
Online Continual Learning through Mutual Information Maximization

Yidou Guo 1 2 Bing Liu 3 Dongyan Zhao 1 2

Abstract
This paper proposes a new online continual learn-
ing technique called OCM based on mutual infor-
mation maximization. It achieves two objectives
that are critical in dealing with catastrophic for-
getting (CF). (1) It reduces feature bias caused
by cross entropy (CE) as CE learns only discrim-
inative features for each task, but these features
may not be discriminative for another task. To
learn a new task well, the network parameters
learned before have to be modified, which causes
CF. The new approach encourages the learning
of each task to make use of holistic represen-
tations or the full features of the task training
data. (2) It encourages preservation of the pre-
viously learned knowledge when training a new
batch of incrementally arriving data. Empirical
evaluation shows that OCM substantially outper-
forms the online CL baselines. For example, for
CIFAR10, OCM improves the accuracy of the
best baseline by 13.1% from 64.1% (baseline) to
77.2% (OCM). The code is publicly available at
https://github.com/gydpku/OCM.

1. Introduction
Continual learning (CL) incrementally learns a sequence
of tasks < 1, 2, ..., t, ... >. Each task consists of a set of
classes to be learned. Learning can be done in the batch
mode and the online mode. In batch CL, when a new task t
arrives, all its training data is available and training may go
through the data any number of epochs. In online CL, the
data for each task comes gradually in a stream and learning
is done whenever a small batch of training examples is
accumulated. Due to the fast speed of the data stream, for
each data batch, the learning algorithm can see it only once

1Wangxuan Institute of Computer Technology, Peking Uni-
versity. 2Artificial Intelligence Institute, Peking University.
3Department of Computer Science, University of Illinois at
Chicago. Correspondence to: Bing Liu <liub@uic.edu>,
Dongyan Zhao <zhaody@pku.edu.cn>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

like one training iteration. It is well-known that CL suffers
from catastrophic forgetting (CF) (McCloskey & Cohen,
1989), i.e., the training of a new task needs to update the
existing network parameters, which may cause accuracy
degradation of the tasks learned earlier. There are also three
CL settings. This paper works in the challenging setting of
class incremental learning (CIL), in which only one model
is incrementally learned for all classes of the tasks seen so
far.1 In testing, the model can classify a test instance from
any class without the task information. This paper focuses
on dealing with CF in the CIL setting of the online CL mode.

One popular approach for dealing with CF is experience
replay or simply replay. In this approach, a small subset of
the previous training data is saved in a memory buffer. In
learning a new task (batch CL) or a small batch (online CL),
the system trains on both the new data and the saved data to
re-adjust the features and decision boundaries between both
the old and the new classes. We will discuss the difference
between replay approaches in batch and online CL in Sec. 2.
Almost all online CL methods are based on replay. This
work uses the replay approach as well. However, we propose
a more principled solution based on mutual information
(MI) maximization. The proposed approach is called OCM
(Online Continual learning based on Mutual information
maximization), which deals with CF in three ways.

(1). It prevents information loss in feature learning. In
learning a task, cross entropy (CE) loss learns only discrim-
inative (or biased) features that can separate the classes of
the task. However, these discriminative features may not be
sufficiently discriminative for a new task. To learn the new
task well, the model parameters have to be modified, which
causes CF for previous tasks. To deal with this, the system
should learn holistic representations of the input data. The
proposed solution precisely encourages learning all features
(i.e., holistic representations) of the input data for each task.
Then features that may not be discriminative for the current
task but are useful for some future tasks are also learned.

(2). It encourages preservation of the previously learned
knowledge when learning a new batch of data Xnew from
an existing task or a new task. This is also important for
preventing CF. We note that without achieving (1), (2) will

1See (Ke et al., 2021; van de Ven & Tolias, 2019) for task
incremental learning and domain incremental learning settings.

https://github.com/gydpku/OCM


Submission and Formatting Instructions for ICML 2022

not fully realize its benefit because preserving the biased
past may result in sub-optimal solutions.

(3). Theoretical analysis suggests a new training strategy on
how to use the replay data (denoted by Xbuf) and the new
data batch Xnew in training. The analysis also shows that
data augmentation can be applied to help learning. A new
augmentation called local rotation is proposed as well.

To our knowledge, MI maximization has not been used
as a solution method to overcome CF in either batch or
online CL. The paper also introduces the concept of holistic
representation and shows why cross entropy loss causes CF
due to the biased features that it learns. It then demonstrates
that (i) OCM based on MI maximization is highly effective
for online CL, and (ii) MI maximization can also be used to
improve existing online CL methods.

Empirical evaluation using benchmark datasets MNIST, CI-
FAR10, CIFAR100 and TinyImageNet shows that OCM out-
performs the state-of-the-art online CL systems markedly.
For example, with the memory buffer size of 1k, OCM
outperforms the best baseline by 13.1% on CIFAR10.

2. Related Work
Batch continual learning (batch CL). Many approaches
have been proposed for batch CL. Using regularizations
to mitigate CF by penalizing changes to important parame-
ters learned in the past is a popular approach (Kirkpatrick
et al., 2017; Ritter et al., 2018; Ahn et al., 2019; Yu et al.,
2020; Zhang et al., 2020). Replay is another popular ap-
proach (Chaudhry et al., 2020; Castro et al., 2018; Re-
buffi et al., 2017; de Masson d’Autume et al., 2019; Wu
et al., 2019; Hou et al., 2019; Zhao et al., 2021; Korycki &
Krawczyk, 2021; Sokar et al., 2021; Yan et al., 2021; Hu
et al., 2021; Wang et al., 2022), which uses a memory buffer
to store some previous data and replays it in training a new
task. Data generators have also been learned to generate
pseudo-replay data (Shin et al., 2017; Hu et al., 2019). This
approach is not suitable for online CL as it needs the full
data to learn data generators. Many recent approaches are
based on dynamic architectures (Ostapenko et al., 2019;
von Oswald et al., 2020; Serrà et al., 2018; Rajasegaran
et al., 2020; Abati et al., 2020; Saha et al., 2021; Yoon et al.,
2018; Li et al., 2019; Hung et al., 2019; Rajasegaran et al.,
2019; Farajtabar et al., 2020), which expand the network or
isolate parameters to prevent forgetting. As an extension,
CAT (Ke et al., 2020) uses a parameter isolation approach
to deal with both CF and knowledge transfer across tasks.
CLOM (Kim et al., 2022) combines parameter isolation and
out-of-distribution detection for continual learning. Another
approach is orthogonal projection (Zeng et al., 2019; Guo
et al., 2022). AOP (Guo et al., 2022) can perform both
batch CL and online CL. IL2A (Zhu et al., 2021) investi-

gates feature representations based on spectral analysis and
presents a data augmentation called ClassAug to learn more
transferable features.

Online continual learning (online CL). Online CL meth-
ods are mainly based on replay except AOP (Guo et al.,
2022), which uses a pre-trained model. ER (Chaudhry et al.,
2020) randomly samples the replay data. MIR (Aljundi
et al., 2019a) chooses replay samples whose losses in-
crease most. GSS (Aljundi et al., 2019b) diversifies the
gradients of the samples in the memory buffer and allows
the model to learn more information from the memory
buffer. ASER (Shim et al., 2021) uses the Shapley value
theory. DER++ (Buzzega et al., 2020) utilizes the dark
knowledge (Hinton et al., 2014) and knowledge distillation.
SCR (Mai et al., 2021) uses supervised contrastive loss for
representation learning and the nearest class mean for classi-
fication. GDumb (Prabhu et al., 2020) greedily samples the
data and ensures the classes are balanced. It uses all the sam-
ples in the memory to train the learner. NCCL (Yin et al.,
2021) calibrates the network to mitigate CF. It is designed
for task incremental learning. Yan et al. (2021) proposed an
EM method for online CL in semantic segmentation. Wang
et al. (2021) proposed to use online CL in object detection.
The proposed OCM focuses on online CL for classification.
It is also based on replay, but very different from existing
approaches as its solution approach is MI maximization.

Differences between replay methods of batch CL and
online CL: Before discussing the differences, we first define
two terms, inter-task CF and intra-task CF. Inter-task CF
refers to the commonly studied CF, i.e., learning a new task
causing forgetting of the knowledge learned from previous
tasks. Intra-task CF refers to forgetting of the knowledge
learned from early batches by later batches within a task.
Intra-task CF occurs only in online CL because online CL
sees the data only once or trains in one epoch. The main
differences between replay methods of batch CL and online
CL are: (1) batch CL has only inter-task CF but online CL
has both because batch CL trains each task many epochs.
(2) To deal with inter- and intra-task CF, online CL usually
samples replay data continuously from both previous tasks
and the current task, but batch CL samples and saves some
samples from only previous tasks. (3) In batch CL, when a
task arrives, all its training data is available, but for online
CL, the data comes gradually. Due to these differences,
online CL needs different replay methods.

Mutual information (MI): MI has many machine learning
(ML) applications. For example, Boudiaf et al. (2020) used
MI to bridge cross-entropy and pairwise losses. They also
proposed a method for few-shot learning by maximizing the
MI between queries and their label predictions. However,
MI is hard to estimate. They designed an estimator from
the Donsker-Varadhan representation and the f-divergence



Submission and Formatting Instructions for ICML 2022

representation. Oord et al. (2018) tried to solve the problem
by optimizing an InfoNCE-type lower bound of MI. To our
knowledge, MI has not been used in CL, which needs unique
formulations to guide the training to overcome CF.

3. Problem Description and Preliminaries
In online CL, we learn a sequence of tasks incrementally.
Each task t has its dataset Dt = {(xi, yxi

)}nt
i=1, where xi

is an input sample and yxi
is its class label (yxi

∈ Yt, the
set of all labels of task t) and nt is the number of training
samples. The training data for each task t comes gradually
in a stream. Following existing online CL works (Aljundi
et al., 2019a), whenever a small batch of data (denoted by
Xnew with N samples) from task t is accumulated from the
data stream, it is trained in one iteration. After all the data
of a task are seen, the next task starts. In a replay method,
a mini-batch used in training consists of Xnew and Xbuf,
where Xbuf of size Nb is sampled from the memory buffer
M.M saves a small set of training samples of seen tasks.
Note that, before seeing all the data of the current task t,M
has already saved some data from task t sampled from the
data stream of task t seen so far.

Our neural model has two parts: the feature extractor fθ
and the classifier σ. For an input x, we get its logits from:
o(x) = σ(fθ(x)) to calculate the loss or to predict the label.

Cross Entropy (CE). For supervised learning, CE is the
commonly used loss function. However, as we state earlier,
CE has a major shortcoming for CIL (see the second remark
below about the generalisation), which can be stated with
the following two propositions.

Proposition 1. Minimal CE does not imply that all possible
features of a class/task are learned in the feature extractor.

Let us assume that minimal CE implies that all features of
a class are learned. We use an example to show that it is
not true. Let us say that we want to learn to recognize two
kinds of animals: cat and dog. Assume in the training data
all the dogs are black and all the cats are white. We further
assume that by chance the feature extractor learned only
two significant features in the feature vector, one for black
and one for white. When a black object is presented to the
feature extractor, the first feature has the value of 1 and all
other features have the value of 0. When a white object is
presented to the feature extractor, the second feature has the
value of 1 and the rest of the features have the value of 0.
In this case, with proper weights in the classification/linear
layer, CE loss can easily achieve 0 (minimal). The learned
model is sufficient for classifying black dogs and white cats.
However, cats and dogs clearly have many other features.

Proposition 2. Features not learned may cause CF in con-
tinual learning.

Without loss of generality, we can assume that only a subset
of features is learned from task 1. But some of those features
that are not learned may be necessary for distinguishing the
classes of task 2. To learn these features, the feature extrac-
tor learned from task 1 has to be updated, which causes CF
for classes in task 1. Following the example above, if task
2 is to learn to recognize chicken and pig, and they come
in many colors. The two color based features above will
not be sufficient. The existing feature extractor needs to be
updated for task 2, which results in CF.2

Remarks. We make three remarks about the above analysis.

(1) It is difficult, if not impossible, to define or to learn the
full set of features of a class/task. It is also difficult to define
the degree of holisticness. This paper argues that if more
features are learned in the representation, the amount of for-
getting will be reduced. This is because with more features,
the learning of future tasks will need to update less of the
learned feature extractor. One approximate way to com-
pare the holisticness of two different representation learning
methods is through computing the eigenvalues and eigen-
vectors of the resulting representations, which we discuss in
Section 6.5. The proposed method uses MI maximization
to learn more features, i.e., to learn more holistic represen-
tations,3 and also to preserve the model learned previously.

(2). Although the analysis above is based on cross entropy,
it is also applicable to other existing loss functions for su-
pervised learning because the current supervised learning
paradigm does not require all the information of the dataset.

(3). The above analysis is not meant for task incremen-
tal learning (TIL) because in TIL each task may build a
separate model and the parameters of the model may be
protected by masks in a parameter isolation approach (Serrà
et al., 2018; Wortsman et al., 2020), which can effectively
eliminate CF. In testing, the task-id is provided for each test
instance to identify the right model to use.

4. MI Maximization for Continual Learning
This section presents the proposed technique OCM based
on mutual information (MI) maximization, which gives us a
novel training objective and training strategy.

The popular loss function used in classification is the cross-
entropy lossLce. But as we discussed above,Lce learns only
discriminative and biased features to separate the classes
of a task. The other features that may be transferable and

2Although the replay data can help the first task model to adapt,
since the amount of replay data is limited, it is often not sufficient
to address the CF issue.

3Another way to achieve more holistic representations is
through pre-training using a large number of prediction classes,
which is what most pre-training techniques have been doing.



Submission and Formatting Instructions for ICML 2022

useful in classifying classes in possible future tasks are ig-
nored, which causes CF when learning the future tasks. The
proposed MI based solution aims to deal with this problem.

4.1. Maximization of MI between Input X and fθ(X)

One way to solve the problem is to ensure that the learned
feature representation fθ(X) is holistic in the sense that
it preserves the features of input X as much as possible
to reduce feature bias (see Sec. 6.5 for the measurement
of holisticsness). We propose to maximize the MI be-
tween X and fθ(X): I(X; fθ(X)), as mutual information
can detect general, possibly non-linear, relationships. We
use an additional head Φ (e.g., a linear layer) to calculate
Φ(fθ(X)) and maximize I(X; Φ(fθ(X))) rather than to
maximize I(X; fθ(X)) directly. Φ(fθ(x)) creates a new
parameter space for representation learning that has a much
fewer dimensions than fθ(x). Due to the Markov chain
X → fθ(X)→ Φ(fθ(X)) and the data processing inequal-
ity (Beaudry & Renner, 2011), we have

I(X; fθ(X)) ≥ I(X; Φ(fθ(X))) (1)

So what we optimize directly is a lower bound for
I(X; fθ(X)). To simplify the presentation, we use F (X)
to denote normalization(Φ(fθ(X))), which projects the
representations of all inputs to an unit sphere.

In the online CL context, each iteration with data
Xnew ⋃

Xbuf should maximize

I(Xnew
⋃

Xbuf;F (Xnew
⋃

Xbuf)) (2)

However, if the class labels Y are considered, this optimiza-
tion can be revised, which we discuss next.

Maximization of MI between F (X) and Label Y . Since
we work in the supervised learning setting, making the best
use of the label information is vital for model performance.
Because if the learned representation F (X) includes enough
supervised label information, then clear class boundaries
in the feature space would be naturally generated. How-
ever, MI I(F (X);Y ) is hard to compute as they have very
different dimensions. Here we only analyse it and use the
analysis to guide the design of our training strategy and loss
to solve the problem. We rewrite I(F (X);Y ) as:

I(F (X);Y ) = H(Y )−H(Y |F (X)) (3)

where H(X) is the entropy of the label variable Y . To
maximize this MI, entropy H(Y ) should be maximized (the
first term) and the label should be easily identified from
the feature representation (the second term, which is nat-
urally minimized in classification training). Maximizing
H(Y ) means that variable Y should be balanced or follow
uniform distribution, which gives the maximum value for
H(Y ). This has two implications: (1) We should not maxi-
mize Eq. 2 directly as it may lead to class imbalance of Y

(the classes in Xnew may have a higher proportion). Since
the classes in Xnew or Xbuf are approximately balanced4 ,
we thus use I(Xnew;F (Xnew)) + I(Xbuf;F (Xbuf)) as the
surrogate to maximize the MI between the input and the
feature representation, Eq. 2. (2) We should calculate only
the cross-entropy loss of Xbuf and use it to update the clas-
sifier. This is because the data randomly sampled from
the task-free (i.e., no task-id used) buffer can be viewed
as the samples from an approximately uniform distribution
of all seen classes. Note that since the replay buffer is
incrementally updated, Xbuf includes some data from the
new/current task. Sampling the current task’s data from the
buffer also mitigates inter-task CF. Our method updates the
replay buffer as the data incrementally arrives.

The MI between F (X) and label Y can also be written as

I(F (X);Y ) = H(F (X))−H(F (X)|Y ) (4)

From this view, the features extracted from F should spread
uniformly in the feature space to maximize H(F (X)). And
for minimizing H(F (X)|Y ), we should make samples shar-
ing the same class to be close/near to each other. That is,
the ideal optimization result is that samples from the same
class should be close to each other and samples of different
classes should be far away from each other. These will guide
the loss function design in Section 5.

4.2. Maximization of MI between Current and Past

After learning the first t− 1 tasks, the model has acquired
the knowledge about classes

⋃t−1
i=1 Yi. However, in learning

the new task t, some knowledge or information about the
previous classes may be forgotten. To reduce forgetting, we
want F in learning t and the previous F 1:t−1 to share the
knowledge about the classes of the previous tasks because
it is crucial (1) to establish good decision boundaries be-
tween the previous classes and the new classes and (2) to
maintain the decision boundaries among previous classes
themselves. We try to mitigate forgetting at the feature level.
Specifically, for the input x from Xbuf, we want to maximize
I(F 1:t−1(x);F (x)) when training the new task t. Note that
we do not maximize the MI at the logits-level (Buzzega
et al., 2020), that is, max

θ,σ
I(σ1:t−1(f1:t−1

θ (x));σ(fθ(x))).

Because the model should allow some concept drift of previ-
ous classes as it needs to establish new decision boundaries
between the previous classes and the current classes. The
classifier (the logits) plays a vital role in classification as it
chooses important features for classification. So we allow it
to adjust its “view” for the past classes rather than making
it completely consistent with the past classifier.

4If the data streaming is imbalanced and temporally correlated,
we follow (Chrysakis & Moens, 2020) and use class-balancing
reservoir sampling (CBRS) to guarantee the class balance in Xbuf.



Submission and Formatting Instructions for ICML 2022

4.3. OCM Model

Based on the analysis above, we are ready to present the
proposed model OCM. Figure 1 shows its architecture.

Figure 1. Architecture of OCM. Lce: cross-entropy loss.

In Figure 1, maximizing (1) Lce(X
buf) enables the model

to learn a class-balanced classifier. Maximizing (2)
I(Xnew;F (Xnew)) + I(Xbuf;F (Xbuf)) helps the model
learn holistic or comprehensive feature representations for
inputs. After training t−1 (t > 1) tasks, we copy the trained
model and freeze the copy as the previous model. In learning
the new task, we maximize (3) I(F 1:t−1(Xbuf);F (Xbuf)) to
reduce forgetting of the learned model for previous classes.
Our final optimization goal is to optimize the sum of those
three objectives, i.e., (1)+(2)+(3).

In summary, the proposed method OCM aims to learn com-
prehensive or holistic feature representations from the input
data when training a new task. It also protects the learned
knowledge for the previous tasks in learning subsequent
tasks. The classifier is trained with class-balance inputs to
maximize H(Y ).

5. Proxy for Mutual Information (MI)
Calculating MI is notoriously difficult. To overcome this
problem, inferring the lower bound and then maximizing
the tractable objective becomes a popular choice. Oord et al.
(2018) proposed the InfoNCE loss as a proxy objective to
maximize the MI. We follow their framework. Let X

′
be a

different view of input variable X created via data augmen-
tation. Each input image x is first copied and then applied
with horizontal-flip, random-resized-crop and random-gray-
scale operations to create x

′
. We have

max
θ,Φ

I(X;F (X)) ≥ max
θ,Φ

I(F (X);F (X
′
)) (5)

The proof is in Appendix 1. According to (Oord et al., 2018),
the term on the right has a lower bound:

max
θ,Φ

I(F (X);F (X
′
)) ≥ logB + InfoNCE({xi}Bi=1; g) (6)

InfoNCE({xi}Bi=1; g) =
1

B

B∑
i=1

log
g(xi, x

′
i)

B∑
j=1

g(xi, x
′
j)

(7)

where g(xi, x
′

j) = e
F (xi)

T F (x
′
j)

r can be regarded as calcu-
lating the similarity of xi and x′

j and r is the temperature.

{xi}Bi=1 are samples from variable X and B is the batch size.
When B →∞, we have logB + InfoNCE({xi}Bi=1; g)→
I(F (X);F (X

′
)) (Sordoni et al., 2021). So the inequality

is tighter when B is larger. Now we also introduce the
supervised label into InfoNCE and rewrite it as:

InfoNCE({xi, yxi}
B
i=1; g) = αInfoNCE({xi}Bi=1; g)+

β

B∑
i=1

∑
k:yxk

=yxi

log
g(xi,xk)g(xi,x

′
k)g(x

′
i,xk)

(
∑B

j=1 g(xi,xj)+g(xi,x
′
j)+g(x

′
i,xj))3

3B
∑B

s=1 1(yxs = yxi)

(8)

where 1 is the indicator function, α and β are hyperparame-
ters.

Eq. 8 is the lower bound of I(F (X);Y )+I(X;F (X)): The
first term on the right of Eq. 8 is the same as Eq. 7. It is
the lower bound of I(X;F (X)). The second term on the
right of Eq. 8 considers the supervised label Y . It’s the
lower bound of I(F (X);Y ). The proof is as follows: For
a batch of augmented data {xi, yxi}Bi=1, we use the mean
of the hidden representation (F (x)) of the samples whose
labels are y to represent the class label y. Following the
same inequality in Eq. 6 or in (Oord et al., 2018), we get
the second term on the right of Eq. 8 as the lower bound of
I(F (X);Y ).

Rotation Augmentation for a Tighter Bound. In the above
analysis, we know that MI maximization would benefit from
an increased batch size (Eq. 7). However, in online CL, the
batch size is usually small. For example, in ASER (Shim
et al., 2021), the new data batch size for Xnew is 10, and in
some recent online CL methods, the size of Xbuf sampled
from the replay buffer is also 10. We can increase the
buffer batch size for Xbuf to a larger number, but increasing
the size of Xnew can be problematic because that means
we need to wait for a longer time to start a new training
iteration. A naive solution is to duplicate the original data
to increase the batch size. But the numerator will appear in
the denominator multiple times, which can lead to model
collapse. We provide an experiment of this in Appendix 8.

In this work, we propose to increase the batch size by rotat-
ing each image sample globally and locally to create pseudo
samples. Like in (Tack et al., 2020), we also give pseudo
classes to pseudo samples created by different rotations,
which produce better features. For each image xi with class
label yxi (i.e., (xi, yxi)) from a set of images X (e.g., X
may be Xnew or Xbuf), the data and class transformation
process for (xi, yxi

) goes through the following three steps:

(1). Local Rotation: This method is new. For each image xi,
we divide it vertically into two halves and then rotate each
half by 0 or 180 degrees to create four locally rotated ver-
sions of xi. We denote these by {xi,(left,right)}left,right∈{0,1},
where left = 1/0 means the left half of xi is or is not rotated
by 180 degrees, and right = 1/0 means similarly.



Submission and Formatting Instructions for ICML 2022

(2). Global Rotation: We further rotate each image in
{xi,(left,right)}left,right∈{0,1} globally by 0◦, 90◦, 180◦ and
270◦ to create four globally rotated versions (0 degree
rotation is the original xi). We denote these images by
{xi,(left,right,r)}left,right∈{0,1},r∈{0◦,90◦,180◦,270◦}, where the
value of r is the rotation degree.

The combination of the global and local rotations give us 16
rotated images for each xi. In Experiments, we describe 3
other transformations to each image to improve the results.

(3). Assigning 16 Classes: Each combination of global and
local rotations is assigned a separate new class c. Altogether
the 16 rotation combinations create 16 classes. Now each
image has a pair of classes: (yxi , c), where yxi is the original
class label of the input image xi and c is one of the 16 aug-
mented class labels. Different values of c represent different
combinations of global and local rotations (left, right, r).

In this way, the batch sizes for Xnew and Xbuf are increased
when calculating the proxy of MI, which enables the system
to achieve the benefit of the tighter lower bound. We provide
the visualization of feature embeddings (representations) of
training samples in Figure 3 in Appendix 2. In the figure,
we will see that the embeddings of the original data are
surrounded by the pseudo data embeddings created from
them. We also investigate the influence of the number of
pseudo classes in Section 6.3 and compare with creating
more samples by random augmentations in Appendix 8.

5.1. Connecting Φ(fθ(x)) and fθ(x)

We can directly optimize I(X; Φ(fθ(x))) via the MI proxy
of InfoNCE loss for feature learning. However, it is possi-
ble to do better. Since Φ is the deepest layer for learning
feature representations, it learns more global features than
the earlier layers. Those global features may be important
for distinguishing different images. However, those features
in Φ are not used in classification. We propose a method to
mitigate this problem by drawing fθ(X) into the calculation
of the similarity function g.

Let the dimension of F (x) (or Φ) be d1 (F (x) ∈ R1×d1)
and of fθ(x) be d2 (fθ(x) ∈ R1×d2). Since d2 ≥ d1,
we cannot multiply F (x) and fθ(x) directly. We choose
a random contiguous fragment of length d1 from fθ(x) to
represent fθ(x) in each training iteration. First, for a batch,
we randomly sample an integer z from the interval [0, d2 −
d1]. Then we extract the local features fθ(x)[z, z+d1] from
the original fθ(x), where [z, z+d1] means a fragment from
z to z + d1. Second, we change g(xi, xj) for data in this
batch to

g∗(xi, xj) = e
λF (xi)

T F (xj)+(1−λ)fθ(xi)[z,z+d1]T F (xj)

r (9)

where λ is a hyperparameter. Note that we want to reduce
the semantic gap between F (X) and fθ(X). As d1 is usu-

ally smaller than d2, we cannot multiply F (x) and fθ(x) to
calculate the cosine similarity/distance (dcos = 1− cosine).
We instead calculate the average dcos between F (x) and
continuous fragments fθ(x)[a,b] ∈ R1×d1 to achieve direc-
tion consistency between F (X) and fθ(X) by minimizing

(1) Ex∼X

∑d2−d1
i=1 dcos(F (x),fθ(x)[i,i+d1])

d2−d1
. But as d2 − d1 can

be huge, it causes high compute. So we randomly sample
a contiguous fragment of length d1 from fθ(x) to compute
(2) E(x,u)∼(X,U)

∑d2−d1
i=1 dcos(F (x), fθ(x)[i,i+d1])∗ui, where

U is the discrete uniform distribution over the integer set
{z|0 ≤ z ≤ d2 − d1} and its sample, an integer, is pre-
sented as one-hot vector u ∈ Rd2−d1×1. As U and X are
independent, minimizing (2) is equivalent to minimizing
(1) in expectation. Results in ablation study show that this
operation improves the performance of OCM.

5.2. Putting Everything Together

When training a task t, for a new batch of training data con-
sisting of Xnew = {xi, yxi

}Ni=1 and Xbuf = {xb
i , yxb

i
}Nb
i=1,

we use the InfoNCE loss as a proxy for MI and the new data
augmentation to enlarge the batch size. After completing the
training of the task, we copy the trained model and freeze
the copy as the previous model. The optimization objective
for our method is calculated as (also see Section 4.3),

max
θ,σ,Φ

−Lce(X
buf) + {I(Xnew;F (Xnew)) + I(Xbuf;F (Xbuf))+

I(F 1:t−1(Xbuf);F (Xbuf))}

≈ max
θ,σ
{Lce({xb

i , yxb
i
}Nb
i=1)}+max

θ,Φ
{3 log (16) + 2 log (Nb)+

log (N) + InfoNCE({{xi,c, yxi,c}
16
c=1}Ni=1; g

∗) + InfoNCE({{xb
i,c

, yxb
i,c
}16c=1}N

b

i=1; g
∗) + InfoNCE({{xb

i,c, yxb
i,c
}16c=1}N

b

i=1; g
′
)

(10)
where xb

i,c, x
b
s,r ∈ {{xb

i,c, yxb
i,c
}16c=1}N

b

i=1 and

g
′
(xb

i,c, x
b
s,r) = e

F (xb
i,c)

T F1:t−1(xb
s,r)

r (11)

When a new batch of data incrementally arrives, to protect
the learned knowledge, the last term of the objective max-
imizes the MI between the current model and the frozen
previous model using Xbuf. It brings the representations
obtained from the current model F of the input samples in
Xbuf close to the representations obtained from the previous
model F 1:t−1 of the input samples from the same class, and
pushes away the representations obtained from the previous
model F 1:t−1 of different classes.

The pseudo-code of our algorithm is given in Algorithms 1
and 2 in Appendix 3.

6. Experiments
Evaluation data. We use 4 image classification datasets.
MNIST (LeCun et al., 1998) has 10 classes with 60,000



Submission and Formatting Instructions for ICML 2022

examples for training and 10,000 examples for testing.
It is split into 5 disjoint tasks with 2 classes per task.
CIFAR10 (Krizhevsky & Hinton, 2009) has 10 classes
with 50,000 for training and 10,000 for testing. It is
split into 5 disjoint tasks with 2 classes per task. CI-
FAR100 (Krizhevsky & Hinton, 2009), which has 100
classes with 50,000 for training and 10,000 for testing. It is
split into 10 disjoint tasks with 10 classes per task. TinyIm-
ageNet (Le & Yang, 2015) has 200 classes. It is split into
100 disjoint tasks with 2 classes per task. Each class has
500 training examples and 50 test examples. We train all
methods with full-size datasets. We train all methods with
two classes per task to investigate OCM’s performance with
a large number of tasks. In Appendix 4, we also show the
results of 50 tasks for CIFAR100 (two classes per task) and
OCM also outperforms the baselines.

Compared Baselines. We use 10 baselines. 7 are re-
cent online CL baselines: ER (Chaudhry et al., 2020),
AGEM (Chaudhry et al., 2018), MIR (Aljundi et al., 2019a),
ASER (Shim et al., 2021), GSS (Aljundi et al., 2019b),
GDumb (Prabhu et al., 2020), and SCR (Mai et al., 2021).
3 are recent replay-based batch CL baselines that use the
knowledge distillation loss by running them in one epoch:
DER++ (Buzzega et al., 2020), IL2A (Zhu et al., 2021),
Co2L (Cha et al., 2021). Our OCMfollows the memory
retrieval/update strategy of ER as ER is a basic method.

6.1. Architectures, Data Augmentations, Training
Details and Evaluation Protocol

Architecture. For MNIST, we employ a fully-connected
network with two hidden layers as the feature extractor fθ,
each one comprising of 400 ReLU units. We use a linear
layer of size [400, 10] as the classifier σ and a linear layer
of size [400, 128] as the projection head Φ. For CIFAR10,
CIFAR100, and TinyImageNet, we follow (Buzzega et al.,
2020) and use the full ResNet18 (not pre-trained) as the
feature extractor fθ with model size 23MB. Denoting Cnum

as the number of all classes, we employ a linear layer (size
[dimh, Cnum]) as the classifier σ and a linear layer of size
[dimh, 128] as the feature projection head Φ. For baselines,
we use the same full ResNet18 for fair comparisons.

Data augmentation. As we will see, data augmentation
via horizontal-flip, random-resized-crop and random-gray-
scale can improve accuracy. We also apply three transforma-
tions for all baselines except SCR, Co2L and DER++ in cal-
culating Lce. SCR does not need to calculate Lce and SCR,
Co2L have their augmentations for calculating supervised
contrastive loss. DER++ has its own data augmentations for
calculating Lce as well. Those augmentations improve ER,
MIR, GDumb, AGEM, GSS, IL2A, and ASER by 2 to 4%.

Training and hyperparameter settings. For all datasets,
OCM is trained with the Adam optimizer. We set the learn-

ing rate as 0.001 and fix the weight decay as 0.0001. Follow-
ing (Shim et al., 2021), we set each data increment size N to
10 (the size of Xnew) for all systems. For the memory buffer
batch (Xbuf) size Nb, in OCM, we initialize Nb as zero and
increase it by seven slots when the system meets a new class.
We set the max Nb allowed as 64. Again for fair compar-
isons, for baselines, we also set their memory buffer batch
(Xbuf) size as 64 and do not change it with tasks. Setting
the maximal value of Nb as 64 improves the performance
but doesn’t increase the training time much. We provide an
analysis of memory buffer batch size in Appendix 5. We
use the official code and default hyper-parameters of the
baselines. All experiments follow their settings. The hyper-
parameters and official codes are listed in Appendix 5. We
run all methods with one epoch for each task.

Evaluation protocol. Accuracy is used as the evaluation
metric. We first learn from the data stream of all tasks for
each dataset, and then test the final model using the test data
of all tasks. We report the average accuracy of all tasks from
15 random runs for each dataset. We report the training time
in Appendix 6, which shows OCM is an efficient method.

6.2. Results and Analysis

Accuracy performance. Table 1 shows the accuracy re-
sults of our method OCM and all baselines with various
memory sizes on the four datasets. For all datasets and
buffer sizes, OCM outperforms all baselines by obvious
margins. For example, with the memory size 1000 (M=1k),
OCM outperforms the best baselines by 13.1% on CIFAR10,
2.1% on MNIST. And OCM outperforms the best baseline
by 5.9% on CIFAR100 when the memory size is 5k. The
improvements over baselines on TinyImageNet are equally
substantial. The results also show that increased memory
size results in increased accuracy. We also provide the per-
formance of OCM without maximizing the MI between
current and past (i.e., (3) in Section 4.3) in the method
“OCM (no past)”. The performance is poorer than that of
OCM but it still outperforms baselines. “OCM (no local
rotation)” is also better than baselines. The results of OCM
without maximizing the MI between X and fθ(X) are not
listed as they are poor, e.g., 58.9% for CIFAR10, which
indicates that the mechanism (i.e., (2) in Section 4.3) for
learning holistic features is very important.

Forgetting rate. Table 2 reports the average forgetting
rate for all methods. The detailed forgetting rate computa-
tion (Chaudhry et al., 2020) is given in Appendix 7. OCM
has substantially lower forgetting rates than baselines except
GDumb and SCR for TinyImageNet, but both GDumb and
SCR’s accuracy values are substantially lower than OCM
(see Table 1). This is because GDumb uses only the replay
data to train the model, but not the new batch and SCR uses
a nearest class mean classifier without optimizing the cross-
entropy loss. They do not produce very accurate models.



Submission and Formatting Instructions for ICML 2022

Table 1. Accuracy on MNIST (5 tasks), CIFAR10 (5 tasks), CIFAR100 (10 tasks) and TinyImageNet (100 tasks) datasets with different
memory buffer sizes M. All values are the averages of 15 runs

Method MNIST CIFAR10 CIFAR100 TinyImageNet
M M=0.1k M=0.5k M=1k M=0.2k M=0.5k M=1k M=1k M=2k M=5k M=2k M=4k M=10k

AGEM (Chaudhry et al., 2018) 56.9±5.2 57.7±8.8 61.6±3.2 22.7±1.8 22.7±1.9 22.6±0.7 5.8±0.2 5.8±0.3 6.5±0.2 0.9±0.1 2.1±0.1 3.9±0.2

GSS (Aljundi et al., 2019b) 70.4±1.5 80.7±5.8 87.5±5.9 26.9±1.2 30.7±1.3 40.1±1.4 11.1±0.2 13.3±0.5 17.4±0.1 3.3±0.5 10.0±0.2 10.5±0.2

ER (Chaudhry et al., 2020) 78.7±0.4 88.0±0.2 90.3±0.1 29.7±1.0 35.2±0.3 44.3±0.4 11.7±0.3 15.0±0.9 14.4±0.9 5.6±0.5 10.1±0.7 11.7±0.2

MIR (Aljundi et al., 2019a) 79.0±0.5 88.3±0.1 91.3±1.9 37.3±0.3 40.0±0.6 41.0±0.6 15.7±0.2 19.1±0.1 24.1±0.2 6.1±0.5 11.7±0.2 13.5±0.2

ASER (Shim et al., 2021) 61.6±2.1 71.0±0.6 82.1±5.9 27.8±1.0 36.2±1.2 44.7±1.2 16.4±0.3 12.2±1.9 27.1±0.3 5.3±0.3 8.2±0.2 10.3±0.4

GDumb (Prabhu et al., 2020) 81.2±0.5 91.0±0.2 94.5±0.1 35.9±1.1 50.7±0.7 63.5±0.5 14.1±0.3 20.1±0.2 36.0±0.5 12.6±0.1 12.7±0.3 15.7±0.2

SCR (Mai et al., 2021) 86.2±0.5 92.8±0.3 94.6±0.1 47.2±1.7 58.2±0.5 64.1±1.2 26.5±0.2 31.6±0.5 36.5±0.2 10.6±1.1 17.2±0.1 20.4±1.1

DER++ (Buzzega et al., 2020) 74.4±1.1 91.5±0.2 92.1±0.2 44.2±1.1 47.9±1.5 54.7±2.2 15.3±0.2 19.7±1.5 27.0±0.7 4.5±0.3 10.1±0.3 17.6±0.5

IL2A (Zhu et al., 2021) 90.2±0.1 92.7±0.1 93.9±0.1 54.7±0.5 56.0±0.4 58.2±1.2 18.2±1.2 19.7±0.5 22.4±0.2 5.5±0.7 8.1±1.2 11.6±0.4

Co2L (Cha et al., 2021) 83.1±0.1 91.5±0.1 94.7±0.1 42.1±1.2 51.0±0.7 58.8±0.4 17.1±0.4 24.2±0.2 32.2±0.5 10.1±0.2 15.8±0.4 22.5±1.2

OCM (no local rotation) 88.3±0.2 95.3±0.1 97.1±0.1 55.3±0.5 63.1±0.4 70.7±0.3 26.7±0.1 33.5±0.2 39.6±0.1 13.5±0.2 20.5±0.2 26.4±0.3

OCM (no past) 89.5±0.1 95.0±0.1 96.0±0.1 56.2±0.4 63.2±0.2 73.1±0.2 27.0±0.4 34.0±0.1 41.0±0.3 15.0±0.4 21.0±0.3 26.0±0.2

OCM 90.7±0.1 95.7±0.3 96.7±0.1 59.4±0.2 70.0±1.3 77.2±0.5 28.1±0.3 35.0±0.4 42.4±0.5 15.7±0.2 21.2±0.4 27.0±0.3

Table 2. Average forgetting rate. All numbers are the averages of 15 runs.
Method MNIST CIFAR10 CIFAR100 TinyImageNet

M M=0.1k M=0.5k M=1k M=0.2k M=0.5k M=1k M=1k M=2k M=5k M=2k M=4k M=10k
AGEM (Chaudhry et al., 2018) 32.5±5.9 30.1±4.2 32.0±2.9 36.1±3.8 43.2±4.3 48.1±3.4 43.3±0.2 45.7±0.3 43.9±0.2 73.9±0.2 78.9±0.2 74.1±0.3

GSS (Aljundi et al., 2019b) 26.1±2.2 17.8±5.22 10.5±6.7 75.5±1.5 65.9±1.6 54.9±2.0 30.8±0.2 30.7±0.5 26.4±0.3 72.8±1.2 72.6±0.4 71.5±0.2

ER (Chaudhry et al., 2020) 22.7±0.5 9.7±0.4 6.7±0.5 42.0±0.3 26.7±0.7 20.7±0.7 34.2±0.2 31.7±0.9 35.3±0.9 68.2±2.8 66.2±0.8 67.2±0.2

MIR (Aljundi et al., 2019a) 22.3±0.5 9.0±0.5 5.7±0.9 40.0±1.6 25.9±0.7 24.5±0.5 24.5±0.3 21.4±0.3 21.0±0.1 61.1±3.2 60.9±0.3 59.5±0.3

ASER (Shim et al., 2021) 33.8±1.1 24.8±0.5 13.8±0.4 71.1±1.8 59.1±1.5 50.4±1.5 25.0±0.2 12.2±1.9 13.2±0.1 65.7±0.7 64.2±0.2 62.2±0.1

GDumb (Prabhu et al., 2020) 10.3±0.1 6.2±0.1 4.8±0.2 26.5±0.5 24.5±0.2 18.9±0.4 16.7±0.5 17.6±0.2 16.8±0.4 15.9±0.5 14.6±0.3 11.7±0.2

SCR (Mai et al., 2021) 10.7±0.1 4.7±0.1 4.0±0.2 41.3±0.1 31.5±0.2 24.7±0.4 17.5±0.2 11.6±0.5 5.6±0.4 19.4±0.3 15.4±0.3 14.9±0.7

DER++ (Buzzega et al., 2020) 25.0±0.3 7.3±0.3 6.6±1.2 30.1±0.8 31.8±2.5 18.7±3.4 43.4±0.2 44.0±1.9 25.8±3.5 67.2±1.7 63.6±0.3 55.2±0.7

IL2A (Zhu et al., 2021) 8.7±0.1 7.2±0.1 4.1±0.1 36.0±0.2 32.1±0.4 29.1±0.4 24.6±0.6 12.5±0.7 20.0±0.5 65.5±0.7 60.1±0.5 57.6±1.1

Co2L (Cha et al., 2021) 14.7±0.2 7.1±0.1 3.1±0.1 32.0±0.1 21.0±0.3 16.9±0.2 16.9±0.4 16.6±0.6 9.9±0.7 60.5±0.5 52.5±0.9 42.5±0.8

OCM (no local rotation) 7.2±0.1 2.6±0.1 1.4±0.1 26.7±0.3 15.7±0.1 11.8±0.2 22.7±0.2 11.7±0.1 6.7±0.1 27.8±0.2 21.8±0.2 25.4±0.3

OCM (no past) 5.0±0.1 2.2±0.1 2.0±0.1 23.2±0.5 15.0±0.1 12.5±0.2 26.5±0.8 13.5±0.1 9.7±0.2 24.8±0.2 22.5±0.2 19.4±0.3

OCM 4.7±0.1 1.8±0.1 1.3±0.1 23.0±0.2 14.0±0.7 12.0±1.1 12.2±0.3 8.5±0.3 4.5±0.3 23.5±1.9 21.0±0.3 18.6±0.5

Table 3. Ablation accuracy - average of 5 runs. M is the memory buffer size and (no t) means that Xbuf has no samples from the current
task t in the memory buffer.

Dataset Lce in all Lce in all MI union unsupervised gray scale horizontal flip resized crop λ = 1 λ = 0
(M=1k) (no t) InfoNCE for g∗(xi, xj) for g∗(xi, xj)

MNIST 94.8±0.1 96.1±0.1 95.8±0.1 93.6±0.1 - - 93.9±0.1 96.2±0.1 95.3±0.1

CIFAR10 68.1±1.2 69.5±0.5 70.92±0.4 60.8±1.2 70.8±0.5 70.4±0.4 58.4±0.9 71.2±0.5 65.0±0.7

Table 4. Average accuracy (average forgetting rate) of MIR, ASER,
DER++, and SCR without and with adding MI (+MI).

MIR MIR+MI ASER ASER+MI DER++ (DER++)+MI SCR SCR +MI OCM
37.5(36.3) 46.3(18.7) 32.1(51.4) 38.7(44.5) 39.01(41.1) 44.0(37.7) 48.6(18.6) 50.9(17.5) 54.9(12.9)

6.3. Ablation Experiments

We conduct ablation experiments to analyze the contribution
of various components and choices made in OCM with 1k
(M=1k) memory. The results are given in Table 3.

(1). Ablation study for MI between label and feature rep-
resentation. In experiment “Lce to all,” we apply cross-
entropy to Xnew ∪ Xbuf with the task-free buffer rather
than only to Xbuf in OCM. In experiment ”Lce to all
(no t)”, we apply cross-entropy loss to Xnew ∪ Xbuf with-
out sampling data from the current task t in the memory
buffer. In experiment “MI union”, we maximize the MI

“I(Xbuf ∪Xnew;F (Xbuf ∪Xnew))” directly instead of sepa-
rately as in OCM. In experiment “unsupervised InfoNCE,”
we set α as 1 and β as 0 for (2) in the OCM model. From
Table 3, we see that their performances are all poorer than
OCM (Table 1). Another interesting observation is that ex-
periment “Lce to all (no t)” can be viewed as training the
ER baseline by maximizing our MI objective. It improves
ER’s performance drastically. For example, the performance
improves by 27.0% on CIFAR10.

(2). Ablation study for data augmentation and connecting
Φ with fθ(x). Results in column 6-8 in Table 3 show that
without using random-gray-scale or horizontal-flip does not
affect the results much (random-gray-scale and horizontal-
flip are not applied to MNIST), but random-resized-crop is
extremely important. Without it, the accuracy drops dras-
tically, e.g., from 77.2% (Table 1) to 58.4% (Table 3) for
CIFAR10. This is because random-resized-crop randomly
crops some pixels and resizes the image, so it has a higher



Submission and Formatting Instructions for ICML 2022

influence on the representation learning. Rotation ablations
are given in Appendix 8.

About connecting F (X) and fθ(X) (Eq. 9), λ = 1 means
without connection (column 9). Its results are poorer than
OCM with connection (Table 1). λ = 0 means that we only
consider fθ(xi)[z, z + d1]

TF (xj) in Eq. 9, which is even
poorer (column 10).

(3). Varying the number of pseudo classes. Results in Fig-
ure 2(a) show positive correlation between the classification
performance and the number of pseudo classes. The in-
creased number of pseudo classes means tighter bound. It
empirically verifies that CL benefits from MI maximization.

6.4. Improving Baselines by Adding MI Maximization

We add (1)+(2) of OCM (see Section 4.3) to the loss of 4
baselines MIR, ASER, DER++, and SCR. Table 4 shows
the average accuracy and forgetting rate (in brackets) over
all four datasets and memory sizes in Table 1. The detailed
results are given in Appendix 9. We see MI maximization
improves these baselines markedly.

Figure 2. (a) Accuracy performance of OCM with different number
of pseudo classes, tested on CIFAR10. Let the number of pseudo
classes be n ≤ 16 (16 rotation classes). For each experiment
of the plot, we randomly choose n different pseudo classes for
model building. After the training of five tasks, we test the trained
model using the test data of the five tasks. We report the average
accuracy. All the numbers are the averages of 5 random runs. (b)
Eigenvalue distribution of ER, SCR, DER++, Cutmix (Yun et al.,
2019), ClassAug (Zhu et al., 2021) and our OCM on CIFAR100.
Note that Cutmix and ClassAug are not continual learning systems
but are only data augmentation systems.

6.5. Holistic Degree of Representation

Zhu et al. (2021) observed that representation fθ(x) with
larger eigenvalues transfer better and suffer less forgetting.
To improve the transferrability and diversity of the learned
representation, it is important to enlarge the eigenvalues and
increase the number of eigenvectors with significant vari-
ance. This is essentially an indicator of holistic degree of
the learned representations or how holistic/comprehensive
the learned representations are in capturing the features of

the input images. We follow the experiment setting of (Zhu
et al., 2021) and display (in Figure 2(b)) the eigenvalues of
eigenvectors of the representations learned with different
methods from the first 50 classes of CIFAR-100 as a single
supervised learning task. Figure 2(b) shows that our OCM
clearly enhances eigenvalues and has more significant di-
rections (eigenvectors) than other methods, which shows
that the representation learned by OCM is more holistic,
indicating OCM learns more comprehensive features.

7. Conclusions
This paper proposed to use mutual information (MI) as the
theoretical framework to deal with CF in online CL. To our
knowledge, this has not been done before. The proposed MI
formulation not only learns more holistic/comprehensive
features but also preserves the past model learned from pre-
vious tasks. Both help deal with CF. Experimental results
showed that our OCM markedly outperforms the latest on-
line CL baselines. This paper focused on online CL, we
believe the MI maximization should also be applicable to
batch CL. We will study it in our future work.

Acknowledgement
The work of Yidou Guo and Dongyan Zhao was supported
in part by the National Key Research and Development
Program of China (No. 2020AAA0106600). We thank
Changnan Xiao for some useful discussions.

References
Abati, D., Tomczak, J., Blankevoort, T., Calderara, S., Cuc-

chiara, R., and Bejnordi, B. E. Conditional channel gated
networks for task-aware continual learning. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 3931–3940, 2020.

Ahn, H., Cha, S., Lee, D., and Moon, T. Uncertainty-
based continual learning with adaptive regularization. In
NeurIPS, 2019.

Aljundi, R., Caccia, L., Belilovsky, E., Caccia, M., Lin, M.,
Charlin, L., and Tuytelaars, T. Online continual learn-
ing with maximally interfered retrieval. arXiv preprint
arXiv:1908.04742, 2019a.

Aljundi, R., Lin, M., Goujaud, B., and Bengio, Y. Gradi-
ent based sample selection for online continual learning.
arXiv preprint arXiv:1903.08671, 2019b.

Beaudry, N. J. and Renner, R. An intuitive proof of the data
processing inequality. arXiv preprint arXiv:1107.0740,
2011.

Boudiaf, M., Rony, J., Ziko, I. M., Granger, E., Pedersoli,



Submission and Formatting Instructions for ICML 2022

M., Piantanida, P., and Ayed, I. B. A unifying mutual
information view of metric learning: cross-entropy vs.
pairwise losses. In European Conference on Computer
Vision, pp. 548–564. Springer, 2020.

Buzzega, P., Boschini, M., Porrello, A., Abati, D., and
Calderara, S. Dark experience for general continual
learning: a strong, simple baseline. arXiv preprint
arXiv:2004.07211, 2020.

Castro, F. M., Marı́n-Jiménez, M. J., Guil, N., Schmid, C.,
and Alahari, K. End-to-end incremental learning. In
ECCV, pp. 233–248, 2018.

Cha, H., Lee, J., and Shin, J. Co2l: Contrastive continual
learning. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 9516–9525, 2021.

Chaudhry, A., Rohrbach, M., Elhoseiny, M., Ajanthan, T.,
Dokania, P. K., Torr, P. H., and Ranzato, M. Continual
learning with tiny episodic memories. In ICML-2019.

Chaudhry, A., Ranzato, M., Rohrbach, M., and Elhoseiny,
M. Efficient lifelong learning with a-gem. arXiv preprint
arXiv:1812.00420, 2018.

Chaudhry, A., Khan, N., Dokania, P. K., and Torr, P. H. Con-
tinual learning in low-rank orthogonal subspaces. arXiv
preprint arXiv:2010.11635, 2020.

Chrysakis, A. and Moens, M.-F. Online continual learning
from imbalanced data. In International Conference on
Machine Learning, pp. 1952–1961. PMLR, 2020.

de Masson d’Autume, C., Ruder, S., Kong, L., and Yo-
gatama, D. Episodic memory in lifelong language learn-
ing. In NeurIPS, 2019.

Farajtabar, M., Azizan, N., Mott, A., and Li, A. Orthogonal
gradient descent for continual learning. In International
Conference on Artificial Intelligence and Statistics, pp.
3762–3773. PMLR, 2020.

Guo, Y., Hu, W., Zhao, D., and Liu, B. Adaptive orthogonal
projection for batch and online continual learning. In
Proceedings of AAAI-2022, 2022.

Hinton, G., Vinyals, O., and Dean, J. Dark knowledge.
Presented as the keynote in BayLearn, 2, 2014.

Hou, S., Pan, X., Loy, C. C., Wang, Z., and Lin, D. Learn-
ing a unified classifier incrementally via rebalancing. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 831–839, 2019.

Hu, W., Lin, Z., Liu, B., Tao, C., Tao, Z., Ma, J., Zhao,
D., and Yan, R. Overcoming catastrophic forgetting for
continual learning via model adaptation. In ICLR, 2019.

Hu, W., Qin, Q., Wang, M., Ma, J., and Liu, B. Continual
learning by using information of each class holistically.
In Proceedings of the AAAI Conference on Artificial In-
telligence, volume 35, pp. 7797–7805, 2021.

Hung, S. C. Y., Tu, C.-H., Wu, C.-E., Chen, C.-H., Chan,
Y.-M., and Chen, C.-S. Compacting, picking and growing
for unforgetting continual learning. In NeurIPS, 2019.

Ke, Z., Liu, B., and Huang, X. Continual learning of a mixed
sequence of similar and dissimilar tasks. In NeurIPS,
2020.

Ke, Z., Liu, B., Xu, H., and Shu, L. Classic: Continual
and contrastive learning of aspect sentiment classification
tasks. In Proceedings of 2021 Conference on Empiri-
cal Methods in Natural Language Processing (EMNLP-
2021), 2021.

Kim, G., Esmaeilpour, S., Xiao, C., and Liu, B. Contin-
ual learning based on ood detection and task masking.
arXiv:2203.09450 [cs.CV], 2022.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J.,
Desjardins, G., Rusu, A. A., and Others. Overcoming
catastrophic forgetting in neural networks. volume 114,
pp. 3521–3526. National Acad Sciences, 2017.

Korycki, Ł. and Krawczyk, B. Class-incremental experience
replay for continual learning under concept drift. arXiv
preprint arXiv:2104.11861, 2021.

Krizhevsky, A. and Hinton, G. Learning multiple layers of
features from tiny images. Technical Report TR-2009,
University of Toronto, Toronto., 2009.

Le, Y. and Yang, X. Tiny imagenet visual recognition chal-
lenge. CS 231N, 7:7, 2015.

LeCun, Y., Cortes, C., and Burges, C. J. The mnist database
of handwritten digits. http://yann.lecun.com/exdb/mnist/,
1998.

Li, X., Zhou, Y., Wu, T., Socher, R., and Xiong, C. Learn
to grow: A continual structure learning framework for
overcoming catastrophic forgetting. In ICML, 2019.

Mai, Z., Li, R., Kim, H., and Sanner, S. Supervised con-
trastive replay: Revisiting the nearest class mean clas-
sifier in online class-incremental continual learning. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) Workshops, pp.
3589–3599, 2021.

McCloskey, M. and Cohen, N. J. Catastrophic interference
in connectionist networks: The sequential learning prob-
lem. In Psychology of learning & motiv., volume 24.
1989.



Submission and Formatting Instructions for ICML 2022

Oord, A. v. d., Li, Y., and Vinyals, O. Representation learn-
ing with contrastive predictive coding. arXiv preprint
arXiv:1807.03748, 2018.

Ostapenko, O., Puscas, M., Klein, T., Jahnichen, P., and
Nabi, M. Learning to remember: A synaptic plasticity
driven framework for continual learning. In CVPR, pp.
11321–11329, 2019.

Prabhu, A., Torr, P. H., and Dokania, P. K. Gdumb: A
simple approach that questions our progress in continual
learning. In EECV, pp. 524–540, 2020.

Rajasegaran, J., Hayat, M., Khan, S., Shahbaz, F., and Shao,
K. L. Random path selection for incremental learning. In
NeurIPS, 2019.

Rajasegaran, J., Khan, S., Hayat, M., Khan, F. S., and Shah,
M. itaml: An incremental task-agnostic meta-learning
approach. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 13588–
13597, 2020.

Rebuffi, S.-A., Kolesnikov, A., Sperl, G., and Lampert, C. H.
icarl: Incremental classifier and representation learning.
In CVPR, pp. 2001–2010, 2017.

Ritter, H., Botev, A., and Barber, D. Online structured
laplace approximations for overcoming catastrophic for-
getting. In NIPS, pp. 3738–3748, 2018.

Saha, G., Garg, I., and Roy, K. Gradient projection memory
for continual learning. arXiv preprint arXiv:2103.09762,
2021.

Serrà, J., Surı́s, D., Miron, M., and Karatzoglou, A. Over-
coming catastrophic forgetting with hard attention to the
task. In ICML, 2018.

Shim, D., Mai, Z., Jeong, J., Sanner, S., Kim, H., and Jang,
J. Online class-incremental continual learning with adver-
sarial shapley value. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 35, pp. 9630–9638,
2021.

Shin, H., Lee, J. K., Kim, J., and Kim, J. Continual learning
with deep generative replay. In NIPS, pp. 2994–3003,
2017.

Sokar, G., Mocanu, D. C., and Pechenizkiy, M. Learning
invariant representation for continual learning. arXiv
preprint arXiv:2101.06162, 2021.

Sordoni, A., Dziri, N., Schulz, H., Gordon, G., Bachman, P.,
and Des Combes, R. T. Decomposed mutual information
estimation for contrastive representation learning. In
International Conference on Machine Learning, pp. 9859–
9869. PMLR, 2021.

Tack, J., Mo, S., Jeong, J., and Shin, J. Csi: Novelty de-
tection via contrastive learning on distributionally shifted
instances. In Proceedings of 34th Conference on Neural
Information Processing Systems (NeurIPS 2020), 2020.

van de Ven, G. M. and Tolias, A. S. Three scenarios for
continual learning. arXiv preprint arXiv:1904.07734,
2019.

Van der Maaten, L. and Hinton, G. Visualizing data using
t-sne. Journal of machine learning research, 9(11), 2008.

von Oswald, J., Henning, C., Sacramento, J., and Grewe,
B. F. Continual learning with hypernetworks. ICLR,
2020.

Wang, J., Wang, X., Shang-Guan, Y., and Gupta, A. Wander-
lust: Online continual object detection in the real world.
In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pp. 10829–10838, 2021.

Wang, L., Zhang, X., Yang, K., Yu, L., Li, C., Hong, L.,
Zhang, S., Li, Z., Zhong, Y., and Zhu, J. Memory replay
with data compression for continual learning. In ICLR-
2022, 2022.

Wortsman, M., Ramanujan, V., Liu, R., Kembhavi, A.,
Rastegari, M., Yosinski, J., and Farhadi, A. Supermasks
in superposition. In Larochelle, H., Ranzato, M., Hadsell,
R., Balcan, M. F., and Lin, H. (eds.), NeurIPS, 2020.

Wu, Y., Chen, Y., Wang, L., Ye, Y., Liu, Z., Guo, Y., and
Fu, Y. Large scale incremental learning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 374–382, 2019.

Yan, S., Zhou, J., Xie, J., Zhang, S., and He, X. An em
framework for online incremental learning of semantic
segmentation. In Proceedings of the 29th ACM Interna-
tional Conference on Multimedia, pp. 3052–3060, 2021.

Yin, H., Li, P., et al. Mitigating forgetting in online continual
learning with neuron calibration. Advances in Neural
Information Processing Systems, 34, 2021.

Yoon, J., Yang, E., Lee, J., and Hwang, S. J. Lifelong
Learning with Dynamically Expandable Networks. In
ICLR, 2018.

Yu, L., Twardowski, B., Liu, X., Herranz, L., Wang, K.,
Cheng, Y., Jui, S., and Weijer, J. v. d. Semantic drift com-
pensation for class-incremental learning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 6982–6991, 2020.

Yun, S., Han, D., Oh, S. J., Chun, S., Choe, J., and Yoo,
Y. Cutmix: Regularization strategy to train strong clas-
sifiers with localizable features. In Proceedings of the



Submission and Formatting Instructions for ICML 2022

IEEE/CVF International Conference on Computer Vision,
pp. 6023–6032, 2019.

Zeng, G., Chen, Y., Cui, B., and Yu, S. Continuous learn-
ing of context-dependent processing in neural networks.
Nature Machine Intelligence, 2019.

Zhang, J., Zhang, J., Ghosh, S., Li, D., Tasci, S., Heck, L.,
Zhang, H., and Kuo, C.-C. J. Class-incremental learning
via deep model consolidation. In CVPR, 2020.

Zhao, H., Wang, H., Fu, Y., Wu, F., and Li, X. Memory effi-
cient class-incremental learning for image classification.
IEEE Transactions on Neural Networks and Learning
Systems, 2021.

Zhu, F., Cheng, Z., Zhang, X.-y., and Liu, C.-l. Class-
incremental learning via dual augmentation. Advances in
Neural Information Processing Systems, 34, 2021.



Submission and Formatting Instructions for ICML 2022

A. Appendix

A.1. Appendix 1: Proof of Eq. 5

F (X)← X → F (X
′
) is Markov equivalent to F (X)→ X → F (X

′
) as both graphs meet the same conditional independence

(CI) condition: F (X
′
) and F (X) are conditionally independent given X . Then we have I(X;F (X)) = I(X,F (X

′
);F (X))

as I(X,F (X
′
);F (X)) = H(F (X)) −H(F (X)|X,F (X

′
)) = H(F (X)) −H(F (X)|X) (P (F (X),F (X

′
),X)

P (F (X
′
),X)

= P (F (X),F (X
′
)|X)

P (F (X
′
)|X)

(CI)
= P (F (X)|X)). Also, we have I(X,F (X

′
);F (X)) ≥ I(F (X

′
);F (X)) as H(F (X)|X,F (X

′
)) ≤ H(F (X)|F (X

′
)). So

I(X;F (X)) ≥ I(F (X
′
);F (X)).

A.2. Appendix 2: Visualization of Rotation Augmentation

Figure 3 visualizes the data of each original class and the pseudo data created by rotations and their pseudo classes. We
observe that each original class’s data is surrounded by pseudo classes’ data created from it (see the caption of Figure 3).

Figure 3. 2D t-SNE (Van der Maaten & Hinton, 2008) visualization
of CIFAR-10 data feature embeddings (class 0 and class 1) and their
class labels (different colors): samples from class 1 (blue), pseudo
data created from samples belonging to class 1 (pink), samples from
class 0 (red), and pseudo data created from samples belong to class
0 (orange). We use all the training data of class 0 and class 1 in the
CIFAR10 dataset to create one task. After the training of this task,
we randomly choose 50 samples from the task’s training set and
get their data and their pseudo data’s feature embeddings from the
trained feature extractor fθ . Sub-figure (a) shows the visualization
of samples from class 1 and class 0 with the trained fθ without using
our rotation augmentation. Sub-figure (c) shows the visualization
with the trained fθ using our rotation augmentation in the training
process. On the basis of (c), sub-figure (b) adds the points of pseudo
data created from the original samples.

A.3. Appendix 3: OCM Algorithm

The proposed OCM algorithm is given in Algorithm 1 and Algorithm 2.

A.4. Appendix 4: 50 Tasks of CIFAR100

In the original papers of SCR, MIR, and ASER, they train and test their methods on CIFAR100 using 10 classes per task.
We also train OCM in this setting and test its performance. As Table 5 shows, the accuracy of our method OCM is the
highest on the CIFAR100 dataset (10 classes per task). For example, when M = 5k, OCM outperforms the best baseline
(SCR) by 5.4%.



Submission and Formatting Instructions for ICML 2022

Algorithm 1 - OCM Training Algorithm
1: Input: dataset {Dt}Tt=1, feature extractor fθ, linear classifier σ, feature head Φ, augment which is comprised of the

Random-Resized-Crop, Horizontal-flip, and Random-Color-Gray transform.
2: Initialization:M← {}, //M is the replay/memory buffer
3: for t = 1 to T do
4: for each new increment of data Xnew in Dt’s data stream do
5: Xbuffer ← sample(M)
6: {{xi,c, yxi,c}16c=1}Ni=1←Rotation(Xnew) // c replaces (left, right, r) in Algorithm 2
7: {{x′

i,c, y
′

xi,c}
16
c=1}Ni=1←Copy({xi,c, yxi,c}16c=1}Ni=1})

8: {x′

i,c, y
′

xi,c}
16
c=1}Ni=1←Augment({{x′

i,c, y
′

xi,c}
16
c=1}Ni=1)

9: if t = 1 then
10: θ← θ +∇θ[

1
Nb

∑Nb

i=1 Lce(σ(fθ(x
b
i )), yxb

i
) + InfoNCE({{xi,c, yxi,c}16c=1}Ni=1; g

∗)
11: end if
12: if t > 1 then
13: {{xb

i,c, y
b
xi,c}

16
c=1}

Nb
i=1←Rotation(Xbuffer)

14: {{x
′,b
i,c, y

′,b
xi,c}

16
c=1}

Nb
i=1← Augment(Copy({{xb

i,c, y
b
xi,c}

16
c=1}

Nb
i=1))

15: θ ← θ + ∇θ[
1
Nb

∑Nb

i=1 Lce(σ(fθ(x
b
i )), yxb

i
) + InfoNCE({{xi,c, yxi,c

}16c=1}Ni=1; g
∗) +

InfoNCE({{xb
i,c, yxb

i,c
}16c=1}N

b

i=1; g
∗) + InfoNCE({{xb

i,c, yxb
i,c
}16c=1}N

b

i=1; g
′
)

16: end if
17: M← reservoir (M, {xi, yxi}Ni=1)
18: end for
19: F 1:t← F
20: end for

Algorithm 2 - Rotation
1: Input: a set of data {xi, yxi

}ni=1

2: Output: S
3: Initialization: S ← ∅;
4: for i = 1 to n do
5: {(xi,(left,right), yxi,(left,right))}left,right∈{0,1} ← rotation local(xi, yxi

)
6: for r in {0◦, 90◦, 180◦, 270◦} do
7: {(xi,(left,right,r), yxi,(left,right,r))}left,right∈{0,1}← rotation global(xi,r, yxi,r)
8: S ← S ∪ {(xi,(left,right,r), yxi,(left,right,r))}left,right∈{0,1}
9: end for

10: end for



Submission and Formatting Instructions for ICML 2022

Table 5. Accuracy and average forgetting rate (average of 15 runs) on the CIFAR100 (50 tasks) dataset with different memory buffer sizes
M.

Method CIFAR100 CIFAR100
M M=1k M=2k M=5k M=1k M=2k M=5k

Metrics Accuracy Average forgetting rate
AGEM (Chaudhry et al., 2018) 1.8±0.2 1.8±0.3 1.8±0.3 78.6±2.1 77.5±1.3 78.3±1.2

GSS (Aljundi et al., 2019b) 4.3±0.2 8.3±0.1 8.7±0.1 73.4±4.2 69.3±3.1 70.9±2.9

ER (Chaudhry et al.) 8.3±0.3 11.4±0.9 13.4±0.9 65.1±1.3 59.3±0.9 60.0±1.6

MIR (Aljundi et al., 2019a) 12.7±0.3 14.3±1.3 15.3±0.1 40.9±1.3 41.9±0.6 44.3±0.1

MIR (Aljundi et al., 2019a)+MI 20.1±0.2 25.1±0.4 33.1±0.2 22.5±0.2 20.0±0.5 18.0±0.6

ASER (Shim et al., 2021) 9.6±1.3 12.2±1.9 16.0±2.5 61.5±1.2 58.0±2.9 52.3±2.7

DER++ (Buzzega et al., 2020) 9.3±0.3 9.6±1.0 12.3±3.5 64.5±1.4 62.1±1.9 60.1±0.7

DER++ (Buzzega et al., 2020)+MI 20.0±0.3 27.4±0.3 31.6±0.2 41.4±0.2 40.0±1.9 22.8±3.5

GDumb (Prabhu et al., 2020) 18.1±0.3 30.1±0.2 36.0±0.5 18.9±0.4 19.2±0.4 20.9±0.7

SCR (Mai et al., 2021) 25.6±1.3 31.0±0.5 35.0±0.5 23.0±0.4 15.1±0.4 11.5±0.7

OCM 29.1±0.2 36.6±0.4 42.2±0.2 26.0±0.2 23.1±0.2 19.1±0.3

A.5. Appendix 5: Hyperparameters

Figure 4. The performance of OCM with different buffer batch
(Xbuffer) sizes on CIFAR10 (M = 1k)

For OCM, the hyperparameters are given in the main paper. Here we add an experiment to show the effect of buffer batch
size Xbuffer (see Figure 4). From Figure 4, we observe that the performance of our method becomes better when the buffer
batch (Xbuffer) size increases. But the training time also grows with larger buffer batch sizes. To achieve a trade off, we set
the buffer batch size to 64. Also, We set λ as 0.5 (Eq. 9 in main paper). Note that Eq. 8 in main paper is used as proxy for
both (2) and (3) in the OCM Model section (the full objective is in Eq. 10 in main paper). We set α as 1 and β as 2 for (2)
and α to 0 and β still as 2 for (3).

For the choice of random seed, we use the Numpy and set the seed as 0. For interested readers, we list the details of
baselines’ default hyperparameters given in their papers.

For AGEM, following the original paper, we use the SGD optimizer and set the learning rate as 0.1. We use the random
method to update the buffer and to sample data.

For GSS, based on the original paper, we use the same optimizer and learning rate as above. The number of buffer batches
randomly sampled from the memory to estimate the maximal gradients cosine similarity score is set to 10 and the random
sampling buffer batch (Xbuffer) size for calculating the score is 64.

For ASER, we again use the SGD optimizer and set the learning rate as 0.1 as in their paper. We use the mean value of
Adversarial SV and Cooperative SV, and set the maximum number of samples per class for random sampling as 1.5. We



Submission and Formatting Instructions for ICML 2022

allow 3 nearest neighbors for KNN-SV computation. We use the same SV-based methods for both Memory-Update and
Memory-Retrieval as given in the original paper.

For MIR/ER, we use the Adam optimizer and we set the learning rate as 0.001 and fix the weight decay as 0.0001. We set
the sub-sample size as 128.

For DER++, we use the Adam optimizer, set the learning rate as 0.001, fix the weight decay as 0.0001 and the value of alpha
(α) as 0.1, and fix the beta (β) as 0.5.

For GDumb, we use the Adam optimizer, set the learning rate as 0.001 and fix the weight decay as 0.0001. We use the
CutMix as the regularization to overcome over-fitting. we follow the official code and set the number of epoch for training
the whole buffer data as 256 for MINIST, CIFAR10, and CIFAR100 datasets, and 32 for the TinyImagenet dataset. We set
the gradient clip as 10.

For SCR, we use the Adam optimizer and we set the learning rate as 0.001 and fix the weight decay as 0.0001. We
set the temperature for contrastive loss as 0.07. We employ a linear layer with the size [dimh,128] as the contrastive
head. We follow the official code and use the horizontal-flip, random-resized crop, random-gray-scale,color-jitter as its
data augmentations. The official codes are The code of ER and MIR: https://github.com/optimass/Maximally_
Interfered_Retrieval.
The code of ASER and SCR: https://github.com/RaptorMai/online-continual-learning.
The code of GDumb: https://github.com/drimpossible/GDumb.
The code of DER++: https://github.com/aimagelab/mammoth.
The code for AGEM: https://github.com/facebookresearch/agem.
The code for GSS: https://github.com/rahafaljundi/Gradient-based-Sample-Selection.
The code for Co2L: https://github.com/chaht01/Co2L.
The code for IL2A: https://github.com/Impression2805/IL2A.

A.6. Appendix 6: Execution Time

Figure 5 and Figure 6 chart the training times of all systems on MNIST and CIFAR10, respectively. We observe from Figure 5 that OCM
training is more efficient than SCR, MIR, GDumb, GSS for the MNIST dataset. OCM (no local rotation) is only slightly less efficient than
ER, DER++, and AGEM, but our method outperforms them in accuracy by large margins (see the main paper). For the CIFAR10 dataset
in Figure 6, OCM is still faster than DGumb and GSS. OCM (no local rotation), which is more efficient and also performs better than all
baselines (see the main paper).

Figure 5. Training time of each method on the MNIST dataset. Figure 6. Training time of each method on the CIFAR10 dataset

A.7. Appendix 7: Computing the Average Forgetting Rate

After training the model from task 1 to task j, we denote accj,i as the accuracy of trained model evaluated on the held-out test set of task
i ≤ j. The average forgetting rate FRt at task t is computed (Mai et al., 2021) as:

FRt =

∑t−1
i=1 f

t
i

t− 1
,wheref t

i = max
l∈{1,2,...,t−1}

(accl,i − acct,i) (12)

A.8. Appendix 8: Rotation Ablation and Duplicate Data

Rotation ablation. We use MNIST and CIFAR10 with the replay buffer size 1k to conduct these experiments. Table 6 shows the results
of using “different view”, “only local” rotation, “no rotation”,“rotation as one class”. In experiment “different view”, we first copy the
data 16 times to enlarge the batch without rotations and then use random-resized crop and random-gray-scale randomly in the copy to

https://github.com/optimass/Maximally_Interfered_Retrieval
https://github.com/optimass/Maximally_Interfered_Retrieval
https://github.com/RaptorMai/online-continual-learning
https://github.com/drimpossible/GDumb
https://github.com/aimagelab/mammoth
https://github.com/facebookresearch/agem
https://github.com/rahafaljundi/Gradient-based-Sample-Selection
https://github.com/chaht01/Co2L
https://github.com/Impression2805/IL2A


Submission and Formatting Instructions for ICML 2022

Table 6. Ablation accuracy (average of 5 runs) - different data augmentations. M is the memory buffer size. The last column also shows
the results of duplicating data to increase batch size (see the Rotation Augmentation for a Tighter Bound section in the main paper).

Dataset different view only local no rotation rotations as duplicate
(M=1k) one class
MNIST 96.0±0.1 95.2±0.2 95.6±0.2 95.9±0.1 96.3±0.1

CIFAR10 67.4±0.2 67.7±0.2 67.1±0.1 60.1±0.1 67.1±1.1

change the duplicate versions. So each sample in the enlarged batch is different. No pseudo classes are created in this case. We use these
data to calculate the loss. We can see all these results are markedly poorer than OCM (Table 1 in the main paper).

In experiment “only local,” we apply only local rotation. We can see the results are also poorer than OCM which has global rotation (Table
1 in the main paper). Note that the results of using only global rotation (OCM (no local rotation)) are given in Table 1 of the main paper.

In experiment “rotation as one class,” all pseudo data are assigned to one class. We named it ”pseudo class” to differentiate it from the
original classes. Table 6 shows that this operation hurts the performance. One reason is that this class creates imbalance between “pseudo
class” and the original classes. Another reason is that pseudo data created by different rotations are semantically different. Treating them
as one class ignores their differences, which hurts the classification ability of the method.

Varying the number of pseudo classes: We also conducted experiments by varying the number of pseudo classes. From Figure 2 in the
main paper, we can see that the performance of our method benefits from the increased number of pseudo classes.

Duplicate data: In experiment “duplicate”, we duplicate the new data (x and yx) 16 times and use the final version to calculate the
InfoNCE loss (see the Rotation Augmentation for a Tighter Bound section in the main paper). Although it has the same number of
samples as OCM. its performance is poorer than that of OCM (see Table 1 in the main paper). The reason is the model collapse.

A.9. Appendix 9: Detailed Results of the Four Baselines with MI Maximization

Table 7. Accuracy (average of 15 runs) on MNIST (5 tasks), CIFAR10 (5 tasks), CIFAR100 (50 tasks) and TinyImageNet (100 tasks)
datasets with different memory buffer sizes M. ’+MI’ means adding mutual information (MI) maximization.

Method MNIST CIFAR10 CIFAR100 TinyImageNet
M M=0.1k M=0.5k M=1k M=0.2k M=0.5k M=1k M=1k M=2k M=5k M=2k M=4k M=10k

MIR (Aljundi et al., 2019a) 79.0±0.5 88.3±0.1 91.3±1.9 37.3±0.3 40.0±0.6 41.0±0.6 12.7±0.3 14.3±1.3 15.3±0.1 6.1±0.5 11.7±0.2 13.5±0.2

MIR (Aljundi et al., 2019a)+MI 87.0±0.1 92.0±0.1 94.0±0.1 51.0±0.4 57.0±0.4 62.1±0.3 20.7±0.2 24.3±0.3 30.1±0.2 8.0±0.3 14.0±0.3 15.5±0.4

ASER (Shim et al., 2021) 61.6±2.1 71.0±0.6 82.1±5.9 27.8±1.0 36.2±1.2 44.7±1.2 9.6±1.3 12.2±1.9 16.0±2.5 5.3±0.3 8.2±0.2 10.3±0.4

ASER (Shim et al., 2021)+MI 62.6±0.9 79.0±0.2 86.5±0.5 32.3±0.5 44.3±0.7 50.1±0.4 19.4±0.5 21.0±0.5 29.3±0.4 6.0±0.2 14.2±0.2 20.1±0.2

DER++ (Buzzega et al., 2020) 74.4±1.1 91.5±0.2 92.1±0.2 44.2±1.1 47.9±1.5 54.7±2.2 9.3±0.3 9.6±1.0 12.3±3.5 4.5±0.3 10.1±0.3 17.6±0.5

DER++ (Buzzega et al., 2020)+MI 81.3±1.1 93.3±0.3 94.3±0.1 59.6±0.5 60.3±1.4 67.5±0.9 10.4±0.5 11.5±0.6 14.3±2.4 5.6±0.3 12.0±0.3 18.0±0.5

SCR (Mai et al., 2021) 86.2±0.5 92.8±0.3 94.6±0.1 47.2±1.7 58.2±0.5 64.1±1.2 25.6±1.3 31.0±0.5 35.0±0.5 10.6±1.1 17.2±0.1 20.4±1.1

SCR (Mai et al., 2021)+MI 88.3±0.1 94.8±0.2 94.7±0.1 46.8±0.5 60.3±1.4 67.5±0.9 31.2±0.5 32.9±0.7 38.4±0.4 14.0±0.2 20.5±0.3 22.4±0.4

We report the performance of the four baselines (MIR, ASER, DER++, and SCR) with/without adding maximizing the
mutual information (+MI) goal in Table 7 and Table 8. From the two tables, we can observe that maximizing the MI goal
improves the average accuracy of all four baselines and reduces the average forgetting rate as well.



Submission and Formatting Instructions for ICML 2022

Table 8. Average forgetting rate with or without adding MI (+MI). All numbers are the average of 15 random runs.
Method MNIST CIFAR10 CIFAR100 TinyImageNet

M M=0.1k M=0.5k M=1k M=0.2k M=0.5k M=1k M=1k M=2k M=5k M=2k M=4k M=10k
MIR (Aljundi et al., 2019a) 22.3±0.5 9.0±0.5 5.7±0.9 40.0±1.6 25.9±0.7 24.5±0.5 40.9±1.3 41.9±0.6 44.3±0.1 61.1±3.2 60.9±0.3 59.5±0.3

MIR (Aljundi et al., 2019a)+MI 16.0±0.2 8.0±0.2 5.0±0.2 34.0±0.3 19.2±0.3 18.0±0.3 24.9±0.2 24.0±0.4 14.0±0.2 22.1±0.6 20.1±0.1 19.5±0.2

ASER (Shim et al., 2021) 33.8±1.1 24.8±0.5 13.8±0.4 71.1±1.8 59.1±1.5 50.4±1.5 61.5±1.2 58.0±2.9 52.3±2.7 65.7±0.7 64.2±0.2 62.2±0.1

ASER (Shim et al., 2021)+MI 33.6±1.1 18.2±1.1 11.7±1.5 67.0±1.8 44.3±0.8 41.5±0.6 56.4±0.2 51.0±0.4 41.7±0.5 63.7±0.7 56.0±0.3 46.4±0.1

DER++ (Buzzega et al., 2020) 25.0±0.3 7.3±0.3 6.6±1.2 30.1±0.8 31.8±2.5 18.7±3.4 64.5±1.4 62.1±1.9 60.1±0.7 67.2±1.7 63.6±0.3 55.2±0.7

DER++ (Buzzega et al., 2020)+MI 17.7±0.1 5.2±0.2 4.2±1.2 27.8±0.3 25.1±0.3 17.7±0.5 61.0±0.3 60.1±0.3 57.1±0.2 65.2±1.7 61.6±0.3 50.2±0.7

SCR (Mai et al., 2021) 10.7±0.1 4.7±0.1 4.0±0.2 41.3±0.1 31.5±0.2 24.7±0.4 23.0±0.4 15.1±0.4 11.5±0.7 19.4±0.3 15.4±0.3 14.9±0.7

SCR (Mai et al., 2021)+MI 9.4±0.1 3.3±0.2 3.6±0.2 46.2±0.3 30.1±0.3 17.7±0.5 21.8±0.3 20.1±0.4 16.5±0.5 15.2±1.7 14.5±0.3 11.1±0.7


