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Abstract

Gradient staleness is a major side effect in decou-
pled learning when training convolutional neural
networks asynchronously. Existing methods that
ignore this effect might result in reduced gen-
eralization and even divergence. In this paper,
we propose an accumulated decoupled learning
(ADL), which includes a module-wise gradient
accumulation in order to mitigate the gradient
staleness. Unlike prior arts ignoring the gradient
staleness, we quantify the staleness in such a way
that its mitigation can be quantitatively visualized.
As a new learning scheme, the proposed ADL is
theoretically shown to converge to critical points
in spite of its asynchronism. Extensive experi-
ments on CIFAR-10 and ImageNet datasets are
conducted, demonstrating that ADL gives promis-
ing generalization results while the state-of-the-
art methods experience reduced generalization
and divergence. In addition, our ADL is shown to
have the fastest training speed among the com-
pared methods. The code will be ready soon
in https://github.com/ZHUANGHP/Accumulated-
Decoupled-Learning.git.

1. Introduction
Convolutional neural networks (CNNs) (LeCun et al., 1998)
are normally trained by backpropagation (BP) which runs
a forward pass followed by a backward one synchronously
through a network before parameter update. The synchro-
nism of BP is mainly characterized by three lockings (Jader-
berg et al., 2016), i.e., the forward, the backward and the
update lockings (see details in Section 3.1), which render the
majority of a network idle during training. To improve the
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efficiency, the decoupled learning (Jaderberg et al., 2016)
emerges by addressing one or more of these lockings.

The decoupled learning partitions a network depth-wise into
several modules with each module containing a stack of lay-
ers, and facilitates a parallel training among the partitioned
modules. A large number of partitioned modules would
encourage a high degree of efficiency being improved. For
convenience, the partition size (PS) is taken as the number
of modules being partitioned from a network. Methods of
decoupled learning seek to deliver comparable generaliza-
tion performance to its BP counterpart under various PS. We
divide these prior arts into two groups: the delayed gradi-
ent (DG) based methods and the local error learning (LEL)
based methods.

The DG-based methods (Huo et al., 2018a;b; Zhuang et al.,
2021) adopt DGs to avoid the synchronism of BP. They
deliver comparable generalization performance relative to
the BP baseline, but introduce the gradient staleness (or the
stale gradient effect). Such a staleness has limited the DG-
based methods towards a small PS. That is, most DG-based
methods only perform well for PS≤ 4 (Huo et al., 2018a;b).
This is because the gradient staleness grows as PS increases,
causing a reduced generalization or even divergence.

The staleness issue does not appear in the LEL-based meth-
ods as they sever the gradient flow between adjacent mod-
ules by building auxiliary networks to generate local error
gradients. This allows the modules to avoid the global BP
thereby addressing all the three lockings. Methods in this
group is distinguished by the design of auxiliary networks.
The LEL-based methods do not experience divergence as PS
increases, but usually encounter generalization loss instead.

In summary, the DG-based methods can give better general-
ization results than LEL-methods but they are constrained
by a limited PS due to the staleness issue. Dwelling on
the DG-based methods, we aim to scale the learning to a
large PS with comparable generalization performance (see
Table 1). To this end, the key is to reduce the gradient stale-
ness. Here, we propose an accumulated decoupled learning
(ADL), which effectively incorporates a module-wise gradi-
ent accumulation (mGA) technique in the partitioned mod-
ules to mitigate the gradient staleness. This work include
the following contributions:
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• Proposal of a new decoupled learning technique by ad-
dressing all the three locking problems in BP.

• Incorporation of an mGA technique into the decoupled
learning, which has been shown to reduce the gradient stale-
ness, theoretically and empirically.

• Convergence analysis which shows that our method can
converge to critical points.

• Experimental validation on CIFAR-10 and ImageNet
datasets. Particularly, we show that the ADL in general
outperforms the state-of-the-arts especially under the sce-
nario of a large PS, and has the fastest training speed among
the compared methods.

2. Related Works
2.1. Local Error Learning Based Methods

The key feature of LEL-based methods is the design of
auxiliary networks. They originate from the decoupled
neural interface (DNI) (Jaderberg et al., 2016) by generating
local synthetic gradients. This approach is followed up by
(Mostafa et al., 2018) using a local classifier. The decoupled
greedy learning (DGL) (Belilovsky et al., 2020) designs a
light-weight auxiliary network for the purpose of making a
trade-off between the generalization performance and the
computation workload. Although the pred-sim method in
(Nøkland & Eidnes, 2019) with combined losses manages
to obtain a comparable performance with the BP baseline, it
has only been verified in relatively shallow networks (≤13
layers).

2.2. Delayed Gradient Based Methods

The DG-based methods attain decoupled learning by updat-
ing the network modules with DGs. The decoupled parallel
BP with DGs (DDG) (Huo et al., 2018b) breaks the back-
ward locking while having a comparable performance to BP
on the ResNet (RN) (He et al., 2016) under a small PS (≤ 4).
The future replay (FR) (Huo et al., 2018a) that follows up
employs a recomputation unit with inconsistent weights and
gradients during the forward and the backward passes. The
FR also unlocks the backward pass and this gives as equally
good performance as the BP baseline for small PS values.
The fully decoupled method with DGs (Zhuang et al., 2021)
further addresses the forward and the update lockings, and
this leads to a lock-free decoupled learning. Apart from
these, a technique called DSP (Xu et al., 2020) has also at-
tained a lock-free decoupled learning. However, these prior
arts using DGs inevitably suffer from the gradient staleness,
which becomes apparent as the PS grows.

Table 1. Characteristics of decoupled learning methods and the
proposed ADL.

Methods DG-based methods LEL-based methods ADL (ours)
Generalization v.s BP comparable worse comparable

Partition size small large large

2.3. Other Works Related to Decoupled Learning

Another set of methods, named asynchronous stochastic
gradient descent (ASGD) (Dean et al., 2012; Lian et al.,
2015; Zheng et al., 2017), involves utilization of DGs to per-
form asynchronous parallelization. Essentially, the ASGD
methods differ from the decoupled learning in terms of par-
allelization paradigm. They belong to the data parallelism
category as each work handles a complete network replica.
In addition, the pipeline BP shares certain similarity with
the decoupled learning. For instance, the GPipe proposed in
(Huang et al., 2019) splits a network into several modules
and breaks each mini-batch into several micro-batches to
conduct pipeline model parallelization. The micro-batching
shares some similarities with the mGA technique in our
proposed ADL. However, unlike decoupled learning, the
GPipe is a form of synchronous model parallelism, which
does not involve DGs.

3. Preliminaries
Here, we revisit the necessary knowledge for training a
feedforward neural network, including the generic gradient
accumulation (gGA) used in BP learning. Along with this
revisit, the BP lockings (Jaderberg et al., 2016) as well as
the gradient staleness are also explained.

3.1. Backpropagation and Lockings

Assume that we need to train an L-layer network. The lth

(1 ≤ l ≤ L) layer produces an activation zl = Fl(zl−1;θl)
by taking zl−1 as its input, where Fl is an activation function
and θl ∈ Rnl is weight vector at layer l. The sequential
generation of the activations results in a forward locking
since zl depends on the activations from its previous layers.
Let θ = [θT1 ,θ

T
2 , ...,θ

T
L ]T ∈ RΣLi=1ni denote the parameter

vector of the entire network. Assume that f is a loss function.
Training the feedforward network can then be formulated as

minimize
θ

fx(θ) (1)

where x represents the entire input-label information (or the
entire dataset). In the rest of this paper, we shall use f(θ)
to represent fx(θ) for convenience.

The gradient descent algorithm is often used to solve Eq. (1)
by updating the parameter θ iteratively as follows:

θt+1 = θt − γtḡtθ (2)
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or equivalently,

θt+1
l = θtl − γtḡtθl , l = 1, ...,L (3)

where γt is the learning rate. Index t here usually im-
plies the batch index, with ḡtθl indicating the gradient ob-
tained with respect to (w.r.t.) data batch t. Let ḡtθ =

[(ḡtθ1)T , (ḡtθ2)T , ..., (ḡtθL)T ]T ∈ RΣLi=1ni , which is ob-
tained by

ḡtθl =
∂f(θt)

∂θtl
. (4)

If the dataset is large, the stochastic gradient descent (SGD)
is often used as an alternative:

gtθl =
∂fxt(θ

t)

∂θtl
(5)

where xt is the tth mini-batch drawn from the dataset x. We
remove the bar “¯” on g to tell its difference from that in
Eq. (4). Accordingly, the network weights can be updated
through

θt+1
l = θtl − γtgtθl , l = 1, ...,L. (6)

Assume that each sample is randomly drawn from a uniform
distribution. Then the gradient is unbiased:

Ex{gtθl} = ḡtθl (7)

where the expectation Ex is taken w.r.t. the random variable
that draws xt from the dataset.

To obtain the gradient vectors, the BP is used. We can
calculate the gradient at layer l using the gradient back-
propagated from layers j and i (l < j < i) as follows:

gtθl =
∂fxt(θ

t)

∂θtl
=
∂ztj
∂θtl

∂fxt(θ
t)

∂ztj
=
∂ztj
∂θtl

gtzj (8)

where

gtzj =
∂fxt(θ

t)

∂ztj
=
∂zti
∂ztj

∂fxt(θ
t)

∂zti
=
∂zti
∂ztj

gtzi . (9)

Here we introduce gtzj—the gradient vector w.r.t. activation
zj—because it travels through modules for communication
in our ADL. Eq. (8) and Eq. (9) indicate that gtθl is obtained
based on gtzj and gtzi . That is, the gradient is not accessible
before the forward pass has been completed and all the
dependent gradients have been obtained, which is known
as the backward locking. On the other hand, we cannot
update the weights before every layer finishes its forward
pass, which is recognized as the update locking.

3.2. Learning with Generic Gradient Accumulation

The gGA has frequently been adopted to increase the mini-
batch size for training networks on devices with a relatively
limited memory setting. The gradients obtained based on
several mini-batches are accumulated before they are finally
applied to update the network.

To describe the training development involving the gGA
technique, we introduce an update index s, and a wrapped
batch index Us w.r.t. the original batch index t. We use
the update index s to indicate the sth parameter update of
the network. It is connected to Us in the way of Us =
Ms given M gGA steps. The gGA renders the network
parameters unchanged for M steps, i.e., θUsl =θUs+1

l =

· · · =θUs+M−1
l . Conversely, we can tell the update index

from a batch index t by

s = bt/Mc (10)

where bxc = max{n ∈ Z|n ≤ x} is the floor operator. That
is, when the network is processing the tth mini-batch of data,
the network has been updated for s times based on Eq. (10).

Assume that the gradients w.r.t. batch indexes t = Us, Us +
1, . . . , Us + M − 1 are accumulated. These gradients are
obtained through

gtθl =
∂fxt(θ

t)

∂θUsl
(11)

where parameter θUsl = θ
Ubt/Mc
l is adopted instead of

Eq. (5) in order to emphasize that the gradients w.r.t. to
these data batches are being obtained based on the same pa-
rameter. Using the gGA technique, the weights are updated
as follows:

θ
Us+1

l = θUsl − γs(1/M)
∑M−1
j=0 g

Us+j
θl

. (12)

3.3. Gradient Staleness

The network is commonly updated with gradients obtained
w.r.t. the current parameters. However, there are certain
scenarios where the network has to update its parameters
with gradients calculated based on “older” parameters. This
introduces gradient staleness or stale gradient effect, as the
gradients are not up-to-date, and are therefore less accurate.

We define the level of staleness (LoS) as the update index
difference between the current parameter and the parameter
used to calculate the stale gradient. Suppose a network is
updated through

θt+1
l = θtl − γtgt−dθl

, l = 1, ...,L (13)

where gt−dθl
= ∂fxt−d(θt−d)/∂θt−dl . For a gGA step of

M , we could calculate the LoS through

LoS = bt/Mc − b(t− d)/Mc (14)
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(a)

Module 1: LoS of 2,2
Module 2: LoS of 1,1
Module 3: LoS of 0,0

Module 1: LoS of 1,1,1,1
Module 2: LoS of 1,1,0,0
Module 3: LoS of 0,0,0,0

(b)

Forward pass of batch a with update index s and backward pass of batch b with 
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Figure 1. Training a 3-layer network by ADL with K = 3 and mGA steps of (a) M = 2 and (b) M = 4 suggesting that each module is
updated every 2 and 4 iterations respectively. Note that there is a batch index difference of 2(K − k) between the forward and backward
pass. For instance, for K = 3, module k = 1 (gray) generates an activation at iteration 1 but the gradient of this batch arrives at iteration
5. In addition, a larger M reduces the LoS according to Eq. (14). For instance , at t = 5 module 1 (gray) has LoS of 2 with M = 2,
which is reduced to 1 with M = 4.

indicating that the current parameter is θ
Ubt/Mc
l while the

parameter used to calculate gradient gt−dθl
is θ

Ub(t−d)/Mc
l .

4. An Accumulated Decoupled Learning
In this section, we show the algorithmic details of the pro-
posed ADL, which include an asynchronous pipelining pro-
cedure to achieve model parallelism, and an mGA technique
to mitigate the gradient staleness. In particular, we explicitly
show how the staleness in each module is reduced.

Prior to our development, the network is first partitioned
depth-wise into K modules with a stack of layers in each
module. That is, we partition the set of layer indices
{1, . . . ,L} into {q(1), q(2), . . . , q(K)} where q(k) =
{mk,mk + 1, ...,mk+1 − 1} denotes the layer indices in
module k. This leads to certain notation changes as follows:

θt =[(θtq(1))
T , ..., (θtq(K))

T ]T , θtq(k) = [(θtmk)T , ..., (θtmk+1−1)T ]T

gtθ =[(gtθq(1))
T , ..., (gtθq(K)

)T ]T , gtθq(k) = [(gtθmk
)T , ..., (gtθmk+1−1

)T ]T

ḡtθ =[(ḡtθq(1))
T , ..., (ḡtθq(K)

)T ]T , ḡtθq(k) = [(ḡtθmk
)T , ..., (ḡtθmk+1−1

)T ]T .

We depict the proposed ADL with an example of training a
3-layer network with a PS of K = 3 in Fig. 1(a) (M = 2)
and 1(b) (M = 4) respectively. As illustrated in the figures,
at every iteration, each module runs a forward pass and a
backward pass. The forward pass is executed with a module
input that comes from the output of the lower module at
the previous instance. The backward pass calculates the
gradients by resuming a local BP using gradients inherited

from the upper module based on the “older” data batches.
Note that all the partitioned modules can run in parallel due
to asynchronism as the modules process data from different
batches. Next, each module accumulates gradients for M
steps before the gradients are applied to update the module
weights.

4.1. Asynchronous Learning without BP Lockings

Consider the weights of module k (k = 1, . . . ,K) at update
index s with θUsq(k). We detail the learning procedures in
module k to conduct update s+ 1 as follows.

4.1.1. FORWARD PASS

Module k conducts the forward passes using data batches
with indexes Us, Us + 1,. . . ,Us + M − 1. Let j =
0, 1, . . . ,M − 1. In detail, we feed the module input zUs+jmk−1

received from module1 k− 1 to generate activations in each
layer, which are obtained w.r.t. the same parameter θUsq(k).

Next, we obtain the activation zUs+jmk+1−1 at the end of this
module, and send this activation to module k + 1 (if any).

4.1.2. BACKWARD PASS

During the backward pass, module k resumes BP locally
using the gradient gUs+j−2(K−k)

zmk+1−1 received from module2

k+1. Note that the superscript Us+j−2(K−k) indicates

1For k = 1 the module input is the training data.
2For k = K the gradient is generated by the loss function.
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that there are 2(K − k) steps of batch index delay w.r.t. the
forward pass (see Fig. 1 for illustration). Accordingly, we
calculate the gradients at each layer (mk ≤ l ≤ mk+1 − 1)
within this module as follows:

ĝUs+jθl
=

∂z
Us+j−2(K−k)
mk+1−1

∂θ
Ub(Us+j−2(K−k))/Mc
l

gUs+j−2(K−k)
zmk+1−1

. (15)

Note that Eq. (15) is obtained w.r.t. θ
Ub(Us+j−2(K−k))/Mc
l

with update index b(Us + j − 2(K − k))/Mc instead of
s. This is because the gradient is calculated based on the
“older” data batches, which can tell their corresponding up-
date indexes from Eq. (10). At the end of the local BP, gra-
dient gUs+j−2(K−k)

zmk−1 w.r.t. the module input zUs+j−2(K−k)
mk−1

is generated, which is then sent to module k − 1 (if any).

4.2. Update with Module-wise Gradient Accumulation

After obtaining the gradients using Eq. (15), the module is
not updated immediately. Instead, we applied the mGA by
accumulating these gradients for M steps before they are
applied to update the corresponding module as follows:

θ
Us+1

l = θUsl − γs(1/M)
∑M−1
j=0 ĝ

Us+j
θl

. (16)

Note that all the modules must consistently accumulate
gradients calculated w.r.t. the same group of data batches,
though the updates would happen asynchronously. For in-
stance, with an mGA step of 2, if module 1 decides to
accumulate batch 10 and 11, the other modules must accu-
mulate these two batches, instead of other possible combi-
nations such as 9 and 10, or 10 and 11. This module-wise
nursing step differentiates the mGA from the gGA in the
synchronized learning. We summarize the proposed ADL
in Algorithm 1.

Note that the above ADL is a lock-free decoupled technique.
Firstly, the global BP is cast into local BPs in each module
running in parallel, which removes the backward locking.
Secondly, the split modules adopt training data from dif-
ferent batches so that the forward passes can be executed
without waiting for the data from the lower layers. This tack-
les the forward locking. Finally, each module is updated
immediately without waiting for other modules to complete
their forward passes, hence addressing the update locking.

4.3. Impact of Module-wise Gradient Accumulation

Indicated by Eq. (15), the gradients are obtained based
on θUb(Us+j−2(K−k))/Mc while the parameter state is θUs .
Therefore, according to Eq. (14), the LoS for module k is
shown as follows (j = 0, 1, . . . ,M − 1):

dk,j = s− b(Us + j − 2(K − k))/Mc. (17)

Algorithm 1 The proposed ADL
Partition the network into K modules, and set mGA step of M ;
for each iteration do

for k ← 1 to K (Parallel) do
Forward pass: generate the activations with module in-
put (e.g., zUs+j

mk−1), and send the module output (e.g.,
zUs+j
mk+1−1) to module k + 1 (if any);

Backward pass: using gradient (e.g., gUs+j−2(K−k)
zmk+1−1 ) re-

ceived from module k + 1 to calculate the gradients in
each layer following Eq. (15), and send the gradient w.r.t.
the module input (e.g., gUs+j−2(K−k)

zmk−1 ) to module k − 1
(if any);
Update: if module k accumulates gradients from batches
Us, Us + 1,. . . ,Us +M − 1 then

Update the module using Eq. (16);
end

end
end
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Figure 2. The averaged LoS w.r.t. mGA step of M .

For instance, as shown in Fig. 1(b), with M = 4 module 2
updates its parameters using gradients with staleness dk,j
(1 ≤ k ≤ K, 0 ≤ j < M ) of d2,0 = 1, d2,1 = 1, d2,2 = 0,
and d2,3 = 0. Eq. (17) also indicates the staleness range:

0 ≤ dk,j ≤ 2(K − k) (18)

with the minimum dk,j reached for j − 2(K − k) > 0,
and the maximum dk,j = 2(K − k) obtained at M = 1
indicating no mGA involved. For convenience, we adopt
the averaged LoS:

d̄k = (1/M)
∑M−1
j=0 dk,j (19)

to evaluate the staleness in module k. As an example, Fig.
2 shows the averaged LoS in module 1 and 6 w.r.t. the
accumulation step M with K = 8, where the gradient
staleness is shown to reduce with increasing M .

A large M leads to low gradient staleness, but it does not
necessarily guarantee improvement in network generaliza-
tion. This is because a larger M also indicates that the
overall mini-batch size is large, which could weaken the net-
work’s ability to generalize (Keskar et al., 2016). As a result,
M is an additional hyperparameter that handles the delicate
balance between gradient staleness and generalization. In
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fact, we do not need a large M to help the optimization be-
cause a small M has a rather significant impact on staleness
reduction. As shown in Fig. 2, with M = 4 the averaged
LoS has already been reduced by 75% (e.g., from 16 to 4).

In addition, using Eq. (17), we can unpack Eq. (15):

ĝUs+j
θUsl

=
∂z

Us+j−2(K−k)
mk+1−1

∂θ
Us−dk,j
l

∂fxUs+j−2(K−k)(θ
Us−dk,j )

∂z
Us+j−2(K−k)
mk+1−1

=
∂fxUs+j−2(K−k)(θ

Us−dk,j )

∂θ
Us−dk,j
l

= g
Us+j−2(K−k)
θl

(20)

and then rewrites Eq. (16) as

θ
Us+1

l = θUsl − γs(1/M)
∑M−1
j=0 g

Us+j−2(K−k)
θl

. (21)

That is, the proposed ADL accumulates gradients that are
2(K − k) steps “older”, while each of these accumulated
gradients admits an LoS of dk,j as shown in Eq. (17).

5. Convergence Analysis
In this section, we conduct convergence analysis for the
proposed method. The analysis shows that the ADL can
converge to critical points based on the following assump-
tions.
Assumption 1. Lipschitz continuity of gradients for loss
functions f(θ), which means ∃L ∈ R+ such that:

||ḡUαθl − ḡ
Uβ
θl
||2 ≤ L||θUαl − θ

Uβ
l ||2 (22)

where ‖.‖2 is an l2-norm operator. This also leads to

||ḡUαθq(k) − ḡ
Uβ
θq(k)
||2 ≤ L||θUαq(k) − θ

Uβ
q(k)||2, ||ḡ

Uα
θ − ḡ

Uβ
θ ||2 ≤ L||θUα − θUβ ||2.

Assumption 2. Bounded variance of the stochastic gradi-
ent, which means that ∀s, ∃A > 0 such that:

||gUsθl ||
2
2 ≤ A, which leads to ||gUsθq(k) ||

2
2 ≤ A, ||g

Us
θ ||22 ≤ A. (23)

Assumptions 1 and 2 are commonly adopted in convergence
analysis of neural networks (see (Bottou et al., 2018; Huo
et al., 2018b)). In particular, these assumptions do not
assume convexity of function f .
Theorem 1. Let Assumptions 1 and 2 hold. Suppose that the
learning rate is non-increasing and Lγs ≤ 1. The proposed
ADL has the following lower bound:

Ex{f(θUs+1)} − f(θUs) ≤ −γs2 ‖ḡ
Us
θ ‖22+γ2

sAL(1 + (1/M)
∑K
k=1d̄k)/M. (24)

Proof. See supplementary material A.

Theorem 1 gives an important indication for convergence.
If the RHS of Eq. (24) is negative, i.e.,

γs < min
{

1/L, M‖ḡUsθ ‖22/(2AL(1 + (1/M)
∑K
k=1d̄k))

}
,

the expected loss Ex{f(θUs+1)} decreases. We further
give the convergence evidence in the following theorems.
Detailed proofs of the following theorems can be found in
the supplementary material 3.

Theorem 2. Suppose Assumptions 1 and 2 hold, and the
learning rate is non-increasing as well as satisfies Lγs ≤ 1.
Let θ∗ be the global minimizer and TS =

∑S−1
s=0 γs where

S indicates the network will be updated S times. Then

(1/TS)
∑S−1
s=0 γsE{||ḡ

Us
θ ||

2
2} ≤ 2(f(θ0)− f(θ∗))/TS

+ (2AL(1 + (1/M)
∑K
k=1d̄k)

∑S−1
s=0 γ

2
s )/(MTS). (25)

Proof. See supplementary material B.

The lower bound in Theorem 2 indicates that, for a randomly
selected q from {0, 1, . . . , S−1}with probability {γq/TS},
E{||ḡUsθ ||22} is bounded by the RHS of Eq. (25). More
importantly, a larger M leads to a smaller lower bound in
Eq. (25) because the d̄k decreases, and thus benefits the
convergence. Another observation is that larger PS hinders
the convergence as

∑K
k=1d̄k increases. These observations

are consistent with our understanding that the mGA helps
the optimization by mitigating staleness, and partitioning
the network into more modules is harmful.

Corollary 1. If γs further satisfies limS→∞ TS= ∞ and
limS→∞

∑S−1
s=0 γ

2
s <∞, the RHS of Eq. (25) converges to 0.

According to Corollary 1, by properly scheduling the learn-
ing rate, the lower bound for the expected gradient would
converge to 0, i.e., limS→∞ E{||ḡUsθ ||22} = 0. That is, the
proposed ADL can converge to critical points. Alternatively,
the convergence can be revealed by setting a constant learn-
ing rate as indicated in the following theorem.

Theorem 3. Let Assumptions 1 and 2 hold. Suppose the
learning rate is set as a constant:

γ = ε

√
M(f(θ0)− f(θ∗))/

(
SAL(1 +

∑K
k=1d̄k)

)
where ε is a scaling factor such that Lγ ≤ 1. Let θ∗ be the
global minimizer. Then we have

min
s∈{0,1,...,S−1}

E{‖ḡUsθ ‖22} ≤
(2+2ε2)

ε

√
AL(f(θ0)− f(θ∗))

(
1 + (1/M)

∑K
k=1 d̄k

)
/(MS), (26)

where the lower bound converges to 0 when S →∞.

Proof. See supplementary material C

In summary, although the ADL attains model parallelism
and introduces asynchronism, we show that our method can
converge to critical points as well as revealing how it can be
affected by the mGA and the PS.

3
https://personal.ntu.edu.sg/ezplin/ICML2021-appendices.pdf
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Table 2. Validation errors (%) for (a) the ADL training RN-56 on
CIFAR-10, and for the compared methods training various net-
works on (b) CIFAR-10 and (c) ImageNet. ⊗ indicates divergence.
(a) M → 1 2 3 4 5 6 7 8 9 10 11 12

RN-56 (K = 16) ⊗ ⊗ ⊗ 6.38 6.90 6.92 6.79 6.49 6.78 6.44 6.65 6.86

(b)

Architecture BP DDG DGL FR DSP∗ GPipe‡ ADL
RN-56 (K = 2) 6.19 6.63 6.77 6.07 - 6.04 5.99
RN-56 (K = 3) 6.19 6.50 8.88 6.33 - 5.94 6.09
RN-56 (K = 4) 6.19 6.61 9.65 6.48 - 6.03 6.16
RN-56 (K = 8) 6.19 ⊗ 13.26 6.64 - 6.08 6.18
RN-56 (K = 16) 6.19 ⊗ 13.36 11.51 - 6.23 6.38
RN-110 (K = 2) 5.79 6.26 6.26 5.76 - 5.70 5.87
RN-110 (K = 8) 5.79 ⊗ 11.96 6.56 - 5.69 5.80
RN-98 (K = 4) 6.01 6.19 9.7 6.01 6.59 6.00 5.92
RN-98 (K = 8) 6.01 ⊗ 12.37 6.35 - 5.99 5.93
RN-34 (K = 12) 4.50 ⊗ 9.56 ⊗ - 4.65 4.63
RN-164 (K = 4) 5.36 5.43 8.77 5.60 5.58 5.52 5.46
RN-164 (K = 10) 5.36 5.58 10.70 5.89 - 5.39 5.52

(c)

Architecture BP ADL
RN-18 (K = 3) 29.79/10.92 29.52/10.42
RN-18 (K = 4) 29.79/10.92 29.64/10.56
RN-18 (K = 8) 29.79/10.92 29.75/10.55
RN-18 (K = 10, max.)† 29.79/10.92 29.84/10.76
RN-50 (K = 4) 23.65/7.13 23.43/7.45
SE-RN-18 (K = 8) 29.09/9.89 29.01/10.14
SE-RN-18 (K = 10, max.)† 29.09/9.89 29.07/10.32

∗ We only provide results from DSP’s paper due to no available source code.
‡ The GPipe is included as a synchronous baseline.
† The largest PS with each module being one layer or one residual block.

6. Experiments
For validation we conduct learning of classification tasks
on the CIFAR-10 (Krizhevsky & Hinton, 2009) and Ima-
geNet 2012 (Russakovsky et al., 2015) datasets. We mainly
focus on examining the generalization of networks trained
by ADL in order to obtain empirical evidence of gradient
staleness mitigation in decoupled learning. We then touch
lightly on its acceleration performance and point out an im-
balance issue affecting the acceleration, which is currently
unresolved in the area of decoupled learning. Finally, we
present the memory consumption. We compare our method
with several state-of-the-arts, including DDG (Huo et al.,
2018b), FR (Huo et al., 2018a), DGL (Belilovsky et al.,
2020), DSP (Xu et al., 2020), and BP (Werbos, 1974). In
particular, we include the GPipe (Huang et al., 2019) as
a baseline for synchronous model parallelism. We focus
on the comparison among methods of decoupled learning,
and exclude the ASGD- and pipeline-based methods though
they also involve gradient staleness.

Implementation details: The experiments are performed
with PyTorch (Paszke et al., 2019) where we pre-process
the datasets using standard data augmentation (i.e., random
cropping, random horizontal flip and normalizing). We
adopt the same training strategy for all the compared meth-
ods (except DSP due to no source code) for fairness. The
SGD optimizer with a momentum of 0.9 is adopted, and
gradual warm-up in (Goyal et al., 2017) for 3 epochs is

used. We adopt an overall batch size of 128 for all methods.
Specially, since the mGA accumulates the data batches, for
ADL the batch size in each iteration is set to b128/Mc. The
GPipe adopts a similar setting with an overall batch size
of 128 scattered into M micro-batches. For CIFAR-10, the
weight decay is set to 5× 10−4 with an initial learning rate
of 0.1, and the networks are trained for 300 epochs with the
learning rate divided by 10 at 150, 225 and 275 epochs. For
ImageNet, a 224××224 crop is randomly sampled, and the
weight decay is set to 1× 10−4 with an initial learning rate
of 0.05. We train the networks for 90 epochs, and divide the
learning rate by 10 at 30, 60, and 80 epochs. Finally, the
validation results are reported by the median of 3 runs.

Datasets: The CIFAR-10 dataset includes 32x32 color im-
ages with 10 classes, and has 50000 and 10000 samples for
training and validation respectively. The ImageNet dataset
contains 1000 classes, with 1.28 million and 50000 images
of various sizes for training and validation.

6.1. Generalization Performance

Firstly, we evaluate the impact of mGA by training RN-56
(K = 16) on CIFAR-10 with variousM . As shown in Table
2(a), the ADL diverges with M ≤ 3 due to strong gradient
staleness. Once the learning converges, the ADL performs
rather robustly to various K. For convenience, we pick
M = 4 (i.e,, reducing 75% staleness as shown in Eq. (19))
for the ADL in the following experiments, which should
stabilize the decoupled learning for K ≤ 16.

Later on, on CIFAR-10 we train various RN architectures
with different PS ranging from K = 2 to K = 16. The
classification results are shown in Table 2(b). In general our
ADL delivers results comparable to or better than those from
the compared methods including the synchronous methods
(i.e., BP and GPipe), while the other methods of decoupled
learning would encounter learning issues as K increases.
The GPipe shows results as good as the BP baselines without
receiving visible impacts as PS increases. This is reasonable
as its synchronous nature does not invite gradient staleness.
The DGL experiences a growing loss of performance as
the PS increases, e.g., 6.77% → 9.65% → 13.26% for
RN-56 with K = 2, 4, 8 respectively. The DGL severs
the gradient flow between adjacent modules. It renders the
lower modules under-developed without any feedback from
the upper modules, causing inferior learning results to the
BP baselines.

The FR gives promising results for small PS (e.g., K = 2)
which is consistent with the claim made in (Huo et al.,
2018a). However, its performance shows a significant dete-
rioration when training with a very large PS. For instance,
training RN-56 withK = 16 leads to an error rate of 11.51%
which is significantly worse than that of 6.07% with K = 2.
In the case of RN-34 (K = 12), the FR even fails to con-
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Figure 3. Learning curves of compared methods for training RN-34 with K = 12 in sub-figures (a) and (e), and RN-56 with K = 16 in
sub-figures (b) and (d), as well as the error rates w.r.t. PS in sub-figure (e) on RN-18. Note that the DSP is excluded as no source code is
available.

verge. The performance drop or divergence is likely resulted
from the recomputation unit in FR which adopts inconsis-
tent weights during the forward and backward passes. The
DSP gives a moderate performance for training RN-98. We
cannot provide other corresponding results as no source
code is released and it is difficult to reproduce the algorithm
based on the manuscript, but we would expect a similar be-
having pattern of DSP to that of FR as they share the same
recomputation technique.

The DDG, on the other hand, is more prone to divergence.
As shown in Table 2(b), the trainings of RN-56, ResNet98
and RN-110 exhibit several divergence cases (mainly hap-
pen with large PS, e.g., K ≥ 8), while our method success-
fully trains these networks with comparable performance
to the BP baselines. However, when the DDG does con-
verge (e.g., training RN-164 with K = 10), unlike the FR
or DGL with rather sharply decreased performance, it tends
to deliver very close results to those of BP (e.g., 5.58%
versus 5.36%). Such an observation reveals that increasing
staleness invites instability yet it only affects the general-
ization to a limited extent. This empirically supports and
further justifies our motivation of developing the proposed
ADL aiming to mitigate gradient staleness thereby avoiding
divergence.

We provide the learning curves of RN-34 (K = 12) and
RN-56 (K = 16) in Figure 3. The DDG diverges in both
cases, i.e., at epoch 48 and 2 for RN-34 and RN-56. The FR
diverges at epoch 2 for RN-34, and experiences a “bumpy”
convergence for RN-56. Our ADL converges smoothly in
both cases while achieving equally good validation results
to the BP baselines. We also observe a clear pattern in
these learning curves showing that the ADL gives a slightly
slower convergence than that from BP at the beginning of
network learning (see the zoomed plots in Figure 3). This
is consistent with our theoretical findings (e.g., Theorem
2) suggesting the decoupled learning would slow down the
convergence especially with a large PS. We also provide

the study to examine the impact of PS on the error rate
by training RN-18 with various K. Figure 3(e) shows that
our method is relatively robust to the change of K with the
staleness mitigated, while the compared methods encounter
much rapid rise of errors as K increases.

We also provide the results of ADL trained on ImageNet
in comparison with BP. We train several architectures from
ResNet and SENet (Hu et al., 2018), and report both Top1
and Top5 error rates. As shown in Table 2(c), in general
the ADL outperforms its BP counterpart even for a large
PS of K = 10. The observation of ADL outperforming
the BP can be explained as follows. The ADL adopts DGs,
which can be treated as real gradients obtained by BP, yet
contaminated with noises drawn from an unknown distri-
bution. Although the contaminated gradients could slow
down the convergence (e.g., see the zoomed plots in Figure
3), they could however improve the network’s generaliza-
tion with their uncertainties (see (Neelakantan et al., 2015)).
The mGA restraints the staleness so it does not go out of
bound while keeping its uncertainty, thereby leading to more
promising results in certain cases.

6.2. Acceleration Performance

Here we show the acceleration performance of the ADL in
comparison with other methods of decoupled learning by
training RN-101 on ImageNet with various K. The exper-
iments are conducted on a server with Tesla V100 GPUs
with each module running in a separate GPU worker. Batch
size is adjusted to maximize the training speed, and the net-
work split locations are tuned to distribute the computational
workload (i.e., running time for each iteration) as evenly as
possible in each GPU. Note that the mGA has little effect
on the running speed, so we set M = 4 as usual.

As shown in Table 3, by addressing all three lockings of BP,
the ADL achieves a remarkable acceleration over BP and
is much faster than the DDG and FR which address only
the backward locking. For instance, for K = 2 the ADL
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Table 3. Speedups (over BP) in training RN-101 (ImageNet).
BP DDG FR DGL DSP GPipe ADL

K=2 1× 1.32× 1.19× 1.82× - 1.41× 1.92×
K=3 1× 1.57× 1.29× 2.61× - 1.87× 2.69×
K=4 1× 1.68× 1.45× 3.39× 2.70× 2.23× 3.32×

Table 4. Memory consumption of the compared methods.

BP DDG FR DGL GPipe ADL
Mem. (GB) 1.14 1.69 1.46 1.49 1.52 1.84

accelerates the learning with a speedup of 1.92× while the
DDG and FR only obtain 1.32× and 1.19× respectively. Al-
though the DSP also addresses all the unlockings, it is lower
than the ADL due to the recomputation unit that demands
extra computing power. The DGL delivers comparable ac-
celeration results to those of ADL, but it leads to weaker
generalization performance (see Table 2(b)). In comparison,
the GPipe is slower than our method due to the introduced
computational “bubbles” (Huang et al., 2019) resulted from
the synchronism.

Here we only demonstrate the acceleration results forK ≤ 4
following the DDG, FR and DSP without moving forward to
K ≥ 5. This is because the depth-wise partition introduces
imbalance of computation workload among different work-
ers since the smallest partitionable unit a either one layer or
one residual block. The imbalance increases rapidly with
larger K leading to inefficiency in decoupled learning. For
instance, 2 GPUs accelerate the learning to 1.92× but dou-
bling the resources to 4 GPUs only receives 3.32× instead
of a double acceleration, indicating that certain modules are
idle for some time. Our ADL obtains the fastest learning
speed, but still requires a further assistance on balancing
the workload distribution if we are to fully demonstrate its
acceleration potential (e.g., obtaining a speedup of ≈ 7.5×
for K = 8). Addressing or mitigating the imbalance issue
is not trivial and is to be investigated in future work.

6.3. Memory Analysis

Here we conduct a brief comparison regarding the memory
consumption among the compared methods. The results are
measured based on the average GPU memory in training
RN-18 of K = 4 with a batch size of 128. As indicated
in Table 4, the compared methods used more memory than
that used by BP. Compared with the FR and GPipe, the
DDG and ADL require additional memory. This is because,
unlike the trainings in FR and GPipe, no recomputation is
required, which however allow them, especially the ADL,
to run much faster (e.g., 3.32× of ADL v.s. 1.45× of FR for
4 GPUs). Reducing the memory usage without affecting the
ADL’s generalization and speed is a nontrivial task, which
will be our future work.

7. Conclusion
In this paper, we proposed an accumulated decoupled learn-
ing (ADL) algorithm to address the inefficiency in BP
lockings thereby achieving model parallelism. Particularly,
a module-wise gradient accumulation (mGA) technique,
which mitigates the gradient staleness that hinders the scal-
ing ability of decoupled learning, has been incorporated.
The effect of mitigation has been demonstrated theoretically
and empirically. Theoretically, we showed that the ADL
converged to critical points, and also demonstrated how
the partition size (PS) and the mGA could affect the lower
bound categorizing the convergence. The classification tasks
conducted validated our claim as the ADL outperformed the
state-of-the-art counterparts especially in the case of a large
PS. We finally showed the running speed, demonstrating a
remarkable acceleration for the ADL as a model parallelism
tool.
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