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Abstract

We propose a reparametrization scheme to ad-
dress the challenges of applying differentially
private SGD on large neural networks, which
are 1) the huge memory cost of storing individ-
ual gradients, 2) the added noise suffering no-
torious dimensional dependence. Specifically,
we reparametrize each weight matrix with two
gradient-carrier matrices of small dimension and
a residual weight matrix. We argue that such
reparametrization keeps the forward/backward
process unchanged while enabling us to compute
the projected gradient without computing the gra-
dient itself. To learn with differential privacy,
we design reparametrized gradient perturbation
(RGP) that perturbs the gradients on gradient-
carrier matrices and reconstructs an update for
the original weight from the noisy gradients. Im-
portantly, we use historical updates to find the
gradient-carrier matrices, whose optimality is rig-
orously justified under linear regression and em-
pirically verified with deep learning tasks. RGP
significantly reduces the memory cost and im-
proves the utility. For example, we are the first
able to apply differential privacy on the BERT
model and achieve an average accuracy of 83.9%
on four downstream tasks with ¢ = 8, which is
within 5% loss compared to the non-private base-
line but enjoys much lower privacy leakage risk.

1. Introduction

A recent line of works (Shokri et al., 2017; Carlini et al.,
2019; 2020) have exposed the potential privacy risks of
trained models, e.g., data extraction from language model.
Theoretically, learning with differential privacy (Dwork
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Reparametrization: Forward:
xeR?

Normal forward: h = Wx

Low-rank Input:
gradient carriers:
L € RP*", R € R™4

v
Reparametrized forward:

W € RP*4 h=LRx + Wx
Backward:
Residugl weight: We show dL and aR naturally satisfy:
W=w-LR aL = (AW)R"
aR = LT(aw)

Figure 1. The proposed reparametrization scheme. The residual
weight makes the reparametrized output the same as the normal
output and 0L, O R naturally connected with the normal gradient.

et al., 2000) is guaranteed to prevent such information leak-
age because differential privacy imposes an upper bound on
the influence of any individual sample. Empirically, differ-
ential privacy also makes learning more resistant to attacks
(Rahman et al., 2018; Bernau et al., 2019; Zhu et al., 2019;
Carlini et al., 2019; Ma et al., 2019; Lecuyer et al., 2019).

To learn with differential privacy, many algorithms have
been proposed under different settings over the past decade,
e.g., Chaudhuri & Monteleoni (2009); Song et al. (2013);
Agarwal et al. (2018); Wang & Gu (2019); Wang et al.
(2019a); Yu et al. (2020); Phan et al. (2020); Vietri et al.
(2020), to name a few. Among them, gradient perturba-
tion is a popular choice because of its simplicity and wide
applicability (Abadi et al., 2016). In terms of simplicity,
gradient perturbation only makes two simple modifications
to the standard learning process. It first clips the gradients
of individual samples, referred to as individual gradients,
to bound the sensitivity and then perturbs the aggregated
gradient with random noise. In terms of wide applicability,
it does not assume the objective to be convex and hence
applies to deep neural networks.

Despite its advantages, there are two challenges when apply-
ing gradient perturbation to cutting-edge deep models. First,
one needs to compute and store individual gradients. Recent
works (Dangel et al., 2019; Opacus, 2020) have developed
toolkits to compute individual gradients for a mini-batch of
data through a single forward/backward pass, but storing
individual gradients consumes a huge amount of memory
as each individual gradient requires the same amount of
memory as the model itself. Second, both theoretical and
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empirical utilities of gradient perturbation suffer from bad
dependence on the model size (Bassily et al., 2014; Papernot
et al., 2020; Tramer & Boneh, 2021) because the intensity
of the added noise scales proportionally with the model size.

To tackle these challenges, we reparameterize each weight
matrix W of a deep neural network with a pair of low-rank
gradient carriers {L, R} and a residual weight W, as illus-
trated in Figure 1. With this reparametrization, the forward
signal and the backward signal propagate the same as before.
We show that the gradients on L and R are naturally con-
nected with the gradient on W. Especially if the gradient
carriers consist of orthonormal vectors, we can construct
a projection of the gradient of W from the gradients of L
and R that are of low dimension. In other words, we can
compute the projection of the gradient without computing
the gradient itself. This property could save a huge amount
of memory in DP-SGD where a large batch of individual
gradients are computed and stored. We note that this could
be also useful in other problems involving statistics of indi-
vidual gradients, e.g. computing the gradient variance (Zhao
& Zhang, 2015; Balles et al., 2016; Mahsereci & Hennig,
2017; Balles & Hennig, 2018), which is out of our scope.

Based on the above framework, we propose reparametrized
gradient perturbation (RGP) for differentially private learn-
ing. Specifically, after the backward process, RGP clips and
perturbs the gradients of L and R, which gives a certain
level of privacy guarantee. Then RGP uses the noisy gra-
dients to construct an update for the original weight. We
note that because the gradient-carrier matrices are of much
smaller dimension than the original weight matrix, the total
intensity of the added noises is significantly smaller, which
helps us break the notorious dimensional dependence of the
utility of differentially private learning.

The key of the reparameterization scheme is how well the
gradient projection approximates the original gradient. We
argue that the approximation is good if 1) the original gra-
dient of W itself is indeed low-rank and 2) its principal
subspace aligns with L and R. The first condition is empiri-
cally verified by showing the gradient of each layer is of low
stable rank when training deep neural networks, which has
also been exploited for gradient compression in distributed
optimization (Vogels et al., 2019). The second condition
is guaranteed if L and R consists of the principal singular
vectors of the original gradient, which, however, violates
the differential privacy. Instead, in RGP, we approximately
compute a few of principal vectors of the historical updates
that are already published and free to use because of the
post-processing property of differential privacy, and use
them as gradient carriers. We theoretically prove that the
optimality of using the historical update substitution for lin-
ear regression and empirically verify its efficacy for deep
neural networks.

With RGP, we can easily train large models with differen-
tial privacy and achieve good utility on both the vision and
language modeling tasks. For example, we use RGP to
train the BERT model (Devlin et al., 2018) on downstream
language understanding tasks. We establish rigorous differ-
ential privacy guarantee for such large model with a modest
drop in accuracy. With a privacy budget e = 8, we achieve
an average accuracy 83.9% on downstream tasks, which is
within 5% loss compared to the non-private baseline. We
also use membership inference attack (Shokri et al., 2017;
Sablayrolles et al., 2019) to evaluate the empirical privacy
risks and demonstrate that the models trained with RGP are
significantly more robust to membership inference attack
than the non-private ones. Overall, our contribution can be
summarized as follows.

1. We propose reparametrized gradient perturbation
(RGP) that reduces the memory cost and improves
the utility when applying DP on large models.

2. We give a detailed analysis on the property of RGP. We
propose using the historical update to find the principal
subspace and give theoretical arguments.

3. Empirically we are able to efficiently train BERT with
differential privacy on downstream tasks, and achieve
both good accuracy and privacy protection.

1.1. Notations

We introduce some basic notations. Vectors and matrices
are denoted with bold lowercase letters, e.g., v, and bold
capital letters, e.g., M, respectively. Sets are denoted with
double-struck capital letters, e.g., S. We use [n] to denote
the set of positive numbers {1, ..., n}. Some preliminaries
on differential privacy are presented in Appendix A.

2. A Reparametrization Scheme

In this section, we introduce a reparametrization scheme for
the neural network weight matrices so that computing and
storing individual gradients are affordable for large models.
Specifically, during each forward/backward process, for a
layer with weight matrix W € RP*9, we reparametrize it
as follows (see Figure 1 for an illustration),

W — LR+ W .stop_gradient(), (1)

where L € RPX" R € R™*? are two low-rank gradient
carriers with » < pord, W =W - LR represents the
residual weight and .stop_gradient() means that we do not
collect the gradient on w. Hence, such reparametrization
does not change the forward signal and the backward signal,
but only changes the gradient computation. Now we obtain
the gradients on L and R. We then unveil the connection
between the gradient on W and the gradients on L and R.
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Theorem 2.1. For a layer with weight matrix W, suppose
that OW is the gradient computed by back-propagation
with a mini-batch data D. Given two matrices L, R, we
reparametrize W as in Eq (1) and compute the gradients
OL and OR by running the forward and backward process
with the same mini-batch D, then

OL = (OW)RT, OR = LT (0W). (2)

Based on the above understanding, we can construct an
update for W by using OL and OR.

Corollary 2.1.1. If the columns of L and the rows of R are
orthonormal, respectively, and we use

(OL)R+ L(OR) — LLT (OL)R, (3)

as the update for W, then the update is equivalent to project-
ing OW into the subspace of matrices whose row/column
spaces are spanned by L and R.

Proof. The proofs of Theorem 2.1 and Corollary 2.1.1 are
relegated to Appendix B.1. O

We note that if L and R consist of orthonormal bases, Corol-
lary 2.1.1 states that we can obtain the projection of OW
without explicitly computing and storing 0W'! The size of
gradient on L or R is much smaller than the size of OW if
the gradient carriers are chosen to be low-rank. Therefore,
this reparametrization provides a convenient way to com-
pute and store projected gradients of a large matrix. This
is extremely beneficial for the scenarios where individual
gradients {0; W}, are required, e.g., approximating the
variance of gradients and controlling the gradient sensitivity.

It is natural to ask how to choose L and R so that the
update in Corollary 2.1.1 contains the most information of
OW . Ideally, we can first compute the aggregated gradient
OW and run singular value decomposition (SVD) OW =
UXVT. Then we can choose the top few columns of U
and V to serve as the gradient carriers. In this case, the
update in Corollary 2.1.1 is equivalent to approximating
OW with its top-r principal components.

However, in the context of differential privacy, we can not
directly decompose OW as it is private. In the sequel, we
give a practical reparametrization scheme for differentially
private learning, where we use the historical update to find
L and R and argue the optimality under certain conditions.

One may wonder why not just replace W with L and R
instead of doing the reparametrization. We note that the
forward and the backward process remain the same as be-
fore if doing the reparametrization, and the only change
is the gradient computation of W. In contrast, if using L
and R to replace the weight W, this would not only re-
duce the expressive power but also hurt the optimization

as the width varies dramatically across layers and the for-
ward/backward signals cannot propagate well by common
initialization strategies (Glorot & Bengio, 2010; He et al.,
2016).

2.1. Reparametrization for Convolutional Layers

In the above, we have described how to reparametrize a
weight matrix, which covers the usual fully-connected layer
and the attention layer in language models. In this sub-
section, we show the reparametrization of convolutional
layers. Let 2z € R%%' %% pe the input feature maps of one
sample and h € RP*%*" be the output feature maps. We
describe how to compute the elements at one spatial position
h.;; € RP where i € [0, w] and j € [0, }].

Let W € RPX4Xkxk pe the convolution kernels and
(b)) ¢ RI¥kExE pe the features that we need to com-
pute h.; ;. The output feature h.; ; can be computed as
h.;; =Wz, where W € RP*4k’ js obtained by flat-
tening the channel and kernel dimensions. Hence, we can
use the same way as in Eq (1) to reparametrize W':

h.,; = LRz 4+ (W — LR)z"9). 4)

Specifically, the operation of R and L are implemented
by two consequent convolutional layers with kernel sizes
rxdxkxk andpxrx1x1,respectively, where r is the
reparametrization rank. The residual weight is implemented
by a convolutional layer of the original kernel size.

3. Private Deep Learning with
Reparametrized Gradient Perturbation

The above reparametrization strategy can significantly re-
duce the gradient dimension, which could help us circum-
vent the difficulties of applying differential privacy on large
machine learning models. In this section, we propose a
procedure “reparametrized gradient perturbation (RGP)” to
train large neural network models with differential privacy.
Specifically, Section 3.1 introduces the whole procedure of
RGP, Section 3.2 gives the privacy guarantee of RGP, and
Section 3.3 presents the complexity analysis.

3.1. Reparametrized Gradient Perturbation Algorithm

The pseudocode of RGP is presented in Algorithm 1. The
RGP proceeds for all the layers and we ignore the layer
index for simplicity in the following discussion. At each
update, for a layer with weight matrix W, RGP consists of
four steps: 1) generate the gradient-carrier matrices L and
R, 2) run the reparametrized forward/backward process and
obtain the individual gradients {0, L}!"; and {O; R}~,, 3)
clip and perturb the gradients, 4) reconstruct an approxi-
mated gradient on the original weight matrix.
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Algorithm 1 Reparametrized Gradient Perturbation (RGP)

Algorithm 2 Decomposition via Power Method.

1: Input: NN with weight matrices {W(l)}fil, steps T,
probability g, variance o2, clipping threshold C, warm-
up steps Tiyarm-up» Algorithm 2 input {r, K'}.
Randomly initialize the weights and obtain {W_" }/Z,;
fort =1toT do

Sample a minibatch {x; };cs, with probability g¢;

For all | € [H], compute historical updates
! ! l
A e W WD Lo

and run Alg. 2 with {Agl), r, K} to get Lgl), Ril);

6:  //Forward/backward process with reparametrization.
7:  Run reparametrized forward process with Eq (1);
8:  Run backward process and compute individual gradi-

ents {9 L\, aiREl)}le[H],ieStQ

9:  //Bound gradient sensitivity and add noise.
10:  Clip individual gradients with Ly norm threshold C'
11: for!l=1to H do
12: Sum individual gradients and get {6LEZ), 8R§l)};
13: Perturbation with Gaussian noise zg?t, z%?t whose
elements are independently from N'(0, 02C?):

L — or® +20, IRY « oRY 120,

14: Use 5L§l), 5R§l), and Eq (3) to construct 5Wt(l);
15: Use off-the-shelf optimizer to get Wt(fr)l;

16:  end for

17: end for

In the RGP procedure, step 1), which is also the core chal-
lenge, is to choose “good" gradient-carrier matrices so that
the reconstructed gradient can approximate the original gra-
dient as well as possible. First, this requires for a given
rank 7, the generated gradient-carrier matrices should align
with the principal components of the original gradient well.
Moreover, to reconstruct the gradient in step 4), it requires
the gradient carriers have orthonormal columns/rows.

For the first requirement, we use historical updates to find
the gradient carriers. The historical update is not sensitive
because of the post-processing property of differential pri-
vacy. In Section 4.2, we give both empirical and theoretical
arguments to demonstrate that the principal subspace of the
current gradient aligns with that of the historical update.
In our implementation, we use a warm-up phase in which
the decomposition is directly done on the weight. We ap-
proximate the principal components via the power method
(Algorithm 2) instead of the time-consuming full SVD. For
the second requirement, we apply the Gram-Schmidt pro-

Input: Historical update A, reparametrization rank 7,
number of iterations K.
Output: Gradient carriers L € RP*", R € R"*,

Initialize R from standard Gaussian distribution.
for k =1to K do
L~ AR"
Orthonormalize the columns of L.
R=LTA
end for
Orthonormalize the rows of R.
Return L, R

cess to orthonormalize L and R.

Step 2) of RGP is the reparametrization and a round of
forward/backward propagations, as presented in Section 2.

Step 3) is for differential privacy guarantee. The individual
gradients {9; L, 0; R}, are first clipped by a pre-defined
threshold so that the sensitivity is bounded. Then, Gaussian
noise is added to the aggregated gradient to establish a
differential privacy bound. The energy of added noise is
proportional to the dimension, i.e., the rank r of the carrier
matrices. Hence, in order to make the noise energy small, it
encourages us to use smaller rank . However, smaller rank
would increase the approximation error in the step 1). In
practice, we trade off these two factors to choose a proper 7.

In step 4), we use the noisy aggregated gradients of gradient-
carrier matrices to reconstruct the gradients of original
weights, as depicted in Corollary 2.1.1. The reconstructed
gradients can then be used by any off-the-shelf optimizer.

3.2. Privacy Analysis of RGP

The privacy bound of Algorithm 1 is given by Proposi-
tion 3.1. The derivation of Proposition 3.1 is based on the
moments accountant that is proposed in Abadi et al. (2016).
Moments accountant has tighter composition bound than
the strong composition theorem in Dwork et al. (2014a).
Moments accountant first tracks the privacy budget spent
at each update. Then, it composes the spent budget of all
updates and cast the final privacy cost into the classic (¢, d)-
differential privacy.

Proposition 3.1 (Abadi et al. (2016)). There exist constants
c1 and ¢y so that given running steps T, for any € < c1¢*T,
Algorithm 1 is (e, 0)-differentially private for any § > 0 if

we choose
qv/Tlog (1/9)

zCQ——— -
€

Proof. The proof outline is relegated to Appendix B.2. [
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Table 1. Computation and memory costs of RGP (Algorithm 1)
and DP-SGD (Abadi et al., 2016), where m is the size of mini-
batch, d is the model width, r is the reparametrization rank, and
K is the number of power iterations.

Method
DP-SGD RGP

Cost

Computational cost | O(md?) | O(md* + Krd® + Kr?d)

Memory cost O(md?) O(mrd)

The value of ¢ in Proposition 3.1 is based on an asymptotic
bound on the moments of the privacy loss random variable.
In practice, one can use the numerical tools (Wang et al.,
2019b; Mironov et al., 2019) to compute a tighter bound.
So far we have depicted the overall picture of RGP. We next
analyze the computational and memory costs of RGP and
compare them with that of DP-SGD.

3.3. Complexity Analysis of RGP

For the simplicity of notations, we only give the costs of
one fully connected layer at one update (including forward
and backward) and assume that the weight matrix is square.
The shape of weight matrix, size of minibatch, number of
power iterations, and rank of reparametrization are denoted
by (d x d), m, K, and r, respectively.

The computational overhead of RGP consists of three parts.
The first part is induced by matrix multiplication of power
iteration, whose complexity is O(Krd?). The second part
is induced by the Gram—Schmidt process, whose complex-
ity is O(Kr?d). The third part of overhead is the compu-
tational cost induced by gradient carriers during the for-
ward/backward process, which is on the order of O(mrd).

RGP uses much less memory than DP-SGD in the practice.
Although RGP needs some extra memory to store the acti-
vation produced by the gradient carriers, it has a significant
advantage over DP-SGD on the memory cost of storing
individual gradients, which is one of the main challenges
of learning with differential privacy. For RGP, the memory
cost of individual gradients only scales linearly with model
width d in contrast with d? for DP-SGD. We summarize the
computational cost of one update and the memory cost of
storing individual gradients in Table 1.

The low-rank nature of gradient permits us to choose a small
r without destroying utility (see Section 4.1). In practice,
we typically choose the rank r smaller than 10. For the
number of power iterations in Algorithm 2, we find that
setting ' = 1 is sufficient to get good performance. Hence,
in practice, we always choose small r and K for efficiency
while not hurting the performance.
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Figure 2. Gradient stable rank (|| - |% /|| - ||). For ResNet, we plot
the gradient rank of the classification layer and the first residual
block. For BERT, we plot the gradient rank of the first fully-
connected block and the first attention block.

4. Two Properties of the Gradient Matrix

We show two properties of the gradients of modern deep
neural networks to justify the design choices of Algorithm 1.
The first property is that the gradient of each weight matrix
is naturally low-rank, which motivates us to use low-rank
reparameterization. The second property is that the gradient
of a weight matrix along the optimization path could stay in
the same subspace, which motivates us to use the historical
updates to generate the gradient-carrier matrices.

4.1. Gradient Matrix Is of Low Stable Rank

Recent works have used the low-rank approximation to
compress the gradients and reduce the communication cost
in distributed optimization (Yurtsever et al., 2017; Wang
et al., 2018b; Karimireddy et al., 2019; Vogels et al., 2019).
These existing works set up a good motivation to exploit the
low stable rank property of the gradients of weight matrices.

We further verify this low-rank property which may give a
hint about how to set the reparameterization rank r in prac-
tice. We empirically compute the stable rank (|| - ||%./]| - ||3)
of the gradient of the weight matrices in a BERT model and
a wide ResNet model. The dataset for the BERT model is
SST-2 from the GLUE benchmark (Wang et al., 2018a). The
dataset for the wide ResNet model is CIFAR-10 (Krizhevsky
& Hinton, 2009). The experimental setup can be found in
Section 5. We plot the gradient stable rank in Figure 2.

As shown in Figure 2, both the gradients of BERT and
ResNet models are naturally of low stable rank over the
training process. Hence, low-rank gradient-carrier matrices
would have a small approximation error if we find the right
gradient subspace. In Section 4.2, we argue that historical
update is a good choice to identify the gradient subspace.

4.2. Historical Gradients Are Correlated

Suppose that W; is a weight matrix at step ¢, and OW, is
the gradient with a batch of data D with a r-SVD oW, =
U, VL. For another step ¢’ with ¢ > t and the same data
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Figure 3. Projection residual with reparametrization rank 8. We
use a fixed mini-batch with 500 samples. For ResNet, we use the
input convolution layer. For BERT, we use the second matrix of the
FC layer in the first encoder block. The definition of historical/self
projection residual is in Eq (5) and (6).

D, we have Wy, 0OWy and a r-SVD: OW, = Ut/Zt/Vt,T.
We can project W, onto the principal subspace of OW;
or W, and measure the projection residual

I = UU oW (I = ViV lp/loWelp,  (5)
(I = U U)W (I = Vo Vi)l /|0Wel|F,  (6)

where Eq (5) is the projection residual using historical gradi-
ent, referred to as historical projection residual, and Eq (6)
is the projection residual using current gradient, referred
to as self projection residual. A small difference between
Eq (5) and (6) indicates that the principal subspace of the
current gradient aligns with that of the historical gradient.

We empirically examine the projection residual of a BERT
model and a wide ResNet model. The tasks are the same as
in Section 4.1. At the beginning of each epoch, we evaluate
the projection residual between the current gradient and the
gradient of the previous epoch. The results are plotted in
Figure 3. We can see that the difference between Eq (5)
and (6) is small for both models.

To understand why historical gradients are correlated, we
next use a linear regression problem to rigorously show that
the gradients over time could live in the same subspace.
Suppose we have a set of observations {(x;, y;)}_,, where
x; € R? is the feature vector and y; € RP? is the target
vector for all ¢ € [n]. The least-squares problem is given by

1 )
arg min — y; — Wa;||”. @)
nin 3| [

Proposition 4.1. For the least squares problem (7), if the
model is updated by gradient descent with step size 1)

Wit < Wy —n - 0W,, ®

then the gradients {OWy}>1 share the same range and
null space. That is to say, if OW7 is rank r and has r-SVD
oW, = U, 21 VT, then for all t > 1, we have

(I -U U)W, =0, OW,(I —ViViE) =0. (9)

Proof. The proof is relegated to Appendix B.3. O

Hence we can use the historical updates W, — W), to identify
gradient row/column subspaces as in Algorithm 1.

That indicates that for the weight matrix W € RP*?_if the
gradient turns out to be low-rank r due to the data {x;,y;},
we can possibly first identify the intrinsic subspace which is
of r(p + d) dimension instead of the original p - d number
of parameters. Then we can work within this subspace for
differentially private empirical risk minimization. This can
both reduce the effect of noise and save the memory cost of
gradient perturbation due to the small intrinsic dimension.
We note that identifying the low-rank subspace can be done
approximately as in the algorithm, or by using some auxil-
iary public data as in Zhou et al. (2021); Yu et al. (2021a).

Remark 1. Suppose that the least-squares objective
LW) = 15" llys — Wa||? is B-smooth and the
gradient subspace is rank r and can be exactly identi-
fied. Let the optimizer of RGP be gradient descent and
o be set as in Proposition 3.1. If n = %, T = "8 and

p
W =L W, then

E[L(W)] - L(W,) <O <\/<p+ d)rlog(1/5)> 7

ne

where W, is the optimal point, Wy is the output of Algo-
rithm 1 at step t.

The proof of Remark 1 can be adapted from (Yu et al., 2020).
Although the exact low-rank property of the gradient cannot
be rigorously proved for deep neural network because of the
co-adaption across layers, we have empirically verified that
the gradient matrices are still of low stable rank and stay
in roughly the same subspace over iterations (see Figure
2 & 3). Our algorithm exploits this fact to reparameterize
weight matrices, which achieves better utility and reduces
the memory cost compared with DP-SGD.

S. Experiments

We conduct experiments on various kinds of tasks to demon-
strate the effectiveness of RGP. We first examine the utility
of models trained by RGP. To this end, we apply RGP on
the wide ResNet (Zagoruyko & Komodakis, 2016) and the
BERT (Devlin et al., 2018) models, which are representative
models for computer vision and natural language modeling.
The results are presented in Section 5.1 and 5.2. The source
code of our implementation is publicly available'.

Moreover, we empirically evaluate the privacy risk of the
models via the success rate of membership inference (MI)

'nttps://github.com/dayull/
Differentially-Private-Deep-Learning
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Table 2. Validation accuracy (in %) of WRN28-4 on vision tasks .

Method SVHN | CIFARI10
Full (N.P) 97.2 93.3
Linear (N.P.) 41.1 39.8
RGP (N.P) 97.1 91.2
PowerSGD (N.P.) 97.1 91.9
DP-SGD (e = 8) 91.6 55.9
DP-PowerSGD (e = 8) | 91.9 57.1
RGP-random (e = 8) 91.7 51.0
RGP (e = 8) 94.2 63.4

Table 3. Validation accuracy (in %) of RGP on vision tasks with
varying e. The model architecture is WRN28-4. Numbers in
brackets denote the improvements compared to DP-SGD.

Dataset €e=2 e=4 e=06
SVHN 873 (+4.1) | 89.7 (+3.4) | 92.3 (+3.9)
CIFAR10 | 44.0 (+6.6) | 53.3 (+6.4) | 59.6 (+7.9)

attack (Shokri et al., 2017; Sablayrolles et al., 2019; Yu
et al., 2021b). The results are presented in Section 5.3.

Implementation. The number of iterations for power
method is 1. We use an open-source tool of moments ac-
countant to compute the privacy loss?. For a given setting of
hyperparameters, we set o to be the smallest value so that
the privacy budget is allowable to run desired epochs. All
experiments are run on a node with four Tesla V100 GPUs.

Baselines. We implement several baseline algorithms for
comparison. For differentially private learning, the first
baseline is DP-SGD in Abadi et al. (2016) and the second
one is RGP with gradient carriers consisting of random
orthonormal vectors, referred to as RGP-random. We also
include several non-private baselines, i.e., (i) Full (N.P.):
training the full model, (ii) Linear (N.P.): training only
the linear classification layer, (iii) RGP (N.P.): training the
model with reparametrization but without gradient clipping
or adding noise.

We consider differentially private PowerSGD (Vogels et al.,
2019) as another baseline for vision tasks. PowerSGD ap-
proximates full gradients with low-rank matrices to reduce
the communication cost. It first aggregates the individual
gradients and then runs power iterations to find approxima-
tions of the principle components of the averaged gradient.
Hence for DP-powerSGD, it is necessary to first perturb
the aggregated gradient and then project it into low-rank
subspace otherwise the sensitivity is hard to track after pro-
jection. As a consequence, DP-powerSGD needs to compute
the individual gradients explicitly, which costs huge memory
as DP-SGD does. In Section 5.1, we add a DP-powerSGD
baseline with the same setting as that of RGP.

Zhttps://github.com/tensorflow/privacy

Additionally, some ablation experiments are conducted to
study the influence of the residual weight and reparametriza-
tion ranks, which are relegated to the Appendix C.

5.1. Experiments on Vision Tasks

Model. We use wide ResNet models (Zagoruyko & Ko-
modakis, 2016) for the vision tasks. The architecture is
WRN28-4 with ~1.5M parameters. All batch normaliza-
tion layers are replaced with group normalization layers to
accommodate private learning.

Tasks. We use two vision datasets: SVHN (Netzer et al.,
2011) and CIFAR10 (Krizhevsky & Hinton, 2009). SVHN
contains images of 10 digits and CIFAR10 contains images
of 10 classes of real-world objects.

Hyperparameters. We follow the hyperparameters in
Zagoruyko & Komodakis (2016) except using a mini-batch
size 1000. This mini-batch size is larger than the default
because the averaging effect of large mini-batch reduces the
noise variance. The reparametrization rank r is chosen from
{1,2,4,8,16}. We choose the privacy parameter § < %,
and set § = 10~° for SVHN and § = 10~° for CIFAR10.

We repeat each experiment 3 times and report the average.

Results. The prediction accuracy with e = 8 is presented
in Table 2. We can see that RGP (N.P.) achieves compara-
ble performance with training the full model (N.P.). When
trained with DP, RGP outperforms DP-SGD by a consider-
able margin while enjoying a much lower memory cost. We
also compare RGP with DP-SGD using different privacy
budgets (¢ = 2/4/6) and report the results Table 3.

5.2. Experiments on the Downstream Tasks of BERT

Model. We use the BERTgasg model in Devlin et al. (2018),
which is pre-trained on a massive corpus collected from the
Web. The BERTgasg model has ~110M parameters.

Tasks. We use four tasks from the General Language Un-
derstanding Evaluation (GLUE) benchmark (Wang et al.,
2018a), including MNLI, QQP, QNLI, and SST-2. The other
tasks from GLUE are excluded because their datasets are
of small sizes (<10K) while differentially private learning
requires large amount of data (Tramer & Boneh, 2021).

Hyperparameters. We follow the hyperparameters in De-
vlin et al. (2018) except for the mini-batch size and train-
ing epochs. The reparametrization rank r is chosen from
{1, 2,4, 8}. The mini-batch size is 500 for SST-2/QNLI and
1000 for QQP/MNLI. To construct an update with desired
mini-batch size, we accumulate the gradients of multiple
micro-batches. We choose § = 10~ for QNLI/SST-2 and
§ = 105 for QQP/MNLI. The privacy parameter e is cho-
sen from {1, 2, 4,6, 8}. The number of training epochs is
50 for € > 2 and 20 for ¢ < 2. We run all experiments 5



Large Scale Private Learning via Low-rank Reparametrization

MNLI QQP QNLI SST-2
85 Py 7= = ®| g0.0l® r— - Y Py r~ = - - Py
90 92
80 87.5
R7s g/@/‘v/@’—' o 85 50
£ ) 80
570 825 88
65 80.0 75
3 —#— Full (N.P.) —#— Full (N.P.) —&— Full (N.P.) 86 —#— Full (N.P)
3 60 Linear (N.P.) 775 Linear (N.P.) 70 Linear (N.P.) Linear (N.P.)
s5] —#%— RGP 510 —#— RGP —#— RGP 84 —%— RGP
—— RGP-random ) —&— RGP-random 651 —— RGP-random —— RGP-random
50 725 82
1 2 4 6 8 1 2 4 6 8 1 2 4 6 8 1 2 4 6 8
£ € 3 £

Figure 4. Prediction accuracy of BERT on downstream tasks with varying e. For MNLI, we plot the average score of two test datasets.

Table 4. Prediction accuracy of BERT on downstream tasks (in %).
For DP-SGD, RGP, and RGP-random, a same ¢ = 8 is used.

Table 5. Success rates of membership inference attack against fine-
tuned BERT models (in %). The closer to 50, the better.

Method MNLI QQP | QNLI | SST2 | Avg.
Full (N.P) 84.8/383.7 | 902 | 91.6 | 934 | 88.7
Linear (N.B) | 51.9/50.8 | 732 | 63.0 | 82.1 | 642
RGP (NP) | 83.6/33.2 | 893 | 913 | 929 | 88.1
DP-SGD 54.6/534 | 745 | 63.6 | 823 | 657
RGP-random | 74.6/733 | 81.7 | 82.1 | 87.8 | 799
RGP 79.1778.0 | 848 | 862 | 915 | 839

times with different random seeds and report the average.

Results. The prediction accuracy of RGP and other base-
lines is presented in Table 4. The results with varying DP
parameter € is plotted in Figure 4. When trained without
privacy guarantee, RGP (N.P.) achieves test accuracy com-
parable with fine-tuning the full model. When trained with
differential privacy, RGP achieves the best performance. Its
accuracy loss compared to non-private baselines is within
5%. The performance of RGP-random is worse than that of
RGP because the random subspace does not capture gradi-
ent information as effectively as the subspace of historical
updates. DP-SGD achieves the worst performance because
high-dimensional noise overwhelms the useful signal in gra-
dients. We note that DP-SGD runs the lowest because it
needs to compute and store 110M floating-point numbers
for each individual gradient.

5.3. Defense Against Membership Inference Attack

Setup. We use membership inference (MI) attack to
empirically evaluate the privacy risk of models trained
with/without RGP. Following the membership decision in
Sablayrolles et al. (2019), we predict a sample from the
training data if its loss value is smaller than a chosen thresh-
old. To evaluate the MI success rate, we construct a M/
dataset, which consists of the same number of training and
test samples. Specifically, the MI dataset contains the whole
test set and a random subset of the training set. We further
divide the MI dataset evenly into two subsets. One is used
to find the optimal loss threshold and the other one is used
to evaluate the final attack success rate.

Method MNLI | QQP | QNLI | SST-2 | SVHN | CIFARI0
Ful NP) | 603 | 561 |558 |577 |564 |58.1
RGP (NP) | 523 |515 |518 |526 |528 |533
RGP (e =8) | 499 | 500 | 504 |50.1 |50.1 |503

Results. The MI success rates are presented in Table 5.
For MNLI, QQP, QNLI, and SST-2 datasets, we conduct
MI attacks on fine-tuned BERTgasg models. For SVHN
and CIFAR10 datasets, we conduct MI attacks on trained
WRN28-4 models. The MI attack on the models trained
with RGP (e = 8) is no better than random guessing (50%
success rate), which empirically demonstrate the effective-
ness of RGP in protecting privacy. Moreover, interest-
ingly, the models trained with low-rank reparametrization
alone also achieve much lower MI success rate than the
fully trained model, which indicates the benefit of low-rank
reparametrization in terms of privacy protection.

6. Related Work

Differentially private learning has a poor dimensional de-
pendency, i.e., the utility degrades dramatically when the
model dimension gets large. In the high-dimensional setting,
related works usually assume the sparse structure (Thakurta
& Smith, 2013; Talwar et al., 2015; Wang & Xu, 2019;
Wang et al., 2019a; Cai et al., 2019) or specific problem
structure (Chen et al., 2020; Zheng et al., 2020). However,
these assumptions or specific structures do not hold for the
gradient of deep neural networks. Here we emphasize the
difference from our low-rank assumption. For the sparsity
assumption, the bases are canonical and not private while
for the low-rank assumption, it is “sparse” under certain
bases but the bases are unknown and private. Hence the
previous algorithms for sparsity cannot apply here.

Very recently, several works (Zhou et al., 2020; Kairouz
et al., 2020; Yu et al., 2021a) exploit the redundancy of
gradients of samples and suggest projecting the gradients
into a low dimensional subspace that is identified by some
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public data points or historical gradients, in order to reduce
the noise effect when training large models. However, they
all require storing and clipping whole individual gradients
and hence are hard to train extremely large models. Our
work is orthogonal with theirs, i.e., we exploit the low-rank
property of the gradient of each weight matrix, which truly
breaks the barrier of applying DP in large models.

Another recent approach of training non-convex models
with differential privacy is based on the knowledge transfer
of machine learning models Private Aggregation of Teacher
Ensembles (PATE) (Papernot et al., 2017; 2018; Jordon et al.,
2019). They first train independent teacher models on dis-
joint shards of private data and then tune a student model
with privacy by distilling noisy predictions of teacher mod-
els on some public samples, whose performance suffers
from the data splitting (Yu et al., 2021a). It is not clear how
to apply PATE to train large language models like BERT. In
contrast, our algorithms do not require public data and can
be used in different settings with little change.

The phenomenon that the gradients of deep models live on
a very low dimensional manifold has been widely observed
(Gur-Ari et al., 2018; Vogels et al., 2019; Gooneratne et al.,
2020; Li et al., 2020; Martin & Mahoney, 2018; Li et al.,
2018). People have also used this fact to compress the
gradient with low-rank approximation in the distributed
optimization scenario (Yurtsever et al., 2017; Wang et al.,
2018b; Karimireddy et al., 2019; Vogels et al., 2019).

7. Conclusion

In this paper, we present the reparametrized gradient per-
turbation (RGP) for applying DP on large models. The key
design of RGP exploits two properties of gradients in deep
neural network, which are 1) the gradient of each weight
matrix is of low stable rank, 2) the principal components
of historical gradients align well with that of the current
gradient. We also justify the designs with both theoretical
and empirical evidence. Thanks to RGP, we are able to train
BERT on several downstream tasks with DP guarantee and
achieve small accuracy loss.
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A. Preliminary on Differential Privacy

Differential privacy (DP) (Dwork et al., 2006; 2014b) is
widely recognized as a gold standard of privacy protection
due to its mathematical rigor. It controls the maximum influ-
ence that any individual sample can produce. The definition
of (€, 9)-DP is given in Definition 1.

Definition 1 ((¢,§)-DP). A randomized mechanism M
guarantees (€, §)-differential privacy if for any two neigh-
boring input datasets D ~ D' and for any subset of outputs
S it holds that PrIM(D) € S] < ePriM(D’) € S] + 6.

Two datasets are said to be neighboring datasets if they only
differ in a single sample. When being applied to learning
problems, DP requires the learned models on neighboring
datasets have approximately indistinguishable distributions.

B. Missing Proofs
B.1. Missing Proofs in Section 2

Theorem 2.1. For a layer with weight matrix W, suppose
that OW is the gradient computed by back-propagation
with a mini-batch data . Given two matrices L, R, we
reparametrize W as in Eq (1) and compute the gradients
OL and OR by running the forward and backward process
with the same mini-batch D, then

OL = (0OW)R”T, OR = L" (0W). )

Proof. The proof is based on the chain rule of back-
propagation. Since the reparametrization does not change
the forward and backward signals, we assume the layer
inputs are D = {x;},, the corresponding outputs are
{h;}, with h; = Wz, and the backward signals on the
layer output are {Oh; }* ;. By back-propagation, we have

oW =Y (0hi)x],

x; €D
OL =Y 0hi(Rx;)", OR= Y (L"0h;)x].
x,; €D x; €D

Proof is completed by the multiplication associativity. [

Corollary 2.1.1. Ifthe columns of L and the rows of R are
orthonormal, respectively, and we use

(OL)R + L(OR) — LLT (OL)R, (3)

as the update for W, then the update is equivalent to project-
ing OW into the subspace of matrices whose row/column
spaces are spanned by L and R.

Proof. If the columns of L and the rows of R are orthonor-

mal, the projection of OW onto L and R is defined as,

LLT(0W) + (0W)R'R — LLT (0W)RTR. (10)

Substituting the above formula with 0L = (OW)RT and
OR = LT (OW) in Theorem 2.1, completes the proof. [

B.2. Missing Proofs in Section 3

Proposition 3.1 (Abadi et al. (2016)). There exist constants
c1 and c; so that given running steps T, for any € < c1¢°T,
Algorithm 1 is (e, 0)-differentially private for any 6 > 0 if

we choose
. g/ Tlog (1/6)

zaT—
Proof. Although RGP releases projected gradient instead
of releasing the whole gradient as in Abadi et al. (2016),
moments accountant is still applicable because it applies to
vectorized function output.

Moments accountant tracks a bound on the moments of the
privacy loss random variable, which is built on the ratio of
the probability density functions of the output distributions
of two neighboring datasets. Abadi et al. (2016) show the
log moments of the privacy loss random variable composes
linearly. Therefore one can compute the overall privacy
cost by adding the log moments at every update. When the
training is done, moments accountant casts the accumulated
log moments into (¢, §)-DP via tail bound. Detailed proof
can be found in Appendix B of Abadi et al. (2016).

O

B.3. Missing Proofs in Section 4

Proposition 4.1. For the least squares problem (7), if the

model is updated by gradient descent with step size 1
Wit1 + Wi —n- 0W, 3)

then the gradients {OW,},>1 share the same range and
null space. That is to say, if OW is rank r and has r-SVD
oW, =U1X, VlT, then for all t > 1, we have

(I - U)W, =0, OW,(I —ViViE) =0. (9)

Proof. We can compute the gradient at step ¢

n

1
oW, = - Z(Wtwi —y)z!.

i=1
Given the gradient descent update equation 8, we can com-
pute the gradient at Wy, as follows

Wy = % ;((Wt — - OW)zi — y)aT
1< -

i=1
=o0W; (I—nZw,{c?) .
i=1
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Figure 5. Prediction accuracy of BERT on four downstream tasks (in %) with difference choices of reparametrization rank. We plot the

average score of two test datasets for MNLI.

Hence we have OW; = W, (I —n X", wiwiT)t. The
OW; lives in the same subspace for all £ > 1 as they have
the same row/column spaces. O

C. Additional Experiments

We present some ablation studies in this section to verify
the effect of residual weight and reparametrization rank. In
Section C.1, we try RGP with difference rank choices. In
Section C.2, we give a variant of RGP that simply discards
the residual weight.

C.1. On the Influence of Different Rank Choices

We present the results (see Figure 5) with different choices
of reparametrization rank. We consider four algorithms.
The first one is fine-tuning the full model that serves as
the baseline. The second one is RGP (N.P.) that trains the
model with reparametrization but without gradient clipping
or adding noise. The third one is RGP (Algorithm 1) and
the last one is RGP-random, which uses random orthogonal
vectors as gradient-carrier matrices. The privacy parameter
€ is 8 and other settings are the same as those in Section 5.
The results are plotted in Figure 5. When the models are
trained without noise, increasing the reparametrization rank
makes the performance of RGP (N.P.) approach the per-
formance of baseline. When the models are trained with
privacy guarantee, increasing the rank sometimes decreases
the performance because a larger rank induces more train-
able parameters and hence higher noise dimension.

C.2. On the Importance of Residual Weight

Recall that our reparametrization scheme reparametrizes the
weight matrix as follows:

W — LR+ W.stop_gradient(). (11)

We have shown that the residual weight W keeps the for-
ward/backward signals unchanged and makes the gradients
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Figure 6. Prediction accuracy of BERT on two downstream tasks.
All methods are trained without privacy guarantee.

of L and R naturally connected with the original gradi-
ent. To empirically examine the effect of W, we test the
following scheme:

W — LR. (12)

We still use the historical update to generate L and R. Other
settings are the same as those in Section 5. The results on
two downstream tasks of the BERT model are presented
in Figure 6. Without residual weight, the model learns
almost nothing from the re-constructed update and the final
accuracy is close to the accuracy at initialization.



