, 2007), which we shall also reconsider, albeit
for a different problem. Such bounds are well-known to
be vacuous (Jiang et al., 2019; Bartlett & Long, 2020; Mar-
tin & Mahoney, 2021b). Non-vacuous bounds typically
require some degree of data-dependence, with the most ef-
fective of these bounds involving measures of sharpness
(Neyshabur et al., 2017; Jiang et al., 2019; Martin & Ma-
honey, 2021b). Other bounds also have some degree of
algorithm-dependence, such as margin-based bounds (An-
tos et al., 2002; Sokolić et al., 2017), or bounds centered
around stochastic gradient Langevin dynamics (Mou et al.,
2018; Haghifam et al., 2020). Specific to explaining the gen-
eralization in neural networks, which can even fit arbitrarily
labeled data points (Zhang et al., 2021), additional simpli-
fying assumptions such as an infinite width (Arora et al.,
2018), a kernelized approximation (Cao & Gu, 2020), or a
simpler 2-layer setup (Farnia et al., 2018) are usually made.

Mutual information. One particular class of generaliza-
tion bounds involves the mutual information between the
data and the stochastic optimizer, quantifying the one-point
generalization gap by tying it to the learning ability of
the algorithm itself (Russo & Zou, 2019; Xu & Raginsky,
2017). Intuitively, the mutual information balances the trade-
off between training loss and poor generalization due to
overfitting. Such approaches are both data- and algorithm-
dependent; and they can be made not only non-vacuous, but
surprisingly tight (Asadi et al., 2018). Our Theorem 1 will
also involve mutual information, extending (Xu & Raginsky,
2017) to bound the error (1). At present, applications of
mutual information have tied variances in the optimizer to
generalization (Pensia et al., 2018; Li et al., 2019; Negrea
et al., 2019; Bu et al., 2020; Haghifam et al., 2020; Neu et al.,
2021). Unfortunately, in larger models, the variance can
anti-correlate with generalization (Jastrzebski et al., 2018;
Martin et al., 2021; Martin & Mahoney, 2021b), which, to
our knowledge, these analyses are unable to predict.

Optimization-based generalization. A body of work
leans on implicit regularization effects of optimization algo-
rithms to explain generalization, e.g., see Arora et al. (2019);
Chizat & Bach (2020) and references within for certain sim-
plified problem settings. Another line of work focuses on
stability of the optimization process (Hardt et al., 2016)
to bound the generalization gap. These are also one-point
generalization bounds, and they do not take into account
the trajectory of optimization. In lieu of the inability of
convex optimization theory to explain the behavior of SGD
in non-convex settings, it is common to consider the be-
havior of Markov process models for stochastic optimizers
(Mandt et al., 2016). These models are often continuous for
ease of analysis (Orvieto & Lucchi, 2018; Simsekli et al.,
2019b), although discrete-time treatments have become in-
creasingly popular (Dieuleveut et al., 2017; Hodgkinson &
Mahoney, 2020; Camuto et al., 2021). Such continuous-
time models are formulated as stochastic differential equa-
tions dWt “ µpWtqdt` σpWtqdXt, where Xt is typically
Brownian motion, or some other Lévy process, and derived
through the (generalized) central limit theorem and taking
learning rates to zero (Fontaine et al., 2020).

Heavy-tailed universality. Recent investigations have
identified the presence of heavy tails in the dynamics of
stochastic optimizers (Simsekli et al., 2019b;a; Panigrahi
et al., 2019). Subsequent theoretical analyses trace the ori-
gins of these fluctuations to the presence of multiplicative
noise (Hodgkinson & Mahoney, 2020; Gurbuzbalaban et al.,
2020). Establishing theory connecting generalization perfor-
mance to the presence of power laws has become a promi-
nent open problem in light of the empirical and theoretical
studies of Martin & Mahoney (2017; 2021a; 2019; 2020);
Martin et al. (2021); these studies have explicitly tied per-
formance to the presence of heavier tails in the spectral
distributions of weights, which was then linked to general-
ization through compressibility, under a statistical indepen-
dence assumption (Barsbey et al., 2021). Of particular note
is the previous work of Şimşekli et al. (2020), correlating
generalization performance with heavier-tailed dynamics;
this work considered (1) in the case pt1, t2q “ p0, 1q and
in the context of continuous-time stochastic optimizer mod-
els. However, their approach is bound to a continuous-time
Feller process model for the optimizer; and a significant ob-
jective of this work is to extend these ideas into the natural
discrete-time setting.

2. Preliminaries
2.1. Background

Let ` : RD ˆ Rp Ñ R` be a non-negative loss function
assessing accuracy for a model with parameters w P RD
to fixed data X P Rp. Total model accuracy is determined
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by the population risk function Rpwq :“ EX„Dr`pw,Xqs,
where D denotes the distribution of possible data. Therefore,
the optimal choice of parameters is determined to be those
solving the true risk minimization problem minwRpwq.
As this problem is intractable, model training is typically
achieved by solving the empirical risk minimization prob-
lem: for a collection of data X1, . . . , Xn

iid
„ D, solve

minwRnpwq, where Rnpwq :“ p1{nq
ÿn

i“1
`pw,Xiq

is the empirical risk function. Provided this problem can
be solved to near-zero empirical risk, model accuracy de-
pends on the generalization gap Enpwq “ n´1

řn
i“1Ripwq,

where Ripwq “ `pw,Xiq ´ EX„D`pw,Xq.

Given a set of parameters W Ă RD, our objective is to
bound the worst-case generalization gap over all w P W ,
i.e., supwPW |Enpwq|. The set W is kept arbitrary for now,
yet, we will be mainly interested in the case whereW is part
of an optimizer trajectory, e.g., W “ tWtu

t2
t“t1 (cf. (1)).

It is common to assume that the loss functions are Lips-
chitz in w, that is, for some metric px, yq ÞÑ dpx, yq on RD,
|`pw,Xq´ `pw1, Xq| ď Ldpw,w1q for w,w1 PW . Hoeffd-
ing’s inequality (Boucheron et al., 2013, Theorem 2.8) then
implies that the difference Ripwq ´ Ripw

1q between two
points w,w1 PW is sub-Gaussian with variance parameter
pLdpw,w1qq2. Dudley’s classical method of chaining (Dud-
ley, 1967) asserts that one can take advantage of the triangle
inequality to “chain” these bounds together over particular
choices of w,w1 and to bound the maximal error over the
set W . Talagrand (1996) later improved on this approach
and developed generic chaining. This approach is heavily
inspired by the following functional originally introduced
by Fernique (1971; 1975):

γ2pW,dq “ inf
µ

sup
wPW

ż diampW q

0

d

log
1

µpBdr pwqq
dr, (2)

where Bdr pwq “ tw
1 : dpw,w1q ď ru is the ball of radius r

under d around w, diampW q “ supw,w1PW dpw,w1q, and
the infimum is taken over all probability measures µ sup-
ported on W . We refer to the functional (2) as the Fernique–
Talagrand (FT) functional. Generic chaining would later
focus on an (equivalent, up to constants) discrete variant
of this functional (Talagrand, 2001; Audibert & Bousquet,
2007; Talagrand, 2014), but for our purposes, we will find it
more convenient to work with the original formulation (2).

It is also known that the approach is essentially optimal
in the following sense: if the error w ÞÑ Rnpwq ´
Rpwq is a Gaussian process with covariance pw,w1q ÞÑ
pLdpw,w1qq2, then the FT functional both upper and lower
bounds the maximal expected error in the empirical risk
E supwPW |Rnpwq ´ Rpwq| up to constants (Talagrand,
1996, Theorem 5.1). Therefore, in the absence of additional

information on the distribution of the empirical risk, the
FT functional provides the sharpest possible generalization
bound up to constant factors.

Broadly speaking, the FT functional simultaneously mea-
sures variance and clustering. Clustering occurs in the
absence of spatial homogeneity, and it can be measured in a
number of ways. For more discussion, we refer to Appendix
B. Later, to draw connections to heavy-tailed theory in ma-
chine learning, e.g. (Şimşekli et al., 2020), the degree of
clustering will be represented using lower tail exponents in
the transition kernel.

2.2. Data-dependence with mutual information

In the classical setting, the set W is fixed and determinis-
tic. However, in our setting of (1), W is both random and
data-dependent1. To extend the theory to allow for data-
dependent W , we shall invoke some ideas from information
theory. Recall that the α-Renyi divergence is defined by

Dαpµ, νq “
1

α´ 1
logE

„

dµ

dλ
pZqα

dν

dλ
pZq1´α



,

where α ą 1 and Z is distributed according to some (arbi-
trary) probability measure λ where µ and ν are absolutely
continuous with respect to λ (for example, λ “ 1

2 pµ` νq).
The α-mutual information between two random elements
X,Y is defined as the α-Renyi divergence between the
joint probability measure PX,Y and the product measure
PX b PY : IαpX,Y q “ DαpPX,Y }PX b PY q, measur-
ing the extent of the dependence between X and Y . The
standard Kullback-Leibler mutual information is obtained
by taking α Ñ 1`. The α-mutual information is non-
decreasing in α, that is, IαpX,Y q ď IβpX,Y q for α ď β.
Therefore, we may define the total mutual information as
I8pX,Y q “ limαÑ8 IαpX,Y q “ supα IαpX,Y q.

2.3. Normalized Fernique–Talagrand functional

It is often the case with generalization bounds that ` is
assumed to be Lipschitz-continuous with respect to the Eu-
clidean metric (Neyshabur et al., 2017; Mou et al., 2018).
To also ensure subgaussianity of Ripwq itself, boundedness
of ` is often assumed (Negrea et al., 2019; Şimşekli et al.,
2020). Together, these two assumptions are equivalent to
assuming Lipschitz continuity under the truncated metric
dρpx, yq “ mintρ, }x´ y}u, where ρ ą 0. We refer to the
corresponding FT functional γρ2 pW q :“ γ2pW,dρq as the
normalized Fernique–Talagrand functional: for ρ ą 0, from
(2) and scaling by 1{ρ,

γρ2 pW q “ inf
µ

sup
wPW

1

ρ

ż ρ

0

d

log
1

µpBrpwqq
dr, (3)

1We refer the reader to (Molchanov, 2005) for the definition
and details of a random set.
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where Brpwq denotes the Euclidean ball of radius r ą 0
about w, and the infimum is once again over all probability
measures µ on W . The functional is considered normalized
as it does not grow as diampW q Ñ 8. Here, ρ is arbitrary,
although we will find the tightest bounds to occur when
ρ “ B{L, where B and L is the upper bound, and Lipschitz
constant of `, respectively. It is worth noting that in the anal-
ysis to follow, the bounded+Lipschitz assumption could be
relaxed (e.g. to Hölder continuity) by choosing a different
metric, thus considering a different FT functional. However,
we have found this choice of assumption and its correspond-
ing FT functional (3) to yield the best compliance with our
experiments.

3. Main Results
Our first main result is presented in Theorem 1 below. If
W is uncountable, we interpret probabilities and expecta-
tions of suprema over uncountable sets as the corresponding
supremum over all possible countable subsets.
Theorem 1. Assume that ` is bounded by B ą 0 and L-
Lipschitz continuous (with respect to the Euclidean metric).
There exists a universal constant K1 ą 0 such that for any
(random) closed set W Ă RD, with probability at least
1´ δ, for any ρ ą 0, letting Lρ :“ maxtB,Lρu,

sup
wPW

|Enpwq|

ď K1Lρ

˜

γρ2 pW q?
n

`

c

logp1{δq ` I8pX,W q

n

¸

. (4)

Furthermore, there exists K2 ą 0 such that

E sup
wPW

|Enpwq| ď K2Lρ

˜

Eγρ2 pW q `
a

I1pX,W q
?
n

¸

.

(5)
If ` is unbounded, then (4) holds with probability at least
1´ δ ´ PpsupwPW Rnpwq ą Bq.

Note also that when W “ tw˚u, where w˚ is the location
of the optimizer at some deterministic stopping time, we
recover (up to constants) the information-theoretic bound of
Xu & Raginsky (2017). Therefore, we inherit the interpreta-
tion of mutual information as a measurement of “overfitting,”
together with its follow-up developments (Asadi et al., 2018;
Haghifam et al., 2020). The advantage of our bound is that
we can better investigate the effect of dynamics on gener-
alization through the supremum over the trajectory. We
also inherit the sharpness of Theorem 1 from that of the FT
functional in the event that X and W are independent.

3.1. Markov stochastic optimizers

Our remaining theoretical contributions are concerned with
bounding and estimating γρ2 when applied to the trajectory

of a stochastic optimizer. Such bounds on γρ2 directly imply
generalization bounds by applying Theorem 1.

We adopt the Markov formulation of stochastic optimizers,
seen in Hodgkinson & Mahoney (2020). This formula-
tion incorporates SGD, momentum, Adam, and stochastic
Newton, among others. To summarize, approximate solu-
tions to problems of the form arg minw E`pw,Xq are typi-
cally obtained by fixed point iteration: for some continuous
map Ψ such that any fixed point of EΨp¨, Xq is a mini-
mizer of `, a stochastic optimizer is constructed from the
sequence of iterations Wk`1 “ ΨpWk, Xk`1q, where Xk

are independent copies of X . For example, (online) stochas-
tic gradient descent corresponds to the choice Ψpw, xq “

w ´ γb´1
řb
i“1 ∇`pw, xiq, where γ is a chosen learning

rate and b denotes the batch size. These iterations induce
a discrete-time Markov chain in Wk with transition kernel
P pw,Eq “ PpWk`1 P E |Wk “ wq for a measurable set
E. Under certain regimes (for example, small learning rate
and large batch size), this chain is well-approximated by a
continuous-time Markov process tWtutě0 with transition
kernel Ptpw,Eq “ PpWt P E |W0 “ wq — see Fontaine
et al. (2020), for example. We note that imposing a Markov
assumption on the optimizer is not restrictive, as any recur-
sive method is Markov under suitable state augmentation.
Furthermore, the Markov assumption is local, so W0 may
be taken to be any point in the optimization.

Fortunately, the FT functional is sufficiently versatile that
we can provide a direct generalization bound in terms of
transition kernels. This is accomplished using covering argu-
ments and the classical Dudley entropy bound (Boucheron
et al., 2013, Corollary 13.2). Here is our main result for this.

Theorem 2. For a Markov transition kernel P px,Eq and
any ρ ą 0, let

IρrP s :“
1

ρ

ż ρ

0

sup
xPRD

d

log

ˆ

3D`2

P px,Brpxqq

˙

dr.

There exists a universal constant K ą 0 such that the
following bounds on the FT functional hold:

1. Let Wk, k ě 0 be a discrete-time homogeneous Markov
chain on RD with transition kernel P kpw,Eq. Then for
the average kernel P̄mpw,Eq :“ m´1

řm
k“1 P

kpw,Eq,
we have Eγρ2 ptWku

m
k“0q ď KIρrP̄ms.

2. Let tWtutPr0,T s be a continuous-time homogeneous
Markov process on RD with kernel Ptpw,Eq. Then for
the average kernel P̄T pw,Eq “ 1

T

şT

0
Ptpw,Eqdt, we

have Eγρ2 ptWtutPr0,T sq ď KIρrP̄T s.

We can use Theorems 1 and 2 to bound the generalization
gap for a stochastic process as long as we can characterize
the transition probability kernel of the process. Due to the



Generalization Bounds using Lower Tail Exponents in Stochastic Optimizers

dependence on the ambient dimension, we do not expect
the bounds in Theorem 2 to be sharp2. Fortunately, this is
no concern for our purposes, as we will use Theorem 2 to
imply correlations between tail properties of the transition
kernel and the generalization gap.

3.2. Fractal dimensions

It has been observed by Şimşekli et al. (2020); Birdal et al.
(2021) that the fractal dimension of the set W is often a
good indicator of generalization performance. While this
previous approach focused on precise covering arguments,
here we show that a similar bound to that of Şimşekli et al.
(2020, Theorem 2) can be readily attained using Theorem
1 under weaker assumptions. Indeed, Theorem 1 provides
a remarkably straightforward illustration of the relation-
ship between generalization performance and fractal dimen-
sion: Assuming there exists a measure µ on W such that
µpBrpwqq ě pcrqα for any w P W and 0 ă r ă ρ, for
some c ą 0, α ą 0, then inserting this measure into the
definition (3) reveals γρ2 pW q “ Op

?
αq. If a similar upper

bound also holds for µ, then most notions of fractal dimen-
sion of the set W coincide, and are precisely equal to α
(Mattila, 1999, Chapter 5). In this way, α becomes an effec-
tive dimension, or intrinsic dimension, ofW (in particular, if
W Ă RD, then α ď D, the ambient dimension). This idea
is formalized in Corollary 1. The result involves the Haus-
dorff dimension of W , i.e., dimHW P r0, Ds, which is a
generalization of the usual notion of dimension to fractional
orders (e.g., dimHRD “ D), and the Hausdorff measure
H α, which is a generalization of the Lebesgue measure.
We provide their exact definitions in Appendix A.

Corollary 1. Suppose that dimHW “ α and is α-Ahlfors
lower regular almost surely, that is,

Cρ :“ inf
0ărăρ,wPW

H αpW XBrpwqq

rαH αpW q
ą 0.

Then the normalized Fernique–Talagrand functional satis-
fies γρ2 pW q ď p2ρCρq

´1
?
πα almost surely.

Note that the Ahlfors regularity assumption (i.e., Cρ ą 0)
is contained in Şimşekli et al. (2020, Assumption H4), but
is a far simpler condition on its own, and does not require
a Feller process construction. Furthermore, we improve on
Şimşekli et al. (2020, Theorem 2), which suggests a rate
Oplog n{

?
nq, whereas we obtain a rate of Op1{

?
nq.

Using a continuous-time Markov model, a precise link
between Corollary 1 and stochastic optimization can be
made: suppose that Wt, t P r0, 1s, is a continuous-time
Markov process with transition kernel Ptpx,Eq, e.g., a

2We suspect this dependence can be removed using a more
efficient embedding, but we leave this as an open problem. For
further details, refer to the comments in the proof.

continuous-time model of a stochastic optimizer (Orvieto
& Lucchi, 2018). If Wt is spatially homogeneous3, and
tWtutPr0,1s is α-Ahlfors lower-regular almost surely, then
by Xiao (2003, Theorem 4.2), Corollary 1 applies with
dimHtWtutPr0,1s “ α almost surely, where

α “ sup

"

γ ě 0 : lim
rÑ0`

1

rγ

ż 1

0

Ptp0, Brp0qqdt ă 8

*

. (6)

Similar results also apply for spatially inhomogeneous Feller
processes (Schilling, 1998). Therefore, Corollary 1 supports
the claim that fractal dimensions (of the trajectory of a
continuous Markov model of a stochastic optimizer) can be
an effective measure of generalization performance. This is
the strategy proposed by Şimşekli et al. (2020). However,
in reality, optimization procedures are not continuous-time
and optimizer trajectories are finite sets. Since all fractal
dimensions are identically zero on finite sets, an alternative
approach is required.

3.3. Lower tail behavior around local minima

Fortunately, we can obtain a discrete-time analogue of Corol-
lary 1 using Theorem 2. There is one significant caveat how-
ever: while Theorem 2 successfully relates the dynamics of a
Markov stochastic optimizer to generalization performance,
the bound is ineffective when the increments Wk`1 ´Wk

are not uniformly stochastically bounded. Indeed, the bound
in Theorem 2 is most tight when the optimizer exhibits ran-
dom walk behavior without drift. This behavior is unlikely
to occur at the global scale. However, locally, in the neigh-
borhood of a local minimum, a stochastic optimizer should
exhibit minimal drift. Furthermore, in practice, the behavior
around a minimum is typically of greatest interest. Recall
that the first objective of a stochastic optimizer is to reach
and then occupy some central region Ω around a local mini-
mum x˚ P Ω with high probability. We let ζm denote the
probability of remaining in this region after m steps. Within
this region, we assume that the optimizer behaves like a ran-
dom walk W̄k`1 “ W̄k ` Zk, where each Z1, . . . , Zk

iid
„ µ

is independent and identically distributed. To incorporate
these observations into a bound, we can appeal to approxi-
mation in total variation dTV. Under these conditions, the
assumption of bounded ` is no longer restrictive, as ` can be
assumed to be only locally bounded.

With this in mind, we develop a discrete time analogue
of Corollary 1, closing an open problem connecting tail
exponents to generalization. Drawing inspiration from (6),
we define a new α such that the kernel P px,Brpxqq « crα

3There exists K, C, r0 ą 0 such that Ptpx,Br0 pxqq ě K for
all t, x, and 1

C
Ptp0, Brp0qq ď Ptpx,Brpxqq ď CPtp0, Brp0qq

for all t, x, r ď r0.
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as r Ñ 0`. In particular, we can let

α “ lim
rÑ0`

logP px,Brpxqq

log r
.

This way, α becomes an exponent on the lower tail of the
transition kernel. Note that, a priori, this is distinct from
the (upper) tail exponent of the distribution considered in
Hodgkinson & Mahoney (2020); Simsekli et al. (2019b);
Şimşekli et al. (2020), although the two appear to correlate
in practice (see Section 4.2).

Corollary 2. Let Ω Ď RD be a closed set such that PpWk R

Ω for some k “ 0, . . . ,mq ď ζm and let µ be a probability
measure on RD. Suppose that Z1, . . . , Zm

iid
„ µ and there

exists r0, α ą 0 such that Pp}Z1 ` ¨ ¨ ¨ ` Zk} ď rq ě ckr
α

for all 0 ă r ă r0, where ck ą 0 are constants for each
k “ 1, 2, . . . . Letting PΩ denote the transition kernel of
Wk conditioned on Wk P Ω for k “ 1, 2, . . . ,m, there is a
constant K ą 0 such that for any ε ą 0, there exists ρε ą 0
independent of α where

Eγρε2 ptWku
m
k“0q ď

K

ρε

?
α` ε`

a

logpm` 1q

ˆ

ζm `m sup
xPΩ

dTVpPΩpx, x` ¨q, µq

˙

.

(7)

The second line of (7) concerns only the quality of the ran-
dom walk approximation, and can mostly be ignored if we
expect such an approximation to be accurate (e.g., the exam-
ple below). What remains is an implied correlation between
the expected normalized FT functional (itself linked to gen-
eralization through Theorem 1) and the lower tail exponent
α. This can be seen in Figure 1, where a Lévy process
with lower tail exponent α “ 1.5 is compared to Brownian
motion with exponent α “ 2. The reduced tail exponent
coincides with a corresponding reduction in γ1

2 .

Example (Perturbed Gradient Descent). Arguably the most
common discrete-time model for a stochastic optimizer is
the perturbed gradient descent (GD) model, which satisfies
Wk`1 “Wk ´ γp∇fpWkq ` Zkq, where Zk is a Gaussian
vector with zero mean and constant covariance matrix Σ
representing noise in the stochastic gradient. In the neigh-
borhood of a local optimum w˚, ∇fpWkq « 0, and hence
the perturbed GD model resembles a Gaussian random walk
Wk`1 “Wk ` γZk. Here, the exponent α is precisely the
ambient dimension, i.e., α “ D (see Appendix D). However,
we will find this exponent to be much less than the ambient
dimension for an actual optimization path, suggesting an
interpretation of α as a measure of effective dimension for
the purposes of generalization.

Figure 2: Lower tail exponents versus generalization gap.
Different colors represent different step-sizes and different
markers represent different batch-sizes.

4. Empirical results
4.1. Lower tail exponents of the transition kernel

For our experiments, we consider three architectures and
two standard image classification datasets. In particular, we
consider (i) a fully connected model with 5 layers (FCN5),
(ii) a fully connected model with 7 layers (FCN7), and (iii) a
convolutional model with 9 layers (CNN9); and two datasets
(i) MNIST and (ii) CIFAR10. All models use the ReLU
activation function and all are trained with constant step-
size SGD, without weight-decay or momentum. Our code is
implemented in PyTorch and executed on 5 GeForce GTX
1080 GPUs. For each architecture, we trained the networks
with different step-sizes and batch-sizes, where we varied
the step-size in the range r0.002, 0.35s and the batch-size
in the set t50, 100u. We trained all models until training
accuracy reaches exactly 100%. For measuring training and
test accuracies, we use standard training-test splits.

To estimate α, once training accuracy reaches 100%, we
further run the algorithm for m “ 200 additional iterations
to obtain a trajectory tWku

m
k“1. Following Corollary 2, we

assume local homogeneity, that is, the trajectory tWku
m
k“1

remains near the local minimum and each Wk`1 ´Wk is
approximately iid. Under this assumption, the second term
in (7) can be ignored, hence, we compute the sequence
1{}Wk`1´Wk} for k “ 1, . . . ,m´1, and then fit a power-
law (PL) distribution to this one dimensional set of observa-
tions, by using the powerlaw toolbox (Clauset et al., 2009).
Figure 2 visualizes the results. In all configurations, we ob-
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Figure 3: Lower tail exponents versus step-size/batch-size
ratio (η{b). We apply the same significance test as in Fig-
ure 2: the p-value ranges from 10´9 to 10´3.

serve that the results are in accordance with our theory: the
estimated lower tail exponents α and the generalization gap
exhibit significant correlations. This trend is even clearer
for the CNN9 model, suggesting the geometry induced by
the convolutional architecture results in a transition kernel
for which the local homogeneity condition becomes more
accurate, i.e., the TV term in Corollary 2 becomes smaller.
Furthermore, for the significance of correlations in Figure 2,
we compute the p-values under a linear model. The results
show that the PL exponent and generalization error are al-
ways positively correlated and this correlation is significant:
the p-value ranges from 10´12 to 10´4.

It has been empirically demonstrated that the generaliza-
tion performance can depend on the ratio of the step-size
to the batch-size η{b (Jastrzebski et al., 2018). Next, we
monitor the behavior of the lower tail exponent α with
respect to the SGD hyperparameters: step-size and batch-
size. Figure 3 shows the results. We observe that the local
power-law behavior of SGD near the found local minimum
also heavily depends on the ratio η{b, where we observe
a clear monotonicity. This reveals an interesting behavior
that the hyperparameters η and b modify the local lower
tail exponent of the transition kernel, hence the effective
dimension, which in turn determines the generalization er-
ror. This outcome also shows interesting similarities with
the recent studies of Hodgkinson & Mahoney (2020); Gur-
buzbalaban et al. (2020) that have shown that in online SGD
(one pass regime with infinite data) the ratio η{b determines
the “heaviness of the tails” of the stationary distribution of
SGD. Figure 3 suggests that in the finite training data set-

ting (where Hodgkinson & Mahoney (2020); Gurbuzbalaban
et al. (2020) are not applicable), another type of power-law
behavior is still observed in the local exponent α, which also
shows monotonic behavior with respect to η{b. We suspect
that this monotonic behavior can be formally quantified, but
we leave this as future work.

We finally note that estimating lower tail exponents accu-
rately is a challenging task. For our estimator, it is known
that larger fitted α values, e.g., greater than « 5, are less re-
liable. However, since our empirical results involve running
the same experiment multiple times for different hyperpa-
rameters that are fairly close to each other, the consistency
and the clear trends in our results support our theoretical
contributions, even if the estimations are to be inexact.

4.2. Correlations between types of tail exponents

Here, we shall discuss the relationship between the lower
tail exponent in Corollary 2 and the tail exponent seen in
Simsekli et al. (2019a); Şimşekli et al. (2020); Hodgkinson
& Mahoney (2020); Gurbuzbalaban et al. (2020). While the
two are not related in general, in practice, we expect them
to be somewhat correlated, and we justify this through the
model considered in Simsekli et al. (2019a).

Building on the perturbed GD model, Simsekli et al. (2019b)
replaced the Gaussian updates by heavy-tailed α-stable
distributed random variables, justified through the gen-
eralized central limit theorem. In this case, the model
satisfies Wk`1 “ Wk ´ ηp∇fpWkq ` SkpWkqq, where
Skpwq “ pS

i
kpwqq

n
i“1 and each Sikpwq is independent sym-

metric α-stable with scale σpwq, that is, Sikpwq has char-
acteristic function ϕptq “ e´|σpwqt|

α

. As η Ñ 0`, this
Markov chain behaves similarly to the stochastic differen-
tial equation dWt “ ´∇fpWtqdt` η

α´1
α σdLαt , where Lαt

is an α-stable Lévy process (see (Simsekli et al., 2019a) for
details). If ∇f is bounded, the process satisfies the follow-
ing two properties (Bogdan & Jakubowski, 2007, Lemma 3):
(1)

ş1

0
Ptpx,Brpxqqdt „ c1r

α as r Ñ 0`; and (2)
ş1

0
Ptpx,Brpxqqdt „ c2r

´α as r Ñ 8. Therefore, the
lower tail exponent in Corollary 2 and the tail exponent in
(Simsekli et al., 2019a) are identical in this model.

Empirically, we find that while the two exponents are not
identical, they do appear to correlate. In Figure 4, we fol-
low the setup of Gurbuzbalaban et al. (2020) and assume
that each layer of the neural network possesses a differ-
ent tail-exponent, where these layer-wise tail-exponents are
computed on averaged iterates under the assumption that
they are distributed from an α-stable distribution. We use
the same tail-exponent estimator (Mohammadi et al., 2015)
as the one used in Gurbuzbalaban et al. (2020). Once the
layer-wise indices are computed, we compute the median
tail-exponent over the layers. As we can observe from Fig-



Generalization Bounds using Lower Tail Exponents in Stochastic Optimizers

Figure 4: Lower tail exponents versus the tail-exponent
estimates used in (Gurbuzbalaban et al., 2020).

ure 4, our lower tail exponent and the tail-exponent estimate
show an overall strong correlation. More precisely, when
we estimate the p-values under a linear model, we observe
that the p-value ranges from 10´9 to 10´1, where 10´1 cor-
responds to CNN9-CIFAR10 result, where the correlation
is not as strong.

These results shed more light on the empirical observations
provided in (Simsekli et al., 2019b), as the estimator in
(Mohammadi et al., 2015) might be capturing the lower-tail
behavior of the gradient noise, which seems to be the key
factor according to our theory.

5. Conclusion
We have developed a theoretical framework for analyzing
the generalization properties of stochastic optimizers by us-
ing their trajectories. We first proved generalization bounds
based on the celebrated Fernique–Talagrand functional; and
then, by using the Markovian structure of stochastic optimiz-
ers, we specialized these results to Markov processes. Using
these results, we linked the accumulated generalization gap
over an optimizer trajectory to a lower tail exponent in the
transition kernel via a random walk approximation about a
local minimum. This provides a discrete-time analogue of
the work of Şimşekli et al. (2020) to more practical stochas-
tic optimizer models. Finally, we supported our theory with
empirical results on several simple neural network models,
finding correlations between the lower tail exponent, gen-
eralization gap at the end of training, step-size/batch-size
ratio, and upper tail exponents.

Our analysis raises a few unresolved questions. Firstly,

while suggested by the theory, it is untested whether the
correlation between generalization gap and the lower tail
exponent is universal, or holds only due to correlations be-
tween the lower tail exponent and the hyperparameters of
the optimizer in our setup (which are known to affect perfor-
mance). To assess this, one would need to be able to alter the
lower tail exponent without changing any other commonly
considered hyperparameters (e.g., step-size/batch-size). Fur-
thermore, we have only considered fixed step sizes, and it is
unclear whether our theory can be extended to hold under
common step size schedules. Finally, while the subgaussian
assumption on the data leads to the typical Opn´1{2q rate in
Theorem 1, it is known that this rate is not reflected in real-
world settings (Kaplan et al., 2020). Different distributional
assumptions on the data could yield more accurate rates. We
leave these three problems to be addressed in future work.
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Sokolić, J., Giryes, R., Sapiro, G., and Rodrigues, M. R.
Generalization error of deep neural networks: Role of
classification margin and data structure. In 2017 Interna-
tional Conference on Sampling Theory and Applications
(SampTA), pp. 147–151. IEEE, 2017.

Talagrand, M. Majorizing measures: the generic chaining.
Annals of Probability, 24(3):1049–1103, 1996.

Talagrand, M. Majorizing measures without measures. An-
nals of Probability, pp. 411–417, 2001.

Talagrand, M. Upper and lower bounds for stochastic pro-
cesses: modern methods and classical problems, vol-
ume 60. Springer Science & Business Media, 2014.

Vapnik, V. N. and Chervonenkis, A. Y. On the uniform con-
vergence of relative frequencies of events to their proba-
bilities. In Measures of complexity, pp. 11–30. Springer,
2015.

Xiao, Y. Random fractals and Markov processes. Mathe-
matics Preprint Archive, 2003(6):830–907, 2003.

Xing, C., Arpit, D., Tsirigotis, C., and Bengio, Y. A walk
with SGD. arXiv preprint arXiv:1802.08770, 2018.

Xu, A. and Raginsky, M. Information-theoretic analysis of
generalization capability of learning algorithms. arXiv
preprint arXiv:1705.07809, 2017.

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O.
Understanding deep learning (still) requires rethinking
generalization. Communications of the ACM, 64(3):107–
115, 2021.



Generalization Bounds using Lower Tail Exponents in Stochastic Optimizers

A. Hausdorff dimension
Here, we shall review facts about the Hausdorff dimension. The Hausdorff measure H m on Rd is defined on a set
E Ď Rd by

H mpEq “ lim
δÑ0`

inf
EĎ

Ť

j Sj
diampSjqďδ

ÿ

j

αpmq2´mdiampSjq
m,

where the infimum is taken over countable covers Sδ of E by non-empty subsets of Rd with diameter not exceeding δ,
and αpmq “ πn{2

Γpn{2`1q is the volume of the unit m-sphere. The following facts are fundamental (Federer, 2014, §2.10.2,
§2.10.35) : (1) if H mpEq ă 8, then H lpEq “ 0 for any l ą m; and (2) on Rd, H d ” L d the d-dimensional
Lebesgue measure.

The first fact implies the existence of the Hausdorff dimension, which is defined for a set E Ď Rd by dimHpEq “
inftm : H mpEq “ 0u. The second fact implies that any set E Ă Rd with dimHpEq ă d has zero Lebesgue measure;
but, importantly, the converse is not true. In differential geometry, the Hausdorff dimension is useful for identifying the
dimension of submanifolds. However, it is also of significant value in the study of fractal sets, providing a measurement of
“clustering” in space. One can intuit this from the definition, but it is perhaps best seen through examples. In Figure 1, a
a Lévy process with sample paths possessing Hausdorff dimension 1.5 is compared to Brownian motion, whose sample
paths have Hausdorff dimension 2. The Lévy process, with the smaller Hausdorff dimension, exhibits dynamics with tighter
clusters separated by large jumps.

Ahlfors lower-regularity plays a key role in Corollary 2. A more commonly considered definition is Ahlfors regularity itself.

Definition 1 (Ahlfors regular). A set W Ă RD is α-Ahlfors regular if there exists a measure µ on W and c1, c2, r0 ą 0
such that

c1r
α ď µpBrpwqq ď c2r

α, for all w PW, 0 ă r ă r0.

If only the lower (upper) inequalities are satisfied, W is said to be α-Ahlfors lower-regular (upper-regular).

Ahlfors regularity is often assumed to equate several notions of fractal dimension, such as in (Şimşekli et al., 2020). For
example, the lower and upper Minkowski dimensions of a set W are given by

dimM pW q “ lim inf
rÑ0`

logNrpW q

| log r|
, dimM pW q “ lim inf

rÑ0`

logNrpW q

| log r|
,

respectively, where NrpW q denotes the smallest number of balls of radius r needed to cover W . The following holds.

Theorem ((Mattila, 1999), Theorem 5.7). For any α-Ahlfors regular set W , dimMpW q “ dimMpW q “ dimHpW q “ α.

To link Hausdorff dimension to continuous-time optimization, we rely on Xiao (2003, Theorem 4.2), restated below.

Theorem ((Xiao, 2003), Theorem 4.2). Let Xt be a continuous-time Markov process in RD with transition kernel Ptpx, dyq
satisfying Ptpx,Brpxqq ě K for sufficiently large r ą 0 and c´1Ptp0, Brp0qq ď Ptpx,Brpxqq ď cPtp0, Brp0qq for all
r ą 0 and some c ą 0. Then the Hausdorff dimension of tXtutPr0,1s is

α “ sup

"

γ ě 0 : lim
rÑ0`

r´γ
ż 1

0

Ptp0, Brp0qqdt ă `8

*

“ sup

"

γ ě 0 :

ż 1

0

Ep|Xt|
´γqdt ă `8

*

.

B. Variance and clustering in the Fernique–Talagrand functional
Now that two generalization bounds in Theorem 2 and Corollary 2 have been obtained involving the dynamics of the
stochastic optimizer, we shall briefly discuss how two properties of the trajectory — variance and clustering — play a critical
role in the Fernique–Talagrand functional.

First, we discuss the influence of “variance,” or the average size of fluctuations of the stochastic optimizer. Drawing
from Theorem 2, we consider a continuous-time stochastic optimization model in the form of a stochastic differential
equation dWt “ µpWtqdt ` σpWtqdBt, where µ typically involves the gradient of the empirical risk Rn. We assume
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Figure 5: Lower tail exponents versus normalized Fernique–Talagrand functional γ1{4
2 pW q for ρ “ 1{4, averaged over 100

runs with 95% confidence intervals shaded.

that µ, σ are bounded with bounded second derivatives, and σpxq has non-zero singular values for all x P RD. The
Aronson estimates (Sheu, 1991) imply that for some constant K ą 0 and “minimal variance” λ ą 0, Ptpx,Eq ě
Kt´D{2

ş

E
expp´}x ´ y}2{p2λtqqdy. This, together with Theorem 2, implies the existence of constants K1,K2 ą 0

independent of T, λ such that (see Appendix D)

Eγρ2 ptWtutPr0,T sq ď
K1

ρ

ż ρ

0

b

K2 ´D log r ´ log Jρ,T p
1

2λ , Dqdr, (8)

where Jρ,T pa,Dq “ 1
T

ş1

0

ş8

1{T
vD{2´1sD{2´2e´asvρ

2

dsdv is monotone decreasing in a and monotone increasing in D. It
is important to note that λ will generally increase with the magnitude of µ, σ, and hence with the size of the stochastic
gradient. Therefore, the normalized FT functional should increase monotonically with the variance of the fluctuations of the
optimizer. Consequently, the sharpness of an optimum should be reflected in γρ2 : in a “flat” neighborhood, the variance of
fluctuations in the optimizer is small, and hence γρ2 will be smaller.

Now, we move on to discuss how the α parameter in Corollary 2 can be interpreted as a measure of “clustering” of the
optimizer trajectory. To accomplish this, we invoke the K-function of Ripley (1976), a commonly used spatial statistic to
determine spatial inhomogeneity. For a point process N on RD, the K-function is defined for each r ą 0 as the ratio of
the expected number of points within distance r of any randomly chosen point, and the average density of points. Letting
W “ tw1, . . . , wnu denote a realization of a point process, its K-function can be estimated consistently by Cressie (2015,
eqn. 8.2.18):

K̂prq “
diampW q

n

n
ÿ

i,j“1
i‰j

1t}wi ´ wj} ď ru, r ą 0. (9)

The K-function of a homogeneous Poisson process on RD with constant intensity λ is given by Kprq “ πD{2rD{Γp1` D
2 q

for r ą 0 (Cressie, 2015, eqn. 8.3.34). Note that this function is independent of the intensity. Therefore, deviations in the
K-function from an OprDq growth rate suggest spatial inhomogeneity, and therefore points which exhibit spatial clustering.
Treating an optimizer trajectory W1, . . . ,Wn as the realization of a point process, we can interpret the K-function through
(9) and measure spatial clustering of the trajectory. Following the assumptions in Corollary 2 which define α, we can assume
that }Wi´Wj} ď r with probability approximately c|i´j|rα for 0 ă r ă r0, where c1, . . . , cn are positive constants. Under
this assumption, K̂prq « CdiampW qrα for 0 ă r ă r0 and some constant C ą 0. Therefore, we would expect α ! D
to be an indication that the optimization exhibits significant spatial clustering. By Corollary 2, this circumstance should
coincide with a smaller Fernique–Talagrand functional, and therefore improved generalization.
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C. Lower tail exponent and the Fernique–Talagrand functional
To further demonstrate the relationship between the lower tail exponent of a Markov transition kernel and the Fernique–
Talagrand functional over its sample path, we consider an extension of the setup in Figure 1 and measure γρ2 ptWku

m
k“0q for

random walks with prescribed lower tail exponents.

Consider a Markov chain Wk on R2 defined as follows: starting from W0, let

Wk`1 “Wk ` pcospUkq, sinpUkqqZk,

where for each k “ 0, 1, . . . , Uk „ Up´π, πq, and Zk „ β1pα, βq are independent, and β1pα, βq is the beta prime
distribution with density

ppxq “

#

Γpα`βq
ΓpαqΓpβqx

α´1p1` xq´α´β , if x ą 0,

0, otherwise.

The lower tail exponent of this process, as defined in Section 3.3, is precisely α. To remove the effect of variance, the chain
is normalized as W̄k “Wk{SptWlu

k
l“0q, where SpW q is the coordinate-wise standard deviation of W . For fixed W0 “ 0,

β “ 3.5 and varying α P r10´2, 1s, we plot the normalized Fernique–Talagrand functional γ1{4
2 ptW̄ku

100
k“0q (with ρ “ 1{4)

of the first 100 iterates of Wk, averaged over 100 runs. The result is shown in Figure 5. As expected, the FT functional
grows with α. However, unlike the behaviour suggested in Corollary 2, the FT functional appears to grow like logα for
small α.

D. Lower tail exponent as intrinsic dimension
Here, we shall discuss the relationship between the exponent α and the dimension D. The most commonly considered
discrete-time model for a stochastic optimizer is the perturbed gradient descent (GD) model, which satisfies Wk`1 “

Wk ´ γp∇fpWkq ` Zkq, where Zk is a Gaussian random vector with zero mean and constant covariance matrix Σ. In the
neighborhood of a local minimum w˚, ∇fpWkq « 0, and hence the perturbed gradient descent model resembles a Gaussian
random walk Wk`1 “Wk ` γZk. In this case, if D denotes the ambient dimension, the k-step transition kernel becomes
that of a D-dimensional multivariate normal distribution with covariance matrix kΣ:

P kpx,Eq “ p2πkq´
D
2 |det Σ|´

1
2

ż

E

exp
`

´ 1
2k py ´ xq

JΣ´1py ´ xq
˘

dy.

Since Σ is necessarily positive-definite, letting σ1 and σD denote the largest and smallest singular values of Σ respectively,
for any x P RD and set E Ă RD,

1

p2πkσ1q
D{2

ż

E

exp

ˆ

´
}y ´ x}2

2kσD

˙

dy ď P kpx,Eq ď
1

p2πkσDqD{2

ż

E

exp

ˆ

´
}y ´ x}2

2kσ1

˙

dy. (10)

Applying Lemma 4 to (10), we see that for the perturbed GD model, α in Corollary 2 is precisely the ambient dimension D.

E. Direct estimation of the Fernique–Talagrand functional
An attractive feature of the FT functional is the availability of a low-degree polynomial time approximation algorithm for
γ2pW,dq when W is a finite subset of RD. In particular, (Borst et al., 2020) shows that γ2pW,dq is computable to ε-accuracy
in Opp|W |1`ω `D|W |3q logp|W |D{εqq time, and ω ď 2.373 is the matrix multiplication exponent. To our knowledge,
this functional is the only object which tightly bounds (1), up to constants, and is approximable in polynomial time. This
is especially attractive for our purposes, providing an effective measure of generalization performance and exploratory
capacity, which does not require access to any test data. A general procedure to estimate γ2pW,dq is presented in Algorithm
1. To perform the optimization in the final step, any off-the-shelf nonlinear optimization procedure will suffice, including
gradient descent. Indeed, since the objective IW ppq happens to be convex in p (see (Borst et al., 2020)), any local minimizer
p˚ with subgradient BIW pp˚q “ 0 will satisfy γ2pW,dq “ IW pp

˚q.
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Figure 6: Normalized Fernique–Talagrand functional γ1
2pW q versus generalization gap. Different colors denote different

batch-sizes.

Algorithm 1 Fernique–Talagrand functional

Input: A set W “ tw1, . . . , wnu, and metric dpw,w1q on W
Output: An estimate of γ2pW,dq.

1: Compute Gram matrix G “ pdpwi, wjqqni,j“1

2: for i “ 1, . . . , n

3: sort pGijqnj“1 in ascending order to obtain pG̃ijqnj“1 and
sorted indices pιijqnj“1

4: end for
5: function IW ppq
6: for i “ 1, . . . , n

7: IiW ppq “
řn´1
j“0 pGi,j`1 ´Gijq

b

| log
řj
k“0 pιik |

8: return maxtI1W ppq, . . . , I
n
W ppqu

9: end function
10: return minzPRn IW psoftmaxpzqq

Unfortunately, this approach becomes more challenging in high dimensions, where the optimization task becomes more
difficult to solve to reasonable accuracy. Hence, we restrict our discussion in this section to smaller models. Our model of
choice is a three-layer fully-connected neural network with 20 hidden units, applied to the least-squares regression task
on the Wine Quality UCI dataset (Cortez et al., 2009). Models are trained from the same (random) initialization for 30
epochs (before reaching 100% training accuracy) using SGD with constant step size η P t0.01, 0.005, 0.001u, batch size
b P t20, 50, 100u, weight decay parameter λ P r10´4, 5ˆ 10´4, 10´3s, and added zero-mean Gaussian noise to the input
data with variance σ2 for σ P t0, 0.05, 0.1u. In Figure 6, for each model, we plot test error at the end of training against the
estimated normalized FT functional (using Algorithm 1) from the last 50 iterates of training. The most profound difference
in trends is seen with varying batch size. Nevertheless, as expected, the FT functional shows a strong correlation to test error.
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F. Proofs of our main results
F.1. Proof of Theorem 1 and Corollary 1

The total mutual information is valuable as it precisely defines the degree to which we may decouple two random elements,
as shown in the following lemma.
Lemma 1. For any Borel set B, PX,Y pBq ď exp I8pX,Y q ¨ PX b PY pBq.

Proof. The proof relies on the data processing inequality for α-Renyi divergence, which implies that for any α ą 1:

DαpBpPX,Y pBqq}BpPX b PY pBqqq ď IαpX,Y q,

where Bppq is a Bernoulli measure with success probability p. Therefore, letting p “ PX,Y pBq and q “ PX b PY pBq, as
αÑ8,

DαpBppq}Bpqqq “
1

α´ 1
log

ˆ

q
pα

qα
` p1´ qq

p1´ pqα

p1´ qqα

˙

“ log

˜

ˆ

q
pα

qα
` p1´ qq

p1´ pqα

p1´ qqα

˙1{pα´1q
¸

Ñ log max

"

p

q
,

1´ p

1´ q

*

.

Therefore, it follows that p{q ď supα exp IαpX,Y q “ exp I8pX,Y q.

Proof of Theorem 1. In the sequel, we shall let K ą 0 denote a universal constant, not necessarily the same in each
appearance. Let dρpw,w1q “ mintρ, }x´ y}u, and consider the alternative generic chaining functional γ̂ given by

γ̂2pW,dρq “ inf sup
wPW

8
ÿ

k“1

2n{2dρpw, Tkq,

where the infimum is taken over all sequences of subsets tTku8k“1 such that |Tk| ď Nk (where N0 “ 1 and Nk “ 22k

otherwise). By Talagrand (2001, Theorem 1.1), there exists a universal constant K ą 0 such that γ̂2pW,dρq ď Kγρ2 pW q.
The proof proceeds in a similar fashion to Talagrand (2014, Theorem 2.2.27). For each k, let TWk be a set such that
|TWk | ď Nk and

sup
wPW

8
ÿ

k“1

2k{2dρpw, T
W
k q ď 2γ̂2pW,dρq.

To construct an increasing sequence of subsets, let UWk “
Ť

mďk T
W
m , so that UW0 “ TW0 and |UWk | ď 2Nk. Now,

let Yw “ n1{2rRnpwq ´ Rpwqs{maxtB{ρ, Lu, so that EYw “ 0, and by Hoeffding’s inequality, for any u ą 0 and
w,w1 P RD,

Pp|Yw ´ Yw1 | ą udρpw,w
1qq ď 2 expp´ 1

2u
2q. (11)

For u ą 0, consider the event Ωpuq where

@k ě 1, @w,w1 P UWk , |Yw ´ Yw1 | ď 2p2k{2 ` uqdρpw,w
1q.

For each k, let ŨWk be an independent copy of UWk . Then, for M “ exp I8pX,W q,

PpΩzΩpuqq ď
8
ÿ

k“1

EPp|Yw ´ Yw1 | ď 2p2k{2 ` uqdρpw,w
1q,@w,w1 P UWk |UWk q

ďM
8
ÿ

k“1

EPp|Yw ´ Yw1 | ď 2p2k{2 ` uqdρpw,w
1q,@w,w1 P ŨWk | ŨWk q

ďM
8
ÿ

k“1

22p2k`1q`1 expp´2p2k ` u2qq

ďM
8
ÿ

k“1

expp2p2k ` 1q ` 1q expp´2p2k ` u2qq

ď KM expp´2u2q.
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For each element w PW , we define a sequence of (random) integers kpw, qq in the following inductive manner. First, let
kpw, 0q “ 0, and for each q ě 1, we define

kpw, qq “ inf

"

k : k ě kpw, q ´ 1q, dρpw,U
W
k q ď

1

2
dρpw,U

W
kpw,q´1qq

*

.

Now, consider elements πqpwq P UWkpw,qq satisfying dρpw, πqpwqq “ dρpw,U
W
kpw,qqq. By induction, we find that

dρpw, πqpwqq ď ρ2´q. Furthermore, when Ωpuq occurs, since πqpwq P UWkpw,qq and πq´1pwq P U
W
kpw,q´1q Ă UWkpw,qq, it

follows that
|Yπqpwq ´ Yπq´1pwq| ď 2p2kpw,qq{2 ` uqdρpπqpwq, πq´1pwqq.

Therefore, letting w0 P T
W
0 , under Ωpuq,

|Yw ´ Yw0
| ď

8
ÿ

q“1

|Yπqpwq ´ Yπq´1pwq|

ď

8
ÿ

q“1

2p2kpw,qq{2 ` uqdρpπqpwq, πq´1pwqq

ď

8
ÿ

q“1

2p2kpw,qq{2 ` uqdρpw, πqpwqq `
8
ÿ

q“1

2p2kpw,qq{2 ` uqdρpw, πq´1pwqq.

By construction,
8
ÿ

q“1

2kpw,qq{2dρpw, πqpwqq ď
8
ÿ

k“0

2k{2dρpw, T
W
n q ď 2γ̂2pW,dρq.

Similarly, by the definition of kpw, qq, it follows that dρpw,UWkpw,qqq ď
1
2dρpw,U

W
kpw,q´1qq and dρpw,U

W
kpw,qq´1q ě

1
2dρpw,U

W
kpw,q´1qq. Therefore,

8
ÿ

q“1

2kpw,qq{2dρpw, πq´1pwqq ď 2
8
ÿ

q“1

2kpw,qq{2dρpw, T
W
kpw,qq´1q

ď 4
8
ÿ

k“0

2k{2dρpw, T
W
n q

ď 8γ̂2pW,dρq.

Finally, we have that
ř8

q“1 dρpπqpwq, wq ď ρ
ř8

q“1 2´q “ ρ, and
ř8

q“1 dρpπq´1pwq, wq ď 2ρ. Therefore, when Ωpuq
occurs, for any w PW ,

|Yw ´ Yw0
| ď Kpγ̂2pW,dρq ` ρuq ď Kpγρ2 pW q ` ρuq.

Altogether, this implies that

P
ˆ

sup
w,w1PW

|Yw ´ Yw1 | ą Kpγρ2 pW q ` ρuq

˙

ď K exppI8pX,W q ´ 2u2q.

Since EYw “ 0, supwPW |Yw| ď supw,w1PW |Yw ´ Yw1 |, and (4) follows. We would now like to apply Xu & Raginsky
(2017, Lemma 1) to show (5). To do so, it is necessary to show that supwPW̃ |Rnpwq ´Rpwq| is subgaussian, where W̃ is
an independent copy of W . Recall that a random variable X is σ-subgaussian if logE exppλpX ´ EXqq ď λ2σ2{2. First,
consider the case where W̃ “W is a deterministic set of weights, and for brevity, let R̄npwq “ Rnpwq ´Rpwq. In this
case, one may apply McDiarmid’s inequality to supwPW |R̄npwq| “ fpX1, . . . , Xnq, where

fpx1, . . . , xnq “ sup
wPW

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

`pxi, wq ´ E`pXi, wq

ˇ

ˇ

ˇ

ˇ

ˇ

.

Since ` is bounded, it follows that |`pxi, wq ´ `pyi, wq| ď 2B for any x, y and w PW . Therefore,

|fpx1, . . . , xi´1, xi, xi`1, . . . , xnq ´ fpx1, . . . , xi´1, x
1
i, xi`1, . . . , xnq| ď

2B

n
.



Generalization Bounds using Lower Tail Exponents in Stochastic Optimizers

Applying McDiarmid’s inequality reveals that

P
ˆˇ

ˇ

ˇ

ˇ

sup
wPW

|R̄npwq| ´ E sup
wPW

|R̄npwq|

ˇ

ˇ

ˇ

ˇ

ą u

˙

ď 2 exp

ˆ

´
nu2

2B2

˙

.

Since the bound does not depend on W , and tXiu
n
i“1, W̃ are independent, we can condition on W̃ and apply this bound to

find that

P

˜
ˇ

ˇ

ˇ

ˇ

ˇ

sup
wPW̃

|R̄npwq| ´ E sup
wPW̃

|R̄npwq|

ˇ

ˇ

ˇ

ˇ

ˇ

ą u

¸

ď 2 exp

ˆ

´
nu2

2B2

˙

,

which, by Boucheron et al. (2013, Theorem 2.1), implies that supwPW̃ |R̄npwq| is p4B{
?
nq-subgaussian. Applying Xu &

Raginsky (2017, Lemma 1),

E sup
wPW

|Rnpwq ´Rpwq| ď E sup
wPW̃

|Rnpwq ´Rpwq| `
c

32B2I1pX,W q

n
. (12)

Using (11), an application of Talagrand (1996, Proposition 2.4) shows that

E sup
wPW̃

|Yw| ď E

«

EW̃ sup
wPW̃

|Yw|

ff

ď KEγρ2 pW̃ q “ KEγρ2 pW q, (13)

where EW̃ denotes conditional expectation, conditioned on W̃ . The result now follows by combining (12) and (13).

Remark 1. Unfortunately, there has been little work on providing good estimates on the universal constant K. To our
knowledge, only the original work of Fernique reports constants: from Fernique (1975, pg. 74), we find that

K ď 30
?

8

„
c

2`
1

log 2
`

e

2
?

log 2



« 296,

which is likely much larger than necessary.

Proof of Corollary 1. Define a probability measure µ with support onW by µpEq “ HαpW XEq{HαpW q. By assumption,
µpBrpwqq ě pCρrq

α for 0 ď r ă ρ and any w PW . Therefore,

γρ2 pW q ď sup
wPW

1

ρ

ż ρ

0

d

log
1

µpBrpwqq
dr ď pC´1

ρ

?
αq ¨

1

ρ

ż ρCρ

0

c

log
1

r
dr.

Since µpBrpwqq ď 1, it follows that ρCρ ď 1. The result follows upon the observation that
ş1

0

b

log 1
rdr “

?
π

2 .

F.2. Proof of Theorem 2

The Dudley bound is related to the Fernique–Talagrand functional through the following lemma, which combines Talagrand
(2014, Corollary 2.3.2) with the discussion on Talagrand (2014, pg. 22). Let Nd

r pW q denote the r-covering number of W ,
that is, the smallest integer N such that there exists a set of N balls of radius r under the metric d, whose union contains W .

Lemma 2 (Dudley entropy). There exists a universal constant K ą 0 such that for any metric d and set W , γ2pW,dq ď
K

ş8

0

a

logNd
r pW qdr. In particular, γρ2 pW q ď

K
ρ

şρ

0

a

logNrpW qdr.

If W Ă RD, the Dudley bound is never off by any more than a factor of logpd` 1q (Talagrand, 2014, Exercise 2.3.4). Now,
since x ÞÑ

?
log x is concave on r1,8q, Jensen’s inequality implies that E

?
logX ď

?
E logX for any random variable

with support in r1,8q. Therefore,

Eγρ2 pW q ď
K

ρ

ż ρ

0

a

logENrpW qdr.

Covering numbers for images of Markov processes are bounded by the following fundamental lemma.

Lemma 3. Let Λprq be a fixed collection of cubes of side length r in Rd such that no ball of radius r can intersect more
than K cubes of Λprq.
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1. Suppose that Xn is a time-homogeneous Markov chain with n-step transition kernel Pnpx,Aq. For any integer m, let
Nrpmq denote the number of cubes in Λprq hit by Xn at some time 0 ď k ď m. Then

ENrpmq ď 2K

«

inf
xP

Ť

rą0 Λprq
Ex

˜

1

m

m
ÿ

k“1

P kpx,Br{3pxqq

¸ff´1

.

2. Suppose that Xt is a time-homogeneous strong Markov process in Rd with transition kernel P pt, x,Aq. For any t ě 0,
let Nrptq denote the number of cubes in Λprq hit by Xt at some time s P r0, ts. Then

ENrptq ď 2K

„

inf
xP

Ť

rą0 Λprq
Ex

ˆ

1

t

ż t

0

P ps, x,Br{3pxqqds

˙´1

.

Proof. The second result is precisely Liu & Xiao (1998, Lemma 3.1), so it will suffice to show only the first. In a similar
fashion, we consider a sequence of stopping times constructed in the following manner: let τ0 “ 0 and for each positive
integer j, we let

τj “ min

"

k ě τj´1 : min
i“0,...,j´1

|Xk ´Xτi | ą r

*

.

In other words, each τj is chosen to be the first time that the Markov chain is at least distance r from Xτ0 , . . . , Xτj´1
. By

construction, |Xτj ´Xτk | ě r for j ‰ k. By a Vitali covering argument, the balls tBr{3pXτj quj are disjoint. Now, let

Tj “

τj`m
ÿ

k“τj`1

1XkPBr{3pXτj q

be the sojourn time of Xk in Br{3pXτj q in the interval pτj , τj ` ms. Furthermore, let η “ mintk : τk ą mu so that
tXku

m
k“0 Ă

Ťη´1
j“0 BrpXτj q. Therefore, because tXku

m
k“0 is contained within the union of η balls in Rd and no ball in Rd

can intersect any more than K cubes of Λprq, it follows that

Nrpmq ď Kη. (14)

Let Ij be the indicator of the event tτj ď mu, or equivalently, tη ´ 1 ě ju. Doing so, we have that η “
ř8

j“0 Ij .
Furthermore, since

ř8

j“0 1XkPBr{3pXτj q ď 1 by the disjointness of tBr{3pXτj quj ,

8
ÿ

j“0

IjTj “
8
ÿ

j“0

τj`m
ÿ

k“τj`1

1τjďm1XkPBr{3pXτj q

ď

2m
ÿ

k“1

8
ÿ

j“0

1XkPBr{3pXτj q “ 2m.

By the strong Markov property, we may condition on starting the process at Xτj :

ErIjTjs “ E

«

1τjďmEXτj
m
ÿ

k“1

1XkPBr{3pXτj q

ff

ě EIj ¨ inf
xPRd

Ex
m
ÿ

k“1

1XkPBr{3pxq.

Therefore, by monotone convergence,

Eη ¨ inf
xPRd

Ex
m
ÿ

k“1

1XkPBr{3pxq “

8
ÿ

j“0

EIj inf
xPRd

Ex
m
ÿ

k“1

1XkPBr{3pxq

ď

8
ÿ

j“0

ErIjTjs “ E
8
ÿ

j“0

IjTj ď 2m,
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and hence

Eη ď 2

«

inf
xPRd

Ex

˜

1

m

m
ÿ

k“1

1XkPBr{3pxq

¸ff´1

. (15)

The result now follows from (14) and (15).

If Λprq is chosen to be the set of dyadic cubes in RD of side length r, then K “ 3D. Combining Lemmas 2 and 3 with this
choice of Λprq yields Theorem 2. Note that the dimension dependence arises only due to this particular choice of Λprq. For
our purposes, K is mostly irrelevant, but it is worth noting that this dimension dependence could feasibly be removed with a
less naive choice of Λprq.

F.3. Proof of (8)

The proof of (8) relies on the following simple lemma.

Lemma 4. For any a ą 0, x P RD, and 0 ď r ď ρ,

rD

2
Iρpa,Dq ď

ż

Brpxq

e´a}y´x}
2

dy ď
rD

D
,

where Iρpa,Dq “
ş1

0
vD{2´1e´avρ

2

dv is monotone decreasing in a, D, and ρ.

Proof. By a change of variables,

ż

Brp0q

expp´a}x}2qdx “

ż r

0

uD´1e´au
2

du “
rD

2

ż 1

0

vD{2´1e´ar
2vdv.

The bounds are obtained through e´avρ
2

ď e´ar
2v ď 1.

Proof of (8). In the sequel, K will be used to denote a universal constant, not necessarily the same at each appearance. First,
by the Aronson estimate and Lemma 4,

ż T

0

Ptpx,Brpxqqdt ě K

ż T

0

ż

Brpxq

1

tD{2
exp

ˆ

´
}x´ y}2

2λt

˙

dydt

ě KrD
ż T

0

1

tD{2
Iρ

ˆ

1

2λt
,D

˙

dt.

By Fubini’s Theorem, and through the change of variables t ÞÑ t´1,

ż T

0

Ptpx,Brpxqqdt ě KrD
ż 1

0

ż T

0

1

tD{2
vD{2´1e´vρ

2
{p2λtqdtdv

ě KrD
ż 1

0

ż 8

1{T

sD{2´2vD{2´1e´svρ
2
{2λtdsdv

ě KTrDJρ,T

ˆ

1

2λ
,D

˙

,

where Jρ,T is as defined in Section 3. Equation (8) now follows from Theorem 2.

F.4. Proof of Corollary 2

The proof of Corollary 2 itself relies on the following corollary, which performs the local homogeneity approximation to
tWku

m
k“0.
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Corollary 3. Let Ω be a closed set such that PpWk R Ω for some k “ 0, . . . ,mq ď ζm. Then for any probability measure µ,
letting µk denote k-fold convolution of µ and PΩ the transition kernel of Wk conditioned on Wk P Ω for k “ 1, 2, . . . ,m,

Eγρ2 ptWku
m
k“0q ď

K

ρ

ż ρ

0

g

f

f

epD ` 2q log 3´ log

˜

1

m

m
ÿ

k“1

µkpBrq

¸

dr

`
a

logpm` 1q

ˆ

ζm `m sup
xPΩ

dTVpPΩpx, x` ¨q, µq

˙

. (16)

Proof. Let tW̄ku
m
k“0 denote the random walk satisfying W̄k`1 “ W̄k ` Zk, where each Zk „ µ is independent. Since

γρ2 pW q ď
a

log |W |, it follows that

|Eγρ2 ptWku
m
k“0q ´ Eγρ2 ptW̄ku

m
k“0q| ď

a

logpm` 1q sup
}f}8ď1

|EfptWku
m
k“0q ´ EfptW̄ku

m
k“0q|

ď
a

logpm` 1qdTVptWku
m
k“0, tW̄ku

m
k“0q.

Since Eγρ2 ptW̄ku
m
k“0q is bounded above by the first term of (16) by Theorem 2, it suffices to show that

dTVptWku
m
k“0, tW̄ku

m
k“0q ď ζm `m sup

xPΩ
dTVpPΩpx, x` ¨q, µq.

Let Zk be chosen such that tWku
m
k“0 and tW̄ku

m
k“0 are optimally coupled under the total variation metric, that is,

dTVptWku
m
k“0, tW̄ku

m
k“0q “ PptWku

m
k“0 ‰ tW̄ku

m
k“0q.

Conditioning on Wk P Ω, there is

dTVptWku
m
k“0, tW̄ku

m
k“0q ď ζm ` PptWku

m
k“0 ‰ tW̄ku

m
k“0|tWku

m
k“0 P Ωmq

ď ζm `
m
ÿ

j“1

PpWj ‰ W̄j |tWku
m
k“0 P Ωm, tWku

j´1
k“0 “ tW̄ku

j´1
k“0q,

which implies (16).

Proof of Corollary 2. By the hypotheses, for c̄m “ m´1pc1 ` ¨ ¨ ¨ ` cmq, m´1
řm
k“1 µ

kpBrq ě c̄mr
α for any 0 ă r ă r0.

Let ε ą 0 be arbitrary. Note that if r ď ρε :“ mint1, r0, pc̄m{3
D`2q1{εu,

1

m

m
ÿ

k“1

µkpBrq ě 3D`2rα`ε.

Therefore, considering the first term on the right hand side of (16), since ρε ď 1,

ż ρε

0

g

f

f

epD ` 2q log 3´ log

˜

1

m

m
ÿ

k“1

µkpBrq

¸

dr ď
?
α` ε

ż 1

0

c

log
1

r
dr.

The result now follows from Corollary 3.


