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Abstract
1We present a new finite-sample analysis of
Catoni’s M-estimator under adversarial contami-
nation, where an adversary is allowed to corrupt
a fraction of the samples arbitrarily. We make
minimal assumptions on the distribution of the
uncorrupted random variables, namely, we only
assume the existence of a known upper bound on
the (1+ε)th central moment. We provide a lower
bound on the minimax error rate for the mean
estimation problem under adversarial corruption
under this weak assumption, and establish that the
proposed M-estimator achieves this lower bound
(up to multiplicative constants). When variance is
infinite, the tolerance to contamination of any esti-
mator reduces as ε ↓ 0. We establish a tight upper
bound that characterizes this bargain. To illustrate
the usefulness of the derived robust M-estimator
in an online setting, we present a bandit algorithm
for the partially identifiable best arm identification
problem that improves upon the sample complex-
ity of the state of the art algorithms.

1. Introduction
Univariate mean estimation plays an important role in many
statistical learning problems, ranging from classification and
regression (James et al., 2013) to online learning (Lattimore
and Szepesvári, 2020; Agarwal et al., 2019). A fundamental
challenge in machine learning, using diverse data drawn
from heterogeneous sources, is that outliers and adversarial
contamination is unavoidable. For example, the presence
of outliers is the primary source of invalid inferences in
fMRI (Eklund et al., 2016). In addition to dealing with
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heavy-tails, modern machine learning also has to deal with
malicious noise (Auer and Cesa-Bianchi, 1998; Diakoniko-
las et al., 2018). Here an adversary can arbitrarily corrupt a
fraction of the data to disrupt inference. These challenges
motivate the study of robust mean estimation in this paper,
with a focus on providing estimators that can tolerate large
amount of adversarial corruption, possibly in the presence
of heavy-tailed data.

Standard mean estimation based on mean squared error is
insufficient to deal with such diverse data (Catoni, 2012);
and mean estimation based on deviations, namely, that of
estimation of confidence intervals offers a much better al-
ternative (Catoni, 2012; Brownlees et al., 2015). Here the
fundamental problem is of designing an estimator µ̂n =
µ̂n({Xi}ni=1) that for a given confidence δ ∈ (0, 1) has the
smallest possible ϱ = ϱ(n, δ) such that

P
{∣∣∣µ̂n − µ

∣∣∣ > ϱ
}
≤ δ.

In next two subsections, we briefly review the standard
results (and key challenges) for robust mean estimation
under finite and infinite variance settings, separately.

1.1. Finite Variance, ε = 1

In the case of finite variance, the classical empirical mean
is a poor estimator of mean due to the presence of out-
liers (Catoni, 2012; Devroye et al., 2016; Oliveira and Oren-
stein, 2019). In fact, it was shown in Catoni (2012) that, if
υ is the variance of the observations, then the best possible
error ϱ(n, δ) for empirical mean of {Xi}ni=1 is of the order
of υ√

δn
, which is far from the best possible, as informed by

the central limit theorem (Lugosi and Mendelson, 2019a).
Devroye et al. (2016) exhibit several sub-Gaussian estima-
tors2 of the mean such as median-of-means, trimmed mean,

2An estimator µ̂n is L-sub-Gaussian for a constant L > 0 if
for random variables with variance υ and (any) sample size n, with
probability at least 1− δ,∣∣∣µ̂n − µ

∣∣∣ ≤ L
√

υ log(2/δ)√
n

.
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and Catoni’s M-estimator.

In the presence of malicious noise, however, every robust
estimator has an asymptotic bias of O(

√
υη), where η is the

fraction of samples corrupted by the adversary (Lai et al.,
2016; Hopkins and Li, 2018; Lugosi and Mendelson, 2021).
In the univariate setting, such estimators have been derived
using the well known estimators for finite variance:

(i) Using empirical mean: The main idea here is based on the
robust estimator proposed in Lai et al. (2016). Essentially,
the data is split into two halves– one half is used to con-
struct bounded intervals that ‘trap’ many samples from the
uncorrupted distribution with a high confidence, while an
empirical estimate of the other half contained in the con-
structed interval is returned as the robust estimate of the
mean. It is shown this estimator has the (minimax) asymp-
totic bias of O(

√
υη) (Prasad et al., 2020a, Lemma 3).

(ii) Using trimmed mean: The main idea is similar to that
in Lai et al. (2016), except that instead of the intervals,
order statistics on one half of the data is used to compute the
minimum and maximum truncation levels, while a smoothed
estimate of the other half data is returned as the robust
estimated of the mean. A subtle difference here is that the
samples in the second half outside the truncation levels are
not discarded, however, are set to the truncation level. It has
been shown that this estimator again achieves the (minimax)
asymptotic bias of O(

√
υη), see Lugosi and Mendelson

(2021, Theorem 1).

It is clear that the above methods, while achieving the min-
imax error up to constants, do not make use of the data
effectively– one half of the data is used only to extract
periphery information. This, in part, motivates robust esti-
mation using M-estimators that effectively utilize the entire
data to return a robust estimate of the mean, while achieving
a high tolerance to adversarial contamination. For example,
when ε = 1, we establish that due to inherent robustness of
the proposed M-estimator, it tolerates upto 36% arbitrary
contamination, and outperforms the state of the art estima-
tors based on trimmed mean (Lugosi and Mendelson, 2021).

There is related work using Median-of-Means estima-
tor (Laforgue et al., 2021), where the number of groups
is modulated using the fraction of the outliers (η), and the
authors obtain L−sub-Gaussian like estimators with very
large L(η). The asymptotic bias is not characterized and
it is unclear whether the proposed estimator achieves the
minimax error bound. In contrast, the focus in this paper, is
to obtain sharp constants with minimax asymptotic bias.

L−sub-Gaussian estimators are optimal up to constants with L ≤√
2+o(1) identified as nearly-optimal (Devroye et al., 2016). Also

see Buldygin and Kozachenko (2000) and Li (2007, Chapter 4) for
essentially equivalent definitions (and more applications) of the
sub-Gaussian estimators.

1.2. Infinite Variance, ε < 1

When ε < 1, Devroye et al. (2016) establish that the achiev-
able ϱ(n, δ) is no longer sub-Gaussian and is in fact given
by the following result:
Theorem (Lower Bound). There exists a distribution with
mean µ and (1 + ε)th central moment υε such that for any
mean estimator µ̂n and δ ∈ (2e−n/4, 1/2),

P
{
|µ̂n − µ| >

(υ 1
ε
ε log(2/δ)

n

) ε
1+ε
}
≥ δ.

This is established in Devroye et al. (2016, Theorem 3.1).
There are estimators that obtain the optimal order such as
Median-of-Means (Bubeck et al., 2013; Minsker, 2019;
Lecué and Lerasle, 2020) and Trimmed Mean (Oliveira
and Orenstein, 2019; Lugosi and Mendelson, 2021), each
with their own merits and shortcomings. See Lugosi and
Mendelson (2019a) for an excellent summary and related
literature.

In the presence of malicious noise, however, there are no
simple estimators that achieve minimax error rate. Cher-
apanamjeri et al. (2020) consider a similar problem over
random vectors and propose a two-stage algorithm that is
inspired by semi-definite relaxations of the results derived
in Lugosi and Mendelson (2019b). However, for the uni-
variate mean estimation, the algorithm proposed is neither
efficient nor obtains sharp error bounds. The M-estimators
derived in this paper alleviate both these shortcomings and
achieve the minimax rate in univariate settings.

1.3. Main Results

Catoni’s estimator (Catoni, 2012) is a nearly-optimal es-
timator (L =

√
2 + o(1)) in the absence of adversarial

contamination and finite variance. This motivates extend-
ing the analysis to deal with adversarial contamination and
under weaker moment assumptions. The main technical
contributions are highlighted below.

1. We provide an M-estimator based on Catoni’s influ-
ence functions (Catoni, 2012) that can deal with a frac-
tion η of arbitrary adversarial contamination. The error
bounds are order optimal in η, δ and n, and achieve
the best minimax error obtainable under finite variance
assumption. While the tight non-asymptotic bounds
under contamination are of independent interest, an
interesting feature of the proposed M-estimator is that
the inherent robustness offered by the influence func-
tions facilitates a large (compared to the state of the
art) tolerance to adversarial contamination.

2. The finite variance assumption is not always valid in
machine learning applications, where the existence of
a bound on the (1 + ε)th central moment is all that is
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available. We extend the analysis to deal with adver-
sarial contamination and weak moment assumptions.
We first derive the minimax rate achievable under this
setting, and establish that the derived Catoni’s estima-
tor achieves this rate. The novel analysis also offers
insights into the nature of tolerance to contamination of
any minimax estimator as ε ↓ 0. In line with the intu-
ition, the tolerance reduces, as it becomes increasingly
difficult to distinguish contaminated samples from the
underlying data. We also explicitly characterize the
rate of this gradual decline.

3. As an application of the developed error bounds, we
demonstrate their usefulness in a multi-armed bandit
application. We propose a novel best arm identifica-
tion algorithm under adversarial contamination that
outperforms the state of the art algorithms in terms
of sample complexity and exhibits excellent empirical
performance.

1.4. Other Related Work

Mean estimation under adversarial contamination is well
researched topic in the robust statistics community. The con-
tamination model introduced by Huber (1964), called the
Huber’s contamination model, provides a solid framework
design optimal estimations that achieve statistical efficiency
and robustness simultaneously (Huber, 2004). It is not sur-
prising that it has been widely used to model adversarial
contamination in statistical learning (Chen et al., 2016; 2018;
Prasad et al., 2020b; Sun et al., 2020; Laforgue et al., 2021;
Bhatt et al., 2022a) and online learning (Chen et al., 2021b;
Prasad et al., 2020a; Zhu et al., 2020; Bhatt et al., 2022b).

In the context of bandit applications, best arm identification
algorithms under adversarial contamination based on Hu-
ber’s contamination model was first considered in Altschuler
et al. (2019) and several abstract frameworks were intro-
duced to address this challenging setting. We adopt one
such framework called the Partially Identifiable Best Arm
Identification (PIBAI) framework to propose algorithms us-
ing the developed estimators. While Altschuler et al. (2019)
used the median to define and identify the best arm, Mukher-
jee et al. (2021) consider the traditional setting using the
mean instead. In this work, we consider PIBAI problem in
the fixed confidence setting, and seek to identify the arm
having the largest mean using as few samples as possible.

2. Contamination Model
Let {Xi}i≤n be i.i.d observations with EX1 = µ. We as-
sume that for some corruption rate 0 < η < 1, an adversary
may change at most ηn of these observations to arbitrary val-
ues. The resulting set of observations will be X̃1, X̃2, X̃n,

so that
n∑

i=1

1
(
X̃i ̸= Xi

)
≤ ηn. (1)

The task is to estimate the true mean µ based on the obser-
vations X̃1, X̃2, · · · , X̃n.

This strong adversarial contamination model is well-studied
in machine learning; see Charikar et al. (2017); Hopkins and
Li (2018); Lugosi and Mendelson (2021) and the related
references for existing results. It should be noted that the
well known ϵ−Huber contamination model (Huber, 2004),
is just a special case of (1); see Lai et al. (2016) and Prasad
et al. (2020a) for robust mean estimation procedures using
this model. We will develop M-estimators to deal with the
contamination model given in Eq. (1).

The contamination model Eq. (1), while allowing arbitrary
contamination, is retrospective in that the adversary corrupts
a fraction of the sample possibly with the knowledge of the
whole data set. This is more than what the adversary can
do in an online corruption setting, where the adversary can
choose to contaminate based only on the observed data. So
hereafter, we assume η for online settings as well without
loss of generality (see Appendix B).

3. Robust M-estimator for Finite Variance
We use a special version of the estimator of the mean that
was proposed by Catoni (2012). In the context of L−sub-
Gaussian estimators, the estimator proposed in Catoni
(2012), which is henceforth referred to as Catoni’s estimator,
is significant owing to the fact that it is a (nearly) optimal3

sub-Gaussian estimator of the mean with L =
√
2 + o(1).

This motivates extending this estimator to deal with ad-
versarial contamination. In the following, the terminology
“robust” is used to collectively describe the stability of the
estimator with respect to the tail-behavior of the data, and
how well it ‘tolerates’ adversarial corruption.

Start with a non-decreasing function ψ : R → R such that

− log(1− x+ x2/2) ≤ ψ(x) ≤ log(1 + x+ x2/2) (2)

for all x ∈ R. One can choose such a function that is
bounded4: specifically, we for some 0 < A <∞,

|ψ(x)| ≤ A for all x ∈ R. (3)

Robust Catoni’s Estimator: We define the estimator of µ,
denoted by µ̂, as the solution of the equation in the variable θ

n∑
i=1

ψ
[
α(X̃i − θ)

]
= 0. (4)

3Here optimal is to be understood in the sense that the Catoni’s
estimator comes close the best possible L(=

√
2).

4see Eq. (67) in Appendix C.1 for an explicit representation.
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Clearly, ψ(x) = x corresponds to the empirical mean,
though it does not satisfy Eq. (2). Catoni (2012) notes
that the empirical mean is unduly influenced by large values
when the distribution tails are not themselves sub-Gaussian.
When instead ψ(x) satisfies Eq. (2), it is similar to the linear
function for small and moderate values of x, but its logarith-
mic rate of growth reduces the effect of large values. Un-
like classical M-estimation (Huber, 2004) literature, Catoni
(2012) uses unbounded influence functions to obtain sharp
confidence bounds. However, we will show that when we
use a bounded function instead, Catoni’s estimator can deal
with adversarial contamination as well.

Theorem 3.1. Let δ ∈ (0, 1) such that δ ≥ 2e−n/4.
Let {Xi}ni=1 be i.i.d random variables with mean µ and
E|X1 − µ|2 ≤ υ. Let the corruption parameter η ∈ [0, 1

4A )
for A > 0 in Eq. (3). Let Ω ∈ (0, 1

Aη − 4) be such that

n ≥ 4 log(2/δ)

1− (Ω + 4)Aη
.

Robust Catoni’s M-estimator µ̂ with parameter

α =
1

υ1/2

(
ΩAη +

2 log(2/δ)

n

)1/2
,

satisfies, with probability at least 1− δ,

|µ̂− µ| < υ1/2
(Ω+4)
2Ω1/2 A

1/2η1/2 + ( 2 log(2/δ)
n )1/2

1− (Ω + 4)Aη/2− 2 log(2/δ)/n
. (5)

Moreover, with probability at least 1− 2 exp
(
− ηA

4 n
)

, we
have that

|µ̂− µ| < C̃
√
υη, (6)

for some C̃.

Theorem 3.1 provides a non-asymptotic error bound for
the robust mean estimator in the presence of adversarial
contamination. Clearly, the asymptotic bias is O(

√
υη),

which is information theoretically optimal (Hopkins and
Li, 2018). The error bound obtained in Eq. (5) is not the
tightest possible. A slightly sharper error bound that is
less explicit in the dependence on the parameters can be
similarly obtained.

Corollary 3.2. Under the same assumptions as in Theo-
rem 3.1, with probability at least 1− δ,

|µ̂− µ| < (Ω + 4)Aη + 4(log(2/δ)/n)

2α
(
1− (Ω + 4)Aη/2− 2 log(2/δ)/n

) .
3.1. Minimax Lower Bound

The minimax error bound for estimators under finite vari-
ance bound assumption has been derived in Diakonikolas
et al. (2017); Lugosi and Mendelson (2021). In this section,

we will repeat the key ideas that will enable the proof of the
minimax lower bound for variables with bounded (1 + ε)th

moments in Sec.4.3.

Since at most η fraction of the samples can be corrupted
by the adversary, Lugosi and Mendelson (2021) argue that
the adversary can arbitrarily corrupt the values in the tail
quantiles5 Q1−η/2(X − µ) and Qη/2(X − µ) to introduce
the worst possible error. Then with a high probability, no
estimator can perform better than

max
{
E
[
|X − µ−Qη/2|1

(
X − µ ≤ Qη/2

)]
,

E
[
|X − µ−Q1−η/2|1

(
X − µ ≥ Q1−η/2

)]}
.

This combined with the sub-Gaussian error bound under no
contamination obtains the best minimax error as

cv1/2 max
{
η1/2,

(
(log 2/δ)/n

)1/2}
, (7)

where c is an absolute constant. By considering a thresh-
old on the range of n as a function of δ and η, it follows
that Eq. (5) switches between a sub-Gaussian estimator and
that having order optimal corruption bias Eq. (6), essentially
matching the lower bound.

3.2. Comparison with Lugosi and Mendelson (2021)

Lugosi and Mendelson (2021) develop a mean estimator
based on trimmed mean that is robust to adversarial contam-
ination. The corruption parameter η is required to satisfy

8η + 12
log(4/δ)

n
≤ 1

2
.

An upper bound on the corruption fraction tolerated by the
robust trimmed mean estimator is η < 1/16 or around 6%.
In contrast, for the robust Catoni’s estimator in Eq. (5), the
upper bound on η is 1/4A. For A = log 2 as in Eq. (67),
the robust estimator can tolerate up to 36% contamination –
around three times higher!

3.3. Comparison with Robust Empirical Mean

Prasad et al. (2020a) develop an interval estimator of empir-
ical mean that is robust to adversarial contamination. The
corruption parameter η is required to satisfy

2η +

√
η
log(4/δ)

n
+

log(2/δ)

n
≤ 1

2
.

An upper bound on the corruption fraction tolerated by the
robust trimmed mean estimator is η < 1/4 or at most 25%,

5Here the quantile is identified as

Qp(X − µ) := sup
M∈R

P{X − µ ≥ M} ≥ 1− p
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compared with the the robust Catoni’s estimator in Eq. (5)
that can tolerate up to 36% contamination.
Remark 1. Here we would like to point out that Lugosi and
Mendelson (2021) and Prasad et al. (2020a) did not push the
requirement of η to the limit. The constants cannot be easily
improved, however, using their current proof techniques. So
there might be room for improvement in each of the estima-
tors, which could be worthwhile exploring as future work.

4. Robust M-estimator for Infinite Variance
Let ε ∈ (0, 1] and let a sequence of i.i.d random vari-
ables {Xi}ni=1 be such that E(X1) = µ and E|X1 −
µ|1+ε ≤ υε. For Cε > 0, let ψ : R → R be a non-
decreasing influence function such that for all x ∈ R

− log(1−x+Cε|x|1+ε) ≤ ψ(x) ≤ log(1+x+Cε|x|1+ε).
(8)

Chen et al. (2021a) choose Cε = 1
ε inspired by Taylor-

like expansions. Minsker (2018, Section 3.4) choose Cε =
ε

1+ε ∨
√

1−ε
1+ε . Motivated by the choice of the co-efficient

in Eq. (2), we choose a value that satisfies

(1− x+ Cεx
1+ε)(1 + x+ Cεx

1+ε) ≥ 1, ∀ x ≥ 0,

and is chosen as

Cε =
( ε

1 + ε

) 1+ε
2
(1− ε

ε

) 1−ε
2

.

When ε = 1, we also recover the coefficient in Catoni
(2012), namely C1 = 1/2.

One can choose a bounded function6 satisfying Eq. (8):
specifically, we assume that for some 0 < Aε <∞,

|ψ(x)| ≤ Aε for all x ∈ R. (9)

Robust Catoni’s Estimator for ε < 1: As before, we define
the Catoni’s M-estimator µ̂ε as a solution of the equation
in the variable θ, namely,

∑n
i=1 ψ

(
α(X̃i − θ)

)
= 0 using

an influence function ψ satisfying Eq. (8). If the solution
is not unique, choose µ̂ε to be the median solution. Again
the motivation is to reduce the effect of large values using a
logarithmic function.

Theorem 4.1. Let {Xi}ni=1 be i.i.d random variables with
mean µ and E|X1−µ|1+ε ≤ υε. Fix δ ∈ (0, 1), τ > 0, 0 <
h < 1 and B > 0, and let the corruption parameter η ∈
[0, τ1/ε

2Aε(1+τ)(1+ε)/εC
−1/ε
ε ) for ε ∈ (0, 1]. Let n be such that

n ≥ log(2/δ)(1 + h−εB1+εCε)
τ1/ε

(1+τ)(1+ε)/ε (1− h)C
−1/ε
ε − 2Aεη(1 + h−εB1+εCε)

.

6see Eq. (69) in Appendix C.2 for an explicit function repre-
sentation.

Catoni’s M-estimator µ̂ε with parameter

α = Bv−1/(1+ε)
ε

(
2Aεη +

log 2/δ

n

)1/(1+ε)

.

satisfies, with probability at least 1− δ,

|µ̂ε − µ| < (1 + τ)v1/(1+ε)
ε

(
2Aεη +

log 2/δ

n

)ε/(1+ε)

×
(
h−εBεCε + 1/B

)
. (10)

Note that the error we have obtained in Eq. (10)
has the ηε/(1+ε) dependence on the corruption
rate,

(
(log 2/δ)/n

)ε/(1+ε)
dependence on the num-

ber of observations, and has a v1/(1+ε)
ε dependence on the

centered moment. We will see below that this order of
magnitude is optimal.

4.1. Choice of τ, h and B in Eq. (10)

Choose τε,η > 0 and 1 > hε,η > 0, and B > 0 such that

(1−hε,η)
τ
1/ε
ε,η

(1 + τε,η)(1+ε)/ε
>
(
1+h−ε

ε,ηB
1+εCε

)
C1/ε

ε 2Aεη.

As η → 0, we can choose τε,η arbitrarily close to 0, hε,η
arbitrarily close to 1, and then choose B that minimizes
the expression in the right hand side of Eq. (10) for h arbi-
trarily close to 1, i.e. B = (εCε)

1/(1+ε). This gives us the
following result.

Corollary 4.2. For large n and small η, with probability at
least 1− δ,

|µ̂ε − µ| ≤ (1 + o(1))v1/(1+ε)
ε (1 + ε)ε−ε/(1+ε)C1/(1+ε)

ε

×
(
2Aεη +

log 2/δ

n

)ε/(1+ε)

.

Note that for ε = 1, the result recovers the near-optimal
asymptotic constant for η ≈ 0 as in Catoni (2012) (see also
Theorem 3.1) as C1/2

1 = 1/
√
2. This indicates that error

bounds are nearly-tight for ε < 1 as well in the absence of
contamination. This is not the case, for example, with the
estimator proposed in Chen et al. (2021a) for η = 0.

4.2. Corruption tolerance under ε < 1

Below we present a tight upper bound on the tolerance to
contamination when ε ∈ (0, 1].

Corollary 4.3. For any ε ∈ (0, 1], the robust M -estimator
for infinite variance can tolerate a corruption level η ∈
[0,Λ(ε)) with

Λ(ε) :=
Ω(ε)

−2 log
(
1− Ω(ε)

) ,
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where Ω(ε) :=
(
(1 + ε)(1+ε)/(2ε)(1− ε)(1−ε)/(2ε)

)−1
.

It turns out that, for a fixed value of the parameter τ > 0,
an upper bound on the contamination rate that our estimator
can handle is:

2Aεη <
τ1/ε

(1 + τ)(1+ε)/ε
C−1/ε

ε .

The value τ = 1/ε maximizes the expression in the right
hand side above, so assuming that Aε is given in Eq. (68),
the upper bound on the contamination rate Λ(ε) given in the
corollary is obtained.

ε 0.001 0.1 0.3 0.5 0.9 1
Λ(ε) (as %) 7% 16% 22% 26% 34% 36%

Table 1. Percentage corruption tolerance

In Table 1, as ε decreases from 1 to 0, Ω(ε) increases from
1/2 to 1, and the upper bound on the contamination rate de-
creases from 1/(4 log 2) to 0. Remarkably, even in the chal-
lenging setting when ε = 0.001, the proposed M-estimator
tolerates around 7% contamination.

4.3. Minimax Lower Bound for ε < 1

We establish now a lower bound on the best minimax error
rate achievable under adversarial contamination in the weak
moment setting.

Theorem 4.4. Let n > 0 and δ ∈ (0, 1) be such
that δ ≥ 2e−n/4. Let ε ∈ (0, 1] and distribution D be

such that EX1∼D

∣∣∣X1 − µ
∣∣∣1+ε

= υε. The error bound of

any estimator µ̂n({Xi}i≤n) in the adversarial contamina-
tion setting with corruption parameter 0 < η < 1 is at
least

qυ1/(1+ε)
ε max

{
η

ε
1+ε ,

( log(2/δ)
n

) ε
1+ε
}
,

for a suitable absolute constant q.

Clearly, the error we obtain in Eq. (10) is minimax optimal
in the sense of Theorem 4.4 using arguments similar to
those in Sec 3.1. Essentially, there is threshold for n de-
pending on ε, δ & η beyond which the bias dominates and
below which the natural variability of the data dominates.
Remark 2. All results derived in the previous sections re-
quire the knowledge of vε. The extension to the unknown
moment parameter vε can be achieved using Lepskii’s
method (Lepskii, 1992), which adapts to any unknown mo-
ment of the problem, by compromising on the tightness of
the deviations.

5. Application: Best Arm Identification
Consider the best arm identification problem on a multi-
armed bandit with [K] := {1, 2, · · · ,K} arms in a fixed
confidence setting. The goal is to identify the best arm with
a high probability, while providing qualitative guarantees.
A primary difficulty in the contaminated setting, as opposed
to the classical setting (Even-Dar et al., 2006), is that the
true parameters can only be partially identified (Altschuler
et al., 2019), even with infinite samples. That is, there is an
inherent asymptotic bias associated, which needs to be taken
into account while identifying the best arm. This motivates
the partially identifiable best arm identification framework
(PIBAI) of Altschuler et al. (2019), summarized as follows.

With each arm i ∈ [K], associate a family of reward distri-
butions Di = {Di(µi, η)}η∈E , where η represents a corrup-
tion, and E is some space. The uncorrupted reward associ-
ated with arm i has mean µi and a centered 1 + ε-moment
not exceeding υε, 0 < ε ≤ 1. Let ∗ = argmaxi∈[K]µi

denote the best arm.

To simplify notation, rewrite Eq. (5) and Eq. (10) as follows.
For any arm i ∈ [K],

|µ̂i(t)− µ| ≤ Hi(η) +Gε,η(δ)
(1
t

) ε
1+ε

, (11)

where Hi(η) and Gε,η(δ) absorb the missing terms (see
Appendix C.3).

PIBAI Model Assumptions (Altschuler et al., 2019):

A1. Even with infinite samples Xt(i) ∼ Di(µi, ηt) for un-
known ηt, t = 1, 2 · · · , it is impossible to estimate µi

more precisely than the region [µi ±Hi].

A2. The unavoidable biases {Hi}i∈[K] are such that the
effective gaps

∆i := (µ∗ −H∗)− (µi +Hi) (12)

are strictly positive for each sub-optimal arm i ̸= ∗.

A3. There exists an algorithm that is δ−PAC7 for the given
contaminated bandit instance (D).

The above assumptions are motivated by the fact that, even
if any estimator computes the means of the individual arms
with large tolerance in the presence of contamination, it
is not guaranteed that the relative ordering between the

7Any PIBAI algorithm is said to be δ−PAC if it outputs an
arm Î that satisfies the following with probability at least 1− δ,

P
{
µÎ +HÎ < µ∗ −H∗

}
≤ δ.
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estimated means remains the same. In fact, if Eq. (12) does
not hold, it can be shown that no algorithm can distinguish
between the best and the second best arms, even with access
to infinitely many samples (Altschuler et al., 2019).

5.1. Adversarial Elimination with Catoni

A näive approach to identify the best arm that attains opti-
mal order of sample complexity up to logarithmic terms is
based on successive elimination. However, the standard al-
gorithms achieve the optimal order with doubly-logarithmic
terms. When ε = 1, Altschuler et al. (2019) argue that the
most common approaches (Karnin et al., 2013; Jamieson
et al., 2013) to improve order to O(log

(K log(1/∆i)
δ

)
1
∆2

i
)

are unsuccessful in the presence of contamination. The key
issue that contributes to this shortcoming – unlike a classical
successive elimination algorithm (Mukherjee et al., 2021) –
is that these algorithms heavily rely on the “additive prop-
erty of suboptimality” for successful identification: When
the biases ∀i, Hi = 0, ∆i = ∆j + µj − µi. Clearly this is
not true when Hi ̸= 0. We next provide an improvement of
successive elimination algorithm that alleviates this short-
coming and achieves better sample complexity in terms of
∆i for ε ∈ (0, 1], in the contamination setting.

For i ∈ S, let the elimination criterion for Algorithm 1 be
specified as{
µ̂i(tm) +Gε,η

( δ

2K(m+ 1)2

)( 1

tm

) ε
1+ε
}

(13)

< max
j∈S

{
µ̂j(tm)−Gε,η

( δ

2K(m+ 1)2

)( 1

tm

) ε
1+ε
}
,

where m is the phase index.

Theorem 5.1 (Sample Complexity). Let ε ∈ (0, 1]. Suppose
Assumptions A1-A3 hold. With probability at least 1 −
δ, Algorithm 1 outputs S = {∗}, after pulling at most

max

{
O

( ∑
i∈[K]

log
(K log(1/∆i)

δ

) 1

∆
1+ε
ε

i

)
,Ktinit

}
,

samples, where ∆i is defined as Eq. (12) using η = ηinit
and tinit as defined in Algorithm 1.

The key intuition for reduction in sample complexity is as
follows: various successive elimination algorithms were ini-
tially proposed in Even-Dar et al. (2006), and later modified
to regret minimization setting in Auer and Ortner (2010).
Here the length of the phase is modulated by a parameter
representing unknown sub-optimality gaps (∆̃), and elim-
ination of arm i is identified when ∆̃ < ∆i/2. While this
is sufficient for the purposes of regret minimization, it falls
short in terms of the reducing samples for best arm identifi-
cation. The elimination parameter γ, barely greater than 1,
in Algorithm 1 balances this trade-off between elimination

Algorithm 1 Adversarial Elimination with Catoni (AECat)
1: Input: δ,K, σ, ε, υε, γ(> 1)
2: Initialization: Set S := [K], phase index m = 0
3: Set t0 = 0 and

t1 := tinit = max
{(
γGε,η(δ/2K)

) 1+ε
ε

, Tε(σ,
δ

2K
)
}

4: while |S| > 1 do
5: Increase phase index m by 1
6: Sample every arm in S for max{tm−tm−1, 0} times
7: Compute µ̂i(t) with appropriate α
8: Remove all arms i from S which satisfy Eq. (13)
9: Update S as the remaining arms and set m = m+ 1

10: Set tm =
(
γmGε,η(δ/2K(m+ 1)2)

) 1+ε
ε

11: end while
12: Output: S

and sample complexity. We establish that once the phase
index is such that(
γmGε,η(δ/2Km

2)
) 1+ε

ε ≥
⌈(4Gε,η(

δ
4Km2 )

∆i

) 1+ε
ε
⌉
,

then arm i will be eliminated before phase m, whence we
obtain m = O(logγ(4/∆i)).

In Algorithm 1, the Catoni’s estimate is computed at the
end of each phase. To simplify algorithmic notation,
let Tε(σ, δ) = σ log 2

δ to denote the minimum number of
samples required in Theorem 3.1 and Theorem 4.1, where

σ =


4

1−(Ω+4)Aη , ε = 1,
(1+h−εB1+εCε)

τ1/ε

(1+τ)(1+ε)/ε
(1−h)C

−1/ε
ε −2Aεη(1+h−εB1+εCε)

, ε < 1.

A few parameters appearing in T (σ, δ) are suppressed in the
algorithm inputs for simplicity. The choices of the missing
parameters are guided by the discussion in Sec. 4.1 for
implementation purposes. The choice of α in Step 9 is
further guided by Theorem 3.1 and Theorem 4.1 for ε = 1
and ε < 1 cases, respectively.

There are two main drawbacks of the traditional succes-
sive elimination-type algorithm when using Catoni’s es-
timator: (i) Unlike the proposed AECat method, which
is phase-based, the mean estimation by root finding
needs to be performed at every time for all the non-
eliminated arms. We find it extremely computation-
ally inefficient in our experiments. (ii) The sample
complexity is at best O(log(K/δ∆i)/∆

1+ε/ε
i ) as opposed

to O(log
(K log(1/∆i)

δ

)
/∆

1+ε/ε
i ) using AECat, and this trans-

lates to better empirical performance. When ∆i is suffi-
ciently small, the successive elimination-type method ex-
hibits a very bad empirical performance.
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Figure 1. Average sample complexity over 50 iterations for the two algorithms: SE-CBAI as proposed in Mukherjee et al. (2021) and
Algorithm 1 shortened as AECat. The true/ uncontaminated distribution is taken to be Gaussian, and the sensitivity w.r.t to contamination
distribution and fraction of contamination is shown. As expected, the sample complexity decreases with lower contamination levels. True
mean values are chosen as µk = 2− (i/K)0.1 for 0 ≤ i < K. The top six figures correspond to ε = 1. The last two figures correspond
to best arm identification in heavy-tail settings under contamination, and use ε = 0.85 for a bound of υε = 50. These indicate how the
number of arms affect the identification as a function of δ.

5.2. Experimental Results

In this section, we describe the experimental setup designed
to evaluate the performance of the proposed algorithm
against the existing baseline.

Mukherjee et al. (2021) propose a successive elimination
algorithm (SE-CBAI) for contaminated best arm identifica-
tion sub-Gaussian setting, using a suitable trimmed mean
estimator for robustness and confidence bounds adjusted
to provide good sample complexity. Since SE-CBAI is
proposed in the sub-Gaussian setting, we provide the per-
formance comparison as shown in this setting, while al-
lowing the contamination distribution to be selected from
common models of noise. As the implementation details
of SE-CBAI and technical details of another gap based al-

gorithm (G-CBAI) – for the asymptotic setting (δ ↓ 0) –
are not clear, we tuned the parameters that reflect the ob-
tained performance in the paper and use that throughout
for comparison. The hyper-parameters (Ω, τ, B, h, γ) in Al-
gorithm 1 are tuned as follows: To compute the Catoni’s
estimator Eq. (4), for ε = 1, we need to calculate α, which
depends on Ω ∈ (0, 1/Aη−4). Smaller Ω results in smaller
initial exploration, while increasing the magnitude of H(η)
in Eq. (5) – a quantity of interest from assumption A2. We
choose Ω = 0.25 · (1/Aη − 4). The factor γ > 1 in
Algorithm 1 that controls the exploration should be cho-
sen barely greater than 1 for good performance, and we
choose γ = 1.01. From Eq. (10), for ε < 1, we can
choose h ≥ 0.5, and a τ ∈ (0, 2) that obtains a valid but
large B (note that this affects the error bound in Eq. (10)).
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We take h = 0.5, τ = 1.2 and use B = 0.8. While the algo-
rithm has more inputs than a typical successive elimination
algorithm, it should be noted that tuning is straightforward
here as we know the trade-offs. Results under different set-
tings are summarized in Figure 1. Our method is uniformly
better than SE-CBAI under various scenarios.

6. Generalization to Unknown η

Suppose, the true contamination level ηtrue is significantly
smaller than the upper bound η, then the upper bounds given
in the main theorems may be larger than desirable. We will
use the idea proposed in Jain et al. (2022) to deal with an
unknown or a loose η. Jain et al. (2022) do not address
probabilistic statements, and we contribute to this literature.
In this section, we only consider the finite variance case, i.e.,
ε = 1. The extension to the infinite variance case is easily
derived using similar constructions.

Let 0 < ηmin < η < 1
4A be a threshold to be decided upon

in the sequel. Choose a number θ ∈ (0, 1) and consider the
following sequential contamination bounds

ηk = ηθk, k = 0, 1, . . . , J, (14)

where
J = min

{
k ≥ 1 : ηθk ≤ ηmin

}
. (15)

Let δk for k = 0, 1, . . . , J be confidence levels. For every
k, we compute the estimator m̂(ηk, δk) in the same way as
derived in Theorem 3.1 to obtain a confidence interval as

Ik =
(
m̂(ηk, δk)−B(ηk, δk), m̂(ηk, δk) +B(ηk, δk)

)
,

where

B(ηk, δk) (16)

=v1/2
(K + 4)/(2K1/2)A1/2η1/2 +

(
(2 log 2/δ)/n

)1/2
1− (K + 4)Aη/2− 2(log 2/δ)/n

.

By using interval sequences {Ik}, we can construct a tighter
estimator as follows. We first define index J0 to be

J0 := max{k = 0, . . . , J : ∩k
j=0Ij ̸= ∅}. (17)

The desired estimator is defined as

µ̂ := m̂(ηJ0 , δJ0). (18)

In particular, we can choose the confidence sequence
{δk} = {2−kδ} for convenience. For θ, we can set it as 1/4.
In terms of ηmin, we can set

ηmin = min

{
2 log(2/δ)/n

(Ω + 4)2A/(4Ω)
, η

}
.

The choice of such ηmin has the following advantages.

1. If ηtrue ≥ ηmin, we can guarantee that ηJ0
≤ 4ηηtrue

with
a high probability. This implies an error order of O(η

1/2
true).

2. If ηtrue < ηmin, we know that µ̂ will have error of order
O(η

1/2
min). Thanks to the choice of ηmin, the error will never

exceed O(( log(2/δ)n )1/2).

The above arguments imply that µ̂ in (18) enjoys an error
bound of O(max{η1/2true, (

log(2/δ)
n )1/2}). Formally, we have

the following result.

Theorem 6.1. Let δ ∈ (0, 1) such that δ ≥ 2e−n/4. Let
{Xi}ni=1 be i.i.d. random variables with mean µ and
E|X1 − µ|2 ≤ v. Suppose the true corruption parameter
ηtrue ∈ [0, 1

4A ). Let Ω satisfy

(Ω + 4)Aη + 4(log 2/δ)/n (19)

+
4 log 2

n log 4

(
log
[
(Ω + 4)2Aη/(4Ω)

]
+ log n

)
≤ 1.

Then the estimator defined in (18) satisfies

|µ̂− µ| (20)

≤υ1/2
(Ω+4)
2Ω1/2 A

1/2η
1/2
true + ( 2J0 log 2

n )1/2 + 2( 2 log(2/δ)
n )1/2

1− (Ω + 4)Aηtrue/2− 2J0 log(2)/n− 2 log(2/δ)/n
.

with probability at least 1− 2δ.

The error bound in (20) is free of choice of η, which makes
our theoretical results more appealing in the practical prob-
lems.

7. Conclusion
We provided a minimax M-estimator based on influence
functions inspired by Catoni (2012), which is known to be
nearly-optimal in the absence of contamination. In the ad-
versarial contamination setting, the proposed M-estimator
tolerates more corruption than the state of the art estimators
and achieves the minimax error rate both in the finite (ε = 1)
and infinite variance (ε < 1) setting. We also explicitly
characterized the maximum tolerance as a function of ε for
the proposed estimators. We then proposed a novel best
arm identification algorithm in the contaminated setting,
that works in both bounded and heavy-tailed settings, and
achieves better theoretical sample complexity and empirical
performance than the state of the art. Finally, we extend
the minimax estimation procedure to incorporate the chal-
lenging setting where a tight upper bound on the corruption
level η is unknown, greatly improving the applicability of
the proposed minimax M-estimators in applications.

Currently, we require the knowledge of ε for obtaining the
bounds. A recent work (Ashutosh et al., 2021) discusses
adhoc ways of choosing ε that obtains a decent compromise.
Extending these ideas for minimax M-estimation might be
a worthwhile avenue for further exploration.
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A. Proofs of Main Results
A.1. Proof of Theorem 3.1

For α > 0 define two functions of θ ∈ R:

r(θ) =
1

αn

n∑
i=1

ψ
(
α(Xi − θ)

)
, r̃(θ) =

1

αn

n∑
i=1

ψ
(
α(X̃i − θ)

)
. (21)

Note that by Eq. (1) and Eq. (3), ∣∣r(θ)− r̃(θ)
∣∣ ≤ 2Aη/α (22)

for any θ ∈ R. As in Catoni (2012), for θ ∈ R, we define

B+(θ) = µ− θ +
α

2

[
v + (µ− θ)2

]
+

log 2/δ

nα
,

B−(θ) = µ− θ − α

2

[
v + (µ− θ)2

]
− log 2/δ

nα
.

Let P denote a probability measure that encompasses the randomness in the observations X1, . . . , Xn as well as any
randomness that may be used by the adversary in corrupting the sample. It follows from Eq. (22) that for any θ

P
(
r̃(θ) ≥ B+(θ) + 2Aη/α

)
≤ P

(
r(θ) ≥ B+(θ)

)
≤ δ/2, (23)

P
(
r̃(θ) ≤ B−(θ)− 2Aη/α

)
≤ P

(
r(θ) ≤ B−(θ)

)
≤ δ/2.

Let θ+ be the smallest solution of the equation

0 = B+(θ) + 2Aη/α = µ− θ +
α

2

[
v + (µ− θ)2

]
+

log 2/δ

nα
+

2Aη

α
(24)

and let θ− be the largest solution of the equation

0 = B−(θ)− 2Aη/α = µ− θ − α

2

[
v + (µ− θ)2

]
− log 2/δ

nα
− 2Aη

α
, (25)

provided, of course, that these solutions exist.

Let us concentrate first at θ+. Denoting x = θ − µ, the equation Eq. (24) becomes

α

2
x2 − x+

(
α

2
v +

log 2/δ

nα
+

2Aη

α

)
= 0, (26)

and, if real solutions exist, then the smallest such solution is given by

x+ =
1−

√
1− α2v − 4Aη − 2(log 2/δ)/n

α
. (27)

Of course, for a real solution to exist, the expression under the square root must be non-negative. This immediately says that
our approach may work only if the corruption level η satisfies

η < 1/(4A). (28)

With A = log 2, the limit on the corruption level becomes η < 0.36.

Assuming that Eq. (28) holds, a real solution to the equation Eq. (26) exists whenever

α2v + 2(log 2/δ)/n ≤ 1− 4Aη. (29)
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In that case x+ in Eq. (27) is real, and

0 ≤ x+ =
αv + 4Aη/α+ 2(log 2/δ)/(αn)

1 +
√

1− α2v − 4Aη − 2(log 2/δ)/n

≤ αv/2 + 2Aη/α+ (log 2/δ)/(αn)

1− α2v/2− 2Aη − (log 2/δ)/n
.

That is,

θ+ ≤ µ+
αv/2 + 2Aη/α+ (log 2/δ)/(αn)

1− α2v/2− 2Aη − (log 2/δ)/n
. (30)

We need to choose α. Choose Ω so that
0 < Ω < 1/(Aη)− 4,

and let

α =
1

v1/2

(
ΩAη +

2 log 2/δ

n

)1/2

.

Then Eq. (29) holds whenever
(Ω + 4)Aη + 4(log 2/δ)/n ≤ 1. (31)

It follows from Eq. (24) that

θ+ ≤µ+
(v1/2/2)

(
(Ω + 4)Aη + 4(log 2/δ)/n

)
/
(
ΩAη + 2 log 2/δ

n

)1/2
1− (Ω + 4)Aη/2− 2(log 2/δ)/n

(32)

≤µ+ v1/2
(Ω + 4)/(2Ω1/2)A1/2η1/2 +

(
(2 log 2/δ)/n

)1/2
1− (Ω + 4)Aη/2− 2(log 2/δ)/n

.

It follows by the monotonicity of the function ψ that, with probability at least 1− δ/2,

µ̂− µ ≤ v1/2
(Ω + 4)/(2Ω1/2)A1/2η1/2 +

(
(2 log 2/δ)/n

)1/2
1− (Ω + 4)Aη/2− 2(log 2/δ)/n

. (33)

Performing the same analysis with θ−, we conclude that, with probability at least 1− δ/2,

µ− µ̂ ≤ v1/2
(Ω + 4)/(2K1/2)A1/2η1/2 +

(
(2 log 2/δ)/n

)1/2
1− (Ω + 4)Aη/2− 2(log 2/δ)/n

. (34)

Combining Eq. (33) with Eq. (34), we conclude that, with probability at least 1− δ,

|µ̂− µ| ≤ v1/2
(Ω + 4)/(2K1/2)A1/2η1/2 +

(
(2 log 2/δ)/n

)1/2
1− (Ω + 4)Aη/2− 2(log 2/δ)/n

. (35)

The second part of the theorem follows from using n ≥ 4
Aη log(2/δ). By routine algebraic manipulations, we obtain

|µ̂− µ| < C̃
√
ηυ,

where C̃ :=
(Ω+4)/(2K1/2)A1/2η1/2+ 1√

2

1−(Ω+4)Aη/2−Aη
2

.
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A.2. Proof of Corollary 3.2

The result follows from Eq. (32) in Theorem 3.1 and the definition of α.

A.3. Proof of Theorem 4.1

Initial analysis is similar to Theorem 3.1. Consider the following convexity upper bound as follows. For a, b ≥ 0 and
0 < h < 1,

(a+ b)1+ε =
(
h
a

h
+ (1− h)

b

1− h

)1+ε

,

≤ h
(a
h

)1+ε

+ (1− h)
( b

1− h

)1+ε

=
a1+ε

hε
+

b1+ε

(1− h)ε
. (36)

Therefore, for any 0 < h < 1,

E|X1 − θ|1+ε ≤ h−εE|X1 − µ|1+ε + (1− h)−ε|µ− θ|1+ε. (37)

For 0 < h < 1, define

B+(θ) = (µ− θ) + h−ε2εCεα
εvε + (1− h)−ε2εCεα

ε|µ− θ|1+ε +
log 2/δ

αn
, (38)

B−(θ) = (µ− θ)− h−ε2εCεα
εvε − (1− h)−ε2εCεα

ε|µ− θ|1+ε − log 2/δ

αn
.

Observe that the bounds Eq. (23) still hold.

Now let θ+ be the smallest solution of the equation

0 =B+(θ) + 2Aεη/α (39)

=µ− θ + h−ε2εCεα
εvε + (1− h)−ε2εCεα

ε|µ− θ|1+ε +
log 2/δ

αn
+

2Aεη

α

and let θ− be the largest solution of the equation

0 =B−(θ)− 2Aεη/α (40)

=µ− θ − h−ε2εCεα
εvε − (1− h)−ε2εCεα

ε|µ− θ|1+ε − log 2/δ

αn
− 2Aεη

α
,

assuming such solutions exist.

Concentrating first on θ+, we note that, if the equation in Eq. (39) has real roots, they are larger than µ. Setting x = θ − µ,
θ ≥ µ, the equation in Eq. (39) can be written in the form

Kx1+ε − x+M = 0 (41)

with

K = (1− h)−εαεCε, M = h−εαεCεvε +
log 2/δ

αn
+

2Aεη

α
.

As in the paper, we denote
D = K1/εM,

and y = K1/εx, so the equation Eq. (41) becomes

y1+ε − y +D = 0, y ≥ 0.

Assuming that for some τ > 0 the condition

D ≤ τ1/ε

(1 + τ)(1+ε)/ε
(42)
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holds, we know that
θ+ − µ ≤ (1 + τ)M,

so that

θ+ − µ ≤ (1 + τ)

(
h−εαεCεvε +

log 2/δ

αn
+

2Aεη

α

)
(43)

and the condition Eq. (42) has the following explicit form;

h−εα1+εCεvε + 2Aεη +
log 2/δ

n
≤ τ1/ε

(1 + τ)(1+ε)/ε
(1− h)C−1/ε

ε . (44)

Note that this puts an upper bound on the contamination rate our estimator can tolerate:

2Aεη <
τ1/ε

(1 + τ)(1+ε)/ε
C−1/ε

ε .

The value τ = 1/ε maximizes the expression in the right hand side above, so assuming that Aε is given in Eq. (68), the
bound on the contamination rate is

η <
ε/(1 + ε)(1+ε)/ε

2AεC
1/ε
ε

(45)

=
{
−2 log

[
1−

(
(1 + ε)(1+ε)/(2ε)(1− ε)(1−ε)/(2ε)

)−1
]
(1 + ε)(1+ε)/(2ε)(1− ε)(1−ε)/(2ε)

}−1

=
K(ε)

−2 log
(
1−K(ε)

) ,
where

K(ε) =
(
(1 + ε)(1+ε)/(2ε)(1− ε)(1−ε)/(2ε)

)−1
. (46)

Assuming that the contamination rate η satisfies Eq. (45), condition Eq. (44) holds for some choices of α, h and τ and for n
large enough. In that case, as in the paper we conclude that, with probability at least 1− δ/2,

µ̂− µ ≤ (1 + τ)

(
h−εαεCεvε +

log 2/δ

αn
+

2Aεη

α

)
. (47)

Performing the same analysis with θ−, we conclude that, with probability at least 1− δ/2,

µ− µ̂ ≤ (1 + τ)

(
h−εαεCεvε +

log 2/δ

αn
+

2Aεη

α

)
. (48)

It follows from Eq. (47) and Eq. (48) that, with probability at least 1− δ,

|µ̂− µ| ≤ (1 + τ)

(
h−εαεCεvε +

log 2/δ

αn
+

2Aεη

α

)
(49)

whenever Eq. (44) holds.

Next, we address the choice of α, τ, h. For B > 0 can choose

α = Bv−1/(1+ε)
ε

(
2Aεη +

log 2/δ

n

)1/(1+ε)

. (50)

Then the bound Eq. (49) becomes

|µ̂− µ| ≤ (1 + τ)v1/(1+ε)
ε

(
2Aεη +

log 2/δ

n

)ε/(1+ε) (
h−εBεCε + 1/B

)
, (51)

while the constraint Eq. (44) takes the form(
1 + h−εB1+εCε

)(
2Aεη +

log 2/δ

n

)
≤ τ1/ε

(1 + τ)(1+ε)/ε
(1− h)C−1/ε

ε . (52)
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A.4. Proof of Corollary 4.3

The proof follows from Eq. (45) in Theorem 4.1.

A.5. Proof of Theorem 4.4

Arguing as in Lugosi and Mendelson (2021), the lower bound on the error one can get with probability at least 1− δ is

const. max
{
E
[
|X − µ−Qη/2|1

(
X − µ ≤ Qη/2

)]
, E
[
|X − µ−Q1−η/2|1

(
X − µ ≥ Q1−η/2

)]
,

v1/(1+ε)
ε

(
(log 2/δ)/n

)ε/(1+ε)
}
, (53)

where for 0 < p < 1, Qp is a pth quantile of the distribution of X − µ. Therefore, we only need to show that there is a
constant c and a random variable X with mean µ, E|X − µ|1+ε ≤ vε such that the maximum of the first two terms in the
right hand side of Eq. (53) is at least cv1/(1+ε)

ε ηε/(1+ε).

We can simply choose µ = 0 and set

X =


0 with probability 1− η,

±v1/(1+ε)
ε η−1/(1+ε)/2 with probability η/4 each

±v1/(1+ε)
ε η−1/(1+ε) with probability η/4 each.

Then EX = 0, E|X|1+ε ≤ vε and the quantile Qη/2 = −v1/(1+ε)
ε η−1/(1+ε)/2. Therefore,

E
[
|X −Qη/2|1

(
X −m ≤ Qη/2

)]
=

1

8
v1/(1+ε)
ε ηε/(1+ε),

as required.

A.6. Proof of Theorem 5.1

Rewriting the error bound in Theorem 4.1 as in Eq. (11), with probability at least 1− δ
Km2 , we have each of the following

events
µ̂i(t) ≤ µ(i) +Hi(η) +Gε,η(

δ

2Km2
)
(1
t

) ε
1+ε

, (54)

and
µ̂∗(t) ≥ µ(∗)−H∗(η)−Gε,η(

δ

2Km2
)
(1
t

) ε
1+ε

. (55)

We’ll first establish that if the number of pulls of sub-optimal arm i is larger than

nmi
:=
⌈(4Gε,η(

δ
2Km2 )

∆i

) 1+ε
ε
⌉
,

at phase m (m will be determined later, i.e. Eq. (56)), then arm i will be eliminated. Essentially, this means that

∆i ≥ 4Gε,η(
δ

2Km2
)
( 1

nmi

) ε
1+ε

.

Therefore, by (54) and (55), we have

µ̂i(nmi
) +Gε,η(

δ

2Km2
)
( 1

nmi

) ε
1+ε

+Hi(η) ≤ µ(i) + 2Gε,η(
δ

2Km2
)
( 1

nmi

) ε
1+ε

+ 2Hi(η)

< µ(i) + ∆i − 2Gε,η(
δ

2Km2
)
( 1

nmi

) ε
1+ε

+ 2Hi(η)

= µ(∗)−H∗(η)−Hi(η)− 2Gε,η(
δ

2Km2
)
( 1

nmi

) ε
1+ε

+ 2Hi(η)

< µ̂∗(nmi
)−Gε,η(

δ

2Km2
)
( 1

nmi

) ε
1+ε

+Hi(η).
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Note that the optimal arm will not be eliminated if (54) and (55) hold, as then the required relation

µ̂i(nmi
)−Gε,η(

δ

2Km2
)
( 1

nmi

) ε
1+ε

> µ̂∗(nmi
) +Gε,η(

δ

2Km2
)
( 1

nmi

) ε
1+ε

leads to µ(i) + Hi(η) > µ(∗) − H∗(η) for a sub-optimal arm i, which violates the assumption (A2) in PIBAI frame-
work Eq. (12). This implies that once the phase index m0

i is such that

m0
i := min

{
m :

(
γmGε,η(δ/2Km

2)
) 1+ε

ε

> nmi

}
, (56)

then arm i will be eliminated before phase m0
i with probability at least 1−

∑m0

m=2
δ

Km2 ≥ 1− δ
K .

Solving Eq. (56), we have
(
γmGε,η(δ/2Km

2)
) 1+ε

ε

>
⌈(

4Gε,η(
δ

2Km2 )

∆i

) 1+ε
ε
⌉

. It suffices to have m > logγ(4/∆i). We

then know m0
i is bounded by ⌈logγ(4/∆i)⌉. Therefore, the number of times pulling arm i is bounded by

(
γm

0
iGε,η(

δ

2Km2
)

) 1+ϵ
ϵ

=

(
Gε,η(

δ

2K(m0
i )

2
)

) 1+ϵ
ϵ

(γm
0
i )

1+ϵ
ϵ

≤ 2
1+ϵ
ϵ (Gε,η(

δ

2K(m0
i )

2
)

) 1+ϵ
ϵ

(
4

∆i
)

1+ϵ
ϵ

≤ O

(
log(

K logγ(4/∆i)

δ
)(

4

∆i
)

1+ϵ
ϵ

)
. (57)

The result follows by substituting the expression for Gε,η(·).

A.7. Proof of Theorem 6.1

According to Theorem 3.1, we know, for any Ω satisfying 0 < Ω < 1/(Aη)− 4 and (Ω + 4)Aη + 4(log 2/δ)/n ≤ 1, the
estimator m̂(η, δ) produced by our algorithm holds

|m̂(η, δ)− µ| ≤ v1/2
(Ω + 4)/(2Ω1/2)A1/2η1/2 +

(
(2 log 2/δ)/n

)1/2
1− (Ω + 4)Aη/2− 2(log 2/δ)/n

(58)

with probability at least 1− δ.

By construction, we know
P (µ ∈ Ik) ≥ 1− δk, (59)

for any k such that ηtrue ≤ ηk. Thus, it holds

P
(
µ ∈ Ik for any k such that ηtrue ≤ ηk

)
≥ 1−

J∑
k=0

δk. (60)

By definition of J0, it gives

P
(
m ∈ IJ0

)
≥ 1−

J∑
k=0

δk. (61)

By the choice that δk = δ2−k, (61) implies

|m̂−m| ≤ v1/2
(ω + 4)/(2Ω1/2)A1/2η

1/2
J0

+ (2J0(log 2)/n)
1/2 +

(
(2 log 2/δ)/n

)1/2
1− (Ω + 4)Aη/2− 2J0 log 2/n− 2(log 2/δ)/n

(62)
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with probability at least 1− 2δ.

If ηtrue ≥ ηmin, then on the above event of probability at least 1− 2δ, we have ηtrue ≥ ηJ0
/4, so that

|µ̂− µ| ≤ v1/2
2(Ω + 4)/(2Ω1/2)A1/2η

1/2
true + (2J0(log 2)/n)

1/2 +
(
(2 log 2/δ)/n

)1/2
1− (Ω + 4)Aη/2− 2J0 log 2/n− 2(log 2/δ)/n

.

On the other hand, if ηtrue < ηmin, then on the same event

|µ̂− µ| ≤v1/2
(Ω + 4)/(2Ω1/2)A1/2η

1/2
min + (2J0(log 2)/n)

1/2 +
(
(2 log 2/δ)/n

)1/2
1− (Ω + 4)Aη/2− 2J0 log 2/n− 2(log(2/δ))/n

≤v1/2
(2J0(log 2)/n)

1/2 + 2
(
(2 log(2/δ))/n

)1/2
1− (K + 4)Aη/2− 2J0 log 2/n− 2(log(2/δ))/n

.

Therefore, in any case, ‘

|µ̂− µ| ≤ v1/2
2(Ω + 4)/(2Ω1/2)A1/2η

1/2
true + (2J0(log 2)/n)

1/2 + 2
(
(2 log 2/δ)/n

)1/2
1− (Ω + 4)Aη/2− 2J0 log 2/n− 2(log 2/δ)/n

(63)

with probability at least 1− 2δ.

This, of course, holds assuming that (31) holds for every k = 0, 1, . . . , J0. Since J0 ≤ J , this will hold if

(Ω + 4)Aη + 4(log 2/δ)/n+
4 log 2

n

(
log
[
(Ω + 4)2Aη/(4Ω)

]
+ log n

)
/ log 4 ≤ 1. (64)

B. ϵ−Huber Contamination Model
There is a related contamination model considered in Lai et al. (2016); Prasad et al. (2020a), known as the ϵ−Huber
contamination model (Huber, 2004):

P̃ = (1− ϵ)P ∗ + ϵQ. (65)

Here {Xi}i≤n are drawn i.i.d from the mixture model P̃ , with the uncontaminated distribution P ∗ and arbitrary contam-
ination distribution Q chosen based on Bernoulli(ϵ) flip, possibly in an online fashion. Proposition B.1 provides a high
confidence bound on the empirical fraction ϵ̂n = 1

n

∑n
i=1 1

(
X̃i ̸= Xi

)
.

Proposition B.1. Let ϵ̂n denote the empirical fraction of observations drawn from Q up to time n. With probability at
least 1− β, for all n ≥ 1

ϵ̂n ≤ ϵ+ 1.7
√
ϵ(1− ϵ)

√
log(log(2n)) + 0.72 log 10.4

β

n︸ ︷︷ ︸
:=f(β,ϵ,n)

.

Proof of Proposition B.1 In the empirical fraction ϵ̂n = 1
n

∑n
i=1 1

(
X̃i ̸= Xi

)
, the indicator random variable 1

(
X̃i ̸= Xi

)
has a sub-Gaussian distribution. The result follows using Howard et al. (2021, Theorem 1).

The transition from Eq. (1) to Eq. (65) is as follows: fix n0 > 1 and set

ϵ+ f(β, ϵ, n0) = η. (66)

Clearly, for all n ≥ n0, we have the corruption fraction ϵ̂n to be at most η with a very high probability.

C. Detailed Expressions for Suppressed Notation
C.1. Influence function when ε < 1

As explained in Catoni (2012), the narrowest possible ψ that satisfies Eq. (2) has A = log 2, and is given by

ψ(x) =


− log(1− x+ x2/2), 0 ≤ x ≤ 1,

log(2), x ≥ 1,

−ψ(−x), x ≤ 0.

(67)
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C.2. Influence function when ε < 1

Influence Function: Note that the function

− log(1− x+ Cεx
1+ε), x ≥ 0

achieves its maximum at the point
(
(1 + ε)Cε

)−1/ε
and its maximal value is

− log

(
1− ε

1 + ε

(
(1 + ε)Cε

)−1/ε
)
.

Similarly, the function
log(1 + x+ Cε|x|1+ε), x ≤ 0

achieves its minimum at the point −
(
(1 + ε)Cε

)−1/ε
, and its minimal value is

log

(
1− ε

1 + ε

(
(1 + ε)Cε

)−1/ε
)
.

Therefore, we can choose a specific function ψ(x) = as a bounded function satisfying

|ψ(x)| ≤ Aε =: − log

(
1− ε

1 + ε

(
(1 + ε)Cε

)−1/ε
)
. (68)

Note that A1 = log 2, and Aε → ∞ as ε ↓ 0. We assume, therefore, that the function ψ is bounded by some Aε, and we
know that Aε can be chosen as in Eq. (68).A bounded influence function ψ(x) that satisfies Eq. (68) is given as follows:


log
(
1− ε

1+ε

(
(1 + ε)Cε

)−1/ε
)

if x ≤ −
(
(1 + ε)Cε

)−1/ε
,

log(1 + x+ Cε|x|1+ε) if −
(
(1 + ε)Cε

)−1/ε ≤ x ≤ 0,

− log(1− x+ Cεx
1+ε) if 0 ≤ x ≤

(
(1 + ε)Cε

)−1/ε
,

− log
(
1− ε

1+ε

(
(1 + ε)Cε

)−1/ε
)

if x ≥
(
(1 + ε)Cε

)−1/ε
.

(69)

C.3. Compact error bounds

To simplify notation, we rewrote Eq. (5) and Eq. (10) using Eq. (11).

When ε = 1, we can compactly represent Eq. (5) as follows: For any arm i ∈ K,

|µ̂i(t)− µ| ≤ Hi(η) +Gε,η(δ)
(1
t

) ε
1+ε

, where,

Hi(η) :=
υ1/2(Ω + 4)

√
ηA

2
√
Ω
(
1− (Ω + 4)Aη/2− 2 log(2/δ)/n

) , and

Gε,η(δ) :=
υ1/2

√
2 log(2/δ)/n(

1− (Ω + 4)Aη/2− 2 log(2/δ)/n
) .

Similarly, when ε < 1, we can compactly represent Eq. (10) (using concavity) as follows: For any arm i ∈ K,

|µ̂i(t)− µ| ≤ Hi(η) +Gε,η(δ)
(1
t

) ε
1+ε

, where,

Hi(η) := (1 + τ)υ1/1+ε
ε (h−εBεCε + 1/B)(2Aεη)

ε
1+ε , and

Gε,η(δ) := (1 + τ)υ1/1+ε
ε (h−εBεCε + 1/B)

( log(2/δ)
n

) ε
1+ε

.


