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Abstract
We consider a new problem of selling data to a ma-
chine learner who looks to purchase data to train
his machine learning model. A key challenge in
this setup is that neither the seller nor the machine
learner knows the true quality of data. When de-
signing a revenue-maximizing mechanism, a data
seller faces the tradeoff between the cost and pre-
cision of data quality estimation. To address this
challenge, we study a natural class of mechanisms
that price data via costly signaling. Motivated by
the assumption of i.i.d. data points as in classic
machine learning models, we first consider selling
homogeneous data and derive an optimal selling
mechanism. We then turn to the sale of heteroge-
neous data, motivated by the sale of multiple data
sets, and show that 1) on the negative side, it is
NP-hard to approximate the optimal mechanism
within a constant ratio e

e+1 +o(1); while 2) on the
positive side, there is a 1

k -approximate algorithm,
where k is the number of the machine learner’s
private types.

1. Introduction
Last decade has witnessed rapid advances made in machine
learning (ML), especially the deep learning field (Pouyanfar
et al., 2018). The key factor driving these breakthroughs is
the explosive growth of data over the Internet. Nowadays,
from startups to giant companies like Microsoft and Alibaba,
industries deploy trained ML models to their business oper-
ations and realize that relevant training data of good quality
play a vital role in obtaining good performance of these
models. As data now are becoming increasingly valuable, a
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new type of economy, i.e., data economy, is receiving more
attention (Mehta et al., 2019; Bergemann et al., 2019).

Given the importance of data for machine learning nowa-
days, we take the first step to study a new data selling sce-
nario: a seller (she) sells data to a machine learner (he), i.e.,
a buyer who would like to purchase data to train his ML
model. It is worth pointing out that selling data is a prob-
lem different from selling items in the traditional auction
model, in which items are usually indivisible. As pointed
out by previous works (Agarwal et al., 2019; Babaioff et al.,
2012), several key properties make the sale of data crucially
different from the sale of physical goods:

• Ex ante unverifiable: It is hard to verify beforehand
whether the data is suitable for training an ML model
or not (Agarwal et al., 2019). In practice, even trained
on the same data, two models of different design can
yield different performances. It is typical that the true
performance (i.e., the usefulness of data) of the ML
model can be revealed only after deploying (possibly
some portion of) data into the ML model for training.

• Free duplication: Data can be freely duplicated with
negligible marginal cost. Therefore, once a machine
learner accesses some portion of the data (e.g., to par-
tially verify its quality), the value of these data is im-
mediately lost since the learner can keep a copy of that
portion of data.

Challenges. The above two properties post new chal-
lenges to the mechanism design of selling data to a machine
learner. The ex ante unverifiable property implies that the
usefulness of data (i.e., quality of data) depends on both the
ML model design and the data set (e.g., size, distribution),
which are controlled by the learner and the seller respec-
tively. Therefore, neither the seller nor the learner knows the
true quality of data in advance, due to i) The machine learner
cannot access the seller’s data due to the seller’s concern of
free duplication and thus cannot evaluate the true quality of
data beforehand due to the ex ante unverifiable property; ii)
The data seller cannot access the learner’s model (typically
due to business secrecy) and thus cannot evaluate the quality
of data either. This intriguing situation makes our problem
fundamentally different from the recent line of work on
information selling (Liu et al., 2021; Babaioff et al., 2012;
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Chen et al., 2020; Cai & Velegkas, 2021), in which the seller
is assumed to have access to the state of the nature, i.e., the
quality of the data.

To tackle the above challenges, we employ ideas from sig-
naling (Kamenica & Gentzkow, 2011; Dughmi, 2017), and
propose Data Pricing via Costly Signaling, so that com-
munication is allowed between the seller and the machine
learner. The proposed Pricing via Costly Signaling scheme
consists of two steps:

• Costly signaling step: The seller gives away a subset
of data to the learner for training the model. Both the
seller and buyer then simultaneously learn a prelimi-
nary model accuracy, based on which they can update
their belief about the underlying data quality. We view
this preliminary accuracy as an informative and random
signal of the true data quality. Notably, such informa-
tive signals can only be generated by giving away a
subset of data, which immediately loses its sales value
and thus reduces the available amount of data for sale.
This is why it is costly signaling for the seller.

• Pricing step: Based on the observed preliminary ac-
curacy and the amount of data given away, the seller
prices the remaining data to maximize her revenue.

It is important to note that both parties will be able to ob-
serve preliminary outcome since each party provides essen-
tial components for the training, i.e., the partial data and the
model respectively.

Two key challenges arise in the design of Pricing via Costly
Signaling. Firstly, the critical part of the design is to deter-
mine the subset of data to be shared, which should balance
the loss of sales value and estimation of quality. If the shared
subset reveals a poor accuracy leading to poor estimation
of the quality of data, the machine learner may be reluc-
tant to pay a high price. If the shared subset reveals a high
accuracy, the seller will suffer a severe loss of sales value
leading to low revenue. Secondly, solving the Pricing via
Costly Signaling scheme turns out to be quite challenging.
Although we make use of the concept of signaling, the sig-
naling scheme in our setup is different from previous ones
in a crucial way. Traditional signaling schemes allow the
sender to design signals arbitrarily correlated with the state
of nature. Such signaling schemes are “smooth” so that
they form a polytope conveniently characterized by linear
constraints. However, in our proposed scheme, the seller
cannot reveal arbitrary signals but instead is constrained to
only give away a subset of data for sharing. This gives rise
to a combinatorial signaling space with exponentially many
choices because different subsets may introduce a differ-
ent distribution from which the signal (i.e., the preliminary
accuracy) is sampled.

Results and Techniques. We consider the problem under
two different situations: homogeneous data and heteroge-
neous data. On one hand, the reason for considering ho-
mogeneous data is that in typical ML models, data points
are usually assumed to be independent and identically dis-
tributed (i.i.d.) (Bishop, 2006). On the other hand, the sale
of heterogeneous data is motivated by selling multiple dif-
ferent data sets, each viewed as a data “point”. For instance,
in a typical ML setting, features of data are heterogeneous
since each feature describes one aspect of data and contains
different amount of information. Therefore, the problem
of selling features can be viewed as a problem of selling
heterogeneous data.

In the case of homogeneous data, we assume that the
model’s performance (i.e., accuracy) depends on both the
quality and the quantity of data. After sharing some amount
of data, the optimal price for the remaining data is deter-
mined by a posted price mechanism, in which the price
is dependent on the machine learner’s private type. Inter-
estingly, we observe that when the valuation function has
certain separable forms, the optimal mechanism is to sell
the entire data set without the need of costly signaling at
the first. The key insight revealed in our proof is that with
separable-form valuation functions, the effects of the pri-
vate type and the quantity of data on the revenue can be
“decoupled”, leading to a more tractable design problem. In
addition, we study the mechanism design for the case where
the two parties may hold different prior beliefs over the
quality, due to different perceptions about the data quality
before the trade. We show a revenue smoothness type of
result with respect to the prior difference; that is, even the
seller may mis-perceive the learner’s true prior belief, her
revenue will not suffer much as long as their priors do not
differ much.

Next, we move to the problem of selling heterogeneous
data (e.g., the sales of features). This deviation from the
homogeneous case turns out to lead to a much more diffi-
cult optimization task. Specifically, while the homogeneous
case is polynomial solvable, we prove that it is NP-hard to
obtain a e

1+e + o(1) approximation for the heterogeneous
case. Our proof is through a reduction from an interesting
and novel combinatorial problem, which we coined as Col-
umn Subset Selection and may be of independent interest.
Finally, we can obtain a simple approximation algorithm for
this problem which directly sells the entire dataset without
communications, whose approximation ratio depends on the
number of the learner’s private types.

Related Works. The two recent works most relevant to
ours are the data marketplace design (Agarwal et al., 2019)
and the model-based pricing (Chen et al., 2019) for ML
models. (Agarwal et al., 2019) designed a data marketplace
where multiple sellers supply data for sale and multiple
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buyers come with their own ML models dynamically. (Chen
et al., 2019) proposed a model-based pricing market where a
trained ML model is sold, depending on the buyer’s interest.
Both of them assume that the marketplace or the seller
can access both the ML model and data. However, in our
model, the seller does not know the ML model and has
to offer a small amount of data at some cost to the buyer
in order to learn the buyer’s ML model properties. Our
work is also related to the sale of information, which can
be partially revealed through signaling schemes. As far as
we know, (Babaioff et al., 2012) is the first to study this
problem computationally, followed by a series of recent
works (Chen et al., 2020; Liu et al., 2021; Cai & Velegkas,
2021). Within this line of research, the most relevant to
ours is (Zheng & Chen, 2021); they also consider a two-
round mechanism, which reveals some partial information
for free first to change the buyer’s belief and then sell all
the information at some price. The key difference between
our work and this literature of selling information is that
the way our seller can signal information is significantly
and realistically constrained — the seller in our model can
only reveal a subset of data points to signal the quality
of the data. A few other works examines issues such as
buyer externalities on data marketplaces (Mehta et al., 2019;
Agarwal et al., 2020). Such externality does not present in
our basic model since we consider the sale of data to only
one machine learner. Finally, our research is also related to
signaling, also known as persuasion or information design
(Kamenica & Gentzkow, 2011; Dughmi & Xu, 2019; 2017),
during which the sender sends a signal to receivers in order
to influence receivers’ decisions.

2. Preliminaries
In this paper, we assume that there is a monopoly seller
who privately holds a data set D for sale, and a machine
learner who would like to purchase D to train his private
ML model. As we discussed in Section 1, the usefulness
of data, measured with the quality of data q, is known to
neither the seller nor the machine learner at the beginning of
sales process, i.e., no one knows more than the other about
q. Hence, following the standard assumption in information
design (Kamenica & Gentzkow, 2011; Dughmi, 2017), we
assume that the seller and the learner share the same prior
belief µ(q), which is commonly known. This is reasonable
because in practice, the seller and the machine learner may
use publicly available resources (e.g., public available ML
models on the Internet for similar task and the description
of the dataset) to estimate the q. Later in Section 3.2, we
will look at the robust mechanism design where two parties
may privately hold different prior beliefs.

Throughout the paper, we use D to represent a set of “data
point”s for sale. The reader may also interpret each data

Seller Machine Learner

Dataset𝓓 ML model
1. Seller shares
subset 𝓣

2. Learner trains
ML model with 𝓣

3. ML model outputs 𝒓𝒔

4. Observe 𝒓𝒔 and
update belief over 𝒒

4. Observe 𝒓𝒔 and
update belief over 𝒒

5. Post a price 𝒑𝒓𝒔,𝓣

6. Purchase or not

Figure 1. The whole selling process.

point D as a set of data or a feature. The whole selling
process is depicted in Figure 1. Firstly, to persuade the
machine learner to pay higher price to purchase and get a
better estimation of data quality q, the seller shares with
the learner a subset of the data points for free trial. We
denote this subset of data points as T ⊆ D. With the set
T of data points provided, the machine learner can train
his ML model which then outputs a preliminary model
accuracy rs, that can be simultaneously observed by the
two parties. Importantly, to observe the model accuracy
and consequently the learner’s utility, the seller does not
need to know the learner’s model details but only needs to
observe the predictions on the testing data which typically
is public. It is natural to assume that the seller has the right
to observe these predictions, which are all she needs to
calculate the preliminary accuracy rs. After that, the seller
posts a price prs,T for the remainder of the data. Depending
on the subset T shared and the observed accuracy rs, the
price prs,T varies. Conditioning on the posted price prs,T ,
the machine learner determines whether to pay the price to
purchase the remainder of data or decline the offer.

(Lei et al., 2019) shows that the model accuracy depends on
the design of the neural network (i.e., the ML model) and
the training data (e.g., the size of training set or the match-
ing degree between distributions of training and testing set),
both of which are captured by our defined q. We abstract
such correlation and assume there exists a commonly known
distribution λ(r|q, T ) for accuracy r depending on the data
quality q and the set T of data points. In the homogeneous
case where two sets are considered the same as long as they
contains the same number of data points, there are only
a polynomial number of different distributions λ(r|q, T )
because D has a polynomial number of data points. How-
ever, in the heterogeneous case, the exponential number
of choices of subset T may lead to exponential number of
different distributions. We assume λ(r = 0|q, ∅) = 1 if
T = ∅. q is discrete and finite.

The machine learner has a commonly known non-negative
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valuation function u(r, b) dependent on both the model’s
accuracy r and his private type b. The private type b abstracts
the private information the learner holds, e.g., the unit price
that he would pay for one percent accuracy. We assume
b is discrete and finite, and follows a commonly known
distribution ϕ(b). u(r, b) is non-decreasing in r and b. We
assume ∀b, u(0, b) = 0 if accuracy r = 0.

After observing accuracy rs, the seller and the learner update
the estimation of q with Bayes rule

Pr (q|rs, T ) =
λ(rs|q, T )µ(q)∑
q λ(rs|q, T )µ(q)

. (1)

Given the whole set of data points D for training, the model
accuracy rm is inferred by

∑
q λ(rm|q,D)Pr (q|rs, T ).

Then the learner’s expected utility obtained from the whole
set D, given the private type b, is computed as

E[u(rm, b)|rs, T ,D]

=
∑
rm

u(rm, b)
∑
q

λ(rm|q,D)Pr (q|rs, T ) . (2)

After sharing set T of data points, the seller will imme-
diately lose some amount of sales value, due to the free
duplication property. The remaining utility is computed as

G(rs, T , b) = E[u(rm, b)|rs, T ,D]− u(rs, b). (3)

The learner pays the price to purchase only if his expected
remaining utility G(rs, T , b) is larger than the posted price
prs,T . This can be formulated as a posted price mechanism.
Hence, the expected revenue of the seller is computed as∑
rs

Pr (rs|T )
∑
b

ϕ(b) · prs,T · 1
{
G(rs, T , b) ≥ prs,T

}
, (4)

where Pr (rs|T ) is the seller’s belief of observing accu-
racy rs after sharing set T with the learner, computed as
Pr (rs|T ) =

∑
q λ(rs|q, T )µ(q) and 1{·} is an indicator

function. For convenience, the accuracy r, rs and rm are
assumed to be discrete.1 We refer the reader to Appendix K
for a summary of notations.

To maximize her revenue formulated in (4), the seller needs
to determine which set T of data points to be shared and
the corresponding price menu {prs,T }rs . Note that when
T = ∅, (4) computes the revenue of selling the entire dataset
without sharing any data (i.e., without costly signaling). The
formulations of the seller’s revenue for the homogeneous
data case and the heterogeneous data case only differ in the
realizations of distribution λ(r|q, T ), however, leading to
two completely different problems.

1Accuracy values are naturally discrete any way since a learner
can only evaluate the accuracy on a discrete data set (e.g., with
size n) which can only lead to discrete accuracy estimation of the
form k

n
for some integer k.

3. Pricing Homogeneous Data
In this section, we present the details of mechanism design
for pricing homogeneous data. The homogeneity assump-
tion assumes data points are i.i.d., which means that each
data point contributes equally to the performance of the ML
model. Therefore, the model accuracy distribution is then
realized as

λ(r|q, T ) = λ(r|q, t), (5)

where t denotes the shared quantity of data which is com-
puted as t = |T |

|D| . By definition, we can see that t is finite
and discrete and 0 ≤ t ≤ 1. Sharing larger quantity of data
may lead to more accurate estimate of q but at the same time,
larger loss of sales value. Thus, the objective of mechanism
design is to find an optimal quantity of data t∗ such that the
revenue is maximized while losing as little as possible sales
value caused by sharing data. Note that though λ(r|q, t)
should be modeled carefully in practice, our results hold
generally and are oblivious to its choice.

In the following, we divide the discussion into two parts:
Section 3.1 considers the case where the seller and the ma-
chine learner have the common prior beliefs over q, i.e.,
µ(q). Afterwards, we will consider a harder case where
the prior beliefs of two parties may differ. We include the
discussion of this case in Section 3.2 and consider the robust
mechanism design problem.

3.1. Mechanism Design for the Common Prior Case

We use the model accuracy distribution defined in (5) to
realize the general model in Section 2. Specifically, the
remaining utility defined in (3) becomes

G(rs, t, b) = E[u(rm, b)|rs, t]− u(rs, b), (6)

where the learner’s expected utility is E[u(rm, b)|rs, t] =∑
rm
u(rm, b)

∑
q λ(rm|q, 1)Pr (q|rs, t). Then, we com-

pute the seller’s expected revenue similarly as in (4)∑
rs

Pr (rs|t)
∑
b

ϕ(b) · prs,t ·1
{
G(rs, t, b) ≥ prs,t

}
, (7)

where Pr (rs|t) =
∑
q λ(rs|q, t)µ(q). To maximize the

revenue, the seller needs to determine the optimal quantity
of data t∗ and the price menu {prs,t∗}rs . Because t and
rs are discrete and finite, the optimal mechanism can be
computed by enumeration (see Appendix B).

Before moving forward, we define a quantity RD(t) as
below

RD(t) = max
{prs,t}rs

∑
rs

Pr (rs|t)

·
∑
b

ϕ(b) · prs,t · 1
{
E[u(rm, b)|rs, t] ≥ prs,t

}
.

(8)
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Compared with (7), the formulation of RD(t) removes the
sales value loss term u(rs, b) within the indicator func-
tion. In another word, RD(t) assumes sharing partial data
helps with the estimation of q but causes no loss of sales
value. Hence, RD(t) can be naturally considered as an up-
per bound of the seller’s revenue when she shares t quantity
of data.

The seller may want to quickly get a sense of whether she
can make profit from this trade before enumerating t and
p to maximize (7). Thus, it is very natural to ask these
two questions: 1) Is it always profitable to share data?
2) Under what conditions will sharing data be profitable?
Surprisingly, we find that 1) in some cases, it is optimal for
the seller to sell the entire dataset directly (Theorem 3.1),
and 2) the seller probably makes more revenue from sharing
data if more training data gives better performance and the
learner has rather small valuation for low-accuracy model.
Next, we answer these two questions separately.

First Question. One kind of widely-used valuation func-
tions is linear function, e.g., u(r, b) = r × b which can be
interpreted as that the buyer would pay b for 1 unit model
accuracy and r × b for accuracy r in total. We say such a
linear function u(r, b) = r × b has a separable form. Sep-
arability means that a function can be divided into several
parts, where each part depends only on one variable. We
give the formal definition below.

Definition 3.1 (Separable valuation functions.) The val-
uation function u(r, b) is said to be multiplicatively [ad-
ditively] separable if it has the form u(r, b) = f(b)h(r)
[u(r, b) = f(b) + h(r)] where f(b) and h(r) are any two
functions of b and r respectively.

In the following, Theorem 3.1 shows that if the valuation
function u(r, b) has certain separable forms, sharing data
with the machine learner is not profitable to the seller.

Theorem 3.1 If valuation function u(r, b) is multiplica-
tively separable, then the best strategy for the seller is to sell
the entire dataset directly without sharing any data. It also
holds for additively separable function if λ(0|q, t > 0) = 0.

Note that the condition λ(0|q, t > 0) = 0 ensures that train-
ing on the shared data surely returns a positive preliminary
accuracy, i.e., both parties will not observe accuracy rs = 0.
Clearly, since the linear valuation function u(r, b) = r × b
is multiplicatively separable, it is better for the seller not to
share any data by Theorem 3.1. We give a sketch of proof
below. The full proof is in Appendix C.

Proof of Theorem 3.1. (sketch) The first part of the proof
lies in the key observation that for a multiplicatively sepa-
rable valuation function, RD(t) no longer depends on the

Figure 2. Revenue change with respect to quantity t. Point R is
the revenue obtained by selling data without sharing any set.

shared quantity t. In another word, the value of RD(t) is
the same for all t including t = 0. Since RD(t) is an upper
bound of the seller’s revenue defined in (7) and sharing data
(i.e., t > 0) causes loss of sales value, the seller obtains
less revenue than selling the entire dataset directly without
sharing. The second part of the proof for the additively
separable valuation function shares a similar idea, but in
this case, we observe that the maximum revenue from (7)
for t > 0 does not depend on the choice of private type b
any more. �

Note that Theorem 3.1 holds only for separable valuation
functions. Our illustrative Example 3.3 shows that the opti-
mal mechanism general will share a subset of data with the
machine learner before selling the entire data set.

Second Question. To answer the second question, we first
show the following proposition. (Proof in Appendix D.)

Proposition 3.2 The upper bound RD(t) of revenue from
sharing data with the machine learner is larger than the rev-
enue from selling the entire dataset directly without sharing
any data. Formally, for any t > 0, we have

max
p

∑
b

ϕ(b) · p · 1
{∑
rm

u(rm, b)
∑
q

λ(rm|q, 1)µ(q) ≥ p
}

≤ RD(t).

Remark 3.1 Note that RD(0) is exactly the revenue ob-
tained from selling entire set directly. By Proposition 3.2,
we know that sharing data will increase the upper bound
RD(t) over RD(0). Hence, if the sales value loss caused
by sharing data is less than the increase of the upper bound,
then sharing partial data with the learner will benefit the
seller’s revenue.
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Finally, we use Example 3.3 to give a sense about the above
finding and how the revenue (i.e., (7)) and the upper bound
(i.e.,RD(t)) change w.r.t. the shared quantity t. The curves
of Example 3.3 are plotted in Figure 2. It is interesting to
note that two curves are non-monotone, non-concave and
even non-smooth.

Example 3.3 Let t = 0%, 1%, . . . 100% be the quan-
tity of data. Let r ∈ {0, 1, 2, . . . , 10} represent
0%, 10%, . . . 100% accuracy, q ∈ {0, 1, 2, . . . , 10} and pri-
vate type b ∈ {1, 2, . . . , 10}. According to the above char-
acterization, let the valuation function be

u(r, b) =


0, r + b <= 10

1000, r = b = 10

10, otherwise.

The prior belief µ(q) over q is a Gaussian with standard
deviation σ = 3 and mean m = 3. The accuracy distribu-
tion λ(r|q, t) is also a Gaussian with m = round(q · t) and
σ = 0.1× (−(t− 0.5)2 + 0.25). Let σ = 0 if q = 0. µ(q)
and λ(r|q, t) will be normalized to a probability measure.

The insight revealed from Example 3.3 is that we may
require two conditions so that sharing data benefits the
seller: 1) the model accuracy distribution λ(r|q, t) is first-
order-dominance w.r.t. t, i.e., for any t1 ≥ t2 and r,∫ r
0
λ(x|q, t2)dx ≥

∫ r
0
λ(x|q, t1)dx which then implies

E[r|q, t1] ≥ E[r|q, t2]; and 2) u(r, b) is relatively small
or even negligible when the accuracy r is small, while it
should be a relatively large value when r is large.

These two conditions can be justified in practice: i) First,
it is natural to observe that given more training data, the
ML model is more likely to output higher accuracy. Oth-
erwise, the learner may not want to buy the remainder
of data. One counter example is that for any t1 ≥ t2 ,
E[r|q, t1] ≤ E[r|q, t2]. In this case, more training data actu-
ally harms the model’s performance and sharing data will
lead to worse estimation of quality. Thus, it is optimal to
sell the entire set directly. ii) Second, a classifier trained
on 5% of the data may achieve only 30% accuracy, which
is far away from practical use. Thus, a company simply
value it 0. However, it helps the estimation of how good
the dataset is. On the contrary, if the company values a
low-accuracy model relatively high, the seller will suffer a
severe loss of sales value by sharing data and obtain less
revenue. Two illustrative examples in Appendix J show that
if either condition is violated, sharing data may not increase
the seller’s revenue.

3.2. Robust Mechanisms

We further consider a different setting where the priors over
data quality of the seller and the machine learner, denoted as
µsl and µml respectively, differ from each other. We assume

that the two priors µsl and µml are private to the seller and
the machine learner respectively and differ from each other
for each q according to the following.

∀q, |µsl(q)− µml(q)| ≤ εµsl(q). (9)

We will constantly use subscript sl and ml to denote the
seller and the machine learner in the rest of this part.

The machine learner’s estimation for q after training on
shared quantity of data t is

Prml (q|rs, t) =
λ(rs|q, t)µml(q)∑
q λ(rs|q, t)µml(q)

.

Then, his expected utility for the remaining data is computed
as

Gml(rs, t,b) = Eml[u(rm, b)|rs, t]− u(rs, b).

Since µml is privately held by the machine learner, the seller
may resort to robust mechanism design and maximize the
worst-case revenue w.r.t. µml subject to the constraint (9),
defined as

min
µml

∑
rs

Prsl (rs|t)
∑
b

ϕ(b) · prs,t · 1
{
Gml(rs, t,b) ≥ prs,t

}
,

(10)
where Prsl (rs|t) =

∑
q λ(rs|q, t)µsl(q) is the seller’s prior

belief over rs after sharing t quantity of data.

In the robust mechanism design, (10) serves as a lower
bound of revenue, and the seller needs to determine the
optimal quantity t∗ to maximize the lower bound. In fact,
we have the following even stronger approximation results
with respect to the true machine learner’s prior µml (full
proof in Appendix E).

Theorem 3.4 Let ε ∈ [0, 1] satisfy constraint (9). Then
exists a mechanism, whose revenue is at least OPT− 4ε

1−ε2 ū,
where OPT is the optimal expected revenue under the true
prior belief of machine learner and ū = maxr,b u(r, b).

Theorem 3.4 suggests that even though the machine learner’s
true prior belief is private, the revenue that the seller can
obtain is still close to that obtained by knowing the true
machine learner’s prior, as long as their beliefs do not differ
much, i.e., ε is small. In practice, the seller and the buyer
may use publicly available resource for research to estimate
q, so their priors may not differ too much.

4. Pricing Heterogeneous Data
In this section, we consider selling heterogeneous data. In
typical ML settings, a given data set X ∈ Rn×m consists of
n i.i.d. (homogeneous) data points where each data point is
of m dimensions, i.e., m features which are heterogeneous.
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For example, in a clinical dataset of n patients, each patient
(data point) is assumed to be i.i.d., but each patient is de-
scribed by multiple (i.e., m) heterogeneous features, such
as age, medicine, disease, etc.. Note that in this example,
one feature (e.g., the feature age) is a vector of all patients’
age information (n dimensions) and an ML model can be
trained on that feature. While selling data points is modeled
as the sales of homogeneous data, the sales of features is
naturally the selling heterogeneous data problem.

Suppose the seller possesses a set of features D =
{1, 2, 3, . . .M} for training the ML model, and would like
to price the feature set so as to maximize his own revenue.
Similarly, we measure the usefulness of M features with
the quality vector q = [q1, q2, . . . , qM ] of M dimensions,
where qi ≥ 0 is the quality for feature i. We assume there
are in total N possible different quality vectors and N is
finite. Given any subset of features T = {i1, i2, . . . , ik},
we use qT = [qi1 , qi2 , . . . , qik ] as the corresponding quality
subvector. To ease exposition, useR to denote the remain-
der set D \ T . An example with M + 1 features of N + 1
possible quality vectors is shown in Figure 3.

In the rest of discussion, we will consider one special case
of λ(r|q, T ), which already leads to an NP-hard problem.
Particularly, the λ(r|q, T ) is realized as a point distribution

λ(r|q, T ) = λ(r|qT ) =

{
1, r = f(qT )

0, otherwise,
(11)

which indicates that the accuracy is exactly the quality.
f(qT ) computes the quality of subset T .

Let µ(q) be the commonly known prior belief over quality
vector q. Given any subset T , we can compute µ(qT ) and
conditional probability µ(qR | qT ). In the following, we
use λ(r|q, T ) and λ(r|qT ) interchangeably.

Similarly, the posterior estimation of q given set T is

Pr (q|rs, T ) =
λ(rs|q, T )µ(q)∑
q λ(rs|q, T )µ(q)

.

For later use, we first show that the seller’s expected revenue
in (4) can be further realized with (11) as (detailed derivation
of (12) in Appendix F)∑

rs

∑
b

ϕ(b) · prs,T · 1
{ ∑
q|f(qT )=rs

µ(q)u(f(q), b)

−
∑

qT |f(qT )=rs

µ(qT )u(f(qT ), b) ≥ prs,T
}
.

(12)

The derivation of (12) is oblivious to the choice of f(q).

Remark 4.1 Since the formulation (12) is intrinsically the
same as (7), Theorem 3.1 still holds for pricing heteroge-
neous data, i.e., the best strategy is to sell the entire dataset
without sharing for separable valuation functions.

Figure 3. Constructed matrix D ∈ R(N+1)×(M+1) with 1 H-
quality vector and N L-quality vectors. H and L are positive
real numbers with H > L.

In line with (Gradwohl et al., 2021) where the allowed
communication cost is limited, we impose a cardinality
constraint |T | ≤ T . This is reasonable because each feature
may be of high dimensions (i.e., the number of data points
is large) and thus the training of the ML model is time-
consuming, e.g., training a BERT model (Devlin et al., 2019)
from scratch may take up to 4 days, so the seller may share
at most T features to reduce the waiting time for preliminary
accuracy.

4.1. Hardness of Optimal Mechanism

This section shows the hardness of computing the opti-
mal mechanism. We employ the simple linear function
f(qT ) =

∑
i∈T qi which computes the sum of entries in

the given quality subvector. Note that although there may
be exponential number of different choices of subset T , by
such a simple linearity assumption, there are in fact polyno-
mial number of different values for f(qT ) since the quality
qi is finite and discrete. Hence, there are only polynomial
number of different distributions λ(r|q, T ). Nevertheless,
the resulted problem is already NP-hard to solve. The main
result of this section is the following theorem.

Theorem 4.1 It is NP-hard to achieve e
e+1 + o(1) approx-

imation to the optimal mechanism.

The proof of Theorem 4.1 is rather involved and we show
the high-level of our proof below. To ease exposition, the
proof is divided into three parts: i) We first show that max-
imizing the revenue subject to a cardinality constraint can
be simplified to a cleaner combinatorial problem, Column
Subset Selection; ii) We prove that computing the optimal
mechanism is NP-hard by showing that a binary version
of Column Subset Selection is NP-hard.; iii) Based on a
similar construction as that in the second step, we prove the
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inapproximation ratio e
e+1 + o(1) by utilizing the hardness

result from (Feige, 1998). See a complete proof in Appendix
G.

Firstly, we notice that by considering some special construc-
tion of valuation function u(r, b) (see the proof of Lemma
G.1), subject to the constraint |T | ≤ T , the maximum rev-
enue of (12) has the following cleaner formulation:∑
rs

∑
b

ϕ(b) · prs,T · 1
{ ∑
q|f(qT )=rs

µ(q)u(f(q), b) ≥ prs,T
}
.

(13)

The formulation (13) can be interpreted as following: As
in Figure 3, suppose that the set D contains M + 1 fea-
tures (columns) and there are N + 1 possible choices
of quality vectors q (rows). By selecting a subset T of
features (i.e., set of columns in matrix D), the N + 1
quality vectors are divided into different groups accord-
ing to the value f(qT ) of the quality subvectors qT . That
is, given an rs, quality vectors with f(qT ) = rs are
classified to the same group, and a price prs,T needs to
be determined so that the sub problem

∑
b ϕ(b) · prs,T ·

1
{∑

q|f(qT )=rs µ(q)u(f(q), b) ≥ prs,T
}

is maximized. If
the valuation u(f(q), b) is different for different quality
vectors q, the maximum value of (13) is achieved only
when all the quality vectors q are separated from each other.
The maximization of (13) subject to the constraint is in-
trinsically equivalent to the following Column Subset Se-
lection problem, which we find is of independent interest.

COLUMN SUBSET SELECTION

Input: n arbitrary nonnegative vectors x1, x2,
. . . , xn of m-dimension.

Output: find a minimum-size set of entries E ⊆ [m]
to distinguish all vectors according to the
sum of entries, i.e.,

∑
i∈E x1

i 6=
∑
i∈E x2

i 6=
. . . 6=

∑
i∈E xni .

The fundamental challenge in our costly signaling prob-
lem is essentially the same as the Column Subset Selection
problem above: how to select the most effective — in the
sense of good quality estimation but small loss of sales value
caused by sharing data — subset of features (i.e., columns)
is hard.

Secondly, we prove the hardness of costly signaling, i.e., the
maximization of (12), by proving the hardness of a binary
version of the Column Subset Selection problem, which
distinguishes only one vector from others 2. As in Figure 3,
the constructed set D consists of 1 H-quality vector and N
L-quality vectors, where the H-quality vector has value H
in the last entry and ε in other M entries, and the L-quality

2We thank an anonymous reviewer for suggesting an idea to
modify our reduction in order to prove the hardness of the general
Column Subset Selection (CSS) problem. Though the hardness of
the general CSS problem is not needed for our result, we believe it
is indeed an interesting result, and thus prove it in Appendix I.

vector has value L in the last entry while 0 and ε in its
first M entries. We can show that the maximum value of
problem (13) is achieved by separating the H-quality vector
from all L-quality vectors. The NP-hardness is proved by a
reduction from the set cover problem (Cormen et al., 2009):
Given a ground set U = {1, 2, . . . , N}, a collection of M
subsets of U and an integer T , determine if there exists a
collection C of at most T subsets so that all the elements
in U are covered (i.e., included) in C? Given a set cover
instance, we construct one instance of (13) as follows: The
ground set U corresponds to the N L-quality vectors. M
subsets correspond to the first M columns in D. The given
integer T is the cardinality constraint.

Finally, we utilize the maximum coverage problem to
prove the inapproximation ratio: Given a ground set U =
{1, 2, . . . , N}, a collection of M subsets of U and an inte-
ger T , find a collection of no more than T subsets such that
the number of elements included in C is maximized. It is
important to note that the maximum coverage and the set
cover problem have the same input. (Feige, 1998) showed
that given a maximum coverage instance with an integer
T as the optimal value (i.e., T is the minimum number of
subsets needed to cover all the elements in U ) of a set cover
instance with the same input, there is no polynomial algo-
rithm giving a coverage of size at least (1 − 1

e + o(1))N
where N is the number of elements in the ground set.

Let constraint T be the optimal value of a constructed
set cover instance (same as the second step). Then, no
polynomial algorithm can reach an approximiation ratio
1− α = 1− 1

e + o(1) for the maximum coverage problem.
In addition, let the machine learner have two private types
b1, b2:

• Set probabilities ϕ(b1) = 1 − 1
αN and ϕ(b2) = 1

αN ,
respectively. b1 < b2.

• Let u(L, b1) = 1− 1
N , u(L, b2) = 1 and u(H, b1) = 1,

u(H, b2) = (αN)2.

The optimal revenue is achieved by separating the H-
quality vector from all L-quality vectors, which is
maxpH

∑
b ϕ(b)·pH ·1{u(H, b) ≥ pH}+maxpL

∑
b ϕ(b)·

pL · 1{Nu(L, b) ≥ pL} = αN +N − 1. By utilizing the
hardness result from (Feige, 1998), we can have that the
revenue obtained by any polynomial-time algorithm is upper
bounded by N + α. Given α = 1

e − o(1), we have ratio
N+α

αN+N−1 = N
αN+N + o(1) = e

e+1 + o(1).

4.2. Approximation Algorithm

We seek an approximation algorithm that can compute the
mechanism in a fast way for pricing the heterogeneous data.
One natural idea is to greedily select the feature that gives
the largest increase of revenue. However, in the following,
we give some negative observations about this natural idea.
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The proof is in Appendix H.

Observation 4.2 In general, the revenue (12) is not a sub-
modular function regarding the set T . Additionally, in terms
of the increase of revenue, greedy algorithm (i.e., greedily
select feature that gives the largest increase of revenue) may
give arbitrarily bad approximation.

Despite the above negative results, we show that a simple
approximation algorithm which sells the entire dataset di-
rectly according to the common prior gives a relatively tight
approximation if the number of machine learner’s private
types is small.

Theorem 4.3 Oblivious to the choice of f(q), by selling the
entire dataset directly without sharing any feature, at least
1
kOPT revenue can be obtained, where k is the number of
private types and OPT is the optimal revenue.

The key idea of the proof is to compare the revenue
of selling data directly according to the prior belief and
the upper bound of (12), i.e., maxpq

∑
q

∑
b ϕ(b) · pq ·

1{µ(q)u(f(q), b) ≥ pq}, which is obtained by separating
all quality vectors from each other and removing sales value
loss term. When k = 2, this simple algorithm can achieve
a ratio 1

2 , which is close to the hardness results e
e+1 ≈ 0.7.

We remark that some real-world applications do fall within
the regime of small k. For example, when selling data of
human face pictures for recognition, the buyers typically
come from three types: researchers, governmental agencies
and companies.

5. Conclusions and Future Works
We take the first step to consider the problem of selling data
to a machine learner. A Pricing via Costly Signaling scheme
is proposed for the homogeneous data and heterogeneous
data cases. We believe the problem of selling data to a ma-
chine learner is of great significance to both theory research
and practical application. A few open questions are left,
which we believe deserve further investigation:

• Is there a better approximation algorithm for maximiz-
ing (12) to achieve higher revenue?

• Besides selling data by pricing via costly signaling, is
there a better mechanism to sell data under the same
setting? It would also be interesting to consider selling
data to multiple learners (or companies).
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A. Preliminaries
Given a posted-price mechanism formulated as

max
p

∑
b

ϕ(b) · p · 1{f(b) ≥ p},

where b is a private type, ϕ(b) is the probability of b and f(b) ≥ 0 only depends on b. We have the following observations:

Observation A.1 The optimal price p∗ must be p∗ = f(b∗) for some private type b∗. b∗ is called optimal type.

Observation A.2 Denote Pr (f(b) < p) as the probability of not purchasing the item at some price p, i.e., Pr (f(b) < p) =∑
b:f(b)<p ϕ(b). If f(b) is increasing in b, Pr (f(b) < p∗) can be computed with the cumulative probability function Φ of ϕ,

as Pr (f(b) < p∗) = Φ(b∗) =
∑
b<b∗ ϕ(b).

B. Solution to Maximizing (7)
Lemma B.1 The optimal quantity t∗ and the price menu {prs,t∗}rs to maximizing (7) can be computed in polynomial time.

Proof: Note that the problem of maximizing (7) is

max
{prs,t}rs , t

∑
rs

Pr (rs|t)
∑
b

ϕ(b) · prs,t · 1
{
E[u(rm, b)|rs, t]− u(rs, b) ≥ prs,t

}
. (14)

Given quantity t and the observed accuracy rs, maximizing the seller’s revenue by solving (14) is equivalent to finding a
prs,t such that

∑
b ϕ(b) · prs,t ·1

{
E[u(rm, b)|rs, t]−u(rs, b) ≥ prs,t

}
is maximized. Now, the problem turns into a posted

price mechanism design problem. Since the machine learner’s private type b is finite and discrete, the optimal price p∗rs,t is
equal to f(b∗) = E[u(rm, b

∗)|rs, t]− u(rs, b
∗) for some b∗, and can be determined by enumeration in polynomial time.

Once the price p∗rs,t is given, the expected revenue conditioning on t and rs is also determined, computed as Rev(rs, t) ={
1 − Pr

(
f(b) < p∗rs,t

)}
· p∗rs,t. It is possible that the utility of the remaining data E[u(rm, b

∗)|rs, t] − u(rs, b
∗) < 0.

Therefore, the revenue should be max
{
Rev(rs, t), 0

}
, given t and rs.

To find the optimal t∗, we can enumerate all t because t is finite.

C. Proof of Theorem 3.1
We divide the proof into two parts for multiplicatively and additively separable valuation function respectively. First, we
have the following key lemma for our proof.

Lemma C.1 Given two posted price mechanisms formulated as maxp
∑
b ϕ(b) · p · 1{f(b) ≥ p} and maxp

∑
b ϕ(b) ·

p · 1{c · f(b) ≥ p} respectively, where ϕ(b) is the probability of b, c ≥ 0 is some constant and f(b) ≥ 0 is increasing in b,
there exists one optimal type b∗ (see Observation A.1) giving the optimal revenues for two mechanisms as (1− Φ(b∗))f(b∗)
and (1− Φ(b∗)) · cf(b∗), where Φ is the cumulative probability function of ϕ (see Observation A.2).

Proof: We know that the optimal solution for the fisrt posted price mechanism is (1−Φ(b∗))f(b∗) as f(b) ≥ 0 is increasing
in b. Because maxp

∑
b ϕ(b) · p · 1{c · f(b) ≥ p} = c ·maxp

∑
b ϕ(b) · p · 1{f(b) ≥ p}, there must exist one optimal b∗

for two mechanisms such that the optimal revenues are as in the claim.

First, we prove that the theorem holds for the multiplicatively separable valuation function u(r, b) = f(b)h(r).

Lemma C.2 Consider the upper bound of (7), i.e., RD(t) defined in (8), and we formulate the problem of maximizing the
upper bound as

max
{prs,t}rs , t

∑
rs

Pr (rs|t)
∑
b

ϕ(b) · prs,t · 1
{
E[u(rm, b)|rs, t] ≥ prs,t

}
. (15)
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For multiplicatively separable valuation function u(r, b) = f(b)h(r) where f(b) and h(r) are two functions depending only
on b or r, the upper bound RD(t) is the same for different quantity t.

Proof: Note that similar as Lemma B.1, the maximum of RD(t) must be obtained at some t∗. Hence, we can assume a data
quantity t is given. The upper bound (15) is

max
{prs,t}rs

∑
rs

Pr (rs|t)
∑
b

ϕ(b) · prs,t · 1
{
E[u(rm, b)|rs, t] ≥ prs,t

}
(16a)

= max
{prs,t}rs

∑
rs

∑
b

ϕ(b) · prs,t · 1
{∑

q

∑
rm

u(rm, b)λ(rm|q, 1)λ(rs|q, t)µ(q) ≥ prs,t
}
. (16b)

The equality holds because Pr (rs|t) =
∑
q λ(rs|q, t)µ(q) and we move Pr (rs|t) inside the indicator function.

Note that in (16b), each rs is associated with one posted price mechanism as below

max
prs,t

∑
b

ϕ(b) · prs,t · 1
{∑

q

∑
rm

u(rm, b)λ(rm|q, 1)λ(rs|q, t)µ(q) ≥ prs,t
}
.

We now focus on the utility term within the indicator function. By replacing u(r, b) with f(b)h(r), we can have the utility
term as f(b) · g(rs, t) where

g(rs, t) =
∑
q

∑
rm

h(rm)λ(rm|q, 1)λ(rs|q, t)µ(q). (17)

Note that conditioning on the rs and t, g(rs, t) can be considered as a constant. Furthermore, because u(r, b) is increasing
in b, the optimal b∗ is the same for all different rs and t by Lemma C.1. Hence, for any given t, we have the upper bound as

max
{prs,t}rs

∑
rs

∑
b

ϕ(b) · prs,t · 1
{∑

q

∑
rm

u(rm, b)λ(rm|q, 1)λ(rs|q, t)µ(q) >= prs,t

}
(18a)

= (1− Φ(b∗))
∑
rs

∑
q

∑
rm

u(rm, b
∗)λ(rm|q, 1)λ(rs|q, t)µ(q)

= (1− Φ(b∗))
∑
q

∑
rm

u(rm, b
∗)λ(rm|q, 1)

∑
rs

λ(rs|q, t)µ(q)

= (1− Φ(b∗))
∑
q

∑
rm

u(rm, b
∗)λ(rm|q, 1)µ(q)

= (1− Φ(b∗))f(b∗)
∑
q

∑
rm

h(rm)λ(rm|q, 1)µ(q), (18b)

where Φ(b) is the same as that in Observation A.2. We can see from (18b) that the result is independent of quantity t. In
another word, all the t’s (including t = 0) have the same upper bound, i.e., the maximum of (15). The lemma is proved.

Lemma C.2 claims that with the multiplicatively separable valuation function, sharing data or not will not affect the value of
upper bound, i.e., RD(0) = RD(t),∀t > 0. By the free duplication property, sharing data will cause loss of sales value to
the seller. Hence, we know that the best strategy in this case is not to share any data.

Corollary C.3 If the valuation function is multiplicatively separable, the best selling strategy of (7) is to sell the entire
dataset directly without sharing any data.

Proof: We know that the maximum value of (15), which is obtained in (18b), is an upper bound of (7). Also, note that the
(18b) is exactly the same as the revenue obtained from selling the entire dataset directly.

max
p

∑
b

ϕ(b) · p · 1{
∑
q

∑
rm

u(rm, b)λ(rm|q, 1)µ(q) >= p}.

Since sharing partial data will cause loss to the sales value but the upper bound remains the same for t > 0, the seller’s
revenue will then decrease after sharing.

The proof of Theorem 3.1 is done by futher considering the case u(r, b) = f(b) + h(r).
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Lemma C.4 If λ(0|q, t > 0) = 0 and the valuation function is additively separable u(r, b) = f(b) + h(r) where f(b) and
h(r) are functions depending only on b or r, the maximum revenue of (7) is upper bounded by that from selling the entire
dataset directly to the machine learner.

Proof: If λ(0|q, t > 0) = 0, then the observed preliminary accuracy rs > 0 and u(rs, b) will have the additive separable
form f(b) + h(rs) for sure. Given a fixed rs and t > 0, the utility term in (7) would be

E[u(rm, b)|rs, t]− u(rs, b)

=
∑
q

∑
rm

u(rm, b)λ(rm|q, 1)
λ(rs|q, t)µ(q)∑
q
λ(rs|q, t)µ(q)

− u(rs, b)

=
∑
q

∑
rm

(f(b) + h(rm))λ(rm|q, 1)
λ(rs|q, t)µ(q)∑
q
λ(rs|q, t)µ(q)

− (f(b) + h(rs))

=
∑
q

∑
rm

h(rm)λ(rm|q, 1)
λ(rs|q, t)µ(q)∑
q
λ(rs|q, t)µ(q)

− h(rs),

which is independent of b but only depends on rs, that is, the utility term is the same for every private type b. In another
word, for a fixed rs, the optimal price in (7) is

prs,t = E[u(rm, b0)|rs, t]− u(rs, b0), (19)

where b0 can be any private type and the learner will surely purchase with probability 1. For ease of exposition, let b0 be the
smallest private type and fixed for all rs. Thus, for any t > 0, the revenue is

∑
rm

u(rm, b0)
∑
q

λ(rm|q, 1)µ(q)−
∑
rs

Pr (rs|t)u(rs, b0).

In addition, we know that when t = 0, the revenue of selling the entire dataset directly according to the prior belief is
maxp

∑
b ϕ(b) · p · 1{

∑
rm
u(rm, b)

∑
q λ(rm|q, 1)µ(q) ≥ p}. The maximum revenue of the posted price mechanism

satisfies

max
p

∑
b

ϕ(b) · p · 1{
∑
rm

u(rm, b)
∑
q

λ(rm|q, 1)µ(q) ≥ p}

≥(1− Φ(b0))
∑
rm

u(rm, b0)
∑
q

λ(rm|q, 1)µ(q)

≥
∑
rm

u(rm, b0)
∑
q

λ(rm|q, 1)µ(q)−
∑
rs

Pr (rs|t)u(rs, b0),

where Φ(b) is defined similarly as in Observation A.2. The second inequality holds because 1− Φ(b0) = 1 (since b0 is the
smallest private type) and

∑
rs

Pr (rs|t)u(rs, b0) ≥ 0. Hence, we can see that the best strategy for the seller in this case is to
directly sell the data. Note that it is possible that prs,t < 0 in (19). By letting prs,t = max

{
0,E[u(rm, b0)|rs, t]−u(rs, b0)

}
,

our analysis remains the same.



Selling Data To a Machine Learner: Pricing via Costly Signaling

D. Proof of Proposition 3.2

Proof: The upper bound obtained by sharing t data with the machine learner is at least

max
{prs,t}rs

∑
rs

∑
b

ϕ(b) · prs,t · 1{
∑
rm

u(rm, b)
∑
q

λ(rm|q, 1)λ(rs|q, t)µ(q) ≥ prs,t}

=
∑
rs

(1− Φ(b∗rs))
∑
rm

u(rm, b
∗
rs)
∑
q

λ(rm|q, 1)λ(rs|q, t)µ(q)

≥
∑
rs

(1− Φ(b∗))
∑
rm

u(rm, b
∗)
∑
q

λ(rm|q, 1)λ(rs|q, t)µ(q)

=(1− Φ(b∗))
∑
rm

u(rm, b
∗)
∑
q

λ(rm|q, 1)µ(q)

= max
p

∑
b

ϕ(b) · p · 1{
∑
rm

u(rm, b)
∑
q

λ(rm|q, 1)µ(q) ≥ p}.

The first equality is from maximizing each posted price mechanism for every rs and that b∗rs is the optimal type, as in
Appendix A. The second inequality holds because we use the same private type b∗ for all different rs, which may not be the
optimal type for the posted price mechanism induced by some rs. The last equality holds because we use b∗ which is the
optimal type of selling the entire dataset directly according to the prior belief. Thus, the proof completes.

E. Proof of Theorem 3.4

Proof: This theorem is proved by bounding the difference between the upper bound and lower bound of (10).

For any given µml, by the constraint ∀q, |µsl(q)− µml(q)| ≤ εµsl(q) in (9), we have

Eml[u(rm, b)|rs, t]

=
∑
q

∑
rm

u(rm, b)λ(rm|q, 1)
λ(rs|q, t)µml(q)∑
q λ(rs|q, t)µml(q)

≥
∑
q

∑
rm

u(rm, b)λ(rm|q, 1)
λ(rs|q, t)(µsl(q)− εµsl(q))∑
q λ(rs|q, t)(µsl(q) + εµsl(q))

=
(1− ε)

∑
q λ(rs|q, t)µsl(q)

∑
rm
u(rm, b)λ(rm|q, 1)

(1 + ε)
∑
q λ(rs|q, t)µsl(q)

.

(20)

Therefore, given the price prs,t for each rs, we can derive the lower bound as

min
µml

∑
rs

Prsl (rs|t)
∑
b

ϕ(b) · prs,t · 1
{
Eml[u(rm, b)|rs, t]− u(rs, b) ≥ prs,t

}
≥

∑
rs

Prsl (rs|t)
∑
b

ϕ(b) · prs,t · 1
{ (1− ε)

∑
q λ(rs|q, t)µsl(q)

∑
rm

u(rm, b)λ(rm|q, 1)
(1 + ε)

∑
q λ(rs|q, t)µsl(q)

− u(rs, b) ≥ prs,t
}
.

It is important to note that the lower bound also holds for the true machine learner’s prior, which satisfies the constraints (9).
We maximize the lower bound and have

max
{prs,t}rs

min
µml

∑
rs

Prsl (rs|t)
∑
b

ϕ(b) · prs,t · 1
{
Eml[u(rm, b)|rs, t]− u(rs, b) ≥ prs,t

}
≥ max
{prs,t}rs

∑
rs

Prsl (rs|t)
∑
b

ϕ(b) · prs,t · 1
{ (1− ε)

∑
q λ(rs|q, t)µsl(q)

∑
rm

u(rm, b)λ(rm|q, 1)
(1 + ε)

∑
q λ(rs|q, t)µsl(q)

− u(rs, b) ≥ prs,t
}
.

We use LB(rs, b) =
(1−ε)

∑
q λ(rs|q,t)µsl(q)

∑
rm

u(rm,b)λ(rm|q,1)
(1+ε)

∑
q λ(rs|q,t)µsl(q)

− u(rs, b) to denote the term within the indicator function.

It is possible that LB(rs, b) < 0 for some rs.
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Similarly, given the price prs,t for all rs, we have the following upper bound for any µml satisfying the constraint (9)∑
rs

Prsl (rs|t)
∑
b

ϕ(b) · prs,t · 1
{
Eml[u(rm, b)|rs, t]− u(rs, b) ≥ prs,t

}
≤

∑
rs

Prsl (rs|t)
∑
b

ϕ(b) · prs,t · 1
{ (1 + ε)

∑
q λ(rs|q, t)µsl(q)

∑
rm

u(rm, b)λ(rm|q, 1)
(1− ε)

∑
q λ(rs|q, t)µsl(q)

− u(rs, b) ≥ prs,t
}
.

We maximize the upper bound and have

max
{prs,t}rs

∑
rs

Prsl (rs|t)
∑
b

ϕ(b) · prs,t · 1
{
Eml[u(rm, b)|rs, t]− u(rs, b) ≥ prs,t

}
≤ max
{prs,t}rs

∑
rs

Prsl (rs|t)
∑
b

ϕ(b) · prs,t · 1
{ (1 + ε)

∑
q λ(rs|q, t)µsl(q)

∑
rm

u(rm, b)λ(rm|q, 1)
(1− ε)

∑
q λ(rs|q, t)µsl(q)

− u(rs, b) ≥ prs,t
}
.

We use UB(rs, b) =
(1+ε)

∑
q λ(rs|q,t)µsl(q)

∑
rm

u(rm,b)λ(rm|q,1)
(1−ε)

∑
q λ(rs|q,t)µsl(q)

− u(rs, b) to denote the term within the indicator function
in the upper bound. Aslo, note that the upper bound holds for the true machine learner’s prior belief.

Furthermore, we have UB(rs, b) − LB(rs, b) = 4ε
1−ε2

∑
q

∑
rm
u(rm, b)λ(rm|q, 1) λ(rs|q,t)µsl(q)∑

q λ(rs|q,t)µsl(q)
≤ 4ε

1−ε2 ū, where

ū = maxr,b u(r, b). By subtracting the lower bound from the upper bound, we have

max
{prs,t}rs

∑
rs

Prsl (rs|t)
∑
b

ϕ(b) · prs,t · 1{UB(rs, b) ≥ prs,t}

− max
{prs,t}rs

∑
rs

Prsl (rs|t)
∑
b

ϕ(b) · prs,t · 1{LB(rs, b) ≥ prs,t} (21a)

≤ max
{prs,t}rs

∑
rs

Prsl (rs|t)
∑
b

ϕ(b) · prs,t · 1{UB(rs, b) ≥ prs,t}

− max
{prs,t}rs

∑
rs

Prsl (rs|t)
∑
b

ϕ(b) · prs,t · 1{UB(rs, b)−
4ε

1− ε2
ū ≥ prs,t}. (21b)

In the following, we can assume for each rs that maxprs,t

∑
b ϕ(b) · prs,t · 1{UB(rs, b) ≥ prs,t} > 0. Otherwise, the

revenue gap between the upper bound and the lower bound is 0, leading to the desired C-approximation.

In the (21b), there are two posted price mechanisms. After optimizing the first posted price mechanism, the gap between the
upper bound and the lower bound is further upper bounded by

(21b) ≤
∑
rs

Prsl (rs|t) Φ≥rs(b∗rs)UB(rs, b
∗
rs)−

∑
rs

Prsl (rs|t) Φ≥rs(b∗rs)
(
UB(rs, b

∗
rs)− 4ε

1− ε2
ū
)

=
∑
rs

Prsl (rs|t) Φ≥rs(b∗rs)
4ε

1− ε2
ū

≤ 4ε

1− ε2
ū,

where b∗rs is the optimal private type maximizing
∑
b ϕ(b) · prs,t · 1{UB(rs, b) ≥ prs,t} and Φ≥rs(b∗rs) =

∑
b∈Srs

ϕ(b)

with Srs = {b|UB(rs, b) ≥ UB(rs, b
∗
rs)}. Thus, when selling according to the lower bound mechanism, we obtain a

C-approximate algorithm.

Mechanism: Recall that LB(rs, b) < 0 can occur. The derived mechanism sets the price prs,t = max{LB(rs, b
∗
rs), 0}

where b∗rs is the optimal type for the problem

max
prs,t

∑
b

ϕ(b) · prs,t · 1{LB(rs, b) ≥ prs,t}. (22)
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Recall that for any given accuracy rs and private type b, LB(rs, b) lower bounds the utility that the learner computes with
the true prior belief µml(q). Hence, when the learner makes purchasing-or-not decision under µml(q), the probability of
accepting the posted price offered by the mechanism will be higher than the probability obtained in (22), leading to higher
revenue. The optimal t∗ can be obtained by enumeration as Lemma B.1.

In summary, the mechanism works as below:

1. The seller shares t∗ quantity of data with the machine learner;

2. The learner trains the ML model and the preliminary accuracy rs is simultaneously observed by both parties;

3. The seller then charges a price prs,t∗ = max{LB(rs, b
∗
rs), 0};

4. The machine learner computes his expected utility for the remaining data based on the true prior µml and determines
whether to accept the offer.

F. Derivation of (12)
The expected revenue in (4) is realized as

max
T ,prs,T

∑
rs

Pr (rs|T ) ·
∑
b

ϕ(b) · prs,T · 1
{∑

q

∑
rm

λ(rm|qD)u(rm, b)Pr (q|rs, T )− u(rs, b) ≥ prs,T
}
, (23)

where Pr (rs|T ) =
∑
qT
λ(rs|qT )µ(qT ). The machine learner’s estimate for quality can be rewritten as

Pr (q|rs, T ) =
λ(rs|q, T )µ(q)∑
q λ(rs|q, T )µ(q)

=
λ(rs|q, T )µ(qR|qT )µ(qT )∑

qT

∑
qR
λ(rs|q, T )µ(qR|qT )µ(qT )

= µ(qR|qT )Pr (qT |rs, T ) ,

where Pr (qT |rs, T ) = λ(rs|q,T )µ(qT )∑
qT

λ(rs|q,T )µ(qT )
. Hence, given the observed accuracy rs and shared subset T , the remaining

expected utility is computed as∑
q

∑
rm

λ(rm|q,D)u(rm, b)µ(qR|qT )Prs (qT |rs, T )− u(rs, b). (24)

Since T finally should be deterministically chosen by some algorithm, we eliminate subscript T from prs,T in the rest of
discussion for easy exposition. Then (23) equals∑

rs

Pr (rs|T ) ·
∑
b

ϕ(b) · prs · 1
{∑

q

∑
rm

λ(rm|q,D)u(rm, b)Prs (q|rs, T )− u(rs, b) ≥ prs
}

=
∑
rs

Pr (rs|T ) ·
∑
b

ϕ(b) · prs · 1
{∑

q

∑
rm

λ(rm|q,D)u(rm, b)µ(qR|qT )Prs (qT |rs, T )− u(rs, b) ≥ prs
}

=
∑
rs

∑
b

ϕ(b) · prs · 1
{∑

q

∑
rm

λ(rm|q,D)u(rm, b)µ(qR|qT )λ(rs|qT )µ(qT )−
(∑
qT

λ(rs|qT )µ(qT )
)
u(rs, b) ≥ prs

}
=
∑
rs

∑
b

ϕ(b) · prs · 1
{∑

q

∑
rm

λ(rm|q,D)u(rm, b)µ(q)λ(rs|qT )−
(∑
qT

λ(rs|qT )µ(qT )
)
u(rs, b) ≥ prs

}
,

where the second equality holds by moving Pr (rs|T ) inside the indicator function and the third equality holds because
µ(q) = µ(qR|qT )µ(qT ).

We then focus on the part within the indicator function. Recall that λ(r|q, T ) is a point distribution defined in (11). Therefore,
in the first summation over q, only quality vectors q with f(qT ) = rs are left. Additionally, we have u(rm, b) = u(f(q), b)
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because λ(r|q, T ) is a point distribution. Similar analysis is applied to the second term. Then, we have the following
formulation ∑

rs

∑
b

ϕ(b) · prs · 1
{ ∑
q|f(qT )=rs

µ(q)u(f(q), b)−
∑

qT |f(qT )=rs

µ(qT )u(f(qT ), b) ≥ prs
}
.

G. Proof of Theorem 4.1
The proof of Theorem 4.1 mainly consists of Lemma G.1 and Lemma G.4, where Lemma G.1 shows that maximizing
(12) subject to a cardinality constraint is NP-hard while Lemma G.4 shows the inapproximation results based on a similar
construction as that in Lemma G.1.

G.1. Proof of NP-hardness

Lemma G.1 It is NP-hard to compute the optimal mechanism.

Proof of Lemma G.1. We observe that maximizing (12) can be equivalently described as follows: The setD containsM +1
features and there are N + 1 possible choices of quality vectors q. It can be considered as a matrix D ∈ R(N+1)×(M+1).
We select a subset T of features (i.e., columns in matrix D) to maximize the objective function in (12). After that, the N
quality vectors are divided into different groups according to f(qT ) of the selected quality subvectors, i.e., given an rs,
quality vectors with f(qT ) = rs are classified to the same group. The constructed instance D of size (N + 1)× (M + 1) is
shown in Figure 3.

The constructed instance D consists of 1 H-quality vector and N L-quality vectors. As shown in Figure 3, the H-quality
vector is of M + 1 dimensions, which has value H in the last entry and ε in other entries. The L-quality vector has value L
in the last entry while it has 0 and ε in its first M entries. We have the following two assumptions: i) H > L� ε, and ii)
Mε < L and L+Mε < H .

We consider a special case of utility function u(r, b) set as follows:

u(r, b) =


u(H, b), r ≥ H
u(L, b), L ≤ r < H

0, r < L.

(25)

Such construction indicates that the last column in D is much more important than others. Therefore, the seller will never
share the last dimension with the machine learner, otherwise (12) will give 0 revenue. In other words, if T includes the
(M + 1)th column, then the value within the indicator is 0:∑

q|f(qT )=rs

µ(q)u(f(q), b)−
∑

qT |f(qT )=rs

µ(qT )u(f(qT ), b)

=
∑

q|f(qT )=rs

µ(q)
(
u(f(q), b)− u(f(qT ), b)

)
= 0.

Therefore, the optimal T is a subset of the first M features. From our construction in (25), we know u(f(qT ), b) = 0 since
f(qT ) < L. Then, (12) is equivalent to

max
T ,{prs}rs

∑
rs

∑
b

ϕ(b) · prs · 1
{ ∑
q|f(qT )=rs

µ(q)u(f(q), b) ≥ prs
}

s.t. |T | ≤ T.
(26)

We further assume that µ(q) is a uniform distribution. Thus, we can safely remove µ(q) from (26) without affecting our
analysis.

By the following lemma, we show that the maximum possible value of the objective function in (26) can be achieved by
separating the H-quality vector from all L-quality vectors. “Separate” means that the H-quality vector and the L-quality
vectors are divided into different groups according to the value f(qT ).
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Lemma G.2 Suppose there are two quality vectors with sum of quality asH and L, respectively. Recall u(r, b) is increasing
in b. Let b∗H be the optimal private type for maxpH

∑
b ϕ(b)·pH ·1{u(H, b) ≥ pH} and the solution is (1−Φ(b∗H))u(H, b∗H),

as that in Observation A.2. Similarly, b∗L is optimal type for maxpL
∑
b ϕ(b) · pL · 1{u(L, b) ≥ pL}.

Assume b∗H 6= b∗L. We then have higher value by separating H from L, that is

max
p

∑
b

ϕ(b) · p · 1{u(H, b) + u(L, b) ≥ p} (27a)

< max
pH

∑
b

ϕ(b) · pH · 1{u(H, b) ≥ pH}+ max
pL

∑
b

ϕ(b) · pL · 1{u(L, b) ≥ pL}. (27b)

Proof: First, we show that it is reasonable to assume b∗H 6= b∗L. We can construct such an example: let i) b ∈ {b1, b2}
with b1 < b2 and ϕ(b1) = ϕ(b2) = 1

2 , and ii) setting u(H, b1) = 10, u(H, b2) = 18, u(L, b1) = 5 and u(L, b2) = 12. By
simple calculation, we know b∗H = b1 and b∗L = b2. Thus, the assumption is reasonable.

Second, we know u(r, b) is increasing in b. Thus, there should exist one optimal type b∗ at which the (27a) achieves the
maximum value (1− Φ(b∗))(u(H, b∗) + u(L, b∗)), where Φ is the cumulative density function of ϕ.

Similarly, for (27b), we have b∗H and b∗L such that (27b) achieves the maximum value, which equals (1−Φ(b∗H))u(H, b∗H) +
(1− Φ(b∗L))u(H, b∗L).

Since b∗H is optimal, we have (1− Φ(b∗))u(H, b∗) ≤ (1− Φ(b∗H))u(H, b∗H). Similar result holds for b∗L. Combining them,
we have

max
p

∑
b

ϕ(b) · p · 1{u(H, b) + u(L, b) ≥ p}

≤ max
pH

∑
b

ϕ(b) · pH · 1{u(H, b) ≥ pH}+ max
pL

∑
b

ϕ(b) · pL · 1{u(L, b) ≥ pL}.

We can see that the equality holds if and only if b∗ = b∗H = b∗L. Since b∗H 6= b∗L, we can only have inequality. Thus, we
prove the lemma.

In a similar way, we can prove that for our construction with N L-quality vectors, only when separating N L-quality vectors
from the H-quality vector, can we have the maximum value achieved by (26) as

max
pH

∑
b

ϕ(b) · pH · 1{u(H, b) ≥ pH}+N ·max
pL

∑
b

ϕ(b) · pL · 1{u(L, b) ≥ pL}. (28)

Note that whether separating some L-quality vectors from other L-quality vectors or not does not change the revenue, i.e.,
max
pL

∑
b

ϕ(b) · pL · 1{N · u(L, b) ≥ pL} = N ·max
pL

∑
b

ϕ(b) · pL · 1{u(L, b) ≥ pL}.

The NP-hardness is proved by a reduction from the set cover problem (Cormen et al., 2009) defined as: Given a ground set
U = {1, 2, . . . , N}, a collection of M subsets of U and an integer T , determine if there exists a collection C of at most T
subsets so that all the elements in U are covered (i.e., included) in C?

Given a set cover instance, we construct one instance of (26) as follows: The ground set U corresponds to the N L-quality
vectors, while M subsets correspond to the first M feature columns in D. The given integer T is the cardinality constraint
in (26). The feature column is constructed as follows. For the kth feature, given a subset S = {i1, i2, . . . , ik, . . . is} in the
set cover instance, we set the kth entry in the ik ∈ S L-quality vectors as 0 while the kth entry in other L-quality vectors
(i.e., U \ S) are set as ε. We use one example to explain our construction: Given a set cover instance with a ground set
U = {1, 2, 3}, a collection of 3 subsets {2}, {1, 3} and {1, 2}. It corresponds to a D of size 4× 4, consisting of 1 H-quality
vector [ε, ε, ε,H] and 3 L-quality vectors [ε, 0, 0, L], [0, ε, 0, L] and [ε, 0, ε, L].

Note that when selecting subset of feature columns T , the sum of entries in the corresponding quality subvector f(qT ) of
the H-quality vector is |T |ε, while some of the L-quality vectors have their f(qT ) less than |T |ε because some entries of the
selected set of features T are 0. See Figure 3 for an example: f(qT ) = |T |ε = 2ε for H-quality vector while that for the
first L-quality vector is f(qT ) = ε. In this way, we can separate the H-quality vector from L-quality vectors according to the
value of f(qT ).
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Recall that only when separating the H-quality vector from N L-quality vectors (i.e., U is fully covered), can we achieve the
maximum value of (26) as in (28). Therefore, we can answer the decision version of the set cover problem by optimizing
(26). Thus, the lemma is proved. �

G.2. Proof of Inapproximation Ratio

The proof of inapproximation ratio makes use of the result from (Feige, 1998), as in the following.

Lemma G.3 [rephrased Proposition 5.2 in (Feige, 1998)] Given a maximum coverage instance with an integer T as the
optimal value (i.e., T is the minimum number of subsets needed so that all the elements in U are covered) of a set cover
instance with the same input, there is no polynomial algorithm giving a coverage of size (1− 1

e + o(1))N where N is the
number of elements in the ground set.

Proof: The proof mainly follows from (Feige, 1998). We put it here for completeness. We first show that for such a
maximum coverage instance with the given integer T as the optimal value of the corresponding set cover, it is NP-hard to
compute the optimal solution. This can be done by contradiction. If computing the optimal solution for this instance is
polynomial solvable, then by solving it, we actually can solve the set cover problem in polynomial time. Thus, it is NP-hard.

Assume a polynomial algorithm A approximates this maximum coverage problem within a ratio of 1− 1/e+ o(1). One can
show that a polynomial time algorithm B, with A as subroutine, can approximate the set cover problem within (1− δ) lnn
implying NP ⊂ TIME(nO(log logn)).

Algorithm B repeatedly applies A on the maximum coverage problem, where after each application the points already
covered are removed, but T remains unchanged. Since T remains unchanged and is the optimal value of the set cover
problem. By the assumption, each time, at least 1− 1/e+ ε of the remaining points are covered. Thus, application of A is
at most l times implying (1/e+ ε)l = 1/n, where n is the size of the instance. The number of sets used is at most lK. One
can obtain that l = 1

1−ln(1−eε) lnn < (1− δ) lnn for some δ > 0. Then, it means NP ⊂ TIME(nO(log logn)).

Now, we are ready to prove the inapproximation ratio.

Lemma G.4 The problem (12) cannot be approximated within a ratio e
e+1 + o(1) in polynomial time.

Proof: We utilize the maximum coverage problem in our proof defined as: Given a ground set U = {1, 2, . . . , N}, a
collection of M subsets of U and an integer T , find a collection C of no more than T subsets such that the number of
elements included in C is maximized. Note that the maximum coverage problem and the set cover problem have the same
input.

We construct a maximum coverage instance with integer T as the optimal value of a set cover instance with the same input, as
in Lemma G.3. Recall that by Lemma G.3, no polynomial algorithm can reach an approximation ratio 1−α = 1− 1

e + o(1)
for the maximum coverage problem.

The construction of our instance is the same as that in Lemma G.1 except the following change:

• There are only two private types {b1, b2} for the machine learner and their probabilities are ϕ(b1) = 1 − 1
αN and

ϕ(b2) = 1
αN , respectively. b1 < b2.

• Let u(L, b1) = 1− 1
N , u(L, b2) = 1, u(H, b1) = 1 and u(H, b2) = (αN)2.

Recall that the prior over quality vector µ(q) is uniform distribution. We thus can eliminate µ(q) without affecting our
following analysis. By such construction, we can see that

• for H-vector, maxpH
∑
b ϕ(b) · pH · 1{u(H, b) ≥ pH} = (1− Φ(bH))u(H, bH) = αN , where the optimal type bH

is b2.

• for L-vectors, maxpL
∑
b ϕ(b) · pL · 1{u(L, b) ≥ pL} = 1− 1

N , where the optimal type bL is b1.
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Thus, the optimal choices of b for the H-quality vector and L-quality vectors satisfy bH 6= bL. By Lemma G.2, we know that
the optimal value is obtained by separating the H-quality vector from L-quality vectors.

We are now ready to show the inapproximability. The optimal solution given constraint |T | ≤ T will be to separate the
H-quality vector from N L-quality vectors, which is

max
pH

∑
b

ϕ(b) · pH · 1{u(H, b) ≥ pH}+ max
pL

∑
b

ϕ(b) · pL · 1{Nu(L, b) ≥ pL}

= (1− Φ(b2))u(H, b2) + (1− Φ(b1))Nu(L, b1)

= αN +N − 1.

We know by Lemma G.3 that the polynomial algorithm covers less than (1 − α)N elements (i.e., N L-quality vectors),
which means that the H-quality vector will be mixed with at least αN L-quality vectors. Suppose that (1− α′)N elements
are covered where (1− α) > (1− α′). The revenue is upper bounded by

max
pHL

∑
b

ϕ(b) · pHL · 1{u(H, b) + α′Nu(L, b) ≥ pHL}

+ max
pL

∑
b

ϕ(b) · pL · 1{(1− α′)Nu(L, b) ≥ pL}

< max
pHL

∑
b

ϕ(b) · pHL · 1{u(H, b) + αNu(L, b) ≥ pHL}

+ max
pL

∑
b

ϕ(b) · pL · 1{(1− α)Nu(L, b) ≥ pL}

= max
pHL

∑
b

ϕ(b) · pHL · 1{u(H, b) + αNu(L, b) ≥ pHL}+ (1− α)(N − 1).

The inequality comes from the fact that mixing the H-quality vector with more L-quality vectors can only decrease the
revenue. This is because all L-quality vectors share the same optimal bL. The proof is similar to that of Lemma G.2.

We will focus on maxpHL

∑
b ϕ(b) · pHL · 1{u(H, b) + αNu(L, b) ≥ pHL}. If the optimal b is b1, then it equals(

1− Φ(b1)
)(
u(H, b1) + αNu(L, b1)

)
= 1 + αN − α.

If the optimal b is b2, then it equals(
1− Φ(b2)

)(
u(H, b2) + αNu(L, b2)

)
=

1

αN

(
(αN)2 + αN

)
= αN + 1.

Thus, the maximum possible revenue achieved by a polynomial algorithm is upper bounded by

max
pHL

∑
b

ϕ(b) · pHL · 1{u(H, b) + αNu(L, b) ≥ pHL}+ (1− α)(N − 1) = N + α.

Finally, because α = 1
e − o(1), we have ratio for large N

N + α

αN +N − 1
=

N

αN +N
+ o(1) =

e

e+ 1
+ o(1). (29)

H. Omitted Proof in Section 4.2
H.1. Proof of Observation 4.2

Lemma H.1 In general, the objective function in (12) is not a submodular set function.
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Proof: We prove it by constructing a counter example. Suppose there are 4 vectors: 1 H-quality vector [ε, ε, ε, ε,H] and 3
L-quality vectors [ε, 0, ε, 0, L], [ε, 0, 0, ε, L] and [ε, ε, 0, 0, L]. We set uniform prior µ(q) = 1

4 . Suppose b ∈ {b1, b2} with
b1 < b2 and the distribution over {b1, b2} is uniform, i.e., ϕ(b) = 1

2 . The utility function u(r, b) is defined the same as
in (25). Furthermore, we set u(H, b1) = 10, u(H, b2) = 18, u(L, b1) = 5 and u(L, b2) = 12. Hence, the ground set is
U = {1, 2, 3, 4, 5}.

Denote the revenue in (12) as F (T ) where T is the shared subset of features. Submodularity implies that for any set S ⊆ T
and any l ∈ U \ T , F (S ∪ l)− F (S) ≥ F (T ∪ l)− F (T ). But in our example, by choosing S = {1} ⊆ T = {1, 4}, we
have F (S) = 6.75 and F (T ) = 6.75. By adding l = {3} to both sets. F (S ∪ l) = 6.75 and F (T ∪ l) = 7. We can see
that F (T ∪ l)− F (T ) = 0.25 > F (S ∪ l)− F (S) = 0. It contradicts the definition of submodularity. Thus, the objective
function in (12) in general is not a submodular function.

Lemma H.2 The greedy algorithm (i.e., each step selects one feature that gives the largest increase of revenue) can give
arbitrarily bad approximation with respect to the increase of revenue.

Proof: We show one instance of (12) to which the greedy algorithm gives arbitrarily bad results regarding the increase
of revenue. The instance constructed is the same as that in the proof of Lemma H.1. Let G(S) = F (S) − F (∅) be the
revenue increase, compared with selling the entire dataset directly according to the prior µ(q), i.e., F (∅). The seller will
not share the 5th feature because G({5}) = F ({5})− F (∅) < 0. One optimal solution can be S1 = {3, 4} and we have
G({S1}) = 0.25.

However, when applying the greedy algorithm: 1) In the first step, the algorithm computes G({1}) = G({2}) = G({3}) =
G({4}) = 0 and chooses either one from {1, 2, 3, 4}; 2) If the algorithm chooses S1 = {1} in the first step, then in the
second step, the revenue increase is 0 no matter which feature it chooses, i.e., G({1, 2}) = G({1, 3}) = G({1, 4}) = 0.
Compared to the optimal revenue increase G({3, 4}) = 0.25, the revenue increase G({1, 2}) = 0 is arbitrarily bad.

H.2. Proof of Theorem 4.3

Proof: The revenue obtained by selling the entire dataset without sharing any feature is formulated as

max
p

∑
b

ϕ(b) · p · 1{
∑
q

µ(q)u(f(q), b) ≥ p}. (30)

We know that the optimal revenue achieved by (12) is upper bounded by

(12) ≤ max
T ,{prs,T }rs

∑
rs

∑
b

ϕ(b) · prs,T · 1{
∑

q|f(qT )=rs

µ(q)u(f(q), b) ≥ prs} (31a)

≤ max
{pq}q

∑
q

∑
b

ϕ(b) · pq · 1{µ(q)u(f(q), b) ≥ pq} (31b)

=
∑
q

max
pq

∑
b

ϕ(b) · pq · 1{µ(q)u(f(q), b) ≥ pq}, (31c)

where (31a) follows by removing the loss of utility term in (12), and (31b) is the possibly maximal value achieved by (31a)
through separating all the quality vectors q from each other (Lemma G.2).

To ease the explanation, we consider a special case where k = 2, i.e., the learner only has two private types. It can be easily
extended to the case k > 2. Let b1, b2 be two private types where b1 < b2 and their probabilities are p1 and p2 respectively
with p1 + p2 = 1. Recall that u(·, b) is increasing regarding b. By solving the posted price mechanism in (30), we have the
optimal value

max
{∑

q

µ(q)u(f(q), b1), p2
∑
q

µ(q)u(f(q), b2)
}
,

and the upper bounded maximum possible revenue i.e., (31c), is∑
q

max
{
µ(q)u(f(q), b1), p2 · µ(q)u(f(q), b2)

}
.
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We furthermore have

max
{
µ(q)u(f(q), b1), p2 · µ(q)u(f(q), b2)

}
< µ(q)u(f(q), b1) + p2 · µ(q)u(f(q), b2).

Finally, we have ∑
q

max
{
µ(q)u(f(q), b1), p2 · µ(q)u(f(q), b2)

}
<

∑
q

µ(q)u(f(q), b1) + p2
∑
q

µ(q)u(f(q), b2)

≤ 2 max
{∑

q

µ(q)u(f(q), b1), p2
∑
q

µ(q)u(f(q), b2)
}
.

Therefore, we can see that when k = 2, the approximation ratio is 1
2 . By similar proof as above, we can extend to the case

k > 2 and obtain approximation ratio 1
k .

I. Hardness of Column Subset Selection
The Column Subset Selection problem is defined as below:
Input: n arbitrary nonnegative vectors x1, x2, . . . , xn of m-dimension.
Output: find a minimum-size set of entries E ⊆ [m] to distinguish all vectors according to the sum of entries, i.e.,∑
i∈E x1

i 6=
∑
i∈E x2i 6= . . . 6=

∑
i∈E xni .

We prove the following theorem,

Theorem I.1 The Column Subset Selection problem is NP-hard.

Proof: As in the proof of binary version of Column Subset Selection problem, we reduce from set cover problem with
ground set of size n and m sets. Pick n prime numbers p1, ..., pn that are all greater than m; note that these numbers can be
selected so that they are polynomial in n and m. We create an (n+ 1)-by-m matrix where for i < n+ 1, the entry (i, j) is
pi if the ith element is covered by the jth set and 0 otherwise; the last row consists of all 0s.

Consider a subset of columns, which corresponds to a collection of sets. If element i is uncovered (i.e., not included in any
of m sets), the row sum over these selected columns is 0, so row i is indistinguishable from row n+ 1. If i is covered, it is
of the form k × pi, where k is at most m and hence smaller than any of the prime numbers. Thus, the sum in the ith row
over these selected columns is divisible by pi, but not by any pj with j 6= i. Hence, if there selected columns correspond to
a cover, all sums are distinct, and otherwise there must exist some row with sum is zero.

J. Two Examples
The following two examples are modified based on Example 3.3 for justification.

The first example is for the justification of the first order dominance condition. We construct a model distribution such that
for any t1 ≥ t2, E[r|q, t1] ≤ E[r|q, t2], i.e., more training data harms the performance. The curves are plotted in Figure 4.
We can see that it is optimal for the seller to sell the entire set directly. The revenue of our designed mechanism first drops
sharply. Then, it slowly increase, because sharing more data freely gives lower preliminary accuracy and causes less loss of
sales value.

Example J.1 Let t = 0%, 1%, . . . 100% be the quantity of data. Let r ∈ {0, 1, 2, . . . , 10} represent 0%, 10%, . . . 100%
accuracy, q ∈ {0, 1, 2, . . . , 10} and private type b ∈ {1, 2, . . . , 10}. According to the above characterization, let the
valuation function be

u(r, b) =


0, r + b <= 10

1000, r = b = 10

10, otherwise.
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The prior belief µ(q) over q is a Gaussian with standard deviation σ = 3 and mean m = 3. The accuracy distribution
λ(r|q, t) is also a Gaussian with m = round(q × (−t+ 1)) and σ = 1.0. Let σ = 0 if q = 0. Set λ(0|q, 0) = 1.

Figure 4. Revenue change with respect to quantity t for Example J.1.

The second example modifies the valuation function to u(r, b) = [(r + b)× r]0.6. The valuation function is almost linear in
r but concave in b. By the construction, when r is small, u(r, b) is not negligible. For example, when b = 10, comparing
r = 2 (i.e., 20% accuracy) with r = 8, we have [(2+8)×2]0.6

[(8+8)×8]0.6 ≈ 0.3. It means if the model trained on the shared subset of
data achieves 20% accuracy (which in face is a low-accuracy model), the seller may lose 30% of sales value after sharing if
the final performance has accuracy 80%, which may lead to less revenue obtained. The revenue curves are plotted in Figure
5, which shows that selling the entire set directly is optimal.

Example J.2 Let t = 0%, 1%, . . . 100% be the quantity of data. Let r ∈ {0, 1, 2, . . . , 10} represent 0%, 10%, . . . 100%
accuracy, q ∈ {0, 1, 2, . . . , 10} and private type b ∈ {1, 2, . . . , 10}. According to the above characterization, let the
valuation function be u(r, b) = ((r + b) × r)0.6. The prior belief µ(q) over q is a Gaussian with standard deviation
σ = 3 and mean m = 3. The accuracy distribution λ(r|q, t) is also a Gaussian with m = round(q · t) and σ =
0.1× (−(t− 0.5)2 + 0.25). Let σ = 0 if q = 0. Set λ(0|q, 0) = 1

Figure 5. Revenue change with respect to quantity t for Example J.2.
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K. Notations Summary

prs,T Price menu. Posted price given shared subset T of data points and observed preliminary accuracy rs

q quality of the data, determined by the model design and data itself. In homogeneous case, it is a scalar. In
heterogeneous case, it is a quality vector.

µ(q) Common prior distribution over q.

µsl(q) the seller’s private prior belief over q.

µml(q) the machine learner’s private prior belief over q.

u(r, b) the machine learner’s valuation function of accuracy r and private type b, non-decreasing in r and b.

ϕ(b) Commonly known distribution over private type b.

λ(r|q, T ) Probability of outputing accuracy r, conditioning on data quality q and set T .

r, rs, rm r generally denotes the accuracy obtained by ML model; rs specially denotes the preliminary accuracy
observed by the two parties after training on the shared set T ; rm denotes the accuracy obtained by the ML
model trained on the whole set D. All of them have the same domain, and are finite and discrete.

T shared subset of data points

D universal set of data points

R complemented set D \ T

RD(t) possibly maximal revenue obtained from the whole data set D (i.e., if sharing data cause no loss of sales
values), when sharing t quantity of data with the machine learner

G(rs, T , b) the seller’s expected remaining utility after sharing subset T of data points and observing accuracy rs, given
the learner’s private type b


