
Online Active Regression

Cheng Chen * 1 Yi Li * 1 Yiming Sun * 1

Abstract
Active regression considers a linear regression
problem where the learner receives a large num-
ber of data points but can only observe a small
number of labels. Since online algorithms can
deal with incremental training data and take ad-
vantage of low computational cost, we consider
an online extension of the active regression prob-
lem: the learner receives data points one by one
and immediately decides whether it should col-
lect the corresponding labels. The goal is to effi-
ciently maintain the regression of received data
points with a small budget of label queries. We
propose novel algorithms for this problem under
ℓp loss where p ∈ [1, 2]. To achieve a (1 + ϵ)-
approximate solution, our proposed algorithms
only require Õ(d/poly(ϵ) · log(nκ)) queries of
labels, where n is the number of data points and κ
is a quantity, called the condition number, of the
data points. The numerical results verify our the-
oretical results and show that our methods have
comparable performance with offline active re-
gression algorithms.

1. Introduction
Linear regression is a simple method to model the relation-
ship between the data points in an Euclidean space and their
scalar labels. A typical formulation is to solve the minimiza-
tion problem minx ∥Ax − b∥p for A ∈ Rn×d and b ∈ Rn,
where each row Ai is a data point in Rd and bi is its corre-
sponding scalar label. When p = 2, the linear regression
is precisely the least-squares regression, which admits a
closed-form solution and is thus a classical choice due to
its computational simplicity. When p ∈ [1, 2), it is more
robust than least-squares as the solution is less sensitive to
outliers. A popular choice is p = 1 because the regression
can be cast as a linear programme though other values of p

*Equal contribution 1School of Physical and Mathematical
Sciences, Nanyang Technological University, Singapore. Corre-
spondence to: Yi Li <yili@ntu.edu.sg>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

are recommended depending on the distribution of the noise
in the labels. Interested readers may refer to Section 1.3
of (Gonin & Money, 1989) for some discussion.

One harder variant of linear regression is active regres-
sion (Sabato & Munos, 2014), in which the data points
are easy to obtain but the labels are costly. Here one can
query the label of any chosen data point and the task is to
minimize the number of queries while still being able to
solve the linear regression problem approximately. Specif-
ically, one constructs an index set S ⊂ [n] as small as
possible, queries bS (the restriction of b on S) and computes
a solution x̃ based on A, S and bS such that

∥Ax̃− b∥pp ≤ (1 + ϵ)min
x
∥Ax− b∥pp. (1)

For p = 2, the classical approach is to sample the rows of
A according to the leverage scores. This can achieve (1)
with large constant probability using |S| = O(d log d+d/ϵ)
queries. Chen & Price (2019) reduced the query complexity
to the optimal O(d/ϵ), based on graph sparsifiers. When
p = 1, Chen & Derezinski (2021) and Parulekar et al. (2021)
showed that O((d log d)/ϵ2) queries suffices with large con-
stant probability, based on sampling according to Lewis
weights. More recently, Musco et al. (2021b) solved the
problem for all values of p with query complexity Õ(d/ϵ)
for 1 ≤ p < 2 and Õ(dp/2/ϵp) for p > 2, where the depen-
dence on d is optimal up to logarithmic factors.

Another common setting of linear regression is the online
setting, which considers memory restrictions that prohibit
storing the inputs A and b in their entirety. In such a case,
each pair of data points and their labels (i.e. each row of
[A b]) arrives one by one, and the goal is to use as little space
as possible to solve the linear regression problem. Again, the
case of p = 2 has the richest research history, with the state-
of-the-art results due to Cohen et al. (2020) and Jiang et al.
(2022), which retain only O(ϵ−1d log d log(ϵ∥A∥22)) rows
of A (where ∥A∥2 denotes the operator norm of A). The
idea of the algorithms is to sample according to the online
leverage scores, which was first employed in (Kapralov
et al., 2017). The online leverage score of a row is simply the
leverage score of the row in the submatrix of A consisting
of all the revealed rows so far. The algorithm of Jiang
et al. (2022) is based on that of Cohen et al. (2020) with
further optimized runtime. The case of p = 1 was solved
by (Braverman et al., 2020), who generalized the notion of

online leverage score to online Lewis weights and sampled
the rows of A according to the online Lewis weights.

In this paper, we consider the problem of online active
regression, a combination of the two variants above. In a
similar vein to (Cohen et al., 2020) and (Jiang et al., 2022),
the rows of A arrive one by one, and upon receiving a row,
one must decide whether it should be kept or discarded
and whether to query the corresponding label, without ever
retracting these decisions. The problem was considered
by Riquelme et al. (2017), who assumed an underlying
distribution of the data points together with a noise model
of the labels and only considered ℓ2-regression. Here we
do not make such assumptions and need to handle arbitrary
input data. To the best of our knowledge, our work is the
first to consider the online active regression in the general
ℓp-norm. Our approach is largely based upon the existing
techniques for online regression and active regression. A
technical contribution in our work is to show that one can
compress a fraction of rows in a matrix by sampling these
rows according to their Lewis weights while preserving the
Lewis weights of the uncompressed rows (see Lemma 4.5
for the precise statement), which may be of independent
interest.

Our Contributions. We show that the online active
regression problem can be solved, attaining the error
guarantee (1) with constant probability, using m =
Õ(ϵ−(2p+5)d log(nκOL(A))) queries for p ∈ [1, 2) (where
κOL(A) is the online condition number of A, see Defini-
tion 2) and m = Õ(ϵ−9d log(n∥A∥2/σ)) queries for p = 2
(where ∥A∥2 is the operator norm of A and σ the small-
est singular value of the first d rows of A). Our algo-
rithms are sublinear in space complexity, using m+O(ϵ−2d
poly(log n)) words.

The query complexity for p ∈ [1, 2) depends on log n and
log κOL(A)), which are not present in the offline counter-
part (Musco et al., 2021b). But this is not unexpected, given
that the log n log κOL(A) factor appears in the sketch size
for the ℓ1-subspace embedding under the sliding window
model (Braverman et al., 2020).

We also demonstrate empirically the superior accuracy of
our algorithm to online uniform sampling on both synthetic
and real-world data. We vary the allotted number of queries
and compare the relative error in the objective function of
the regression (with respect to the minimum error, namely
minx ∥Ax− b∥p). For active ℓ1-regression, our algorithm
achieves almost the same relative error as the offline active
regression algorithm on both the synthetic and real-world
data. For active ℓ2-regression, our algorithm significantly
outperforms the online uniform sampling algorithm on both
synthetic and real-world data and is comparable with the
offline active regression algorithm on the synthetic data.

2. Preliminaries
Notation. We use [n] to denote the integer set {1, . . . , n}.
For a matrix A, we denote by A† its Moore–Penrose inverse.

For two matrices A and B of the same number of columns,
we denote by A ◦B the vertical concatenation of A and B.

A matrix S is a called a sampling matrix if each row and
each column has at most one nonzero entry. Associated
with S are indicator variables {(1S)i}i=1,...,n (where n is
the number of columns of S) defined as follows. For each i,
we define (1S)i = 1 if the i-th column of S is nonzero, and
(1S)i = 0 otherwise.

Suppose that A ∈ Rn×d. We define the operator
norm of A, denoted by ∥A∥2, to be max∥x∥2=1 ∥Ax∥2.
We also define an online condition number κOL(A) =
∥A∥2 maxi ∥(A(i))†∥2, where A(i) is the submatrix con-
sisting of the first i rows of A.

Suppose that A ∈ Rn×d, b ∈ Rd and p ≥ 1. We define
REG(A, b, p) to be an x ∈ Rd that minimizes ∥Ax − b∥p.
We remark that when p > 1, the minimizer is unique.

Lewis weights. A central technique to solve minx ∥Ax−
b∥p is to solve a compressed version minx ∥SAx − Sb∥p,
where S is a sampling matrix. This sampling is based on
Lewis weights (Cohen & Peng, 2015), which are defined
below.

Definition 2.1 (Lewis weights). Suppose that A ∈ Rn×d

and p ≥ 1. The ℓp Lewis weights of A, denoted by
w1(A), . . . , wn(A), are the unique real numbers such that
wi(A) = (a⊤i (A

⊤W 1−2/pA)−1ai)
p/2, where W is the di-

agonal matrix with diagonal elements w1(A), . . . , wn(A)
and ai is the i-th row of A.

For notational convenience, when A has n rows, we also
write wn(A) as wlast(A). The ℓ2 Lewis weight is also called
the leverage score.

Definition 2.2. Given p1, . . . , pn ∈ [0, 1], the rescaled sam-
pling matrix S with respect to p1, . . . , pn is a random n×n

diagonal matrix in which Si,i = p
−1/p
i with probability pi

and Si,i = 0 with probability 1− pi.

Lemma 2.3 (Lewis weights sampling (Cohen & Peng,
2015)). Let A ∈ Rn×d. Choose β = Θ(log(d/δ)/ϵ2)
and p1, . . . , pn such that min{βwi(A), 1} ≤ pi ≤ 1.
Let S be the rescaled sampling matrix with respect to
p1, . . . , pn. Then it holds with probability at least 1 − δ
that (1 − ϵ)∥Ax∥p ≤ ∥SAx∥p ≤ (1 + ϵ)∥Ax∥p (i.e., S is
an ϵ-subspace embedding for A in the ℓp-norm) and that the
number of nonzero rows in S is O(β

∑
i wi(A)) = O(βd).

In the light of the preceding lemma, one can choose an
ϵ-subspace embedding matrix S for [A b] and retain only
the nonzero rows of S so that S has only Õ(d/ϵ2) rows

and minx ∥SAx− Sb∥p = (1 ± ϵ)min ∥Ax− b∥p. The
remaining question is how to compute the Lewis weights
of a given matrix. Cohen & Peng (2015) showed that, for a
given matrix A ∈ Rn×d, the following iterations

W
(j)
i,i ←

(
a⊤i

(
A⊤(W (j−1))1−2/pA

)−1

ai

)p/2

, (2)

with the initial point W (0) = In, will converge to some
diagonal matrix W , whose diagonal elements are exactly
w1(A), . . . , wn(A).

Definition 2.4 (Online Lewis Weights). Let p ∈ [1, 2)
and A ∈ Rn×d. The online ℓp Lewis weights, denoted
by wOL

1 (A), . . . , wOL
n (A), are defined to be wOL

i (A) =
wi(A

(i)), where A(i) is the submatrix consisting of the first
i rows of A.

We shall need the Johnson-Lindenstrauss matrix and an
assumption on the input matrix A for the online active ℓ2-
regression.

Definition 2.5 (Johnson-Lindenstrauss Matrix). Let X ⊆
Rd be a point set. A matrix J is said to be a Johnson-
Lindenstrauss matrix for X of distortion parameter ϵ (or, an
ϵ-JL matrix for X) if (1− ϵ)∥x∥22 ≤ ∥Jx∥

2
2 ≤ (1 + ϵ)∥x∥22

for all x ∈ X .

It is a classical result (Kane & Nelson, 2014) that when
|X| = T , there exists a random matrix J ∈ Rm×d with
m = O(ϵ−2 log(T/δ)) such that (i) J is an ϵ-JL matrix
for T with probability at least 1− δ, (ii) each column of J
contains O(ϵ−1 log(T/δ)) nonzero entries and (iii) J can
be generated using O(log2(|T |/δ) log d) bits.

3. Algorithms and Main Results
The high-level approach follows (Musco et al., 2021a) and
we give a brief review below. We sample A twice but with
different sampling parameters β, getting Ã of O(d log d)
rows and Ã1 of O(d2 poly(ϵ−1 log d)) rows, respectively.
We use Ã to solve minx∈Rd ∥Ax−b∥p, obtaining a constant-
factor approximation solution xc. The problem is then re-
duced to solving minx∈Rd ∥Ax−z∥p with z = b−Axc, for
which we shall solve minx∈Rd ∥Ã1 − z̃1∥p instead. Since
Ã1 has Ω(d2) rows, we repeat the idea above and further
subsample Ã1 twice with different sampling parameters, get-
ting Ã2 ofO(d log d) rows and Ã3 ofO(dpoly(ϵ−1 log d))
rows. The sampled matrix Ã2 is used to obtain a constant-
factor approximation solution x̂c to minx∈Rd ∥Ã1x− z̃1∥p
and Ã3 is used to solve minx∈Rd ∥Ã1x − (z̃1 − Ã1x

′
c)∥p

with a near-optimal solution x̄′. The near-optimal solution
to minx∈Rd ∥Ã1x− z̃1∥p is then x̄ = x̂c + x̄′. Finally, the
solution to the original problem is x̃ = xc + x̄. Note that
in the algorithms, we use Ã to denote the nonzero rows of
SA where S is the rescaled sampling matrix. Hence, the

Algorithm 1 Online Active Regression for p ∈ (1, 2)

Initialize: Let Ã(d), Ã
(d)
1 , Ã

(d)
2 , Ã

(d)
3 be the first d rows of

A and b̃(d) be the first d rows of b.
1: β ← Θ(log d)
2: β1 ← Θ(d/ϵ2+p)
3: β2 ← Θ(log d)
4: β3 ← Θ(log2 d log(d/ϵ)/ϵ2p+5)
5: Retain the first d rows of A
6: while there is an additional row at do
7: w̃t ← wt(A

(t))
8: pt ← min{βw̃(t), 1}
9: (Ã(t), b̃(t))← SAMPLE(at, pt, Ã

(t−1), b̃(t−1), p)
10: w̃1,t ← wt(A

(t))
11: p1,t ← min{β1w̃1,t, 1}
12: Sample at with probability p1,t
13: if at is sampled then
14: Ã

(t)
1 ← Ã

(t−1)
1 ◦ a⊤t p

− 1
p

1,t

15: w̃2,t ← wlast(Ã
(t)
1)

16: p2,t ← min{β2w̃2,t, 1}
17: (Ã

(t)
2 , b̃

(t)
2)← SAMPLE(atp

− 1
p

1,t , p2,t,

Ã
(t−1)
2 , b̃

(t−1)
2 , p)

18: w̃3,t ← wlast(Ã
(t)
1)

19: p3,t ← min{β3w̃3,t, 1}
20: (Ã

(t)
3 , b̃

(t)
3)← SAMPLE(atp

− 1
p

1,t , p3,t,

Ã
(t−1)
3 , b̃

(t−1)
3 , p)

21: end if
22: end while
23: xc ← REG(Ã, b̃, p)
24: z̃2 ← b̃2 − Ã2xc

25: x̂c ← REG(Ã2, z̃2, p)
26: z̃3 ← b̃3 − Ã3xc

27: x̄′ ← REG(Ã3, z̃3 − Ã3x̂c, p)
28: x̄← x̂c + x̄′

29: x̃← xc + x̄
30: return x̃

Algorithm 2 SAMPLE(at, pt, Ã(t−1), b̃(t−1), p)
1: Sample at with probability pt
2: if at is sampled then
3: Query bt

4: (Ã(t), b̃(t))← (Ã(t−1) ◦ a⊤t p
− 1

p

t , b̃(t−1) ◦ btp
− 1

p

t)
5: else
6: (Ã(t), b̃(t))← (Ã(t−1), b̃(t−1))
7: end if

sampled matrices Ã, Ã1, Ã2 and Ã3 are SA, S1A, S2S1A
and S3S1A respectively.

3.1. The case p ∈ [1, 2)

We present our main algorithm for p ∈ (1, 2] in Algorithm 1.
The following is the guarantee of the algorithm.

Theorem 3.1. Let A ∈ Rn×d and b ∈ Rn. Algorithm 1
outputs a solution x̃ which satisfies that

∥Ax̃− b∥p ≤ min
x∈Rd

∥Ax− b∥p (3)

with probability at least 0.94 and makes
O
(

d log2 d
ϵ2p+5 log d

ϵ · log
d logn log κOL(A)

ϵ · log(nκOL(A))
)

queries overall in total.

A major drawback of Algorithm 1 is the cost of calculat-
ing the online Lewis weights. Recall that the online Lewis
weight of at is defined with respect to the first t rows of
A. A naı̈ve implementation would require storing the entire
matrix A, partly defying the purpose of an online algorithm.
Furthermore, the iterative procedure described after Defini-
tion 2.1 takes O(log t) iterations to reach a constant-factor
approximation to the Lewis weights (Cohen & Peng, 2015),
where each iteration takes O(td2 + d3) time, which would
become intolerable as t becomes large. To address this is-
sue, we adopt the compression idea in (Braverman et al.,
2020), which maintainsO(log n) rescaled row-sampled sub-
matrices of A, each having a small number of rows. The
‘compression’ algorithm is presented in Algorithm 3.

Algorithm 3 Compression algorithm for calculation of on-
line Lewis weights
Initialize: B0 contains the first d rows of A; B1, . . . , Blogn

are empty matrices; Q = Θ(ϵ−2d log3 n).
1: β ← Θ(ϵ−2d log3 n)
2: while there is an additional row at do
3: B0 ← B0 ◦ at
4: if the size of B0 exceeds Q then
5: j ← the smallest index i such that Bi is empty
6: M ← Bi−1 ◦Bi−2 ◦ · · · ◦B0

7: pi ← min{βwi(M), 1} for all i
8: S ← rescaled sampling matrix with respect to

probabilities {pi}i
9: Bi ← SM

10: B0, B1, . . . , Bi−1 ← empty matrix
11: end if
12: end while

With the compression algorithm for A which maintains
B0, . . . , Blogn, we can replace Line 7 of Algorithm 1 with

w̃t ← wlast(Blogn ◦Blogn−1 ◦ · · · ◦B0). (4)

Similarly, we run an additional compression algorithms for
each of Ã1 and replace Lines 10, 15 and 18 with updates
analogous to (4). In addition, we change the value of β and

β1 to

β = Θ(ϵ−2 log d log2 n) and β1 = Θ(ϵ−4 log d log4 n),

respectively.

By the construction of the blocks Bi, each Bi contains at
most R = O(ϵ−2d log3 n) rows with probability at least
1− 1/poly(n), sufficient for taking a union bound over all
the blocks throughout the process of reading all n rows of
A. Hence we may assume that each block Bi always con-
tains at most R rows. Now, w̃t is calculated to be the Lewis
weight of a matrix of R′ = O(Q+R log n) = O(R log n)
rows, which can be done in O((R′d2 + d3) logR′) =
O(ϵ−2d3 poly(log(n/ϵ))) time for a constant-factor ap-
proximation, where the dependence on n is only polylog-
arithmic. The remaining question is correctness and the
following theorem is the key to proving the correctness.

Theorem 3.2. Let A ∈ Rn×d. With Algorithm 3 maintain-
ing B0, . . . , Blogn, let w̃t be as in (4) for each t ≤ n. Then
it holds with probability at least 1− 1/poly(n) that

(1− ϵ)wt(A
(t)) ≤ w̃t ≤ (1 + ϵ)wt(A

(t)), ∀t ≤ n,

where A(t) be the submatrix consisting of the first t
rows of A. The weights w̃t can be calculated in O(ϵ−2

d3 poly(log(n/ϵ))) time and Algorithm 3 needs O(ϵ−2d
poly(log n)) words of space overall in total.

The proof of Theorem Theorem 3.2 is deferred to Sec-
tion 4.2. Now we can strengthen Theorem 3.1 as follows.

Theorem 3.3. Let A ∈ Rn×d and b ∈ Rn. When
implemented using the compression technique as explained
above, Algorithm 1 outputs a solution x̃ which satisfies (3)
with probability at least 0.94 − o(1), making m =

O
(

d log2 d
ϵ2p+5 log d

ϵ · log
d logn log κOL(A)

ϵ · log(nκOL(A))
)

queries. Furthermore, it uses m + O(d
ϵ2 poly(log n))

words of space overall in total.

3.2. The case p = 2

In this subsection, we assume that the first d rows of the
input matrix A is not singular.

Assumption 3.4. The minimal singular value of the first d
rows of A is σ > 0.

As mentioned in the preceding subsection, it is computa-
tionally expensive to compute Lewis weights in general. A
special case is p = 2, where the Lewis weights are lever-
age scores and thus much easier to compute. In this case,
wi(A) = a⊤i (A

⊤A)−1ai, and correspondingly, the online
Lewis weights become online leverage scores, which are
wOL

i (A) = a⊤i ((A
(i))⊤A(i))−1ai. It is much easier to com-

pute wOL
i (A) in the online setting because one can simply

maintain (A(i))⊤A(i) by adding aia
⊤
i when reading a new

Algorithm 4 Online Active Regression for p = 2

Initialize: Let Ã(d), Ã
(d)
1 , Ã

(d)
2 , Ã

(d)
3 be the first d rows

of A and b̃(d), b̃
(d)
2 , b̃

(d)
3 be the first d rows of b. Let

x
(d)
c = REG(Ã(d), b̃(d), 2), z̃(d)2 = z̃

(d)
3 = b̃(d) − Ã(d)x

(d)
c ,

x̂
(d)
c = REG(Ã

(d)
2 , z̃

(d)
2 , 2) and x̄′

d = REG(Ã
(d)
3 , z̃

(d)
3 −

Ã
(d)
3 x̂

(d)
c , 2). Let G̊(d) = ((Ã(d))⊤Ã(d))−1 and H(d) =

Ã(d)G̊(d). Also let G̊(d)
i = ((Ã

(d)
i)⊤Ã

(d)
i)−1 and H

(d)
i =

Ã
(d)
i G̊

(d)
i for i = 1, 2, 3.

1: β ← Θ(log d)
2: β1 ← Θ(d/ϵ4)
3: β2 ← Θ(log d)
4: β3 ← Θ((log2 d) log(d/ϵ)/ϵ9)
5: retain the first d rows of A
6: while there is an additional row at do
7: w̃t ← ∥H(t−1)at∥22
8: (x

(t)
c , Ã(t), b̃(t), G̊(t), H(t))←

SAMPLEQUERY(at, b̃
(t−1),⊥,⊥,

Ã(t−1), β, w̃t, G̊
(t−1),1)

9: w̃1,t ← ∥H(t)
1 at∥22

10: Sample at with pr. p1,t = min{β1w̃1,t, 1}
11: if at is sampled then
12: Ã

(t)
1 ← Ã

(t−1)
1 ◦ a⊤

t√
p1,t

13: (G̊
(t)
1 , H

(t)
1)← UPDATE(at√

p1,t
,⊥,⊥,⊥,

Ã
(t−1)
1 ,G̊

(t−1)
1)

14: w̃2,t ← ∥H(t)
2

at√
p1,t
∥22

15: (x̂
(t)
c , Ã

(t)
2 , b̃

(t)
2 , G̊

(t)
2 , H

(t)
2)←

SAMPLEQUERY(at√
p1,t

, b̃
(t−1)
2 , x

(t)
c ,⊥,

Ã
(t−1)
2 , β2, w̃2,t, G̊

(t−1)
2 ,2)

16: w̃3,t = ∥H(t)
3

at√
p1,t
∥22

17: (x̄′(t), Ã
(t)
3 , b̃

(t)
3 , G̊

(t)
3 , H

(t)
3)←

SAMPLEQUERY(at√
p1,t

, b̃
(t−1)
3 , x

(t)
c , x̂

(t)
c ,

Ã
(t−1)
3 , β3, w̃3,t, G̊

(t−1)
3 ,3)

18: end if
19: x̄(t) ← x̂

(t)
c + x̄′(t)

20: x̃(t) ← x̄(t) + x
(t)
c

21: end while
22: return x̃(t)

row ai (viewed as a column vector). A naı̈ve implementa-
tion of this algorithm would require inverting a d× d matrix
at each step and we can further optimize the running time by
noticing that ((A(i))⊤A(i))−1 receives a rank-one update at
each step. This is the approach taken by (Cohen et al., 2020)
and (Jiang et al., 2022) for computing the online leverage
scores in the online setting. Adopting this approach, we
present our fast algorithm for p = 2 in Algorithm 4 and its
guarantee below.

Algorithm 5 SAMPLEQUERY(at, b̃
(t−1), x

(t)
c , x̂

(t)
c , Ã(t−1),

β, w̃t, G̊
(t−1), χ) in Algorithm 4

1: pt ← min{β(1 + ϵ)2w̃t, 1}
2: Sample at with probability pt
3: if at is sampled then
4: Ã(t) ← Ã(t−1) ◦ a⊤

t√
pt

5: Query bt
6: if χ = 1 then
7: b̃(t) ← b̃(t−1) ◦ bt√

pt

8: else
9: b(t) ← b(t−1) ◦ bt√

p1,tpt

10: z(t) ← b(t) − Ã(t)x
(t)
c

11: end if
12: (x(t), G̊(t), H(t))← UPDATE(at, b̃

(t), x̂
(t)
c , Ã(t),
G̊(t−1))

13: else
14: (Ã(t), b̃(t))← (Ã(t−1), b̃(t−1))
15: (x(t), G̊(t), H(t))← (x(t−1), G̊(t−1), H(t−1))
16: end if
17: return (x(t), Ã(t), b̃(t), G̊(t), H(t))

Algorithm 6 UPDATE(at, b̃
(t), x̂

(t)
c , Ã(t), G̊(t−1))

1: g ← a⊤t G̊
(t−1)at/pt

2: G̊(t) ← G̊(t−1) − 1
1+g G̊

(t−1) ata
⊤
t

pt
G̊(t−1)

3: st ← the number of rows in Ã(t)

4: Update the ϵ-JL matrix J (t+1) of size logn
ϵ2 × st

5: F (t) ← J (t+1)Ã(t)

6: H(t) ← F (t)G̊(t)

7: if b̃(t) = ⊥ then
8: return (G̊(t), H(t))

9: else if x̂(t)
c = ⊥ then

10: x(t) ← G̊(t)Ã(t)⊤b̃(t)

11: else
12: x(t) ← G̊(t)Ã(t)⊤(b̃(t) − Ã(t)x̂

(t)
c)

13: end if
14: return (x(t), G̊(t), H(t))

Theorem 3.5. Let A ∈ Rn×d and b ∈ Rn. Suppose that
A satisfy Assumption 3.4. With probability at least 0.94,
Algorithm 4 makes

O
(

d

ϵ9
log2 d · log d

ϵ
· log

(
d

ϵ
log
∥A∥2
σ

)
· log n∥A∥2

σ

)
queries in total and maintains for each T = d+ 1, . . . , n a
solution x̃(T) which satisfies that∥∥∥A(T)x̃(T) − b(T)

∥∥∥
2
≤ (1 + ϵ) min

x∈Rd

∥∥∥A(T)x− b(T)
∥∥∥
2
.

With probability at least 0.97, Algorithm 4 runs in a total of

O
(

1

ϵ2
nnz(A) log n

+
d3

ϵ4

(
log
∥A∥2
σ

)(
log

d

ϵ

)(
log n

ϵ2
+ d

))
time for processing the entire matrix A.
Remark 3.6. The theoretical guarantees of Theorem 3.3 and
Theorem 3.5 can be extended to δ failure probability with an
additional log(1/δ) factor in the query complexities, using
the same boosting procedure in (Musco et al., 2021a).
Remark 3.7. We only consider the case p ∈ [1, 2] because
adding an extra row to a matrix never increases the Lewis
weights of existing rows of that matrix. This property is
used in upper bounding the sum of online Lewis weights
(see Lemmas 4.1 and 4.2 below). However, this property
does not necessarily hold when p > 2 and we leave open
the problem of upper bounding the sum of online Lewis
weights in this case.

4. Proofs of the Main Results
The framework of our Algorithm 4 and Algorithm 1 follows
from the algorithm in (Musco et al., 2021a). Hence, in order
to prove Theorem 3.5 and 3.3, it suffices to verify all the
conditions and lemmata needed by the proof in (Musco et al.,
2021a). (Small modifications are needed for p = 2 because
the sampling matrices do not have independent rows and
the details are postponed in Appendix B.) In particular, it
suffices to show that

(i) the online ℓp Lewis weights calculated in Algorithms 4
and 1 are within an absolute constant factor of the
corresponding true ℓp online Lewis weights, and

(ii) the sum of approximate ℓp online Lewis weights are
bounded.

4.1. Sum of Online Lewis Weights

Suppose that (i) holds, (ii) would follow from that the sum
of true ℓp online Lewis weights are bounded, which are
exactly the following two lemmas, for p ∈ [1, 2) and p = 2,
respectively.
Lemma 4.1. Let p ∈ [1, 2). It holds that

∑n
i=1 w

OL
i (A) =

O(d log n · log κOL(A)).
Lemma 4.2 (Lemma 2.2 of (Cohen et al., 2020)). Let p =
2. Suppose that A satisfy Assumption 3.4. It holds that∑n

i=1 w
OL
i (A) = O(d log(∥A∥2/σ)).

The case p = 1 of Lemma 4.1 appeared in (Braverman et al.,
2020). We generalize the result to p ∈ (1, 2), following
their approach. The proof can be found in Appendix A.1,
where we also note an omission in the proof of Braverman
et al. (2020).

In the analysis of Algorithm 1, we shall apply Lemma 4.1
to Ã1 = S1A, where S1 is a sampling matrix w.r.t. the
online Lewis weights of A. To upper bound κOL(S1A), we
shall need the following auxiliary lemma, whose proof is
postponed to Appendix A.2.

Lemma 4.3. Let p ∈ [1, 2) and S is a rescaled sampling
matrix w.r.t. the online Lewis weights of A and the oversam-
pling parameter β. With probability at least 0.99, it holds
that log κOL(SA) = O(log(nκOL(A)/β)).

4.2. Approximating Online Lewis Weights

Now, it remains to prove (i) in order to prove the guarantee
of x̃ in Theorems 3.3 and 3.5.

First, the guarantee of approximate ℓ2 online Lewis weights
follows from the works of Cohen et al. (2020) or Jiang et al.
(2022), which we cite below.

Lemma 4.4 (Theorem 2.3 in (Cohen et al., 2020), Lemma
3.4 in (Jiang et al., 2022)). Let {w̃i}i be the approximate
Lewis weights in Algorithm 4 and β = Θ(log n/ϵ2). Let S
be the rescaled sampling matrix with respect to {w̃i}i. It
holds with probability at least 0.99 that

(1−ϵ)(A(t))⊤A(t) ⪯ (SA(t))⊤(SA(t)) ⪯ (1+ϵ)(A(t))⊤A(t)

for all t ∈ {d+ 1, . . . , n} and the number of non-zero rows
of S is O(β(

∑n
i=1 w̃i)).

As a consequence, w̃t ≥ 1−ϵ
1+ϵ · a

⊤
i ((A

(t))⊤A(t))−1ai ≥
(1− 2ϵ)wOL

t (A) for all t ∈ {d+1, . . . , n}. This establishes
(i) when p = 2.

The case of general p follows from Theorem 3.2. The fol-
lowing lemma is the key to the proof.

Lemma 4.5. Let Ai ∈ Rni×d (i = 1, . . . , r), B ∈ Rk×d

and M = A1 ◦ A2 ◦ · · · ◦ Ar ◦ B. For each i ∈ [r], let
Si ∈ Rmi×ni be the rescaled sampling matrix with respect
to pi,1, . . . , pi,ni with min{βwj(Ai), 1} ≤ pi,j ≤ 1 for
each j ∈ [ni], where β = O(ϵ−2 log(d/δ)). Let M ′ =
S1A1 ◦ · · · ◦SrAr ◦B. Then, with probability at least 1− δ,
it holds

(1− ϵ)wn1+···+nr+j(M) ≤ wm1+···+mr+j(M
′)

≤ (1 + ϵ)wn1+···+nr+j(M).

for all j = 1, . . . , k.

A full version of the preceding lemma and its proof are post-
poned to Lemma A.3. Now we turn to prove Theorem 3.2.

Proof of Theorem 3.2. Observe that each block Bi is
the compressed version of 2i smaller matrices, say,
A1, . . . , A2i , and each smaller matrix is compressed at most
i times. The compression scheme inside Bi can be repre-
sented by a tree Ti, which satisfies that the root of Ti has

i children Ti−1, Ti−2, . . . , T0. Every internal node of the
tree represents a compression operation, which subsamples
(with rescaling) the vertical concatenation of its children.
The following diagram shows an illustration of Ti.

A1

A2 A3

A4

Ti−1

A5

A6

Ti−2

A2i−1

T1

A2i

T0

· · ·

Consider a decompression process which begins at the root
and goes down the tree level by level. When going down
a level, we decompress each internal node on that level
into the vertical concatenation of its children. When the
decompression process is completed, we will have a vertical
concatenation of the leaves, namely, A1 ◦ A2 ◦ · · · ◦ A2i ,
which is a submatrix of A(t).

Let i∗ be the largest i such that Bi is nonempty. Consider
the decompression process of all blocks Blogn ◦ · · · ◦ B0.
This process will terminate in i∗ steps,

A(t,i∗) → A(t,i∗−1) → · · · → A(t,0),

where A(t,i∗) = Blogn ◦ · · · ◦ B0 and A(t,0) = A(t). Let
w̃t,j = wlast((A

t,j)). Note that w̃t,0 = wt(A
(t)). By Theo-

rem 3.2 and our choices of parameters, it holds that(
1− ϵ

2 log n

)
w̃t,j ≤ w̃t,j+1 ≤

(
1 +

ϵ

2 log n

)
w̃t,j

with probability at least 1−1/ poly(n). Iterating yields that(
1− ϵ

2 log n

)i∗
wt(A

(t)) ≤ w̃t,i∗≤
(
1+

ϵ

2 log n

)i∗
wt(A

(t)).

Note that w̃t,i∗ = w̃t per (4). Since i∗ ≤ log n, we have

(1− ϵ)wt(A
(t)) ≤ w̃t,i∗ ≤ (1 + ϵ)wt(A

(t)).

Taking a union bound over all t gives the claimed result.

4.3. Time Complexity for p = 2

Lemma 4.6. With probability at least 0.98, the running time
of Algorithm 4 over n iterations is O(ϵ−2 log nnnz(A) +

ϵ−4d3(ϵ−2 log n+ d) log d
ϵ log

∥A∥2

σ).

Proof. We analyze the time complexity following Lemma
3.8 in (Jiang et al., 2022). Note that total running time
is dominated by calculating Lewis weights and calls to
UPDATE. The approximate Lewis weights are calculated
by w̃t = ∥H(t−1)at∥22, which takes O(ϵ−2 nnz(A) log n)
time over n iterations. Observe that the runtime of each
call to UPDATE is dominated by the time calculating F (t)

and H(t), which takes O(ϵ−2d log n + d2) time. Calls
to UPDATE only happen when there is a new row at is
sampled and the number of samples is dominated by the
maximum of the number of rows of S and that of S1,
which with probability at least 0.98 are O(d log d) and
O(ϵ−4d2 log d

ϵ log
∥A∥2

σ), respectively. Hence, the total run-
ning time is O(ϵ−2 nnz(A) log n+ ϵ−4d4 log d

ϵ log
∥A∥2

σ +

ϵ−6d3 log n log d
ϵ log

∥A∥2

σ).

5. Experiments
In this section, we provide empirical results on online active
ℓp regression with p = 1, p = 1.5 and p = 2. We com-
pare our methods with online uniform sampling, the offline
active regression algorithms (Musco et al., 2021a; Chen &
Derezinski, 2021; Parulekar et al., 2021) for all values of p
and, additionally, the thresholding algorithm in (Riquelme
et al., 2017) for p = 2. The quantity we compare is the rela-
tive error, which is defined as (err − erropt)/erropt, where
err = ∥Ax̃−b∥p is the error of the algorithm’s output x̃ and
erropt = minx ∥Ax − b∥p is the minimum error of the ℓp
regression. Below we explain the online uniform sampling
algorithm, the thresholding algorithm and the adaptation of
online and offline active regression algorithms to the budget-
constrained setting. All algorithms are prescribed with a
budget for querying the labels.

• Online Uniform Sampling: In the t-th round, we
sample the new data point [at, bt] with probability
Bt/(n− t), where Bt is the remaining budget.

• Regression via Thresholding (for p = 2 only): We use
the Algorithm 1.b in (Riquelme et al., 2017) and assign
the weights ξi = 1 for all i ∈ [n].

• Online Active Regression: We sample each data point
with probability proportional to w̃t, where w̃t is the
approximate online Lewis weight calculated with the
compression technique for p = 1 and p = 1.5.

• Offline Active Regression: For p = 1, the algorithms
in (Chen & Derezinski, 2021; Parulekar et al., 2021) are
under the budget setting and no modification is needed.
For p = 2, the offline algorithm (Musco et al., 2021a)
involves parallel sampling. Since it expects to sample
O(d) data points for a constant-factor approximation,
we allocate a budget of size d to the part of the constant-

factor approximation and allocate the remaining budget
to the regression on residuals.

We perform experiments on both synthetic and real-world
data sets to demonstrate the efficacy of our approaches.

• Synthetic Data: We generate the synthetic data as fol-
lows. Each row of A ∈ Rn×d is a random Gaussian
vector, i.e., ai ∼ N (0, Id). The label is generated as
b = Ax∗ + ξ where x∗ is the ground truth vector and
ξ is the Gaussian noise vector, i.e., ξ ∼ N (0, 1). To
make the rows of A have nonuniform Lewis weights,
we enlarge d data points by a factor of n

1
p . We choose

n = 10000 and d = 100.

• Real-world Data: We evaluate our algorithm on a real-
world dataset, the gas sensor data (Vergara et al., 2012;
Rodriguez-Lujan et al., 2014) from the UCI Machine
Learning Repository1. The dataset contains 13910
measurements of chemical gases characterized by 128
features and their concentration levels.

We vary the budget sizes for the synthetic data between
800 and 1400 (8%–14% of the data size) and for the real-
world data between 1600 and 2500 (12%–18% of the data
size). For each budget size, we run 20 independent trials and
calculate the mean relative error and standard deviation. All
our experiments are conducted in MATLAB on a Macbook
Pro with an i5 2.9GHz CPU and 8GB of memory.

Below we discuss the experiments results for the online
active ℓp regression, p = 1, 1.5, 2. The budget-versus-error
plots are shown in Figure 1.

• p = 1: For the synthetic data, we see that the online
regression algorithm achieves a relative error compara-
ble to that of the offline regression algorithm when the
budget is at least 1000 and always significantly outper-
forms the online uniform sampling algorithm. For the
real-world data, the online regression algorithm’s per-
formance is again significantly better than the online
uniform sampling algorithm and comparable to that of
the offline active regression algorithm.

• p = 1.5: The online ℓ1.5 regression algorithm signif-
icantly outperforms the online uniform sampling on
both data sets. It achieves a relative error comparable
to that of the offline active regression algorithm on
the real-world data and is only slightly worse than the
offline algorithm when the budget size is at least 2300
(14.3% of the data size).

1https://archive.ics.uci.edu/ml/datasets/
Gas+Sensor+Array+Drift+Dataset+at+Differen
t+Concentrations

25

35

45

800 900 1000 1100 1200 1300 1400
0

2

4

6

8

Budget

Online ℓ1

Offline ℓ1

Online Uni.R
el
a
ti
v
e
er
ro
r

(a) Synthetic data

1

2

3

4

1600 1700 1800 1900 2000 2100 2200 2300 2400 2500
0

0.1

0.2

Budget

Online ℓ1

Offline ℓ1

Online Uni.

R
el
a
ti
v
e
er
ro
r

(b) Gas sensor data

4
5
6
7
8

800 900 1000 1100 1200 1300 1400

0

0.5

1

1.5

Budget

Online ℓ1.5

Offline ℓ1.5

Online Uni.R
el
a
ti
v
e
er
ro
r

(c) Synthetic data

40

70

100

1600 1700 1800 1900 2000 2100 2200 2300 2400 2500

0

0.8

1.6

Budget

Online ℓ1.5

Offline ℓ1.5

Online Uni.R
el
a
ti
v
e
er
ro
r

(d) Gas Sensor data

1

2

3

800 900 1000 1100 1200 1300 1400

0

0.05

0.1

Budget

Online ℓ2

Offline ℓ2

Threshold

Online Uni.

R
el
a
ti
v
e
er
ro
r

(e) Synthetic data

200

300

400

1600 1700 1800 1900 2000 2100 2200 2300 2400 2500
0

0.5

1

1.5

Budget

Online ℓ2

Offline ℓ2

Threshold

Online Uni.

R
el
a
ti
v
e
er
ro
r

(f) Gas Sensor data

Figure 1. Performance of algorithms for online ℓp active regression
on both synthetic data and Gas Sensor data for p = 1, 1.5, 2.

• p = 2: The online ℓ2 regression algorithm significantly
outperforms the online uniform sampling algorithm
on both datasets and performs much better than the
thresholding algorithm on real-world data. It achieves
a relative error comparable to that of the offline active
regression algorithm on the synthetic data and is only
slightly worse than the offline algorithm on real-world
data.

6. Conclusion
We provably show an online active regression algorithm
which uses sublinear space for the ℓp-norm, p ∈ [1, 2]. Our
experiments demonstrate the superiority of the algorithm
over online uniform sampling on both synthetic and real-
world data and a comparable performance with the offline
active regression algorithm.

Acknowledgements
C. Chen was supported by and Y. Li was partially sup-
ported by Singapore Ministry of Education (AcRF) Tier 2
grant MOE2018-T2-1-013 and Singapore Ministry of Edu-
cation (AcRF) Tier 1 grant RG75/21. Y. Sun was supported
by Singapore Ministry of Education (AcRF) Tier 2 grant
MOE2018-T2-1-013.

https://archive.ics.uci.edu/ml/datasets/Gas+Sensor+Array+Drift+Dataset+at+Different+Concentrations
https://archive.ics.uci.edu/ml/datasets/Gas+Sensor+Array+Drift+Dataset+at+Different+Concentrations
https://archive.ics.uci.edu/ml/datasets/Gas+Sensor+Array+Drift+Dataset+at+Different+Concentrations

References
Bourgain, J., Lindenstrauss, J., and Milman, V. Approxima-

tion of zonoids by zonotopes. Acta mathematica, 162(1):
73–141, 1989.

Braverman, V., Drineas, P., Musco, C., Musco, C., Upad-
hyay, J., Woodruff, D. P., and Zhou, S. Near optimal
linear algebra in the online and sliding window models.
In Irani, S. (ed.), 61st IEEE Annual Symposium on Foun-
dations of Computer Science, FOCS 2020, Durham, NC,
USA, November 16-19, 2020, pp. 517–528. IEEE, 2020.
doi: 10.1109/FOCS46700.2020.00055.

Chen, X. and Derezinski, M. Query complexity of least
absolute deviation regression via robust uniform conver-
gence. In Belkin, M. and Kpotufe, S. (eds.), Conference
on Learning Theory, COLT 2021, 15-19 August 2021,
Boulder, Colorado, USA, volume 134 of Proceedings
of Machine Learning Research, pp. 1144–1179. PMLR,
2021. URL http://proceedings.mlr.press/
v134/chen21d.html.

Chen, X. and Price, E. Active regression via linear-sample
sparsification. In Beygelzimer, A. and Hsu, D. (eds.),
Conference on Learning Theory, COLT 2019, 25-28 June
2019, Phoenix, AZ, USA, volume 99 of Proceedings of
Machine Learning Research, pp. 663–695. PMLR, 2019.
URL http://proceedings.mlr.press/v99/
chen19a.html.

Cohen, M. B. and Peng, R. lp row sampling by Lewis
weights. In Proceedings of the forty-seventh annual ACM
symposium on Theory of computing, pp. 183–192, 2015.

Cohen, M. B., Musco, C., and Pachocki, J. Online row
sampling. Theory of Computing, 16(15):1–25, 2020.
APPROX-RANDOM 2016 Special Issue.

Gonin, R. and Money, A. H. Nonlinear Lp-Norm Estimation.
CRC Press, 1989. doi: 10.1201/9780203745526.

Jiang, S., Peng, B., and Weinstein, O. Dynamic least-squares
regression. arXiv:2201.00228 [cs.DS], 2022.

Kane, D. M. and Nelson, J. Sparser Johnson-Lindenstrauss
transforms. J. ACM, 61(1), jan 2014. ISSN 0004-5411.
doi: 10.1145/2559902. URL https://doi.org/10
.1145/2559902.

Kapralov, M., Lee, Y. T., Musco, C., Musco, C., and Sidford,
A. Single pass spectral sparsification in dynamic streams.
SIAM J. Comput., 46(1):456–477, 2017. doi: 10.1137/14
1002281.

Musco, C., Musco, C., Woodruff, D. P., and Yasuda, T.
Active sampling for linear regression beyond the l2 norm.
arXiv:2111.04888v1 [cs.LG], 2021a.

Musco, C., Musco, C., Woodruff, D. P., and Yasuda, T.
Active sampling for linear regression beyond the l2 norm.
arXiv:2111.04888v3 [cs.LG], 2021b.

Parulekar, A., Parulekar, A., and Price, E. L1 regression with
lewis weights subsampling. In Wootters, M. and Sanità,
L. (eds.), Approximation, Randomization, and Combi-
natorial Optimization. Algorithms and Techniques, AP-
PROX/RANDOM 2021, August 16-18, 2021, University
of Washington, Seattle, Washington, USA (Virtual Con-
ference), volume 207 of LIPIcs, pp. 49:1–49:21. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2021. doi:
10.4230/LIPIcs.APPROX/RANDOM.2021.49.

Riquelme, C., Johari, R., and Zhang, B. Online active
linear regression via thresholding. In Singh, S. P. and
Markovitch, S. (eds.), Proceedings of the Thirty-First
AAAI Conference on Artificial Intelligence, February 4-9,
2017, San Francisco, California, USA, pp. 2506–2512.
AAAI Press, 2017. URL http://aaai.org/ocs/i
ndex.php/AAAI/AAAI17/paper/view/14599.

Rodriguez-Lujan, I., Fonollosa, J., Vergara, A., Homer, M.,
and Huerta, R. On the calibration of sensor arrays for
pattern recognition using the minimal number of experi-
ments. Chemometrics and Intelligent Laboratory Systems,
130:123–134, 2014.

Sabato, S. and Munos, R. Active regression by stratification.
In Ghahramani, Z., Welling, M., Cortes, C., Lawrence,
N. D., and Weinberger, K. Q. (eds.), Advances in Neural
Information Processing Systems 27: Annual Conference
on Neural Information Processing Systems 2014, Decem-
ber 8-13 2014, Montreal, Quebec, Canada, pp. 469–477,
2014.

Tropp, J. Freedman’s inequality for matrix martingales.
Electronic Communications in Probability, 16:262–270,
2011.

Vergara, A., Vembu, S., Ayhan, T., Ryan, M. A., Homer,
M. L., and Huerta, R. Chemical gas sensor drift compen-
sation using classifier ensembles. Sensors and Actuators
B: Chemical, 166:320–329, 2012.

http://proceedings.mlr.press/v134/chen21d.html
http://proceedings.mlr.press/v134/chen21d.html
http://proceedings.mlr.press/v99/chen19a.html
http://proceedings.mlr.press/v99/chen19a.html
https://doi.org/10.1145/2559902
https://doi.org/10.1145/2559902
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14599
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14599

A. Some Facts of Lewis Weights
Lemma A.1. Given A ∈ Rn×d with ℓp Lewis weights wi, i ∈ [n], let S be the rescaled sampling matrix with respect to
p1, . . . , pn satisfying that min{βwi, 1} ≤ pi ≤ 1, where β = O(ϵ−2 log(d/δ)). With probability at least 1− δ, it holds that

(1− ϵ)

n∑
i=1

w
1− 2

p

i aia
⊤
i ⪯

n∑
i=1

(1S)i
pi

w
1− 2

p

i aia
⊤
i ⪯ (1 + ϵ)

n∑
i=1

w
1− 2

p

i aia
⊤
i .

Proof. We prove the lemma by the matrix Chernoff bound. Without loss of generality, we assume that pi ≤ 1/β for all i,
otherwise we can restrict the sum to the i’s such that pi ≤ 1/β. We further assume that A⊤W 1− 2

pA = Id, where W =

diag{w1, . . . , wn}. Let Xi =
(1S)i
pi
·w1− 2

p

i aia
⊤
i −w

1− 2
p

i aia
⊤
i , then EXi = 0. By the definition of Lewis weights, we have

w
2
p

i = a⊤i (A
⊤W 1− 2

pA)−1ai. Hence, we have ∥ai∥22 = w
2
p

i . Next, it holds that ∥Xi∥2 ≤
w

1− 2
p

i

pi
∥ai∥22 = 1

βw
− 2

p

i ∥ai∥22 = 1
β

and ∥∥∥∥∥
n∑

i=1

E
(
XiX

⊤
i

)∥∥∥∥∥
2

≤

∥∥∥∥∥
n∑

i=1

1

pi
w

2(1− 2
p)

i ∥ai∥22 aia
⊤
i

∥∥∥∥∥
2

≤

∥∥∥∥∥
i=n∑
i=1

w
1− 2

p

i · aia
⊤
i

β

∥∥∥∥∥
2

=
wi

β
≤ 1

β
.

Applying the matrix Chernoff inequality, we have

Pr

{∥∥∥∥∥
n∑

i=1

Xi

∥∥∥∥∥
2

≥ ϵ

}
≤ 2d exp

(
−ϵ2

1
β + ϵ

3β

)
= 2d exp

(
−Ω(βϵ2)

)
≤ δ.

Lemma A.2. Suppose that A ∈ Rn×d and w1, . . . , wn are the Lewis weights of A. Let w1, . . . , wn be weights such that

αw
2/p
i ≤ a⊤i

(∑
i

w
1−2/p
i aia

⊤
i

)−1

ai ≤ βw
2/p
i , ∀i = 1, . . . , n,

then αwi ≤ wi ≤ βwi for all i.

Proof. Let γ = sup{c > 0 : wi ≥ cwi for all i}. It then holds for all i that

w
2/p
i ≥ 1

β
a⊤i

(∑
i

w
1−2/p
i aia

⊤
i

)−1

ai

≥ 1

β
a⊤i

(∑
i

w
1−2/p
i aia

⊤
i

)−1

ai

≥ 1

β
a⊤i

(∑
i

(γwi)
1−2/paia

⊤
i

)−1

ai

=
γ2/p−1

β
a⊤i

(∑
i

wi
1−2/paia

⊤
i

)−1

ai

=
γ2/p−1

β
wi

2/p.

This implies that

γ2/p ≥ γ2/p−1

β
,

and thus
γ ≥ 1

β
,

that is, wi ≥ wi/β for all i. Similarly one can show that wi ≤ wi/α.

Combining Lemma A.1 and Lemma A.2 we have the following lemma. We assume that we retain only nonzero rows of any
sampling matrix S in the following lemma.

Lemma A.3. Let Ai ∈ Rni×d (i = 1, . . . , r), B ∈ Rk×d and M = A1 ◦ A2 ◦ · · · ◦ Ar ◦ B. For each i ∈ [r], let
Si ∈ Rmi×ni be the rescaled sampling matrix with respect to pi,1, . . . , pi,ni

with min{βwj(Ai), 1} ≤ pi,j ≤ 1 for each
j ∈ [ni], where β = O(ϵ−2 log(d/δ)). Let M ′ = S1A1 ◦ · · · ◦ SrAr ◦B. The following statements hold with probability at
least 1− δ.

1. For each i ∈ [r] and each j ∈ [mi], it holds that

(1− ϵ)
wn1+···+ni−1+si(j)(M)

pi,si(j)
≤ wm1+···+mi−1+j(M

′) ≤ (1 + ϵ)
wn1+···+ni−1+si(j)(M)

pi,si(j)
,

where si(j) ∈ [ni] is the row index such that (Si)j,si(j) ̸= 0.

2. For each j = 1, . . . , k, it holds that

(1− ϵ)wn1+···+nr+j(M) ≤ wm1+···+mr+j(M
′) ≤ (1 + ϵ)wn1+···+nr+j(M).

Proof. Define partial sums µi = m1 + · · ·+mi with µ0 = 0 and νi = n1 + · · ·+ ni with ν0 = 0. For each j ∈ [µr + k],

w′
j =

{
wνi−1+si(j)(M)/pi,si(j), µi−1 < j ≤ µi;

wj−µr+νr (M), j ≥ µr.

and

L =

r∑
i=1

mi∑
j=1

(SiAi)j(SiAi)
⊤
j

(w′
µi−1+j)

p/2−1
+

k∑
j=1

bib
⊤
i

(w′
µr+j)

p/2−1
.

Then we have

L =

r∑
i=1

mi∑
j=1

(Ai)si(j)(Ai)
⊤
si(j)

pi,si(j)(wsi(j)(Ai))p/2−1
+

k∑
j=1

bib
⊤
i

(wνr+j(M))p/2−1
.

Let WM = diag{w1(M), . . . , wνr+k(M)}. Let pi = 1 for i = νr + 1, . . . , νr + k. Also note that pi,j ≥
min{βwνi−1+j(M), 1} since wj(Ai) ≥ wνi−1+j(M). It follows from Lemma A.1 that

(1− ϵ)(M⊤W
1−2/p
M M) ⪯ L ⪯ (1 + ϵ)(M⊤W

1−2/p
M M),

with probability at least 1− δ.

Next we verify that {w′
j}j are good weights for M ′. When µi−1 < j ≤ µi,

(w′
j)

2/p =
(wνi−1+si(j)(M))2/p

p
2/p
i,si(j)

=
(Ai)si(j)(M

⊤W
1−2/p
M M)−1(Ai)

⊤
si(j)

p
2/p
i,s(j)

=
1

1± ϵ
·
(Ai)si(j)L

−1(Ai)
⊤
si(j)

p
2/p
i,si(j)

=
1

1± ϵ
(SiAi)jL

−1(SiAi)
⊤
j ,

where (SiAi)j denotes the j-th row of SiAi. Similarly, one can show that for j > µr,

(w′
µr+j)

2/p =
1

1± ϵ
bj−µr

L−1b⊤j−µr
.

The result follows from Lemma A.2.

A.1. Online ℓp Lewis Weights

The goal of this section is to show Lemma 4.1, which states that the sum of the online ℓp Lewis weights of a matrix A ∈ Rn×d

is upper bounded by O(d log n log(κOL(A))) for p ∈ [1, 2). This is a generalization of Lemma 5.15 of (Braverman et al.,
2020) from p = 1 and we follow the same approach in (Braverman et al., 2020).

Lemma A.4 (Monotonicity, Lemma 5.5 in (Cohen & Peng, 2015)). For any matrix A ∈ Rn×d and vector x ∈ Rd, for every
i ∈ [n] we have wi(A) ≥ wi(B) where B = [A⊤, x⊤]⊤.

Lemma A.5. If the leverage scores of A are at most C > 0, then the ℓp Lewis weights of A are at most C for p ∈ [1, 2].

Proof. This is the generalization of Lemma 5.12 in (Braverman et al., 2020) and we follow the same proof approach.

By the assumption, we have a⊤i (A
⊤A)−1ai ≤ C for i ∈ [n]. We prove by induction that for iteration j in the Lewis weight

iteration, we have W (j) ⪯ C1−(1−p/2)jIn.

For the base case j = 1, we have W
(j)
i,i = (a⊤i (A

⊤A)−1ai)
p/2 ≤ Cp/2. Thus W (1) ⪯ Cp/2In as desired.

For iteration j, by the induction hypothesis, we have W (j−1) ⪯ C1−(1−p/2)j−1

In, which implies that (W (j−1))1−2/p ⪰
C(1−(1−p/2)j−1)(1−2/p)In since 1− 2/p ≤ 0. Thus,

A⊤(W (j−1))1−2/pA ⪰ C(1−(1−p/2)j−1)(1−2/p)A⊤A,

and
(A⊤(W (j−1))1−2/pA)−1 ⪯ C(1−(1−p/2)j−1)(2/p−1)(A⊤A)−1.

It then follows from (2) that

(W
(j)
i,i)

2/p = a⊤i (A
⊤(W (j−1))1−2/pA)−1ai ≤ C(1−(1−p/2)j−1)(2/p−1)a⊤i (A

⊤A)−1ai ≤ C(1−(1−p/2)j−1)(2/p−1)+1.

Notice that ((1− (1− p/2)j−1)(2/p− 1) + 1)p/2 = 1− (1− p/2)j , we have obtained that W (j)
i,i ≤ C1−(1−p/2)j for all i,

i.e., W (j) ⪯ C1−(1−p/2)jIn. The induction step is established.

The claim follows the convergence of Lewis weight iteration (Cohen & Peng, 2015).

Lemma A.6. Given A = [a1, . . . , an]
⊤ ∈ Rn×d, let B ∈ R(n+1)×d = [a1, . . . , aj−1, bj , aj+1, . . . , an, bn+1]

⊤ where
bj = (1 − γ)1/paj and bn+1 = γ1/paj for some γ ∈ [0, 1] and j ∈ [n]. Then we have wi(A) = wi(B) for i ̸= j, n + 1,
wj(B) = (1− γ)wj(A) and wn+1(B) = γwj(A).

Proof. Without loss of generality, we suppose j = n. Let W ∈ Rn×n be the diagonal Lewis weight matrix of A, i.e.,
Wi,i = wi(A). Let W

(n+1)×(n+1)
be a diagonal matrix where W i,i = wi(A) for i = 1, . . . , n− 1, Wn,n = (1− γ)wn(A)

and Wn+1,n+1 = γwn(A). According to the uniqueness of Lewis weights, it suffices to show that τi(W
1/2−1/p

B) = W i,i

for i ∈ [n+ 1].

Notice that the first n− 1 rows of W
1/2−1/p

B are the same as those of W
1/2−1/p

A. The last two rows of W
1/2−1/p

B are
wn(A)1/2−1/p(1− γ)1/2−1/p(1− γ)1/pan = wn(A)1/2−1/p(1− γ)1/2an and wn(A)1/2−1/pγ1/2an, respectively. Thus

we have ∥W 1/2−1/pAy∥22 = ∥W 1/2−1/p
By∥22 for any vector y, which indicates that the leverage scores of the first n− 1

rows of W 1/2−1/pA are the same as those of W
1/2−1/p

B, i.e., τi(W
1/2−1/p

B) = Wi,i = W i,i for 1 ≤ i ≤ n− 1.

For the last two rows, we have τn(W
1/2−1/p

B) = (1 − γ)τn(W
1/2−1/pA) = Wn,n and τn+1(W

1/2−1/p
B) = γ ·

τn(W
1/2−1/pA) = Wn+1,n+1. Thus we have τi(W

1/2−1/p
B) = W i,i for all i ∈ [n+ 1].

Corollary A.7. For any matrix A ∈ Rn×d. Let B ∈ Rn×d have the same rows but with the j-th row reweighted by a factor
α ∈ [0, 1]. Then for all i ̸= j, wi(B) ≥ wi(A).

Proof. Let γ = 1 − αp and B̄ ∈ R(n+1)×d = [a1, . . . , aj−1, (1 − γ)1/paj , aj+1, . . . , an, γ
1/paj]

⊤. By Lemma A.6, we
have wi(B̄) = wi(A) for i ̸= j. Then by Lemma A.4 we have wi(B) ≥ wi(B̄) = wi(A).

We are now ready to prove Lemma 4.1, which we restate below as Lemma A.8.

Lemma A.8. For A ∈ Rn×d and each i ∈ [n], we denote wOL
i (A) be the online Lewis weight of ai with respect to A. Then∑n

i=1 w
OL
i (A) = O(d log n log κOL(A)).

Proof. The first part of our proof is similar to the proof of Lemma 5.15 in (Braverman et al., 2020). Suppose that λ > 0. Let
B0 = λId, B = B0 ◦ · · · ◦B0︸ ︷︷ ︸

n times

and X ≜ B ◦A. Following the proof of Lemma 5.15 of (Braverman et al., 2020), we have∑n
i=1 w

OL
i (X) = O(d log n log κOL(A)).

Now, let WA be the Lewis weight matrix of A and L = A⊤
i W

1−2/p
A A. Let σ = λmin(L), the smallest eigenvalue of L, and

ρ = mini(L
−1)ii, the smallest diagonal element of L−1

i . Choose λ ≤
(
σ
n

)1/p
ρ(2−p)/(2p), µ = (nλ

2

σ)p/(2−p), UX = µInd

and WX =

[
UX

WA

]
. We claim that

1

2
µ2/p ≤ B⊤

j

(
A⊤W

1−2/p
A A+B⊤U

1−2/p
X B

)−1

Bj , (5)

1

2
(wi(A))2/p ≤ a⊤i

(
A⊤W

1−2/p
A A+B⊤U

1−2/p
X B

)−1

ai (6)

for all j ∈ [nd] and all i ∈ [n]. Observe that B⊤U
1−2/p
X B = nλ2µ1−2/pId ≤ σId ⪯ L. Thus,

a⊤i (L+ nλ2µ1−2/pId)
−1ai ≥

1

2
a⊤i L

−1ai =
1

2
(wi(A))2/p,

establishing (6). Similarly, since Bj = λei for some i,

B⊤
j (L+ nλ2µ1−2/pId)

−1Bj ≥
1

2
λ2(L−1)i,i ≥

1

2
λ2ρ ≥ 1

2
µ2/p,

establishing (5). It then follows from Lemma A.2 that wi(A) ≤ 2wnd+i(X). Applying the argument above to the n
submatrices which consist of the first i rows of A for each i = 1, . . . , n, we see that we can choose λ to be sufficiently small
such that wOL

i (A) ≤ 2wOL
nd+i(X) for all i. Therefore,

∑
i w

OL
i (A) = O(d log n log κOL(A)).

Finally, we note an omission in the proof of Lemma 5.15 of (Braverman et al., 2020). In the arXiv version of (Braverman
et al., 2020)2, on page 42 it states that U (j−1)

X ⪯ Id and so B⊤(U
(j−1)
X)−1B ⪯ nλ2Id. The first inequality does not seem to

imply the second one, as the latter requires a lower bound on U
(j−1)
X . We have used a different argument in our proof above.

A.2. Proof of Lemma 4.3

First, we note the following facts. For any two matrices A and B, ∥AB∥2 ≤ ∥A∥2∥B∥2, and when A has full row rank and
B ̸= 0, σmin(AB) ≥ σmin(A)σmin(B), where σmin(·) denotes the smallest nonzero singular value of a matrix.

It is clear that S, which is a rescaled sampling matrix, has full row rank. By the definition of the online condition number,

κOL(SA) = ∥SA∥2 max
i

1

σmin(SA(i))
≤ ∥S∥2∥A∥2 max

i

1

σmin(SA(i))i

≤ ∥S∥2∥A∥2 max
i

1

σmin(S)σmin(A)i

=
σmax(S)

σmin(S)
κOL(A).

Now, observe that σmax(S) = maxi p
−1/p
i = (mini pi)

−1/p and σmin(S) = mini p
−1/p
i = (maxi pi)

−1/p, where
min{βwOL

i (A), 1} ≤ pi ≤ 1. It is clear that σmin(S) ≥ 1. For the upper bound of σmax(S), note that a row i with

2arXiv:1805.03765v4 [cs.DS], 19 Apr 2020.

wOL
i (A) ≤ 1/(100n) will be sampled with probability

1−
(
1− 1

100n

)n

≤ 1

100
.

Hence, with probability at least 0.99, none of the rows i with wOL
i (A) ≤ 1/(100n) is sampled and so mini pi ≥ β/(100n)

and σmax(S) ≤ (100n/β)1/p. Therefore, we conclude that with probability at least 0.99,

κOL(SA) ≤
(
100n

β

)1/p

κOL(A).

B. Omitted proofs of Theorem 3.5 and 3.1
In this section we highlight the modifications needed to prove Theorem 3.5 and Theorem 3.1, based on (Musco et al., 2021a).
When p = 2, our sampling matrices does not have independent rows, since the online leverage scores are calculated with
respect to sampled rows instead of all the rows that have been revealed. Hence, we cannot use a Bernstein bound, which
is exactly where we need modify in the proof of Theorem 4.1 in (Musco et al., 2021a). This problem does not exist for
p ∈ [1, 2) and the original proof in (Musco et al., 2021a) applies. Below we shall reprove a key technical lemma in (Musco
et al., 2021a) for p = 2 but state the auxiliary lemmas with a general p whenever possible. It was originally proved in the
offline setting and we shall need to make small modifications to its proof so that it can be applied to the online setting.

Lemma B.1 (Lemma 3.7 in (Musco et al., 2021a)). Consider the same setting in Lemma B.2. With probability at least 0.99,
for all x ∈ Rd with ∥Ax∥p = O(OPT),∣∣∥SAz − Sz̄∥pp − ∥Ax− z̄∥pp

∣∣ = O(ϵ)OPTp .

Its proof depends on a series of lemmas, namely Lemmas B.2 to B.8. Lemmas B.2 to B.4, B.6 and B.7 are identical to those
in (Musco et al., 2021a) and so we only cite the statements. The modification occurs in the proof of Lemma B.8 as well as in
the proof of Lemma B.1 when given Lemma B.8.

Lemma B.2 (Constant factor approximation, Theorem 3.2 in (Musco et al., 2021a)). Let A ∈ Rn×d, b ∈ Rn, p ∈ [1, 2] and
OPT = minx∈Rd ∥Ax − b∥p. If we sample A and obtain xc by Algorithm 4 or Algorithm 1 with β = O(log(d/δ)) then
with probability at least 1− δ,

∥Axc − b∥p ≤ 21+
1
p 3/δ

1
p OPT .

When δ is constant then ∥Axc∥p ≤ C ·OPT for constant C.

Lemma B.3 (Lemma 3.5 in (Musco et al., 2021a)). Considering the same setting in Lemma B.2, let z = b−Axc. Let B be

an index set such that B = {i ∈ [n] : |zi|p
OPTp ≥ d

2
p
−1

wi

ϵp }. Let z̄ be equal to z but with all entries in B set to 0. Then for all
x ∈ Rd with ∥Ax∥p = O(OPT),∣∣∥Ax− z∥pp − ∥Ax− z̄∥pp − ∥z − z̄∥pp

∣∣ = O(ϵ)OPTp .

Lemma B.4 (Lemma 3.6 in (Musco et al., 2021a)). Consider the same setting in Lemma B.2. With probability at least 0.99,
∥Sz∥p = O(OPT) and for any x ∈ Rd with ∥Ax∥p = O(OPT),∣∣∥SAx− Sz̄∥pp − ∥Ax− z̄∥pp − ∥Sz − Sz̄∥pp

∣∣ = O(ϵ)OPTp .

Lemma B.5 (Bound over Net). LetNϵ be an ϵ-net of the lp unit ball {Ax | ∥Ax∥p ≤ 1}. If |∥SAx− Sz̄∥p − ∥Ax− z∥p| =
O(ϵ) holds for all x ∈ Nϵ. Then for any x ∈ Rd with ∥Ax∥p ≤ 1, we have |∥SAx− Sz̄∥p − ∥Ax− z∥p| = O(ϵ).

Proof. To simplify the writing, without loss of generality, we assume OPT = 1. For any x in the unit ball, by the definition
of Nϵ, there exists a vector y ∈ Nϵ such that ∥Ax−Ay∥p ≤ ϵ. We have proved that S is a subspace embedding matrix for
A, so ∥SAx− SAy∥2 ≤ O(ϵ). Hence, we have

|∥SAx− Sz∥2 − ∥Ax− z∥2| ≤ |∥SAy − Sz∥2 − ∥Ay − z∥2|+ ∥SAx− SAy∥2 + ∥Ax−Ay∥2
≤ O(ϵ) +O(ϵ) + ϵ.

Lemma B.6 (Compact rounding, Lemma 3.10 in (Cohen et al., 2020) and Theorem 7.3 in (Bourgain et al., 1989)). Consider

A ∈ Rn×d, v ∈ Rn with |v(i)|p ≤ d
p
2
−1wi

ϵp . Let l be (1 + ϵ)l = d
1
p and Nϵ be an ϵ-net in Lemma B.5. For any y ∈ Nϵ, let

r = y − v. Then we have r′ = e+
∑k=l

k=0 dk such that

1. |r′(i)− r(i)| ≤ ϵ|v(i)|, for any i ∈ [n],

2. |dk(i)| ≤
2(1+ϵ)kw

1
p
i

ϵd , for any i ∈ [n] and k ∈ {0} ∪ [l],

3. d0, . . . , dl, e have mutually disjoint supports,

4. e is a single fixed vector with |e(i)| ≤ w
1/p
i

ϵ , for any i ∈ [n],

5. Each dk is drawn from a set of vectors Dk with log |Dk| ≤ c(p) d log(n)
ϵ1+p(1+ϵ)pk

, for any k ∈ [l].

Lemma B.7. For any y = Ax with ∥Ax∥p ≤ 1, let r = y − z̄ and r′ be the rounding of r shown to exist in in Lemma B.6,
with ϵ set to ϵ

1
p . If ∥Sr′∥pp = (1± ϵ)∥r′∥pp, then ∥Sr∥pp = (1± ϵ)∥r∥pp.

The next lemma is where we need to modify for the online setting, for which we shall use Freedman’s inequality instead of
Bernstein’s inequality.

Lemma B.8. For all roundings r′ produced by Lemma B.7, with probability at least 0.99, we have

∥Sr′∥pp = (1± ϵ)∥r′∥pp

Proof. we analyze the sampling process via a martingale. To make modifications more clear, we use the notation in Claim
3.14 of (Musco et al., 2021a). We write r′ = e+

∑l
k=0 dk. We have ∥e∥p = O(1) and ∥dk∥ = O(1) for k ∈ {0}∪ [l]. Let S

be the rescaled sampling matrix with respect to pi. Let Sdk,(i) and dk,(i) be the first i coordinates of Sdk and dk respectively.
Let Yi = |Sdk,(i+1)|p−|dk,(i+1)|p, Y0 = 0 and Xi = Yi−Yi−1. By the second condition of Lemma B.6, we have |dk(i)| ≤
2(1+ϵ)kw

1
p
i

ϵd
1
p

. Since S rescales dk by the sampling probability, we have |Sdk(i)|p ≤ 1
βw̃i
· 2

p(1+ϵ)kpwi

ϵpd = O
(

(1+ϵ)kp

βϵpd

)
.

Hence, |Xi| = |Sdk(i + 1)|p − |dk(i + 1)|p ≤ O((1+ϵ)kp

βϵpd) and Ei−1X
2
i ≤ 1

βw̃i
|dk(i + 1)|2p ≤ O((1+ϵ)kp

βϵpd)|dk(i + 1)|p.

Thus, we have
∑n

i=1 Ei−1X
2
i ≤ O(

(1+ϵ)kp

βϵpd). By Freedman inequality,

Pr(
∣∣∣∥Sdk∥pp − ∥dk∥pp∣∣∣ ≥ ϵ/(l + 2)) ≤ exp

(
−ϵ2/(2(l + 2)2)

O((1+ϵ)kp

βϵpd)

)
.

Therefore, if β = O(log |Dk| · l2ϵp+2

d(1+ϵ)kp) = O(log
2 d logn
ϵ2p+5), we can take a union bound over all k and e. This completes the

proof.

Now we are ready to prove Lemma B.1.

Proof of Lemma B.1. Let p = 2. We prove the lemma by the matrix Freedman inequality. Let Yi = ∥(SA)ix− Sz̄i∥22 −
∥Aix− zi∥22, Y0 = 0 and Xi = Yi − Yi−1. Then, |Xi| is uniformly bounded.

|Xi| =

∣∣∣∣∣
∥∥∥∥ 1i√

pi
(aix− z̄i)

∥∥∥∥2
2

− ∥aix− z̄i∥22

∣∣∣∣∣ ≤ 1

pi
· ∥aix− z̄i∥22.

If i ∈ B, z̄i = 0, then, by Cauchy-Schwarz inequality, we have ∥aix∥22 ≤ w2
i ∥Ax∥22 = wiO(OPT2). Otherwise, ∥aix−

z̄i∥22 ≤ (1ϵ + 1)2w2
iO(OPT)2. Hence, since pi = min(βwi, 1), we have ∥Yi − Yi−1∥ ≤ 1

βϵ2O(OPT2). E(X2
i |Yi, . . . , Y1)

is denoted by Ei−1X
2
i , so we have

Ei−1X
2
i = E

(
∥ 1
√
pi
(aix− z̄i)∥22 − ∥aix− z̄i∥22

)2

= E(
1

pi
− 1)2∥aix− z̄i∥42

= (
1

pi
− 1)∥aix− z̄i∥42

≤ wi

pi
(
1

ϵ
+ 1)2O(OPT2)∥aix− z̄i∥22

≤ 1

βϵ2
O(OPT2)∥aix− z̄i∥22.

Therefore,
∑n

i=1 Ei−1X
2
i ≤ 1

βϵ2O(OPT2) ·
∑n

i=1 ∥aix− z̄i∥22. Since ∥Ax∥22 = O(OPT2) and ∥z∥22 = O(OPT2), we can

get
∑n

i=1 Ei−1X
2
i ≤ 1

βϵ2O(OPT4).

Then, by the matrix Freedman inequality (Tropp, 2011) and β =
d log(1

δ)

ϵ4 , it follows that

Pr(∥Yn∥ ≥ CϵOPT2) ≤ exp

 −C2ϵ2 OPT4

1
βϵ4O(OPT4) + O(OPT4)

3βϵ

 ≤ exp

(
−βϵ4

2

)

for C large enough. This implies that with probability at least 1− δ
2d

,
∣∣∥S(Ax− z)∥22 − ∥Ax− z∥22

∣∣ ≤ O(ϵ)OPT2, for a
fixed x ∈ Rd.

To simplify the writing, without loss of generality, now we assume OPT = 1. We apply a union bound over an ϵ-net N of
the ball B = {x ∈ Rd| ∥Ax− z∥22 = 1)}. Note that there are at most (3ϵ)

d points in the ϵ-net. After applying a union bound
over the net, according to Lemma B.5

∣∣∥S(Ax− z)∥22 − ∥Ax− z∥22
∣∣ ≤ O(ϵ) holds for each x ∈ Rd with ∥Ax∥ = 1 with

probability at least 1− δ.

For any x ∈ Rd with ∥Ax∥22 = 1, by the definition of ϵ-net, there exists a vector y ∈ N such that ∥Ax− Ay∥2 ≤ ϵ. We
have proved that S is a subspace embedding for A, so ∥S(Ax− y)∥2 ≤ O(ϵ). Hence, we have

|∥S(Ax− z)∥2 − ∥Ax− z∥2| ≤ |∥S(Ay − z)∥2 − ∥Ay − z∥2|+ ∥S(Ax−Ay)∥2 + ∥Ax−Ay∥2
≤ O(ϵ) +O(ϵ) + ϵ,

which completes our proof.

