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Abstract

Value decomposition recently injects vigorous vi-
tality into multi-agent actor-critic methods. How-
ever, existing decomposed actor-critic methods
cannot guarantee the convergence of global op-
timum. In this paper, we present a novel
multi-agent actor-critic method, FOP, which
can factorize the optimal joint policy induced
by maximum-entropy multi-agent reinforcement
learning (MARL) into individual policies. The-
oretically, we prove that factorized individual
policies of FOP converge to the global optimum.
Empirically, in the well-known matrix game and
differential game, we verify that FOP can con-
verge to the global optimum for both discrete and
continuous action spaces. We also evaluate FOP
on a set of StarCraft II micromanagement tasks,
and demonstrate that FOP substantially outper-
forms state-of-the-art decomposed value-based
and actor-critic methods.

1. Introduction
Cooperative multi-agent reinforcement learning (MARL)
has recently made great progress in many aspects by solving
social dilemma (Hughes et al., 2018; Eccles et al., 2019),
characterizing influence between agents (Jaques et al.,
2019), optimizing both efficiency and fairness (Jiang &
Lu, 2019), incorporating agent communication (Sukhbaatar
et al., 2016; Das et al., 2019; Ding et al., 2020), consid-
ering relation between agents (Jiang et al., 2020) or their
underlying network (Zhang et al., 2018; Qu et al., 2019).

Among these, fully cooperative MARL that maximizes a
reward shared by all agents particularly has attracted much
attention. Centralized training with decentralized execution
(CTDE) is usually adopted as the learning paradigm for both
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value-based and actor-critic MARL methods, where global
information can be accessed during centralized training and
learned policies are executed with only local information
in a decentralized way (Oliehoek et al., 2008; Kraemer &
Banerjee, 2016). CTDE can resolve the non-stationarity
under partial observability and has demonstrated great po-
tential to address complex real-world problems, such as
traffic signal control (Zhang et al., 2020; Xu et al., 2021)
and autonomous driving cars (Zhou et al., 2020). How-
ever, CTDE suffers from the joint action-value function
whose complexity grows exponentially with the number of
agents, which restricts the performance of related MARL
algorithms.

Value decomposition (Sunehag et al., 2018; Rashid et al.,
2018; Son et al., 2019; Rashid et al., 2020; Yang et al., 2020;
Wang et al., 2021) has witnessed success in handling the
joint action-value function to effectively enable CTDE in
value-based MARL methods. It aims to express the joint
action-value function by individual action-value functions
under the constraint of Individual-Global-Max (IGM) for the
optimal consistency of joint and individual actions. How-
ever, existing decomposed value-based MARL methods
limit to discrete actions.

When facing tasks with continuous actions, multi-agent
actor-critic methods (Lowe et al., 2017; Foerster et al., 2018;
Wei et al., 2018; Iqbal & Sha, 2019) are often taken into
consideration. However, the exploration or sub-optimal be-
havior of one agent could negatively affect other agents’
policy learning through the centralized critic (Wang et al.,
2020). To address this problem, some studies (Wang et al.,
2020; de Witt et al., 2020; Su et al., 2020) decompose the
centralized critic to reduce the influence among agents dur-
ing policy improvement. Although these decomposed actor-
critic methods lead to improved performance, they cannot
guarantee the learned individual policies lead to the optimal
joint behavior.

In this paper, we aim to successfully enable agents to per-
form globally optimal behavior by simply executing the
individual policy in any factorizable task, no matter dis-
crete or continuous action space. We introduce a more gen-
eral condition than IGM, Individual-Global-Optimal (IGO),
which extends the factorizable task to both discrete and con-
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tinuous action spaces by the optimal consistency between
joint policy and individual policies. With the IGO condition,
we propose a novel decomposed multi-agent actor-critic
method, FOP, which factorizes the joint policy induced by
maximum-entropy MARL into individual policies. Theo-
retically, we show that such factorized individual policies
converge to the global optimum. Empirically, in the well-
known matrix game (Son et al., 2019) and differential game
(Wei et al., 2018), we verify that FOP indeed fully converges
to the global optimum for both discrete and continuous ac-
tion spaces, while existing decomposed actor-critic methods
do not. We also evaluate FOP on a set of StarCraft II micro-
management tasks (Samvelyan et al., 2019), and show that
FOP substantially outperforms state-of-the-art decomposed
value-based and actor-critic methods.

Related Work

Value decomposition (Sunehag et al., 2018; Rashid et al.,
2018; Son et al., 2019; Yang et al., 2020; Rashid et al., 2020;
Wang et al., 2021) has been increasingly popular in value-
based MARL. These methods express the joint action-value
function conditioned on global information as a function
of individual action-value functions conditioned on local
information, to satisfy the IGM consistency. Additivity and
monotonicity are respectively considered in VDN (Sune-
hag et al., 2018) and QMIX (Rashid et al., 2018) which is
further enhanced to Weighted QMIX (Rashid et al., 2020)
by weighting joint actions. Qatten (Yang et al., 2020) de-
composes the joint action-value function by both linearity
and monotonicity. QTRAN (Son et al., 2019) and QPLEX
(Wang et al., 2021) realize the full expressive capability of
value decomposition by transforming IGM into optimization
constraints and by duplex dueling architecture, respectively.
Although witnessed success in some complex tasks, such
as StarCraft II (Samvelyan et al., 2019), these decomposed
value-based methods limit to discrete action space.

To handle continuous action space, decomposed actor-critic
methods (de Witt et al., 2020; Su et al., 2020; Wang et al.,
2020) are proposed to compute policy gradients using the de-
composed critic instead of the centralized critic in classical
multi-agent actor-critic methods (Lowe et al., 2017; Foerster
et al., 2018; Iqbal & Sha, 2019). Su et al. (2020) utilized
the VDN and QMIX structure to decompose the joint state-
value function, while FacMADDPG (de Witt et al., 2020)
learns the joint action-value function using QMIX. DOP
(Wang et al., 2020) uses a decomposition structure similar
to Qatten (Yang et al., 2020) to calculate policy gradients
for off-policy tree backup and on-policy TD(λ). Although
DOP proves that individual policies can converge to local
optimal even if the decomposed critic has limited expressive
capability, these decomposed actor-critic methods cannot
guarantee the convergence to global optima. In this paper,
we study how to factorize the joint policy into individual

policies with the optimal consistency.

2. Background
2.1. Model

We consider a fully cooperative multi-agent task as a decen-
tralized partially observable MDP (Dec-POMDP), defined
by a tuple 〈N ,S, {Ui},P, r, {Zi},O, γ〉. N is the set of
agents with |N | = N , and S is the set of states. At each
time step, each agent i ∈ N chooses an action ui from
its action set Ui, all agents together forming a joint action
u ∈ U : ×i∈NUi. The state s ∈ S transitions to the
next state s′ upon u, according to the transition function
P(s′|s,u) : S × U × S → [0, 1] and all agents receive a
shared reward r(s,u) : S × U → R. Moreover, each agent
only obtains a partial observation zi ∈ Zi according to the
observation function O(s, i) : S ×N → Zi and learns an
individual policy πi(ui|τi) : Ti × Ui → [0, 1] conditioned
on the trajectory τi ∈ Ti : (Zi × Ui)∗. The objective of all
agents is to maximize the cumulative return E[

∑∞
t=0 γ

trt],
where γ ∈ [0, 1] is the discount factor. Further, from a
centralized prospective, we denote the joint trajectory of
all agents as τ ∈ T : ×i∈NTi, and define a joint policy
πjt(u|τ ) : T × U → [0, 1] that has a joint Q-function
Q
πjt
jt (τ ,u) = Eτt+1:∞,ut+1:∞ [

∑∞
k=0 γ

krt+k|τt,ut], where
we drop the superscript πjt if there is no confusion for sim-
plicity.

2.2. Value Decomposition

Value decomposition (Sunehag et al., 2018; Rashid et al.,
2018; Son et al., 2019; Yang et al., 2020; Rashid et al., 2020;
Wang et al., 2021) expresses the joint Q-function Qjt(τ ,u)
as a function of individual Q-functions [Qi(τi, ui)]

N
i=1 to

ease the difficulty of learning the joint Q-funciton. An
important concept is Individual-Global-Maximum (IGM),
which guarantees the consistency between individual opti-
mal actions and optimal joint action, i.e.,

arg max
u

Qjt =
(

arg max
u1

Q1, . . . , arg max
uN

QN
)
.

VDN (Sunehag et al., 2018) and QMIX (Rashid et al., 2018)
give sufficient conditions for IGM by additivity and mono-
tonicity, respectively, as

(VDN) Qjt(τ ,u) =

N∑
i=1

Qi(τi, ui),

(QMIX)
∂Qjt(τ ,u)

∂Qi(τi, ui)
> 0, ∀i ∈ N .

QTRAN (Son et al., 2019) transforms IGM into constraints
which however make the optimization computationally in-
tractable. The relaxation of these constraints makes QTRAN
perform poorly in complex tasks (Mahajan et al., 2019).
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QPLEX (Wang et al., 2021) provides IGM consistency by
taking advantage of duplex dueling architecture,

Qjt(τ ,u) =

N∑
i=1

Qi(τ , ui) +

N∑
i=1

(λi(τ ,u)− 1)Ai(τ , ui),

where Ai(τ , ui) = wi(τ )(Qi(τi, ui) − Vi(τi)), Vi(τi) =
maxui

Qi(τi, ui), and wi(τ ) is a positive weight. Al-
though QPLEX guarantees the IGM consistency, the op-
erator maxui

Qi still limits it to only discrete action space.

Naturally, we can also learn a decomposed critic under
multi-agent actor-critic framework and update actors by the
gradient computed using the decomposed critic (Wang et al.,
2020; de Witt et al., 2020; Su et al., 2020). Among these,
DOP (Wang et al., 2020) exploits a linear decomposition to
estimate the centralized critic,

Qjt(τ ,u) =
∑
i

ki(τ )Qi(τ , ui) + b(τ ). (1)

Then, each agent can learn a stochastic policy πi by

g = Eπ
[∑

i

ki(τ )∇ log πi(ui|τi)Qi(τ , ui)
]
, (2)

or a deterministic policy µi by

g = Eτ
[∑

i

ki(τ )∇µi(τi)∇ui
Qi(τ , ui)|ui=µi(τi)

]
. (3)

However, existing decomposed actor-critic methods cannot
guarantee the convergence of global optimum. We will
discuss how to address this in next section.

3. Analysis
DOP (Wang et al., 2020) analyzes that classic multi-agent
actor-critic methods suffer from the exploration or sub-
optimality of other agents’ policies, causing a large variance
of policy gradients. On the other hand, decomposed pol-
icy gradients have a smaller variance, leading to improved
performance. DOP proves that learning individual policies
through (2) or (3) can converge to local optima with the lim-
ited expressive capability of decomposition structure. How-
ever, how to reach the global optimum remains unknown.
Moreover, empirical results (Section 5.1) show that DOP
and FacMADDPG (de Witt et al., 2020) always converge
to local optima in both non-monotonic matrix game with
discrete action space and differential game with continuous
action space. Therefore, we can conclude that the decentral-
ized policies (we use decentralized policies or individual
policies exchangeably in the paper) in existing decomposed
multi-agent actor-critic methods cannot promote the optimal
joint behavior in some factorizable tasks.

To address this problem, the individual optimal behaviors
should be consistent with the optimal joint behavior. Con-
sidering a sequential decision-making task that is amenable

to factorization in centralized training, the optimal joint be-
havior can be generated by the optimal joint policy π∗jt(u|τ ).
We first define Individual-Global-Optimal (IGO), i.e., the
constraint of optimal policy consistency:

Definition 1 (IGO). For an optimal joint policy π∗jt(u|τ ) :
T × U → [0, 1], where τ ∈ T is a joint trajectory, if there
exist individual optimal policies [π∗i (ui|τi) : T × U →
[0, 1]]Ni=1, such that the following holds:

π∗jt(u|τ ) =

N∏
i=1

π∗i (ui|τi), (4)

then, we say that [πi] satisfy IGO for πjt under τ .

IGO implies the optimal consistency between the joint pol-
icy conditioned on the global information and individual
policies conditioned on the local information. From IGO,
we can see that if we locally move individual policies to-
wards individual optimal policies (e.g., by minimizing KL-
divergence), the distance between the joint policy and opti-
mal joint policy also decreases. In this way, we can obtain
the joint policy improvement by individual policy improve-
ment (see Appendix A.1 for details), which motivates this
work.

We say a task is factorizable, which means that the global
optimal solution of the task in centralized training can be
achieved locally by individuals in decentralized execution.
By describing the factorization from the policy perspective,
the factorizable task is free from value functions or greedy
policies. Therefore, IGO is more general than IGM to de-
scribe the factorizability of the task, since IGM can be seen
as a special case of IGO if we specialize in the greedy policy
(see Appendix A.2).

4. Learning to Factorize Optimal Joint Policy
In this section, we propose a novel multi-agent actor-critic
method, FOP, which Factorizes the Optimal joint Policy
induced by maximum-entropy MARL under the IGO con-
straint and achieves the global optimum through factorized
individual policies.

4.1. Factorized Maximum-Entropy MARL

Adopting the paradigm of CTDE, the maximum-entropy
objective (Ziebart, 2010) for multi-agent settings can be
naturally defined as:

J(πjt) =
∑
t

Eπjt [rt + αH(πjt(·|τt))],

where α denotes the team temperature parameter that deter-
mines the relative importance of the entropy term versus the
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team reward. The joint policy πjt is the Boltzmann policy:

πjt(u|τ ) =
exp(

Qjt(τ ,u)
α )∑

ũ exp(
Qjt(τ ,ũ)

α )
.

Further, the optimal joint soft-Q-function can be defined as:

Q∗jt(τ t,ut) =r(τ t,ut)+

Eτt+1,...[

∞∑
k=1

γk
(
rt+k + αH(π∗jt(·|τt+k))

)
],

where π∗jt denotes the optimal joint soft policy and is as:

π∗jt(u|τ ) = exp
( 1

α
(Q∗jt(τ ,u)− V ∗jt (τ ))

)
,

where V ∗jt (τ ) := α

∫
U

exp(
1

α
Q∗jt(τ ,u))du.

(5)

Similarly, for each agent i, the individual optimal soft policy
conditions only on its own trajectory τi and can be defined
as:

π∗i (ui|τi) = exp
( 1

αi
(Q∗i (τi, ui)− V ∗i (τi))

)
,

where V ∗i (τi) := αi log

∫
Ui

exp(
1

αi
Q∗i (τi, u))du,

(6)

and αi denotes individual temperature parameter.

To achieve the global optimum by individual policies, the
individual optimal soft policies should satisfy IGO. By plug-
ging (5) and (6) into (4), the optimal joint soft-Q-function
Qjt and the individual optimal soft-Q-functions [Qi]

N
i=1

should satisfy the following:

Q∗jt(τ ,u) =

N∑
i=1

α

αi

[
Q∗i (τi, ui)− V ∗i (τi)

]
+ V ∗jt (τ ), (7)

where V ∗jt (τ ) and V ∗i (τi) are the same as in (5) and (6),
respectively. Therefore, the value decomposition is obtained
according to the optimal consistency between joint policy
and individual policies. This is also one of the reasons for
using maximum-entropy RL framework, as its policy is
directly tied to the value function.

4.2. Factorized Soft Policy Iteration

In this subsection, we introduce factorized soft policy itera-
tion for the factorized maximum-entropy MARL, which is
an extension of SAC (Haarnoja et al., 2018a) for multi-agent
settings. We mathematically prove that factorized individual
policies converge to the global optimum.

In policy evaluation of factorized soft policy iteration, we
update the joint soft-Q-function Qjt of πjt by repeatedly
applying soft Bellman operator Γπjt as

ΓπjtQjt(τ t,ut) := rt + γEτ t+1
[Vjt(τ t+1)],

where Vjt(τ t) = Eπjt [Qjt(τ t,ut)− α log πjt(ut|τ t)].

By this, we can obtain the joint soft-Q-function for any joint
soft policy πjt.

Lemma 1 (Joint Soft Policy Evaluation). Consider the
soft Bellman operator Γπjt and a mappingQ0

jt : T ×U → R
with |U | < ∞, and define Qk+1

jt = ΓπjtQ
k
jt . Then, the

sequence Qkjt will converge to the joint soft-Q-function of πjt

as k →∞.

Proof. See Appendix B.1.

In policy improvement, the joint soft policy πjt is updated
based on individual soft policies [πi]

N
i=1, where the individ-

ual soft policies are updated towards the exponential of the
new individual soft-Q-functions.

We restrict the individual policy πi of each agent i to some
set of policies Πi and update the individual policy according
to:

πnew
i =arg min

π′i∈Πi

DKL

(
π′i(·|τi)

∣∣∣∣
exp

(
1

αi

(
Q
πold
i
i (τi, ·)− V

πold
i

i (τi)
)))

.

(8)

Based on this individual soft policy improvement, we will
show that the newly projected joint soft policy has a higher
value than the old joint soft policy with respect to the
maximum-entropy RL objective.

Lemma 2 (Individual Soft Policy Improvement). Let
πold
i ∈ Πi and πnew

i be the optimizer of the minimization

problem defined in (8). Then, we have Q
πnew

jt
jt (τ t,ut) ≥

Q
πold

jt
jt (τ t,ut) for all (τ t,ut) ∈ T × U with |U | < ∞,

where πold
jt =

∏N
i=1 π

old
i and πnew

jt =
∏N
i=1 π

new
i .

Proof. See Appendix B.2.

Factorized soft policy iteration alternates between joint soft
policy evaluation and individual soft policy improvement,
and provably converges to the global optimum among the
policies in [Πi]

N
i=1.

Theorem 1 (Factorized Soft Policy Iteration). Consider-
ing joint soft policy can be factorized as πjt =

∏N
i=1 πi,

repeated application of joint soft policy evaluation and indi-
vidual soft policy improvement from πi ∈ Πi,∀i ∈ N con-
verges to a policy π∗jt such that Q

π∗jt
jt (τ ,u) ≥ Qπjt

jt (τ ,u) for
all [πi ∈ Πi]

N
i=1 and (τ ,u) ∈ T × U , assuming |U | <∞.

Proof. See Appendix B.3.
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Figure 1. FOP architecture.

With factorized soft policy iteration, we can have decentral-
ized policies with guaranteed convergence of global opti-
mum. Next, we will show how to learn such policies using
neural networks.

4.3. FOP Architecture

The overall architecture of FOP is illustrated in Figure 1. To
factorize the optimal joint policy, we need to satisfy (7) and
thus the architecture of FOP complies this principle.

For each agent i, there are an individual soft Q-network
Qθii (ui, τi), an individual soft V-network V φi

i (ti), and an
individual soft policy πψi

i (ui|τi), parameterized by θi, φi,
and ψi, respectively. Two centralized components are in-
troduced to compose Qi and Vi into Qjt according to (7).
First, we can easily have a joint soft V-network V Φ

jt (τ ), pa-
rameterized by Φ. However, there are some difficulties to
handle the temperature parameters. Choosing the tempera-
ture is non-trivial since the entropy can vary unpredictably
during training as the policy becomes better, SAC (Haarnoja
et al., 2018b) introduces automating entropy adjustment by
considering it as a constrained optimization problem. The
team temperature α can be adjusted in the same way as
SAC since the team objective is clear and team reward is
available. For individual temperature αi, as each agent’s
specific contribution to the team is unknown, we introduce
a weight network λΨ(τ ,u), parameterized by Ψ, to obtain
[αi]

N
i=1 by

αi = α
Eui∼πi [Qi(τi, ui)− Vi(τi)]

Eu∼πjt [λ
Ψ
i (τ ,u)

(
Qi(τi, ui)− Vi(τi)

)
]
.

Theoretical analysis on the convergence of individual poli-
cies with λΨ(τ ,u) to the global optimum is provided in
Appendix C.

Therefore, the factorization structure of FOP can be repre-
sented as:

Qjt(τ ,u) =

N∑
i=1

λΨ(τ ,u)
[
Qθii (τi, ui)−V φi

i (τi)
]
+V Φ

jt (τ ).

Although the factorization structure intuitively looks similar
to QPLEX (Wang et al., 2021), they are different in nature.
Qjt in FOP is derived from the maximum-entropy RL ob-
jective, while Qjt in QPLEX is based on the general RL
objective. Besides, Vi in FOP is the soft V-function while Vi
in QPLEX is maxui

Qi. Thus, FOP is not only suitable for
discrete action space but also for continuous action space,
while QPLEX is only for discrete action space.

FOP is trained in a centralized manner, and during execution
each agent uses its own individual soft policy πψi

i (ui|τi) to
take action ui in a decentralized manner. We train individ-
ual soft Q-networks, joint soft V-network, and the weight
network by minimizing the TD error:

L([θi]
N
i=1,Φ,Ψ) = E(τ ,u,r,τ ′,u′)∼D

[(
Qjt(τ ,u)

−
(
r + γ

(
Q̂jt(τ

′,u′)− α log πjt(u
′|τ ′)

)))2]
,

(9)

where D is the replay buffer, Q̂jt is computed using target
networks, and πjt(u

′|τ ′) =
∏N
i=1 π

ψi

i (u′i|τ ′i)}. Noted that
the gradients of Qjt will not backpropagate to individual V-
networks and policy networks. Each individual V-network
is learned by minimizing:

L(φi) = Eτi∼D
[(

Eui

[
Qi(τi, ui)−αi log πi(ui|τi)

]
− Vi(τi)

)2
]
.

(10)
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Algorithm 1 FOP

1: for episode = 1 to max training episode do
2: Initialize the environment
3: for t = 1 to max episode length do
4: For each agent i, get τi, take action ui ∼ πψi

i (·|τi)
5: Execute joint action u, observe reward r, and each

agent gets τ ′i
6: Store (τ ,u, r, τ ′) in replay buffer D
7: if time to update then
8: Sample a random minibatch of K samples from

D: {(τk,uk, rk, τ ′k)}K
9: Update [θi]

N
i=1,Φ,Ψ using (9)

10: Update [φ]Ni=1 using (10)
11: Update [ψi]

N
i=1 using (11)

12: Update temperature parameters α and [αi]
N
i=1

13: Update target networks: [θ̂i]
N
i=1, Φ̂, Ψ̂

14: end if
15: end for
16: end for

Each individual soft policy can be learned by directly min-
imizing the expected KL-divergence in (8). As the log
partition function Vi does not affect the optimization, the
objective of individual soft policy network can be written as

Jπi(ψi) = E τi∼D
ui∼πi

[αi log πi(ui|τi)−Qi(τi, ui)]. (11)

As the objective does not rely on other agents’ behaviors, the
gradient has a smaller variance than that of methods based
on the centralized critic. Moreover, under the factorized
soft policy iteration theorem, theses individual soft policies
converge to the global optimum. For completeness, we
summarize the training of FOP in Algorithm 1.

5. Experiments
In this section, first we empirically study the optimality of
FOP by two didactic games for discrete and continuous ac-
tion spaces, compared with existing decomposed actor-critic
methods. By ablation studies, we verify the robustness of
FOP to temperature parameter, and the importance of the
IGO constraint and soft policy. Then, in StarCraft II, we
demonstrate that FOP outperforms state-of-the-art baselines
including both decomposed value-based and actor-critic
methods. Note that in the experiments, all the learning
curves are plotted based on five training runs with differ-
ence random seeds using mean and standard deviation with
confidence internal 95%.

5.1. Matrix Game and Differential Game

In both discrete matrix game and continuous differential
game, we investigate whether FOP can converge to optimal

Table 1. The non-monotonic cooperative matrix game. Boldface
means the optimal action from individual policies.

(a) Payoff of matrix game

u1

u2
A B C

A 8 -12 -12
B -12 0 0
C -12 0 0

(b) FOP: Q1, Q2, Qjt

Q1

Q2 3.3(A) 0.1(B) 0.1(C)

4.7(A) 8.0 -12.0 -12.0
-0.1(B) -12.0 0.0 0.0
-0.1(C) -12.0 0.0 0.0

(c) FacM: Q1, Q2, Qjt

Q1

Q2 -0.8(A) -0.1(B) -0.2(C)

-0.6(A) -8.5 -5.4 -5.8
-0.1(B) -6.0 -1.5 -2.1
-0.0(C) -5.3 -0.4 -1.0

(d) DOP: Q1, Q2, Qjt

Q1

Q2 -2.5(A) -1.3(B) -0.0(C)

-2.2(A) -7.8 -6.0 -4.2
-1.0(B) -6.1 -4.4 -2.6
-0.3(C) -4.2 -2.4 -0.7

compared with existing decomposed actor-critic methods in-
cluding FacMADDPG (abbreviated as FacM) (de Witt et al.,
2020) and DOP (Wang et al., 2020). The two games have
one common characteristic: some destructive penalties are
around with the optimal solution, making the sub-optimal
solution have a higher expected return than that of the op-
timal solution (Wei et al., 2018). Thus, these tasks pose a
dramatic challenge to general actor-critic methods (Lowe
et al., 2017; Iqbal & Sha, 2019) because the policy gradient
tends to converge to sub-optima.

MATRIX GAME

The matrix game proposed by QTRAN (Son et al., 2019)
is as illustrated in Table 1a. Such a non-monotonic matrix
game consists of two agents with three actions and a shared
reward. We show the results of FOP, FacMADDPG, and
DOP over 10k learning steps, as in Table 1b, 1c, and 1d, re-
spectively. FOP achieves the optimum, while FacMADDPG
and DOP fall into the sub-optimum induced by miscoordina-
tion penalties. Note that FOP, QPLEX (Wang et al., 2021),
and QTRAN (Son et al., 2019) are the only three algorithms
that can successfully converge to the optimum, and FOP
is the first decomposed actor-critic method. More details
about the experiments on the matrix game are included in
Appendix D.1.

DIFFERENTIAL GAME

We adopt the differential game, the Max of Two Quadratic
(MTQ) Game, from Panait et al. (2007) and Wei et al. (2018).
The MTQ game consists of two agents, where each has one-
dimensional bounded continuous action space with a shared
reward function:

f1 = 0.8×
[
− (u1+5

3 )2 − (u2+5
3 )2

]
f2 = 1×

[
− (u1−5

1 )2 − (u2−5
1 )2

]
+ 10

r(u1, u2) = max(f1, f2).
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(a) reward surface (b) learning curves (c) FOP

(d) MADDPG (e) MAAC (f) FacMADDPG (g) DOP

Figure 2. The Max of Two Quadratic Game: (a) reward surface, (b) the learning curves of all the methods; and (c)-(g) their learning paths.

The reward surface is illustrated in Figure 2a, where there is
a sub-optimal solution 0 at (−5,−5) and a global optimal
solution 10 at (5, 5). In MTQ, we compare FOP with both
regular multi-agent actor-critic methods, i.e., MADDPG
(Lowe et al., 2017) and MAAC (Iqbal & Sha, 2019), and
decomposed actor-critic methods (FacMADDPG and DOP).
Both agents scaled their reward by 0.1. The learning curves
(20k steps) of all the methods are illustrated in Figure 2b,
where agents’ policies are initialized at (0, 0), and the learn-
ing paths of all the methods are depicted in Figure 2c to
2g.

FOP always converges to the global optimum while all other
baselines fall into the sub-optimum on the left. Note that
FOP is the first value decomposition MARL method that can
successfully converge to the optimum in the MTQ. Interest-
ingly, by comparing the learning paths where the scattered
red dots are the exploration trails before convergence, we
can see that FOP is the only one that can not only estimate
Qjt accurately (comparing with the reward surface in Fig-
ure 2a), but also converge to the global optimum. In contrast,
as depicted in Figure 2f and 2g, FacMADDPG and DOP
converge to the sub-optimum and also have limitation to
express Qjt. In addition, although MADDPG and MAAC
can accurately estimate Qjt, they fail to converge to the op-
timum. One of the possible reasons is that the gradient of
the actors of MADDPG and MAAC has large variance due
to the centralized critic (Wang et al., 2020), which is also

Table 2. Ablation study of FOP in the non-monotonic cooperative
matrix game. Boldface means the optimal action from individual
policies.

(a) FOP: α̂ = 1

Q1

Q2 0.3(A) 0.1(B) 0.1(C)

7.7(A) 8.0 -9.4 -4.9
0.0(B) 3.8 0.1 -0.0
-0.1(C) 3.8 -0.1 -0.0

(b) FOP: α̂ = 0.5

Q1

Q2 5.5(A) 1.2(B) 0.8(C)

2.4(A) 8.0 -11.9 -11.8
-0.5(B) -11.7 -0.1 -0.0
-0.8(C) -11.8 0.0 -0.0

(c) FOP: α̂ = 0.1

Q1

Q2 7.6(A) 2.3(B) 0.2(C)

0.4(A) 8.0 -12.0 -12.0
-0.1(B) -12.0 -0.0 -0.0
-0.1(C) -12.0 -0.1 0.1

(d) FOP: α̂ = 0.01

Q1

Q2 3.3(A) 0.1(B) 0.1(C)

4.7(A) 8.0 -12.0 -12.0
-0.1(B) -12.0 0.0 0.0
-0.1(C) -12.0 0.0 0.0

verified in the experiment. More details are available in
Appendix D.1. The pathology of finding a sub-optimal solu-
tion is also called relative overgeneralization (Wei & Luke,
2016; Castellini et al., 2019), which is discussed further in
Appendix D.2.

ABLATION STUDIES

We first investigate the robustness of FOP to the team tem-
perature α. Table 2 shows the performance of FOP in the
matrix game, where FOP is trained by linearly annealing α
from 1 to different α̂ over 10k steps. We can see that FOP
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(a) learning curves of FOP (b) FOP with DOP’s decomposition (c) FOP with greedy policy

Figure 3. Ablation study in MTQ: (a) the learning curves of FOP with different annealing approaches; (b) the learning path of FOP with
DOP’s decomposition; (c) the learning path of FOP with greedy policy.
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Figure 4. Learning curves of all the methods in four maps of StarCraft II.

can always find the optimal solution, even if the policy is
not greedy (α̂ is not 0). We also train FOP in the differen-
tial game by different temperature adjustment approaches.
The learning curves are shown in Figure 3a. We can see
that FOP always converges to the optimal, and the only
difference under these approaches is the convergence rate.
These experiments demonstrate FOP is robust with the team
temperature.

Next, we change FOP’s factorization to DOP’s linear decom-
position in (1). By comparing the learning path in Figure 3b
against Figure 2c, we can see that without the factorization
based on IGO, even if the joint action space is well explored,
the biased estimate of the joint Q-value leads the individual
policies to the sub-optimal, which reveals the significance
of the IGO constraint.

Last, we replace the soft policy of FOP to the greedy pol-
icy by setting α = αi = 0 during the training. Figure
3c illustrates that the lack of effective exploration biases
the estimate of the joint Q-value and leads the policies to
the sub-optimal, which reveals the importance of the soft
policy. More details of the ablation studies are included in
Appendix D.3.

5.2. StarCraft II

We evaluate FOP on the challenging StarCraft Multi-Agent
Challenge (SMAC) benchmark (Samvelyan et al., 2019)

in four maps including 2c vs 64zg, 3s vs 3z, MMM and
MMM2. The baselines include the decomposed actor-critic
method (stochastic DOP, the best-performing DOP in Star-
Craft II (Wang et al., 2020)) and the decomposed value-
based methods (VDN, QMIX and QPLEX). Results are
shown in Figure 4, where each episode has about 10k time
steps, totally two million time steps. In general, FOP out-
performs the baselines in all the scenarios. In 2c vs 64zg,
3s vs 3z and MMM, FOP outperforms all the baselines in
both convergence speed and final performance. In MMM2,
DOP soon falls into sub-optima though it converges fast
at first, while FOP can keep exploring for a better policy.
More details of the StarCraft II experiments are included in
Appendix D.4.

6. Conclusion
We proposed FOP, which learns factorized individual poli-
cies in cooperative MARL. Unlike existing decomposed
actor-critic methods that are only guaranteed to converge
to local optimum, the factorized individual policies of FOP
provably converge to the global optimum under the derived
factorized soft policy iteration theorem. Empirically, in the
well-known matrix game and differential game, we verified
FOP can converge to the global optimum for both discrete
and continuous action spaces, and it also substantially out-
performs the state-of-the-art decomposed value-based and
actor-critic methods on a set of StarCraft II tasks.
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