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Abstract

We propose a model-agnostic randomized learn-
ing framework based on Random Hypothesis
Subspace Sampling (RHSS). Given any hypothe-
sis class, it randomly samples k hypotheses and
learns a near-optimal model from their span by
simply solving a linear least square problem in
O(nk2) time, where n is the number of train-
ing instances. On the theory side, we derive the
performance guarantee of RHSS from a generic
subspace approximation perspective, leveraging
properties of metric entropy and random matri-
ces. On the practical side, we apply the RHSS
framework to learn kernel, network and tree based
models. Experimental results show they con-
verge efficiently as k increases and outperform
their model-specific counterparts including ran-
dom fourier feature, random vector functional link
and extra tree on real-world data sets.

1. Introduction
Randomized machine learning is a research topic that stud-
ies how to randomize the learning process, often with an
aim of improving learning efficiency. Representative tech-
niques range from random projection (Vempala, 2005) for
efficient dimensionality reduction to extremely randomized
decision tree (Geurts et al., 2006), and from random Fourier
feature (Rahimi & Recht, 2008) for efficient kernel methods
to random vector functional link (Needell et al., 2020) for
efficient network training. These techniques have received
adequate research interests over the past decades.

When inspecting the literature, we notice that most random-
ized learning techniques are model-specific. For example,
in (Geurts et al., 2006), tree generation is randomized by
using random features to split tree nodes; in (Rahimi &
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Recht, 2008), a kernel machine is randomized by using ran-
dom Fourier features to approximate kernel functions; in
(Needell et al., 2020), neural network training is randomized
by fixing all but the output weights to random values. While
these techniques have achieved promising results on their
designated models respecitvely, it remains unclear how they
could be applied on other models or guide the design of
randomized learners for them.

Random projection (Vempala, 2005) is a randomized dimen-
sionality reduction technique, which projects data into a
lower dimensional feature space through random linear pro-
jections. It can be applied to speed up downstream learning
and considered as model-agnostic to the learner. However,
the speedup is often limited because the learner is not ran-
domized and could remain inefficient especially if its time
complexity does not depend heavily on the original feature
dimension such as kernel methods.

The above observations reveal the lack of a model-agnostic
randomized learning framework that not only ties the exist-
ing techniques for certain models but also provides guidance
on designing randomized learners for other models. We be-
lieve such framework will help to significantly advance the
research and application of randomized machine learning.
This motivates the present study.

A major contribution of this paper is the design of a model-
agnostic randomized learning framework based on Random
Hypothesis Subspace Sampling (RHSS). Given any hypoth-
esis class, it randomly samples k hypotheses and learns a
model in their span that best approximates the target model
on a set of n training instances. Importantly, this learning
process can always be cast as a simple linear least square
problem and solvable in O(nk2) time. In practice, small k
often suffices for good performance, which makes RHSS-
based learning extremely efficient no matter how complex
the given hypothesis class is.

On the theory side, we derive the performance guarantee
of RHSS from a generic subspace approximation perspec-
tive, leveraging properties of metric entropy and random
matrices. Under proper conditions, we show the best model
learned from the span of k randomly sampled hypotheses
can approximate any target model on a fixed data set by up
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to an O(k−c) error with high probability, where c is a con-
stant in (0, 1). Although this bound is not as tight as those
developed for model-specific randomized learners such as in
(Rudi & Rosasco, 2017; Avron et al., 2017), in experiments
we observe RHSS has similar or even better performance
than their counterparts. Nonetheless, it remains an open
question on how to bridge the gap theoretically.

On the practical side, we demonstrate the applications of
RHSS on kernel, neural network and tree based models, and
discuss their connections to the existing randomized learn-
ers that are specifically designed for these models, including
random Fourier features, random vector functional link and
extra tree. In experiments, we compare the proposed RHSS-
based learners with standard learners and model-specific
randomized learners. We see they approach standard learn-
ers efficiently as k increases, and often outperform their
model-specific counterparts on real-world data sets.

The rest of this paper is organized as follows: Section 2
reviews related work; Section 3 presents the proposed RHSS
framework; Section 4 presents its theoretical analysis and
Section 5 demonstrates its applications; experimental results
are shown in Section 6 and conclusion in Section 7.

2. Related Work
2.1. Random Fourier Feature

Random Fourier Features (RFF) is designed to speed up
kernel methods (Rahimi & Recht, 2008). It approximates
kernel functions using inner products of explicit feature vec-
tors generated through random Fourier functions, and thus
bypasses the need of working with the Gram matrix. With n
training instances and k random features, RFF reduces the
typical time complexity of learning a kernel machine from
O(n3) to O(nk2), where k is often smaller than n. Because
of its outstanding efficiency, RFF has been intensively stud-
ied in the past e.g. (Yang et al., 2012; Szabó, 2015; Rudi &
Rosasco, 2017; Avron et al., 2017; Li, 2017; Li et al., 2019).

It remains unclear, however, that how RFF can be applied
on non-kernel machines such as network or tree that do not
necessarily work with Gram matrices. One may use it as a
feature preprocessing technique such as generating a tree
based on Fourier features, but there is little guarantee on the
accuracy or efficiency of downstream learning. (See Section
2.4 for more discussion on the limitations of randomized
feature preprocessing.) Comparatively, the proposed RHSS
framework applies to both kernel and non-kernel machines.

2.2. Random Vector Functional Link

Random Vector Functional Link (RVFL) is designed to
speed up multi-layer perceptron learning (Pao et al., 1994;
Igelnik & Pao, 1995). It only optimizes the weights between

the last hidden layer and the output layer, and randomly sets
the other weights for the final network. With n training
instances and m neurons in the last hidden layer, RVFL can
efficiently learn the network in O(nm2) time. Although
proposed in the last century, RVFL is re-gaining research
interests in recent years (Zhang & Suganthan, 2016; Needell
et al., 2020; Gallicchio & Scardapane, 2020).

Apparently, it is unclear how RVFL can be applied on non-
network models such as kernel machine or tree that are not
constructed by ordered layers of weights. Comparatively,
the proposed RHSS framework applies to both network
and non-network models. Interestingly, when applied on
multi-layer perceptron, RHSS can be viewed as applying
the RVFL principle on a specially constructed network. See
Figure 1 and related discussions in Section 5.2.

2.3. Extra Tree

Extra tree is designed to speed up tree learning (Geurts et al.,
2006). It randomly selects features to split nodes when gen-
erating each tree, and outputs the average of multiple trees as
the final model. By avoiding the search of optimal features
for node splitting, extra tree is more efficient than standard
tree learning and has received successful applications (Desir
et al., 2012; Maier et al., 2015).

Similar to RFF and RVFL, however, it is unclear how extra
tree can be applied on non-tree models that do not have
nodes to split. Comparatively, the proposed RHSS frame-
work applies to both tree and non-tree models. When ap-
plied on tree, RHSS uses the same method as extra tree
to generate multiple trees, but then outputs an optimally
weighted average of them as the final model.

From the tree ensemble perspective, RHSS and extra tree
are both connected to random forest. The latter is a powerful
non-randomized tree learning method, which also averages
multiple trees but each tree finds optimal features (from a
sub-pool) to split nodes. We do not expect randomized tree
learners to beat random forest in accuracy, yet our exper-
imental results suggest they provide well approximations
while being significantly more efficient to learn.

In light of the above discussion, we also see some connec-
tion between RHSS and boosting, since the latter also finds
an optimal weighted average of models. Yet, they have a
fundamental difference that boosting optimizes each model
(thus not a randomized learner) whereas RHSS randomly
picks each model. Besides, models in boosting are often
dependent whereas models in RHSS are i.i.d. sampled.

2.4. Random Projection

Random Projection (RP) is design to speed up dimensional-
ity reduction. It maps a set of data into a lower dimensional
feature space through randomly generated linear projections
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(Vempala, 2005). Compared to other reduction methods,
RP is more efficient in that it avoids the search of optimal
projections which often has a high time complexity such as
O(p3) for p input features in PCA. Besides, it is proved that
data distortion in the randomly projected feature space is
likely bounded (Arriaga & Vempala, 2006) and thus RP will
not significantly deteriorate the performance of downstream
learning (Fradkin & Madigan, 2003; Maillard & Munos,
2012; Durrant & Kabán, 2013).

RP is often applied to speed up downstream learning and
considered as model-agnostic to the learner. However, the
speedup is often limited because the learner could remain
inefficient. For example, after using RP to reduce feature
dimension, learning a kernel machine still takes O(n3) time
with n training instances and RVFL still takes O(nm2)
time with m hidden neurons. Comparatively, the proposed
RHSS directly speeds up the learner (through approxima-
tion). When applied on linear hypothesis class, RHSS is
equivalent to RP followed by the learning of a linear model.

From a broader randomized feature projection perspective,
another related work is randomized kernel locality sensi-
tive hashing (R-KLSH) (Garg et al., 2019b;a). It designs
randomized hash functions (with parameters) to generate
binary features, then optimizes them for label prediction,
and finally use them to train multiple tree models that are at
the end assembled into a random forest.

Both R-KLSH and RP generate features with randomness
for downstream learning, but they have two fundamental
difference. First, features of RP are random while features
of R-KLSH are semi-random since they are optimized from
data for the prediction task. Second, RP speeds up learning
by generating few features, but R-KLSH often needs to
generate redundant features and achieves speedup based on
the binary property of these features that can be efficiently
exploited by tree models – from this perspective, R-KLSH
is model-specific. These, plus the difference between RP
and RHSS, are the difference between R-KLSH and RHSS.

3. The RHSS-based Learning Framework
In this section, we present the RHSS-based randomized
learning framework. Its basic idea is to randomly sample
some hypotheses and then learn an optimal model in their
span. Specifically, given a hypothesis class and a set of n
training instances, RHSS operates in four steps:

(1) Randomly sample k hypotheses from the class.

(2) Apply each sampled hypothesis on all training instances
and obtain an n-dimensional vector of its predicted labels.

(3) Learn an optimal linear combination of the prediction
vectors that best approximates the vector of true labels.

Framework 1 The RHSS-based Learning Framework

Input: hypothesis class H , sampling distribution D, a la-
beled set (x1, y1), . . . , (xn, yn), hyper-parameter k

1: Independently sample h1, . . . , hk ∈ H based on D.
2: Calculate h̃i = [hi(x1), . . . , hi(xn)]

T for each i.
3: Optimize coefficients α1, . . . , αk ∈ R by solving

min
α1,...,αk

∥∥∥∥∥
k∑

i=1

αih̃i − ỹ

∥∥∥∥∥
2

, (1)

where ỹ = [y1, . . . , yn]
T .

Output: Model f =
∑k

i=1 αihi.

(4) Output the combined hypothesis.

Detailed learning process is elaborated in Framework 1.
In the framework, xi is the ith instance in the training set
and yi is its label. The number of sampled hypotheses k
is a hyper-parameter. The design of specific hypothesis
sampling approach is dependent on the hypothesis class,
and we will show three examples in Section 5.

Once an output model f is obtained, we can apply it on a
testing point z by first applying the sampled hypotheses to
obtain h1(z), . . . , hk(z) and then calculating the prediction
as f(z) = α1h1(z) + . . .+ αkhk(z).

As one can see, the RHSS framework is fairly simple and
easy to apply as learning is always formulated as a linear
least square problem solvable in O(nk2) time, no matter
how complex the hypothesis class is. In experiments, we
observe that small k often suffices for good performance,
which makes RHSS-based learning very efficient.

Next, we inspect the theoretical guarantees of RHSS and
demonstrate its applications on three hypothesis classes.

4. Theoretical Analysis of RHSS
In this section, we inspect the theoretical guarantee of RHSS
from a generic subspace approximation perspective, i.e., it
is equivalent to approximating a target set using a random
subspace spanned by the columns of a random matrix.

In the following, we first introduce a set of analytic tools,
some borrowed from the literature of metric entropy and
random matrices and some developed by ourselves (with
proofs given in the appendix). Then, we present the main
theoretical results and discuss their implications.

4.1. Preliminaries

Our analysis of random subspace approximation will be
performed on Grassmannian. Let Gn,ℓ be a Grassmannian
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consisting of all the ℓ-subspaces of Rn, and the distance
between any two U, V ∈ Gn,ℓ is measured by

dG,r(U, V ) = ∆(U ∩ Sr, V ∩ Sr), (2)

where ∆ is the Hausdorff distance defined as ∆(X,Y ) =
max{supx∈X infy∈Y ∥x − y∥, supy∈Y infx∈X ∥x − y∥}
with ∥ · ∥ being the ℓ2 norm, and Sr is an n − 1 dimen-
sional sphere with radius r. The Remark 5 in (Szarek, 1982)
suggests dG,r is also a metric.

To analyze the approximation error, we will use the covering
number of Gn,ℓ. Let Nε be the ε-covering number of Gn,ℓ

w.r.t. dG,r, which is defined as the smallest number of ε-
balls whose union contains Gn,ℓ, that is,

Nε = argmin
m

∪m
i=1Bε(Ui) ⊇ Gn,ℓ, (3)

where Bε(Ui) = {V ∈ Gn,ℓ | dG,r(Ui, V ) ≤ ε} is an
ε-ball centered at Ui ∈ Gn,ℓ and with radius ε; moreover,
Bε(U1), . . . , Bε(UNε

) is called an ε-covering of Gn,ℓ. The
following lemma is a scaled version of the Proposition 8
in (Szarek, 1982), originally proposed in (Szarek), which
bounds the covering number.
Lemma 4.1. There exist universal constants c, C such that(cr

ε

)ℓ(n−ℓ)

≤ Nε ≤
(
Cr

ε

)ℓ(n−ℓ)

, (4)

for any ε ∈ (0,
√
2].

Our analysis also involves the use of a subspace to approxi-
mate a finite set. Inspired by the Kolmogorov n-width the-
ory (Pinkus, 2012), we define the distance from a subspace
U ∈ Gn,ℓ to a finite set A ⊆ Rn as

dS(A,U) = sup
a∈A

inf
u∈U

||a− u||. (5)

We remark that infU∈Gn,ℓ
dS(A,U) is the Kolmogorov ℓ-

width of A in Rn, and its value is zero whenever the cardi-
nality of A is no greater than ℓ (because one can always use
elements of A as part of a basis to construct U ). In addition,
we develop the following pseudo-triangular inequality based
on this distance. Its proof is in Appendix A.
Lemma 4.2. For any U, V ∈ Gℓ,n and finite A ⊆ Sr,

dS(A,U) ≤ dS(A, V ) + dG,r(V,U). (6)

The subspace we analyze will be random, and is actually
the row space of a random matrix H̃ constructed as follows:
let H1, . . . ,Hk be the random hypotheses from which the k
hypotheses in Framework 1 are sampled respectively, and
x1, . . . , xn be a given data set. Construct

H̃ =

H1(x1) . . . H1(xn)
...

. . .
...

Hk(x1) . . . Hk(xn)

 =

H̃1:

...
H̃k:

 , (7)

where H̃i: = [Hi(x1), . . . ,Hi(xn)] is the ith row and k is
typically way smaller than n.

Our analysis will rely on a fixed dimension of the random
subspace, and this only occurs with certain probability that
can be characterized by the following property of random
matrix, which is from (Vershynin, 2010) Theorem 5.39.

Theorem 4.3. Let M be a k-by-n matrix whose rows are
independent sub-gaussian isotropic random vectors in Rn.
Let σmin be the smallest singular value of M . Then

Pr{σmin <
√
k − c

√
n− t} ≤ 2 exp(−Ct2), (8)

for any t ≥ 0, where c, C > 0 are constants depending only
on the maximum subgaussian norm of the rows.

Using the above theorem, we develop the following property
of H̃ . Its proof is in Appendix B.

Lemma 4.4. For random matrix H̃ in (7), if H1, . . . ,Hk

are i.i.d. and each H̃i: follows a sub-Gaussian distribution
and has an invertible expected outer product, then

(i) H̃1:, . . . , H̃k: are i.i.d..

(ii) There exist constants a, b depending on the largest sub-
Gaussian norm and expected outer product of H̃i:, such
that a sample of H̃ has linearly independent rows with
probability at least 1− 2 exp(−b(

√
k − a

√
n)2).

Our analysis also relies on the following assumption.

Assumption 4.5. There exists an ε-covering of Gn,ℓ, de-
noted by Bε(U1), . . . , Bε(UNε

) for some U1, . . . , UNε
∈

Gn,ℓ, such that any ℓ-dimensional row span of H̃ is uni-
formly distributed in Bε(U1), . . . , Bε(UNε).

Finally, let f be a model returned by RHSS. We will analyze
its error on a labeled set (x1, y1), . . . , (xn, yn), defined as

ern(f) =
1

n

n∑
i=1

[f(xi)− yi]
2. (9)

We will also analyze its error on the population, defined as

er(f) = E[f(x)− y]2, (10)

where (x, y) denotes a random instance.

4.2. Theoretical Analysis of RHSS

Our main result is stated as follows.

Theorem 4.6. Suppose H̃ in (7) satisfy the conditions in
Lemma 4.4 and Assumption 4.5. Then, there exist constants
a, b, c > 0 such that any model f returned by Framework
1 satisfies ern(f) ≤ ε with probability at least 1 − δ1 −
δ2 (over the random choice of hypotheses), where δ1 =

2 exp(−b(
√
k − a

√
n)2) and δ2 = exp(−k(

√
nε

2cr )
(n−1)) .
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Proof. Our proof has four steps: (i) show the vectorized
hypotheses are linearly independent with high probability;
(ii) show ern(f) is bounded by some distance dS ; (iii) upper
bound the introduced distance; (iv) specify the probability
for the upper bound to hold. Details are elaborated below.

Step (i): Probability of Linear Independence

Consider an event that h̃1, . . . , h̃k are linearly independent.
Let P1 be the probability this event does not occur. Then,
Lemma 4.4 suggests there exists constants a, b such that

P1 ≤ 2 exp(−b(
√
k − a

√
n)2). (11)

The rest of the analysis will be based on the assumption that
the event of linear independence occurs.

Step (ii): Bound ern(f) by dS(Ỹ , Ṽi).

Let ℓ be a proper number (to be picked later) and evenly
divide h̃i’s into m = k/ℓ groups. By the assumption in Step
(i), each group spans an ℓ-subspace. Let Ṽ1, . . . , Ṽm ∈ Gn,l

be the ℓ-subspaces spanned by the m groups, respectively.

Then, RHSS can be viewed as using one Ṽi to approximate
the target set Ỹ = {ỹ}, as it finds a model whose vector-
ized representation f̃ = [f(x1), . . . , f(xn)]

T ∈ Ṽi has the
smallest distance to ỹ ∈ Ỹ , i.e.,

||f̃ − ỹ|| = sup
ỹ∈Ỹ

min
h̃∈Ṽi

||h̃− ỹ|| = dS(Ỹ , Ṽi). (12)

Moreover, it is easy to verify (by definition) that

ern(f) = [dS(Ỹ , Ṽi)]
2/n. (13)

Thus to bound ern(f), it suffices to bound dS(Ỹ , Ṽi).

Step (iii): Bound dS(Ỹ , Ṽi).

To bound dS(Ỹ , Ṽi), we first apply the developed pseudo-
triangular inequality. Let V∗ = argminV ∈Gn,ℓ

dS(Ỹ , V )

be a subspace that best approximates Ỹ and r = ||ỹ||. Then,
Lemma 4.2 and the remark of (5) suggest that

dS(Ỹ , Ṽi) ≤ dS(Ỹ , V∗) + dG,r(V∗, Ṽi)

= dG,r(V∗, Ṽi).
(14)

To bound dG,r(V∗, Ṽi), we apply results on Grassman-
nian. Recall Nε is the covering number of Gn,ℓ, and let
Bε(U1), . . . , Bε(UNε

) be the ε-covering in assumption 4.5.

By definition, V∗ must fall in one of the balls – without loss
of generality, assume V∗ ∈ Bε(U1). Now, if Ṽi also falls in
Bε(U1), by the triangular inequality for metric dG,

dG,r(Ṽi, V∗) ≤ dG,r(Ṽi, U1) + dG,r(U1, V∗) ≤ 2ε. (15)

Plugging (14) (15) back to (13), we have

ern(f) ≤ (4ε2)/n. (16)

We are interested in quantity ε′ = (4ε2)/n, which implies

ε =
√
ε′n/2. (17)

Step (iv): Specify the Probability for the Bound

It remains to specify the probability for (16). By the uniform
assumption, the probability for one Ṽi to fall outside Bε(U1)
is 1− 1/Nε, and for all Ṽ1, . . . , Ṽm to fall outside Bε(U1)
is P2 = (1− 1/Nε)

m. By Lemma 4.1 and (17), we have

P2 ≤ exp(− m

Nε
) ≤ exp(−k

ℓ

( ε

cr

)ℓ(n−ℓ)

)

≤ exp(−k

ℓ
(

√
nε′

2cr
)ℓ(n−ℓ)),

(18)

for some constant c. Now we pick ℓ. Simple analysis shows
the right side of (18) is minimum when ℓ = 1. Thus

P2 ≤ exp(−k(

√
nε′

2cr
)(n−1)). (19)

Finally, combining all by a union bound and replacing ε′

with ε proves the theorem.

4.2.1. IMPLICATIONS OF THEOREM 4.6

In Theorem 4.6, the probability for RHSS to have guaran-
teed performance is determined by δ1 and δ2, where the
former determines how likely the sampled hypotheses are
linearly independent, and the latter determines how likely
the output model performs well. In the following, we will
focus on discussing the impact of k on both terms, since it
is the major hyper-parameter of RHSS.

For δ1, the impact of k is not monotonic based on δ1 =
2 exp(−b(

√
k − a

√
n)2). When

√
k < a

√
n, increasing k

will increase δ1 and generate a weaker guarantee; otherwise,
increasing k will decrease δ1. This implies if one wants all
sampled hypotheses to be linearly independent, one could
sample either very few or a lot. (Fortunately, in experiment
we see a few is sufficient for good performance.)

For δ2, it monotonically decreases as k increases based on
δ2 = exp(−k(

√
nε

2c∥ỹ∥ )
n−1), giving a higher probabilistic

guarantee. When δ2 is held constant, we see that increasing
k allows one to pick a smaller ε. This implies sampling more
hypotheses allows one to have a smaller error guarantee.

Since both δ1 and δ2 have the form exp(−cnk) for some cn,
together they provide a strong guarantee that ern(f) > ε
with probability at most exp(−ck), which drops exponen-
tially fast as k increases.

It is worth mentioning that, δ2 often dominates δ1 in practice,
especially for large n and small k. Moreover, it is easy to
show δ1 = 0 if more ideal sampling distributions can be
assumed, such as those remarked in following corollary.
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Corollary 4.7. If H̃1, . . . , H̃k, defined in (7), are indepen-
dently and uniformly distributed, then there exists constant
c > 0 as in Lemma 4.1 such that any model f output from
Framework 1 satisfies ern(f) ≤ ε with probability at least
1− δ, where δ = exp(−k(

√
nε

2cr )
(n−1)).

4.2.2. EXTENSION TO GENERALIZATION ERROR

In this section, we extend the above result from a data set to
the population using Rademacher complexity. Recall such
complexity1 of a hypothesis class H w.r.t. random inputs
x1, . . . , xn is defined as

Rn(H) = ExEt sup
h∈H

1

n

∣∣∣∑n

i=1
tih(xi)

∣∣∣ , (20)

where t1, . . . , tn are independent random variables uni-
formly picked from {−1,+1}. Let k,M be two constants
and define the following hypothesis class

F =

{∑k

i=1
αihi | hi ∈ H,αi ∈ R.|αi| ≤ M

}
, (21)

We develop the following relation between Rn(F ) and
Rn(H). Its proof is in Appendix C.

Theorem 4.8. For any finite K,M,n > 0,

Rn(F ) = Mk · Rn(H). (22)

Combining this with standard generalization arguments e.g.,
Theorem 3.3 in (Mohri et al., 2018) and Theorem 4.8, we
obtain the following generalization error bound for RHSS.

Theorem 4.9. In Framework 1, suppose all hypotheses
are bounded by a constant T > 0 and the n instances are
sampled i.i.d.. Then there exists a constant M depending on
λ such that, with probability at least 1−δ, any output model

f satisfies er(f) ≤ ern(f)+8TMkRn(H)+T 2

√
8 log 1

δ

n .

To better interpret the bound, consider the scenario in Corol-
lary 4.7 which implies ern(f) ≤ 4c2r2

n ( 1k log 1
δ )

1
n−1 . Plug-

ging this into Theorem 4.9, the error bound becomes

4c2r2

n
(
1

k
log

1

δ
)

1
n−1 + 8TMkRn(H) +O(

1√
n
). (23)

We see k balances the first two terms, as increasing it will
decrease the 1st term (approximation error) but increase the
2nd term (complexity of F ). This makes perfect sense.

Interestingly, the balance suggests an optimal k that could
minimize the error bound. Let J(k) be the sum of the first
two terms in (23). Solving ∂J(k)

∂k = 0 gives this optimal

k =

(
c2r2(log 1

δ )
2−n
n−1

2TMRn(H)n(n−1)

)n−1
n

. Plugging this back to (23)

1Here we adopt the version with absolute value.

and assuming n is sufficiently large, it is easy to show the
1st term is in O( 1n ) and the 2nd term is in O( 1

n2 ).

Note that both terms are much smaller than the 3rd term,
which is in O( 1√

n
) and induced solely from generalization.

Then, Theorem 4.9 suggests the error induced from approx-
imation is negligible compared to the error induced from
generalization. This presents a theoretical justification on
the effectiveness of RHSS, and is also consistent with our
experimental results.

5. Applications of RHSS
Applying RHSS is straightforward: sample some hypothe-
ses, get their predictions and learn their best combination.
In practice, the design of hypothesis sampling depends on
the model. We give three examples in this section.

5.1. Kernel Ridge Regression (KRR)

Let ϕ be an (implicit) feature mapping and Hϕ be the set of
all linear hypotheses in the mapped space. Standard KRR
learns a model in Hϕ in O(n3) time.

We propose RHSS based KRR (RHSS-KRR), which ran-
domly samples hypotheses from

Hϕ =

{
n∑

i=1

βiϕ(xi) | βi ∈ R

}
. (24)

Specifically, a hypothesis is sampled by independently sam-
pling its βi’s from a proper distribution such as Gaussian.

Suppose the jth hypothesis hj =
∑n

i=1 β
j
i ϕ(xi) is sampled.

Its prediction vector can be evaluated as

h̃j = [hj(ϕ(x1)), . . . , hj(ϕ(xn))]
T = K · β⃗j , (25)

where β⃗j = [βj
1, . . . , β

j
n]

T and K is the Gram matrix.

In terms of time complexity, RHSS-KRR takes O(nk2) to
learn the output model, which is more efficient than the
standard KRR that takes O(n3), and equally efficient as
random Fourier Feature that takes O(nk2) with k random
features. The process of sampling and evaluating h̃1, . . . , h̃k

takes O(n2k), which is less efficient than RFF which takes
O(nk) but still more efficient than standard KRR.

5.2. Multi-Layer Perceptron (MLP)

Let Hτ be the set of MLPs with the same architecture τ
which specifies the number of hidden layers, number of
neurons per layer and activation functions. Standard MLP
learning is done through back-propagation.

We propose RHSS based MLP (RHSS-MLP), which ran-
domly samples a network in Hτ by independently sampling
all its weights from a proper distribution such as Gaussian.
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(a) MLP/RVFL (b) RHSS-MLP (k = 2)

Figure 1: Architectures of MLP, RVFL and RHSS-RVFL

RHSS-MLP takes O(nk2) to learn the output model, while
RVFL takes O(nm2

τ ) with mτ being the number of neurons
in the last hidden layer. Interestingly, we can view RHSS-
MLP as applying the RVFL principle on a network with
special architecture, as illustrated in Figure 1.

Figure 1(a) shows an MLP with a single hidden layer. Let
W1 be the set of weights between the input and hidden
layers, and W2 be the set of weights between the hidden
and output layers. Back-propagation optimizes W1 and W2,
while RVFL randomly sets W1 and only optimizes W2.

Figure 1(b) shows the corresponding network of RHSS-
MLP. It has k blocks of MLP’s, as k sampled hypotheses,
and combines them at the end. Let W3 be the set of weights
between the output and the last hidden layer. RHSS-MLP
randomly sets W1 and W2, and only optimizes W3.

5.3. Decision Tree

Let Hτ be the set of decision trees that can be generated
based on a feature set τ . Standard tree learning algorithms
find optimal features to split tree nodes.

We propose RHSS based tree (RHSS-Tree), which randomly
samples trees in Hτ by applying the extra tree generation
technique (Geurts et al., 2006) on bootstrap samples. More
specifically, we sample a tree by randomly selecting fea-
tures to split its nodes. Bootstrapping is necessary in this
application, since different trees generated by an extra tree
will have the same predictions on the training set, making
the optimization in (1) useless (all αi’s are identical).

Standard tree learning and extra tree learning have the same
time complexity, although the latter is faster since it avoids
the time of finding optimal features for node split. RHSS-
Tree has the same time complexity as it applies extra tree.

6. Experiments
We compare the performance of the proposed RHSS-KRR,
RHSS-MLP and RHSS-Tree with their existing randomized
counterparts on three public real-world data sets, namely,
Crime and Community, Adult and COMPAS. On each data
set, we use the first half of the instances for training and
the other half for testing. To account for the randomness in
randomized learners, we run each learner for 20 times and
report its average performance and standard deviation. We
focus on reporting accuracy of the trained models (measured
by their rooted mean square errors) versus hyper-parameter
k. In all figures, the k values are log-scaled.

In the following, we first present three sets of experi-
ments, each comparing one RHSS based learner with
its existing randomized counterpart. Then, we perform
a set of sensitivity analysis including the impact of RP
on RHSS. The codes of all experiments are available at
https://github.com/yxc827/RHSS.

6.1. Comparisons with Existing Randomized Learners

We design three sets of comparisons, each based on one
proposed application of RHSS in Section 5.

The first set compares RHSS-KRR with standard KRR and
Random Fourier Feature based KRR (RFF-KRR). We use
RBF kernel with width optimized to 1e-3. For RHSS-KRR,
the hypothesis coefficients are sampled independently from
N(0, 1). We chose this distribution simply because it is
common, but RHSS actually seems fairly robust across
different sampling distributions. (See results in the next sec-
tion.) Both KRR and RFF-KRR apply ridge regression, and
the regularization coefficient is optimized to 0.1 on Crime
and 0.001 on the other two data sets. In this experiment, k
is the number of sampled hypotheses for RHSS-KRR and
the number of random features for RFF-KRR. Results are
shown in Figure 2(a) 2(b) 2(c). We see RHSS-KRR con-
verges slightly faster than RFF-KRR, and converges to KRR
at around k = 100.

The second set compares RHSS-MLP with standard MLP
and RVFL. Since RVFL is mainly designed for the single-
hidden-layer architecture, we apply this architecture with 20
hidden neurons and ReLU activation function. For MLP and
RVFL, the regularization coefficient is optimized to 10. For
RHSS-MLP and RVFL, all non-optimized parameters are
independently sampled from N(0, 1). Results are shown in
Figure 2(d) 2(e) 2(f). We see RHSS-MLP converges to MLP
when around k = 100 and offers a better approximation of
MLP than RVFL at that point on two data sets.

The third set compares RHSS-Tree with decision tree, extra
tree and random forest. In this experiment, k is the num-
ber of sampled hypotheses for RHSS-Tree and the number
of trees for extra tree and random forest. For RHSS-Tree,

https://github.com/yxc827/RHSS
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bootstrap sample size is set to 80% of the original training
set. The configurations of all other methods are set as de-
fault. Results are shown in Figure 2(g) 2(h) 2(i). We see
RHSS-Tree and extra tree both outperform decision tree as
k increases to a small number, and can well approximate
the powerful random forest on two data sets. On COMPAS,
RHSS-Tree slightly outperforms random forest.

Figures 2(j) 2(k) 2(l) show the training time (in terms of
seconds) of all methods on Crime. We see those popular
randomized learners RFF-KRR, RVFL and extra tree are in-
deed extremely efficient, followed by RHSS based learners.
They are all a lot faster than standard learners.

Overall, we see RHSS provides an efficient and effective
randomized learning framework for different models.

6.2. Experiment with RP and Sensitivity Analysis

In this section, we evaluate the performance of random pro-
jection (RP) for KRR on the Crime and Community data
set. We experiment two methods: (i) RP-KRR first applies
RP and then applies KRR; (ii) RP-RHSS-KRR: first applies
RP and then applies RHSS-KRR. In both methods, k is
the projected dimension of RP, and we fix the number of
sampled hypotheses to 100 for RHSS-KRR. For RP, all pro-
jection entries are independently sampled from N(0, 0.01).
All other configurations are the same as before. Results are
shown in Figure 2(m). We see RP-KRR also offers a good
approximation to KRR as k increases. However, it does
not speed up learning as much as RHSS-KRR, as shown in
Figure 2(j). We also see RP-RHSS-KRR is not as efficient
as other methods, leaving how to effectively combine ran-
domized dimensionality reduction method and randomized
learning method an open question.

Next, we evaluate the performance of RHSS-KRR on Crime
with different sampling distributions. Keeping all other con-
figurations, we experiment four distributions: (i) Gaussian
N(0, 1); (iii) uniform in [−

√
3,
√
3], (iii) Laplace with zero

mean and unit scale, and (iv) symmetric Bernoulli with
p = 0.5. Results are shown in Figure 2(o). We see RHSS is
fairly robust across the different sampling distributions.

Finally, we evaluate the performance of RVFL and RHSS-
MLP when the network architecture varies. Specifically, we
increase the number of hidden neurons, with k fixed to 100
for RHSS-MLP, and report results in Figure 2(n). We see
RVFL improves as more hidden neurons are added, which
is a known result. The impact of hidden neurons on RHSS-
KRR is limited, however. Our general observation is that
RHSS based methods are mainly affected by k.

7. Conclusion
This paper presents a model-agnostic randomized learning
framework based on Random Hypothesis Subspace Sam-
pling (RHSS), which ties the popular model-specific ran-
domized learners and provides a more unified base for the
future developments of randomized machine learning.

The proposed RHSS framework is simple and easy to apply,
and cast learning for any hypothesis class as a linear least
square problem solvable in O(nk2) time with n training
instances and k sampled hypotheses. On the theory side,
we derive error bounds for RHSS and show the approxi-
mation error is negligible compared to the generalization
error, which theoretically justifies its effectiveness. On the
practical side, we demonstrate the applications of RHSS
on kernel, neural network and tree based models. In exper-
iments, we show the proposed RHSS-based learners con-
verge efficiently to standard learners and often outperform
their model-specific randomized counterparts, including ran-
dom Fourier feature, RVFL and extra tree, on real-world
data sets. Our results suggest a strong practical value of the
proposed unifying framework.
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A. Proof of Lemma 4.2
Lemma 4.2. For any U, V ∈ Gℓ,n and finite A ⊆ Sr,

dS(A,U) ≤ dS(A, V ) + dG,r(V,U). (26)

Proof. Let a ∈ A, u ∈ U and v ∈ V . There is

||a− u|| ≤ ||a− v||+ ||v − u||. (27)

Taking infimum of u ∈ U on both sides of (27) gives

inf
u∈U

||a− u|| ≤ ||a− v||+ inf
u∈U

||v − u||. (28)

Let va = arg infv∈V ||a− v||. Taking infimum of v ∈ V on both sides of (28) gives

inf
u∈U

||a− u|| ≤ inf
v∈V

(||a− v||+ inf
u∈U

||v − u||)

≤ ||a− va||+ inf
u∈U

||va − u||

= inf
v∈V

||a− v||+ inf
u∈U

||va − u||.

(29)

Since A ⊆ Sr, we have ||a|| = r and thus ||va|| = r. Then

inf
u∈U

||va − u|| ≤ inf
u∈U∩Sr

||va − u|| ≤ sup
v∈V ∩Sr

inf
u∈U∩Sr

||v − u|| ≤ DG,r(V,U). (30)

Plugging (30) back to (29) and taking supremum of a ∈ A on both sides of the inequality proves the lemma.

B. Proof of Lemma 4.4
Lemma 4.4. For random matrix H̃ in (7), if H1, . . . ,Hk are i.i.d. and each H̃i: follows a sub-Gaussian distribution and has
an invertible expected outer product, then

(i) H̃1:, . . . , H̃k: are i.i.d..

(ii) There exist constants a, b depending on the largest sub-Gaussian norm and expected outer product of H̃i:, such that a
sample of H̃ has linearly independent rows with probability at least 1− 2 exp(−b(

√
k − a

√
n)2).

Proof. We first prove (i). To show any two rows have identical distribution is trivial. To show they are independent, let
ρ(x;E) = {h ∈ H;h(x) ∈ E}. Then, for any two Hi, Hj , fixed inputs x, z and sets E1, E2, we have

Pr{Hi(x) ∈ E1, Hj(z) ∈ E2} = Pr{Hi ∈ ρ(x;E1), Hj ∈ ρ(z;E2)}
= Pr{Hi ∈ ρ(x;E1)} · Pr{Hj ∈ ρ(z;E2)}
= Pr{Hi(x) ∈ E1} · Pr{Hj(z) ∈ E2},

(31)

where the third line is by the independence assumption. The argument can be readily generalized to all inputs which implies
[Hi(x1), . . . ,Hi(xn)] and [Hj(x1), . . . ,Hj(xn)] are independent vectors. This proves claim (i).

Now we prove (ii). Let Σ = E[H̃T
i: H̃i:]. Let H̃ ′ be an k-by-n matrix whose ith row is

H̃ ′
i: = Σ−1/2H̃i:. (32)

It is easy to show H̃ ′
i: has i.i.d. sub-Gaussian isotropic rows.

Let σ′
min be the least singular value of H̃ ′. By Theorem 4.3,

Pr{σ′
min <

√
k − a′

√
n− t} ≤ 2 exp(−bt2), (33)

for some constants a′, b.

Now, pick an arbitrarily small ε > 0 and set t =
√
k − (a′ + ε)

√
n, we have Pr{σ′

min = 0} ≤ Pr{σ′
min < ε

√
n} ≤

2 exp(−b[k+(a′)2n−2a′
√
nk]). Further, let σmin be the least singular value of H̃ . Then Pr{σmin = 0} ≤ Pr{σ′

min = 0},
since a sample of H̃ with linearly dependent rows implies the existence of a sample of H̃ ′ with linearly dependent rows
constructed through (32). Setting a = (a′)2 and putting all together prove claim (ii).
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C. Proof of Theorem 4.8
Theorem 4.8. For any finite K,M,n > 0,

Rn(F ) = MK · Rn(H). (34)

Proof. For compact presentation, we will omit subscripts in the expectation in Rn, and use α and h to denote the set of
α1, . . . , αK and set of h1, . . . , hK respectively.

We first prove Rn(F ) ≤ MKRn(H). This is true because

Rn(F ) =
1

n
E sup

α,h

∣∣∣∣∑n

i=1
ti ·

(∑K

j=1
αjhj(xi)

)∣∣∣∣
=

1

n
E sup

α,h

∣∣∣∣∑K

j=1
αj ·

(∑n

i=1
tihj(xi)

)∣∣∣∣
≤ 1

n
E sup

α,h

∑K

j=1
|αj | ·

∣∣∣∑n

i=1
tihj(xi)

∣∣∣
=

1

n
E
∑K

j=1
M · sup

hj

∣∣∣∑n

i=1
tihj(xi)

∣∣∣
=

∑K

j=1
M · 1

n
E sup

hj

∣∣∣∑n

i=1
tihj(xi)

∣∣∣
= MK · Rn(H),

(35)

where the third line is by the triangular inequality (for any fixed α, h), the fourth line is by the definition of supremum so
that the sum and product of non-negative variables are maximized when these variables are maximized; the fifth line is by
the linearity of expectation.

Next we prove Rn(F ) ≥ MKRn(H). This is true because

Rn(F ) =
1

n
E sup

α,h

∣∣∣∣∑K

j=1
αj ·

(∑n

i=1
tihj(xi)

)∣∣∣∣
≥ 1

n
E sup

h

∣∣∣∣∑K

j=1
M ·

(∑n

i=1
tihj(xi)

)∣∣∣∣
≥ 1

n
E sup

hj=h′

∣∣∣∣∑K

j=1
M ·

(∑n

i=1
tih

′(xi)
)∣∣∣∣

= MK · 1
n
E sup

h′

∣∣∣∑n

i=1
tih

′(xi)
∣∣∣

= MK · Rn(H),

(36)

where the third line is obtained by setting α1, . . . , αK to M ; the fourth line is obtained by adding a constraint h1 = . . . = hK

when taking the supremum. Combining (35) and (36) proves the theorem.


