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A. Related Works
Comparison with Mean Field Limits For 1-hidden-
layer MLP, the mean field limit (Chizat & Bach, 2018; Mei
et al., 2018; Rotskoff & Vanden-Eijnden, 2018; Sirignano
& Spiliopoulos, 2018) is equivalent to the µP limit mod-
ulo the symmetry of Eq. (13) (see Appendix B). Several
works also proposed different versions of mean field frame-
works for deeper MLPs (Araújo et al., 2019; Fang et al.,
2020; Nguyen, 2019; Nguyen & Pham, 2020; Sirignano &
Spiliopoulos, 2020). However, they did not consider the
typical GaussianN (0, 1/n) random initialization (or the ap-
propriately rescaled version in their respective parametriza-
tions)17, which has a Central-Limit effect as opposed to
a Law-of-Large-Numbers effect. For example, (Araújo
et al., 2019; Nguyen & Pham, 2020) can cover the case
of N (0, 1/n2), instead of N (0, 1/n), initialization, which
in fact causes the function to be stuck at initialization. Of
these works, the mean field limit of (Fang et al., 2020) has
the form most similar to what we derive here. There, as we
do here, the coordinate distribution of each (pre)activation
vector is tracked recursively. The main difference is, while
(Fang et al., 2020) has an atypical initialization involving
`2 regression, we consider the usual Gaussian N (0, 1/n)
scheme. Such a (size n× n) Gaussian matrix in the middle
of the network has a distinctly different effect, more sim-
ilar to that of a Gaussian matrix in the usual NNGP/NTK
calculation,18 than the “mean field” matrices considered
in (Fang et al., 2020) and previous works (Araújo et al.,
2019; Nguyen, 2019; Nguyen & Pham, 2020; Sirignano
& Spiliopoulos, 2020), which has an “integral kernel” ef-
fect that is the straightforward generalization of matrices to
function spaces. Nevertheless, discrete time versions of the
1-hidden-layer mean field limit and of many of the multi-
layer limits (such as (Fang et al., 2020; Nguyen & Pham,
2020)) can be derived directly by writing the correspond-
ing initialization and training inside a Tensor Program and
applying the Master Theorem (Theorem G.4).

Discrete- vs Continuous-Time Gradient Descent At a
high level, there are two natural limits of neural networks
training dynamics: large-width and continuous-time. Most
prior works on infinite-width limits of neural networks also
took the continuous-time limit simultaneously, e.g. (Chizat
& Bach, 2018; Jacot et al., 2018; Mei et al., 2018; Rotskoff
& Vanden-Eijnden, 2018; Sirignano & Spiliopoulos, 2018).
In contrast, here we only take the large width limit, so
that gradient descent stays discrete-time. Then the results

17In fact, empirically we observe such Gaussian random initial-
ization to be crucial to performance compared to the mean-field-
style initialization in this literature.

18Actually, it is more similar to the Gaussian matrix in asym-
metric message passing (Bayati & Montanari, 2011) in that care
must be taken to keep track of correlation between W and W>.

of these prior works can be recovered by taking another
continuous-time limit. From a practical perspective, the
continuous-time limit is often unnatural, e.g. 1) because the
step size is usually as large as possible to speed up training,
2) because of the task (such as reinforcement learning), or
3) because of the importance of hyperparameters like batch
size that are hidden away in such limits. On the theory
side, taking the continuous-time limit can create issues with
1) well-posedness and 2) existence and uniqueness of the
resulting ODE/PDE. While they can sometimes be proved
to hold, they are artifacts of the continuous-time limit, as the
corresponding questions for the discrete time evolution are
trivial, and thus not relevant to the behavior of real networks.

Technical Assumptions Earlier works on neural tangent
or mean field limits (e.g. (Chizat & Bach, 2018; Fang
et al., 2020; Jacot et al., 2018; Mei et al., 2018; Nguyen &
Pham, 2020; Rotskoff & Vanden-Eijnden, 2018; Sirignano
& Spiliopoulos, 2018)) assume various forms of regularity
conditions, such as 1) 0th, 1st, and/or 2nd order smoothness
on the nonlinearity or other related functions, and 2) the sup-
port boundedness, subgaussianity, and/or PDF smoothness
of initialization distributions. These are often either unnatu-
ral or difficult to check. In our work, the only assumption
needed to rigorously obtain the infinite-width limit is that
the nonlinearity φ has a polynomially bounded weak 2nd
derivative and that the loss function has a continuous deriva-
tive w.r.t. the prediction (Assumption N.21). In particular,
when we specialize to the 1-hidden-layer case and derive the
discrete time version of the mean field limit, we cover the
standard Gaussian initialization; in fact, we can allow any
heavy-tailed initialization that can be written as the image
of a Gaussian under a pseudo-Lipschitz function, which
include nonsmooth PDFs and singular distributions.19 This
generosity of technical assumptions is due to that of the
Tensor Programs Master Theorems proven in (Yang, 2019a;
2020a;b).

Training Time Many prior works (e.g. (Allen-Zhu et al.,
2018; Huang & Yau, 2019; Mei et al., 2018)) derived ex-
plicit time dependence of the convergence to infinite-width
limit, so that a larger width can allow the network to stay
close to the limit for longer. In this paper, our results only
concern training time independent of width, since our pri-
mary objective is to investigate the limit itself and its feature
learning capabilities. Moreover, recent evidence suggests
that, given a fixed computational budget, it’s always better
to train a larger model for a shorter amount of time (Li et al.,
2020b), which validates the practical relevance of our limit
mode. Nevertheless, it is possible to prove a quantitative
version of the Tensor Programs Master Theorem, by which

19We won’t expand further here, but it can be derived straight-
forwardly from the Master Theorem (Theorem G.4).
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one can straightforwardly allow training time to increase
with width.

Classification of Parametrizations (Chizat & Bach)
pointed out that the weights move very little in the NTK
limit, so that linearization approximately holds around the
initial parameters, in contrast to the mean field limit (for
1-hidden-layer networks) where the weights move substan-
tially. For this reason, they called the former “lazy training”
and the latter “active training,” which are classified nonrigor-
ously by a multiplicative scaling factor of the logit (similar
to n−aL+1 in this paper). While these terms are not formally
defined, they intuitively correspond to the kernel and feature
learning regimes in our paper. From a different perspective,
(Mei et al., 2019) observed that the NTK and mean field
limit can be thought of as short and long time-scale regimes
of the mean field evolution equations. Neither of the above
works attempted to formally classify natural parametriza-
tions of neural networks. In contrast, (Woodworth et al.,
2020) studied a toy class of neural networks in the context
of implicit regularization due to the scale α of initialization
(which is closely related to logit multiplier of (Chizat &
Bach) noted above). They identified the α → ∞ limit (of
the scale α, not of width) with the “kernel regime” and the
α → 0 limit with what they call the “rich regime”. They
showed that the former is implicitly minimizing an `2 risk
while the latter, an `1 risk. They claim width allows the
toy model to enter the kernel regime more naturally, but
as we see in this work, both kernel and feature learning
regimes are admissible in the large width limit of a stan-
dard MLP. Closer to our approach, (Golikov, 2020) studied
what amounts to a 2-dimensional subspace of the space of
stable abc-parametrizations for L = 1. They proposed a
notion of stability which is similar to the combination of
stability and nontriviality in this paper. They characterized
when the Neural Tangent Kernel, suitably generalized to
any parametrization and playing a role similar to the feature
kernel in this paper, evolves over time. However, to simplify
the proofs, they assumed that the gradients for the different
weight matrices are estimated using different inputs, a very
unnatural condition. In contrast, here our results are for the
usual SGD algorithm applied to MLPs of arbitrary depth. In
all of the above works and most of existing literature, not
much attention is paid to the feature learning capabilities
of neural networks in the right parametrization, as opposed
to our focus here. A notable exception is (Chizat & Bach,
2020), which showed that the mean field limit, but not the
NTK limit, can learn low dimension linear structure of the in-
put distribution resulting in ambient-dimension-independent
generalization bounds.

Other Related Works (Lewkowycz et al., 2020) pro-
posed a toy model to study how large learning rate can
induce a neural network to move out of the kernel regime in

Ω(log(width)) time. Since our dichotomy result only con-
cerns training for O(1) time (which, as we argue above, is
more practically relevant), there is no contradiction. (Sohl-
Dickstein et al., 2020) also noted that standard parametriza-
tion leads to unstable training dynamics. They then injected
constants in the NTK parametrization, such as α/

√
n in-

stead of 1/
√
n and tuned α in the resulting kernel. (Aitchi-

son, 2020; Aitchison et al., 2020) also observed the lack of
feature learning in NNGP and NTK limits but, in contrast to
taking the exact limit of SGD training as we do here, they
proposed a deep kernel process as a way of loosely mim-
icking feature learning in finite-width networks. (Gilboa &
Gur-Ari, 2019) empirically observed that wider networks
achieve better downstream performance with linear transfer
learning, even though on the original pretraining task there
can be little difference. (Li et al., 2020a) proved a com-
plexity separation between NTK and finite-width networks
by showing the latter approximates a sort of infinite-width
feature learning network. In the literature surrounding NTK,
often there are subtle differences in parametrization leading
to subtle differences in conclusion (e.g. (Allen-Zhu et al.,
2018; Du et al., 2018; Zou et al., 2018)). Our abc framework
encapsulates all such parametrizations, and can easily tell
when two ostensibly different parametrizations (e.g. (Du
et al., 2018; Zou et al., 2018)) are actually equivalent or
when they are really different (e.g. (Allen-Zhu et al., 2018;
Du et al., 2018)) via Eq. (13).

B. Motivating Examples: Neural Tangent
Kernel and Mean Field Limits

In this section, we motivate the discussion of feature learn-
ing vs kernel regime by reviewing the well-known tangent
kernel and mean field limits of a shallow neural network.

For simplicity, define a shallow network f(ξ) with in-
put/output dimension 1 by

f(ξ) = V x(ξ) ∈ R, x(ξ) = φ(h(ξ)) ∈ Rn, h(ξ) = Uξ ∈ Rn.
(10)

As a specialization of Eq. (1), we parametrize weights V =
n−avv ∈ R1×n and U = n−auu ∈ Rn×1, where the width
n should be thought of as tending to ∞, and v, u should
be thought of as the actual trainable parameters. We will
sample vα ∼ N (0, n−2bv ), uα ∼ N (0, n−2bu) for α ∈ [n].
The learning rate is ηn−c for some η independent of n.

For example, in the Neural Tangent Parametrization (abbre-
viated NTP) (Jacot et al., 2018), au = bv = bu = 0, av =
1/2, c = 0. The Mean Field Parametrization (abbreviated
MFP) corresponds to av = 1, au = bu = bv = 0, c = −1;
however, as will be explained shortly, we will use the equiv-
alent formulation au = −1/2, av = bu = bv = 1/2, c = 0
in this section so c = 0 for both NTP and MFP. We remark
that the GP limit, i.e. training only the last layer of a infinite-
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wide, randomly initialized network, is a special case of the
NTK limit where the first layer is not trained. Everything
we discuss below about the NTK limit specializes to the GP
limit appropriately.

Given an input ξ, the gradient of f can be calculated as

dx(ξ) = V, dh(ξ) = dx(ξ)� φ′(h(ξ)),

dv(ξ) = n−avx(ξ), du(ξ) = n−audh(ξ)ξ

where d • (ξ) is shorthand for ∇•f(ξ) (however, note that
later in Section 5, d • (ξ) will stand for n∇•f(ξ)). For loss
function L : R×R→ R, the loss gradient on a pair (ξ, y) is
then given by L′(f(ξ), y)[dv(ξ), du(ξ)] (where L′ denotes
derivative in first argument).

Note that one can keep the function f invariant while chang-
ing the magnitude of the gradient dv by changing av, bv,
holding av + bv constant; likewise for du. Thus, the tra-
jectory of f stays fixed if, for any θ ∈ R, we set au ←
au+θ, av ← av+θ, bu ← bu−θ, bv ← bv−θ, c← c−2θ
(also see Eq. (13)). With θ = −1/2, this explains why the
two formulations of MFP above are equivalent. Then, for
both NTP and MFP, we will consider the dynamics of f
trained under stochastic gradient descent with learning rate
η = 1 and batch size 1, where the network is fed the pair
(ξt, yt) at time t, starting with t = 0.

Notation and Setup Below, when we say a (random)
vector v ∈ Rn has coordinate size O(na) (written v =
O(na)),20 we mean

√
‖v‖2/n = O(na) with high proba-

bility for large n. Intuitively, this means that each coordinate
has a typical fluctuation of O(na). Likewise if O(na) is
replaced with Θ(na) or Ω(na). See Definition N.2 for a
formal definition.

Let ft, ht, xt, Ut, Vt, dxt, dht, dvt, dut denote the corre-
sponding objects at time t, with t = 0 corresponding to
random initialization. We also abuse notation and write
xt = xt(ξt), i.e. applying the function xt specifically to
tth input ξt; similarly for ft, ht, dxt, dht, dvt, dut. These
symbols will never appear by themselves to denote the corre-
sponding function, so this should cause no confusion. Then
SGD effectively updates U and V by

Ut+1 = Ut − χtn−audut, Vt+1 = Vt − χtn−avdvt.

where χt def
= L′(ft, yt). Finally, let ∆•t def

= •t − •0, for
all • ∈ {f, h, x, U, V, dx, dh, dv, du}. For example, after 1

20Contrast this with a common semantics of v = O(na) as
‖v‖ = O(na).

SGD update, we have, for any ξ ∈ R,

∆h1(ξ) = h1(ξ)− h0(ξ) = −n−auχ0ξdu0

= −n−2auχ0ξ0ξdh0

= −n−2auχ0ξ0ξdx0 � φ′(h0) (11)
∆f1(ξ) = V0∆x1(ξ) + ∆V1x1(ξ)

= V0∆x1(ξ)− n−avdv>0 x1(ξ)

= V0∆x1(ξ)− n−2avx>0 x1(ξ) (12)

B.0.1. KEY OBSERVATIONS

Let’s list a few characteristics of the NTK and MF limits
in the context of the shallow network in Eq. (10), and then
discuss them in the general setting of deep MLP. We will
keep our discussion intuitive to carry across the key ideas.

Feature Evolution For a generic ξ ∈ R, its embedding
vector x0(ξ) has coordinates of Θ(1) size in both NTP and
MFP. However, for any t ≥ 1 independent of n, ∆xt(ξ)
generically has coordinate size Θ(1/

√
n) in NTP but Θ(1)

in MFP.

Example for t = 1: By Eq. (11), we have

∆h1(ξ) = n−2auχ0ξ0ξdx0 � φ′(h0).

Plug in au = 0 for NTP. Observe that ξ0, ξ, χ0 = Θ(1),21

so
∆h1(ξ) = Θ(1) · dx0 � φ′(h0). (in NTP)

In addition, φ′(h0) = Θ(1) because h0 = Θ(1), so

∆h1(ξ) = Θ(1) · dx0 �Θ(1). (in NTP)

Finally, dx0 = V0 = Θ(1/
√
n) in NTP. Altogether, this

implies

∆h1(ξ) = Θ(1/
√
n)

=⇒ ∆x1(ξ) ≈ φ′(h0(ξ))�∆h1(ξ) = Θ(1/
√
n)→ 0.
(in NTP)

On the other hand, in MFP, the only thing different is au =
−1/2 and dx0 = Θ(1/n), which implies

∆h1(ξ) = Θ(n) ·Θ(1/n)�Θ(1) = Θ(1)

=⇒ ∆x1(ξ) = Θ(1). (in MFP)

Feature Kernel Evolution Therefore the feature kernel
Ft(ξ, ζ) def

= xt(ξ)
>xt(ζ)/n does not change in the NTK

limit but it does in the MF limit, i.e. for any fixed t ≥ 1,22

lim
n→∞

Ft(ξ, ζ) = lim
n→∞

F0(ξ, ζ), in NTP, but

lim
n→∞

Ft(ξ, ζ) 6= lim
n→∞

F0(ξ, ζ), in MFP, in general.

21χ0 = L′(f0, y0) = Θ(1) because f0 has variance Θ(1).
22here the limit should be construed as almost sure limits; see

Theorem G.4.



Feature Learning in Infinite-Width Neural Networks

Indeed, regardless of parametrization, we have

Ft(ξ, ζ) =
1

n

[
x0(ξ)>x0(ζ) + ∆xt(ξ)

>x0(ζ)

+ x0(ξ)>∆xt(ζ) + ∆xt(ξ)
>∆xt(ζ)

]
.

In NTP, because ∆xt(ξ) = Θ(1/
√
n) as noted above,

1

n
∆xt(ξ)

>x0(ζ) =
1

n

n∑
α=1

∆xt(ξ)αx0(ζ)α

=
1

n

n∑
α=1

O(n−1/2) = O(n−1/2),

and likewise the other terms involving ∆xt will vanish
as n → ∞. But in MFP, ∆xt(ξ) = Θ(1) will in gen-
eral be correlated with x0(ζ) such that 1

n∆xt(ξ)
>x0(ζ) =

1
n

∑n
α=1 Θ(1) = Θ(1).

It may seem somewhat puzzling how the NTK limit induces
change in f without feature or feature kernel evolution. We
give some intuition next.

How does the Function Change? If the NTK limit does
not allow features to evolve, then how does learning occur?
To answer this question, note

∆ft(ξ) = V0∆xt(ξ) + ∆Vtx0(ξ) + ∆Vt∆xt(ξ).

In short, then, the evolution of ft(ξ) in the NTK limit is
predominantly due to V0∆xt(ξ) and ∆Vtx0(ξ) only, while
in the MF limit, ∆Vt∆xt(ξ) also contributes nontrivially.

Example: For t = 1, ∆f1(ξ) = V0∆x1(ξ) +
n−2avx>0 x0(ξ) + n−2avx>0 ∆x1(ξ). In NTP, av = 1/2, so
the term n−2avx>0 x0(ξ) = Θ(1) for generic ξ, ξ0. On
the other hand, n−2avx>0 ∆x1(ξ) = O(1/

√
n) because

∆x1(ξ) = O(1/
√
n) as noted above. Likewise,

V0∆x1(ξ) ≈ V0[φ′(h0(ξ))�∆h1(ξ)]

= V0[φ′(h0(ξ))�∆h1(ξ)]

= C

n∑
α=1

V0αφ
′(h0(ξ)α)V0αφ

′(h0α)

= C

n∑
α=1

(V0α)2φ′(h0(ξ)α)φ′(h0α),

where C = χ0ξ0ξ = Θ(1). Now (V0α)2 = Θ(1/n)
and is almost surely positive. On the other hand,
φ′(h0(ξ)α)φ′(h0α) = Θ(1) and should have a nonzero ex-
pectation over random initialization (for example, if φ is
relu then this is obvious). Therefore, the sum above should
amount to V0∆x1(ξ) ≈ Θ(1). In summary, in the NTK
limit, ∆f1(ξ) = Θ(1) due to the interactions between V0

and ∆x1(ξ) and between ∆V1 and x0(ξ), but there is only
vanishing interaction between ∆V1 and ∆x1(ξ).

The case for general t, again, can be derived easily using
Tensor Programs.

Pretraining and Transfer Learning The simple fact
above about the feature kernel K implies that the NTK
limit is unable to perform linear transfer learning. By lin-
ear transfer learning, we mean the popular style of transfer
learning where one discards the pretrained linear classifier
layer and train a new one on top of the features (e.g. x in our
example), which are fixed. Indeed, this is a linear problem
and thus only depends on the kernel of the features. If this
kernel is the same as the kernel at initialization, then the
pretraining phase has had no effect on the outcome of this
“transfer” learning.

In fact, a more sophisticated reasoning shows pretraining
in the NTK limit is no better than random initialization
for transfer learning even if finetuning is performed to the
whole network, not just the classifier layer. This remains
true if we replace the linear classifier layer by a new deep
neural network. See Remark N.15 and Theorem N.16. The
Word2Vec experiment we do in this paper is a linear transfer
task.

In some other settings, such as some settings of metalearn-
ing, like the few-shot learning task in this paper, the last
layer of the pretrained network is not discarded. This is
called adaptation. Then the NTK limit does not automati-
cally trivialize transfer learning. However, as will be seen in
our experiments, the NTK limit still vastly underperforms
the feature learning limit, which is exemplified by the MF
limit here.

Kernel Gradient Descent in Function Space In NTP,
as n → ∞, 〈∇U,V f0(ξ),∇U,V f0(ζ)〉 converges to some
deterministic value K(ξ, ζ) such that K forms a kernel
(the NTK). Then, in this limit, if the learning rate is η, the
function f evolves according to kernel gradient descent
ft+1(ξ) = ft(ξ) − ηK(ξ, ξt)χt. However, this shouldn’t
be the case for the MF limit. For example, if φ is identity,
then intuitively ft+1(ξ) − ft(ξ) should be quadratic in η,
not linear, because two layers are updated at the same time.

C. abc-Parametrization
C.1. 1-Dimensional Redundancy in abc

We can scale the parameter gradients∇wlf arbitrarily while
keeping f fixed, if we vary al, bl while fixing al + bl: ∇wlf
is scaled by n−θ if al ← al + θ, bl ← bl − θ. In other
words, changing al, bl this way effectively gives wl a per-
layer learning rate. If we apply this gradient with learning
rate ηn−c, then the change in W l is scaled by ηn−c−2θ.
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Consequently, if c← c− 2θ, then W l is not affected by the
change in al, bl. In summary,

For all θ ∈ R, ft(ξ) stays fixed for all t and ξ if we set

al ← al + θ, bl ← bl − θ, c← c− 2θ.
(13)

This insight in particular implies MFP is a special case of
MUP in the case of 1-hidden-layer MLPs.

D. Standard Parametrization: Pedagogical
Examples

In this section, we give intuition for why gradient descent
of neural network in standard parametrization (SP) will
lead to logits blowup after 1 step, if the learning rate is
ω(1/n), where n is the width. In addition, we will see why,
with learning rate O(1/n), SP is in kernel regime. We first
consider the simplest example and then state the general
result at the end of the section.

To demonstrate the general principle in deep networks, it
is necessary to consider the behavior of an n × n matrix
in the middle of the network. Thus, the simplest case is
a 2-hidden-layer linear MLP, i.e. Eq. (1) with L = 2 and
φ = id. The standard parametrization is given by

al = 0 ∀l, b1 = 0, bl = 1/2 ∀l ≥ 2. (SP)

We consider 1 step of SGD with learning rate n−c on a
single data pair (ξ, y). Then we can without ambiguity
suppress explicit dependence on ξ and write

f = V h̄, h̄ = Wh, h = Uξ, (14)

where Uαβ ∼ N (0, 1) and Wαβ , Vαβ ∼ N (0, 1/n) are the
trainable parameters. We use •t to denote the quantity •
after t step of SGD. Because we only focus on the 1st step
of SGD, we lighten notation and write • = •0.

Initialization Since U,W, V are independently sampled,
a standard Central Limit argument would show that h, h̄, f
all have roughly iid Gaussian coordinates of variance Θ(1).

First Gradient Now let’s consider the gradients of f on
the data pair (ξ, y), which are given by

dh̄ = V >, dh = W>dh̄,

dV = h̄, dW = dh̄ h> = V >h>, dU = dh ξ>.
(15)

For simplicity, suppose we only update W by learning rate
n−c (and leave U, V unchanged); our conclusion will not
change in the general case where we train all layers. Then
with χ denoting the loss derivative L′(f, y), we can write

W1 = W − n−cχ dW.

We shall show now that c ≥ 1 or else f1 blows up with the
width n after this SGD step.

After First SGD Step At t = 1, h1 = h since we did not
update U , but

h̄1 = W1h = h̄− n−cχ dWh = h̄− n−cχ · V >h>h
(16)

f1 = V h̄1 = f − n−cχ V V >h>h. (17)

Now, as noted above, h has iid Θ(1) coordinates, so h>h =
Θ(n) ∈ R. Similarly, V ∈ R1×n has Gaussian coordinates
of variance Θ(1/n), so V V > = Θ(1) ∈ R. Finally, for
typical loss function L like MSE or cross entropy, χ =
L′(f, y) is of order Θ(1) because f fluctuates on the order
Θ(1). Altogether,

f1 = f −Θ(n1−c).

Therefore, for f1 to remain O(1), we must have c ≥ 1, i.e.
the learning rate is O(1/n).

Kernel Regime and Lack of Feature Learning Conse-
quently, the network cannot learn features in the large width
limit if we would like the logits to not blow up. Indeed, this
version of SGD where only W is updated can be seen to
correspond to the limit where

a1 = θ, b1 = −θ, a2 = 0, b2 = 1/2,

a3 = θ, b3 = −θ + 1/2, θ →∞.

With c = 1 as derived above, the parametrization is sta-
ble and nontrivial, as can be checked from Theorems 3.2
and 3.3. Then we get r = 1/2 > 0, so by Corollary 3.8,
this parametrization is in kernel regime and does not admit
feature learning. We can also see this directly from Eq. (16):
from our calculations above,

h̄1 − h̄ = O(n1−c) V > = O(1) V >

whose coordinates have size O(n−1/2) since V ’s coordi-
nates do, so there’s no feature learning (at least in the first
step). Finally, from Eq. (17), because V V > → 1 and
n−ch>h = n−1h>h→ ‖ξ‖2, we get23

f1 − f → −χK(ξ, ξ) def
= −χ‖ξ‖2,

i.e. f evolves by kernel gradient descent with the linear
kernel. Our derivations here only illustrate the first SGD
step, but we can get the same conclusion from all steps of
SGD similarly.

We summarize the general case below, which follows triv-
ially from Theorem 3.2 and Corollary 3.8.

23Formally, these are almost sure convergences, but we suppress
these details to emphasize on intuition.
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Theorem D.1. An L-hidden-layer MLP in standard
parametrization (see Eq. (SP) and Table 1) can only al-
low SGD learning rate of order O(1/n) if we require
limn→∞ E ft(ξ)2 <∞ for all training routine, time t, and
input ξ. In this case, it is in kernel regime and does not
admit feature learning.

E. Maximal Update Parametrization:
Pedagogical Examples

As shown in the last section, the standard parametrization
does not admit a feature learning infinite-width limit without
blowing up logits. Here we propose simple modifications
of the standard parametrization to make this possible while
maintaining stability: 1) To enable feature learning, it suf-
fices to divide the logits by

√
n and use Θ(1) learning rate,

i.e. set aL+1 = 1/2, c = 0 on top of Eq. (SP); 2) to allow ev-
ery layer to perform feature learning, we should furthermore
set a1 = −1/2, b1 = 1/2. We will see that this essentially
means we update each weight matrix as much as possible
without blowing up the logits or activations, so we call this
the Maximal Update Parametrization (abbreviated MUP or
µP).

E.1. Dividing Logits by
√
n

For example, in the 2-hidden-layer linear MLP example
above, the network would compute

f(ξ) =
1√
n
vh̄(ξ), h̄(ξ) = Wh(ξ), h(ξ) = Uξ,

(18)
where Uαβ ∼ N (0, 1) and Wαβ , vαβ ∼ N (0, 1/n) are the
trainable parameters. Compared to SP (Eq. (14)), h(ξ), h̄(ξ)
stays the same; only the logit f(ξ) is scaled down. Again,
to simplify notation, we abbreviate • = •0 and suppress
explicit dependence on ξ. This has two consequences

Logits at Initialization Converge to 0 since f has vari-
ance Θ(1/n) (compare to the GP limit of MLP in SP at
initialization).

Θ(1) Learning Rate and Feature Learning Even
though f → 0, the loss derivative χ = L′(f, y) stays Θ(1)
if y 6= 0. When we redo the calculation in Eq. (16), we see

h̄1 = h̄− n−c−1/2χ v>h>h = h̄−Θ(n−c+1/2)v>

(19)

f1 = f − n−c−1χ vv>h>h = f −Θ(n−c).

Because v has coordinates of size Θ(n−1/2), we see that
h̄ and f both change by Θ(1) coordinatewise if c = 0
(i.e. learning rate is Θ(1)). This directly illustrates feature
learning after just 1 step of SGD. For general MLPs, we can
also check aL+1 = 1/2, c = 0 on top of Eq. (SP) implies
r = 0 and thus admits feature learning by Theorem 3.5.

Kernel Behavior or Lack Thereof The example we have
here, where we only train the middle layer in a linear
MLP, actually is in kernel regime. This does not violate
Corollary 3.8, however, which assumes Assumption I.1. If,
for example, we have tanh nonlinearity, then it is easy to see
the µP SGD dynamics does not have a kernel limit: If so,
then f1−f is linear in the learning rate η. But note h̄1− h̄ is
Θ(1) as n→∞ and linear in η, as can be derived similarly
to Eq. (19). Because tanh is bounded, this cannot happen.
Contrast this with SP or NTP, where h̄1 − h̄ is Θ(1/

√
n)

and thus “resides in the linear regime of tanh”, allowing
perfect scaling with η.

In addition, even in an linear MLP, if we train the middle
layer and the last layer, then the dynamics intuitively will
become quadratic in the weights, so will not have a kernel
limit. Contrast this with SP or NTP, which suppress these
higher order interactions because the learning rate is small,
and a first order Taylor expansion heuristic holds.

How is this different from standard parametrization
with learning rate 1/

√
n? As shown above, the logit

f blows up like Θ(
√
n) after 1 step of SGD with learn-

ing rate Θ(1/
√
n) in the standard parametrization, but re-

mains Θ(1) in our parametrization here. The reason these
two parametrizations seem similar is because in the 1st
step, the weights receive the same updates modulo the
loss derivative χ = L′(f, y). Consequently, xL1 − xL and
hL1 − hL are Θ(1) coordinatewise in both cases. How-
ever, this update makes xL1 correlated with WL+1

1 , so that
WL+1

1 xL1 (and f1) scales like Θ(n1−aL+1−bL+1) due to
Law of Large Numbers. Thus only in our parametrization
here (aL+1 = bL+1 = 1/2) is it Θ(1), while in standard
parametrization (aL+1 = 0, bL+1 = 1/2) it blows up like
Θ(
√
n). Contrast this with the behavior at initialization,

where WL+1 and xL are independent and zero-mean, so
WL+1xL scales like Θ(n1/2−aL+1−bL+1) by Central Limit
Theorem.

E.2. First Layer Parametrization

While this now enables feature learning, the first layer pre-
activation h effectively stays fixed throughout training even
if we were to train U . For example, if we update U in the
linear MLP example Eq. (18), then by Eq. (15),

U1 = U − n−cχ dU = U − n−cχ dhξ>

h1 = U1ξ = h− n−cχ dhξ>ξ = h−Θ(n−c)dh

since ξ>ξ, χ = Θ(1). Now dh = W>dh̄ = W> 1√
n
v>

has roughly iid Gaussian coordinates, each of size Θ(1/n),
since 1√

n
v> has coordinates of the same size. Therefore,

even with c = 0, h changes by at most O(1/n) coordi-
natewise, which is dominated by its value at initialization.
This O(1/n) change also induces a O(1/n) change in f ,
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which would be dominated by the Θ(1) change due to W ’s
evolution, as seen in Eq. (19).

We therefore propose to set a1 = −1/2, b1 = 1/2 on top of
Appendix E.1’s parametrization. This implies the forward
pass of f remains the same but U ’s gradient is scaled up
by n, so that h now changes by Θ(1) coordinatewise. In
summary, this yields Definition 4.1.

Notice that µP for a 1-hidden-layer perceptron is equivalent
to the mean field parametrization by Eq. (13). We also
describe µP for any architecture in Appendix K.1.

E.3. What is µP Maximal In?

For technical reasons, we adopt Assumption I.1 again for
the formal results of this section.

In an abc-parametrization, the change in weight W = W l
t

for any l ≥ 2 due to learning rate n−c is δW def
= −n−c ·

n−2adh x> where we abbreviated x = xl−1
t , h = hlt, a =

al. (We will use δ to denote 1-step change, but ∆ to denote
lifetime change). In the next forward pass, δW contributes
δWx̄ = −n1−c−2a(x>x̄/n)dh, where x̄ is the new acti-
vation due to change in previous layers’ weights. In gen-
eral, x and x̄ are strongly correlated. Then x>x̄/n → R
for some R 6= 0 by Law of Large Numbers (as they both
have Θ(1) coordinates in a stable parametrization). One
can heuristically see that dh has the same size as the last
layer weights, which is Θ(n−(aL+1+bL+1) + n−(2aL+1+c))
(where the first summand is from WL+1

0 and the other
from ∆WL+1

t ). Thus, δWx̄ is a vector with Θ(n−rl) def
=

Θ((n−(aL+1+bL+1) + n−(2aL+1+c))n1−c−2a) coordinates.
If rl > 0, then δWx̄ contributes vanishingly; if rl < 0, then
δWx̄ blows up. For l = 1, we get similar insights after
accounting for the finite dimensionality of ξ.

Definition E.1. For l ∈ [L], we say W l is updated maxi-
mally if ∆W l

tx
l−1
t (ξ) has Θ(1) coordinates for some train-

ing routine24, time t ≥ 1, and input ξ.

Proposition E.2. In a stable abc-parametrization, for any
l ∈ [L], W l is updated maximally iff

rl
def
= min(aL+1+bL+1, 2aL+1+c)+c−1+2al+I(l = 1) = 0.

Note that r (Definition 3.1) is the minimum of rl over all
l. In µP, we can calculate that rl = 0 for all l ∈ [L], so all
W l, l ∈ [L], are updated maximally. Put another way, the
final embedding xL(ξ) will have nonvanishing (nonlinear)
contributions from ∆W l of all l. These contributions cause
the logit f(ξ) to change via interactions with WL+1

0 and
∆WL+1

t . If both WL+1
0 and ∆WL+1

t are too small, then

24Recall that training routine means a package of learning
rate ηn−c, training sequence {(ξt, yt)}t≥0, and a loss function
L(f(ξ), y) that is continuously differentiable in the prediction of
the model f(ξ).

the logit is fixed to its initial value, so all of the feature
learning would have been useless.25 It’s also possible for
one to contribute vanishingly but not the other.26 But both
contribute in µP.
Definition E.3. We say WL+1 is updated maximally (resp.
initialized maximally) if ∆WL+1

t xLt (ξ) = Θ(1) (resp.
WL+1

0 ∆xLt (ξ) = Θ(1)) for some training routine, time
t ≥ 1, and input ξ.

Note Definition E.3 is similar to Definition E.1 except
∆WL+1

t xLt (ξ) ∈ R but ∆W l
tx
l−1
t (ξ) ∈ Rn.

Proposition E.4. In a stable abc-parametrization, WL+1

is 1) updated maximally iff 2aL+1+c = 1, and 2) initialized
maximally iff aL+1 + bL+1 + r = 1.

We remark that, by Theorem 3.3, a parametrization is non-
trivial iff WL+1 is maximally updated or initialized. Using
Propositions E.2 and E.4 and Theorem 3.2, we can now
easily conclude
Theorem E.5. In µP, W l is updated maximally for every
l ∈ [L+ 1], and WL+1 is also initialized maximally. µP is
the unique stable abc-parametrization with this property.

F. Deriving Feature Learning Infinite-Width
Limit: Deep MLP Examples

F.1. 2-Hidden-Layer MLP: SGD with Partially
Decoupled Backpropagation

A 2-hidden-layer MLP is given by

f(ξ) = V x̄(ξ), x̄(ξ) = φ(h̄(ξ)), h̄(ξ) = Wx(ξ),

x(ξ) = φ(h(ξ)), h(ξ) = Uξ,

for U ∈ Rn×1,W ∈ Rn×n, V ∈ R1×n parametrized
like U =

√
nu, V = 1√

n
v and with initialization

uαβ ,Wαβ , vαβ ∼ N (0, 1/n). The presence of the n × n
Gaussian matrix W (“∞×∞” as opposed to “∞× finite”
like U or “finite ×∞” like V ) is new and has two major
effects on the infinite-width training dynamics: 1) A Central
Limit effect from the random Gaussian nature of W and 2)
a correlation effect between W and its transpose W>. We
isolate the first effect here by analyzing a slightly different
version of backpropagation (which has a different limit than
normal backpropagation), and then discuss the second ef-
fect in the next section. We abuse notation and abbreviate
W = W0.

Partially Decoupled Backpropagation In this section,
we analyze a version of SGD where the backpropagation

25It is indeed possible to perform feature learning in a trivial
parametrization, e.g. bl = 1/2 ∀l, a1 = −1/2, a2 = 100 +
1/2, c = −100 in a 2-hidden-layer MLP.

26e.g. take aL+1 = 100 + 1/2, bL+1 = −100 + 1/2, then
∆WL+1 is negligible.
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weights are partially decoupled from the forward propa-
gation weights. Here, we think of ∆Wt as the trainable
weights, initialized at 0, and think of the Gaussian W as
untrainable “constants”. The forward pass proceeds nor-
mally27 with Wt = W + ∆Wt. But we sample and fix an
iid copy W̃ of W> before training, and in the backward
pass compute

dxt = (W̃ + ∆W>t )dh̄t instead of (20)

dxt = (W> + ∆W>t )dh̄t = W>t dh̄t. (21)

In particular, at initialization, we would have dx0 = W̃dh̄0

instead of dx0 = W>dh̄0. Everything else stays the same
in the backward pass28. Finally, each weight is still updated
by SGD via the usual outer products: with χt def

= L′(ft, yt),

vt+1 = vt − χtx̄>t /
√
n, ∆wt+1 = ∆wt − χtdh̄tx>t /n,

ut+1 = ut − χtξtdh>t /
√
n.

(22)
Since V = v/

√
n,W = w,U =

√
nu per µP, this causes

the following changes in W s:

Vt+1 = Vt − χtx̄>t /n, ∆Wt+1 = ∆Wt − χtdh̄tx>t /n,
Ut+1 = Ut − χtξtdh>t

(23)
Note here we update ∆w and ∆W instead of w and W .

Why This Decoupled SGD? The reasons we talk about
this version of SGD is that it isolates the effect of having
a Gaussian n × n matrix W̃ in the backward pass, and
we can derive its infinite-width limit relatively easily using
Central Limit heuristics. In the normal version of SGD,
W̃ would equal W>, and its correlation with W creates
additional terms in the infinite-width dynamics, that are
better explained on their own.

Again, we walk through the first few forward and backward
passes to gain some intuition for the infinite-width limit,
before stating the general case.

First Forward Pass is similar to that in Section 5.1 and
follows the usual calculations involved in deriving the
NNGP29.

27i.e. ft = Vtx̄t, x̄t = φ(h̄t), h̄t = (W + ∆Wt)xt, xt =
φ(ht), ht = Uξt.

28i.e. dx̄t = nV >t , dh̄t = φ′(h̄t)� dx̄t, dht = φ′(ht)� dxt
291) h0 is iid Gaussian with coordinates drawn from Zh0 =

ξ0Z
U0 ; 2) x0 has coordinates Zx0 = φ(Zh0); 3) h̄0 = Wx0 has

roughly iid coordinates drawn from a zero-mean Gaussian Zh̄0 by
a Central Limit heuristic, where Zh̄0 is correlated with Zh̄0(ξ) for
any ξ (including ξ = ξ0) with covariance Cov(Zh̄0 , Zh̄0(ξ)) =

limn→∞
1
n
x>0 x0(ξ) = EZx0Zx0(ξ); 4) x̄0 has coordinates

Z x̄0 = φ(Zh̄0); 5) f0 = 1
n

∑n
α=1(nV0)αx̄0α → f̊0

def
=

EZnV0Z x̄0 by a Law of Large Number heuristic.

First Backward Pass is similar to that in Section 5.1 and
to calculations involved in deriving Neural Tangent Ker-
nel, except swapping W> with W̃ (which at this point
has no visible effect, because of the Gradient Indepen-
dence Phenomenon (Yang, 2020a); but the effect will be-
come clear in the second forward pass)30. We end up with
∆W1 = −χ0dh̄0x

>
0 , as usual.

Second Forward Pass As usual, we have Zh1 =
ξ1Z

U1 = ξ1Z
U0 − χ̊0ξ1ξ0Z

dh0 and Zx1 = φ(Zh1), re-
flecting the coordinate distributions of h1 and x1

31. Next,

h̄1 = Wx1 + ∆W1x1 = Wx1 − χ0dh̄0
x>0 x1

n
. (24)

On one hand, 1) x>0 x1

n → EZx1Zx0 by a Law of Large
Numbers heuristic. On the other hand, 2) by a Cen-
tral Limit heuristic, Wx1 should roughly have Gaussian
coordinates ZWx1 correlated with Z h̄0 = ZWx0 with
Cov(ZWx1 , ZWx0) = lim

x>0 x1

n = EZx1Zx0 . However,
very importantly, this Central Limit heuristic is correct
only because we used W̃ in backprop instead of W>;
otherwise, h1 has a strong correlation with W through
dh0 = φ′(h0) � (W>dh̄0), and thus so does x1, so that
Wx1 no longer has Gaussian coordinates. This is the “sec-
ond major effect” referred to in the beginning of this section.
See Appendix F.2 for how to handle this correlation.

In any case, in our scenario here,

Z h̄1 def
= ZWx1 − cZdh̄0 , where c = χ̊0 EZx1Zx0 ,

is a linear combination of a Gaussian variable and the gra-
dient dh̄0’s coordinate random variable. Finally, Z x̄1 =
φ(Z h̄1) and the logit is f1 = 1

n

∑n
α=1(nV1)αx̄1α → f̊1

def
=

EZnV1Z x̄1 = EZnV0Z x̄1 − χ̊0 EZ x̄0Z x̄1 .

Second Backward Pass Everything proceeds just like in
the 1-hidden-layer case32 except for the computation of

dx1 = W̃dh̄1 −∆W>1 dh̄1 = W̃dh̄1 − χ0x0
dh̄>0 dh̄1

n
.

Like in the computation of h̄1 in Eq. (24), dh̄>0 dh̄1

n →
EZdh̄0Zdh̄1 and W̃dh̄1 is roughly Gaussian (and corre-
lated with W̃dh̄0 in the natural way). But again, for this

301) dx̄0 = nV >0 so Zdx̄0 = ZnV0 ; 2) Zdh̄0 =

φ′(Zh̄0) � Zdx̄0 ; 3) Zdx0 = ZW̃dh̄0 is Gaussian with co-
variance Cov(Zdx0 , Zdx0(ξ)) = limn→∞

1
n
dh>0 dh0(ξ) =

EZdh0Zdh0(ξ) for any input ξ; 4) Zdh0 = φ′(Zh0) � Zdx0 .
Since f converges to a deterministic number f̊0, we also generi-
cally have L′(f, y0)→ χ̊0

def
= L′(f̊0, y0). Finally, the weights are

updated like Eq. (23).
31Recall they abbreviate h1(ξ1) and x1(ξ1)
32dx̄1 = nV >1 , dh̄1 = dx̄1 � φ′(h̄1), dh1 = dx1 � φ′(h1)
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Gaussian intuition to be correct, it is crucial that we use
W̃ here instead of W>, or else dx̄1 (and thus dh̄1) is
strongly correlated withW> (through x̄0 = φ(Wx0) inside
n∆V1 = −χ0x̄

>
0 ).

In any case, we have

Zdx1 = ZW̃dh̄1 − cZx0 , where c = χ̊0 EZdh̄0Zdh̄1 ,

is a sum of Gaussian ZW̃dh̄1 and a multiple of Zx0 . Then
weights are updated according to Eq. (23).

tth Iteration For general t, we always have (true in nor-
mal SGD as well)

∆Wt = − 1

n

t−1∑
s=0

χsdh̄sx
>
s

so that in the forward pass

h̄t = Wxt + ∆Wtxt = Wxt −
t−1∑
s=0

χsdh̄s
x>s xt
n

(25)

Z h̄t def
= ZWxt −

t−1∑
s=0

χ̊sZ
dh̄s EZxsZxt .

Here ZWxt is Gaussian with covariance
Cov(ZWxt , ZWxs) = EZxtZxs for any s. This means
that Z h̄t and Z h̄s are correlated through ZWxt , ZWxs

(but also through Zdh̄r , r ≤ min(t, s)). Likewise, in the
backward pass,

dxt = W̃dh̄t −∆W>dh̄t = W̃dh̄t −
t−1∑
s=0

χsxs
dh̄>s dh̄t

n

Zdxt def
= ZW̃dh̄t −

t−1∑
s=0

χ̊sZ
xs EZdh̄sZdh̄t

Here, ZW̃dh̄t is Gaussian with covariance
Cov(ZW̃dh̄t , ZW̃dh̄s) = EZdh̄tZdh̄s for any s. Thus,
Zdxt and Zdxs are correlated through ZW̃dh̄t , ZW̃dh̄s (but
also through Zxr , r ≤ min(t, s)). Again, the Gaussianity
of ZWxt and ZW̃dh̄t depend crucially on the fact that we
use W̃ instead of W> in backpropagation.

Other parts of the forward and backward propagations are
similar to before. Our reasoning can be formalized via
Tensor Programs to prove the following
Theorem F.1. Consider a 2-hidden-layer MLP in µP with
partially decoupled backpropagation as in Eq. (21) and
any training routine with learning rate 1. Suppose φ′ is
pseudo-Lipschitz.33 As n→∞, for every input ξ,

ft(ξ)
a.s.−−→ f̊t(ξ), where f̊t(ξ) is defined as follows:

33This roughly means that φ′ has a polynomially bounded weak
derivative; see Definition L.3.

(forward pass)

f̊t(ξ)
def
= EZnVtZ x̄t(ξ), Z x̄t(ξ) def

= φ(Z h̄t(ξ)),

Zxt(ξ) def
= φ(Zht(ξ)), Zht(ξ) def

= ξZUt

Z h̄t(ξ) def
= ZWxt(ξ) −

t−1∑
s=0

χ̊sZ
dh̄s EZxsZxt(ξ) (26)

{ZWxt(ξ)}ξ,t centered, jointly Gaussian with

Cov(ZWxt(ξ), ZWxs(ζ)) = EZxt(ξ)Zxs(ζ)

(backward pass)

χt
def
= L′(f̊t, yt), Zdx̄t def

= ZnVt , Zdh̄t def
= φ′(Z h̄t)Zdx̄t

Zdht def
= φ′(Zht)Zdxt

Zdxt def
= ZW̃dh̄t −

t−1∑
s=0

χ̊sZ
xs EZdh̄sZdh̄t (27)

{ZW̃dh̄t}t centered, jointly Gaussian with

Cov(ZW̃dh̄t , ZW̃dh̄s) = EZdh̄tZdh̄s

(U, V updates)

ZnVt+1 def
= ZnVt − χ̊tZ x̄t ZUt+1 def

= ZUt − χ̊tξtZdht

with ZU0 and ZnV0 being independent standard Gaus-
sians as initial conditions, and by definition, {ZWxt(ξ)}ξ,t,
{ZW̃dh̄t}t, ZU0 , and ZnV0 are mutually independent sets of
random variables. Here, if ht appears without argument, it
means ht(ξt); likewise for h̄t, xt, x̄t, dht, dh̄t, dxt, dx̄t, f̊t.

F.2. 2-Hidden-Layer MLP: Normal SGD

Finally, we dicuss normal SGD for 2-hidden-layer MLP, i.e.
in backprop we compute

dxt = W>t dh̄t = (W> + ∆W>)dh̄t.

The first forward and backward passes are essentially the
same as in the last section. However, as mentioned there,
in the second forward pass, Wx1 (a part of h̄1 = Wx1 +
∆W1x1) will no longer be approximately Gaussian because
of the correlation between x1 and W . Let’s first get some
intuition for why this is before stating the infinite-width
limit formally.

Warmup: φ = id First, as warmup, suppose φ = id. In
this case, Wx1 will actually still be Gaussian, but its vari-
ance will be different than what’s predicted in the previous
section. To lighten notation, we write x = x1 in this section.
Then unwinding the definition of x, we have

x = h+ aW>z
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where we abbreviated h = ξ1U0, z = dh̄0, a = −χ0ξ0ξ1.
Then Wx has coordinates

(Wx)α = (Wh)α + a(WW>z)α.

As derived in the first forward pass in Appendix F.1, (Wh)α
is approximately Gaussian (particularly because W,U0 are
independent). This is true for (WW>z)α as well here be-
cause we assumed φ = id, but not true generally. Indeed,

(WW>z)α =
∑
β,γ

WαβWγβzγ

= zα
∑
β

(Wαβ)2 +
∑
β

∑
γ 6=α

WαβWγβzγ .

We will soon see the derivations of Appendix F.1 correspond
to ignoring the first term: In the second term, there are n
summands of the form

∑
γ 6=αWαβWγβzγ that are approx-

imately iid with variance ≈ ‖z‖2/n2. Thus, the second
term itself, by a Central Limit heuristic, should converge to
N (0, limn→∞ ‖z‖2/n). On the other hand, the first term
zα
∑
β(Wαβ)2 → zα by Law of Large Numbers. Tying it

all together, (Wx)α is a linear combination of two Gaussian
terms (Wh)α and

∑
β

∑
γ 6=αWαβWγβzγ , as well as as zα

(which is Gaussian in the case of φ = id, but not generally).

Note that, if we did (WW̃z)α instead of (WW>z)α, as
in the last section, then the same analysis would show the
first term is zα

∑
βWαβW̃βα → 0, while the second term

converge in distribution to the same Gaussian. Thus, the
effect of decoupling in Appendix F.1 is killing the copy of z
in (Wx)α.

We can summarize our derivation here in terms of Z:

For φ = id: ZWx def
= ZWh + aZWW>z (28)

= ZWh + a(ẐWW>z + Zz), (29)

where ẐWW>z def
= N (0,E(Zz)2).

Note the Central Limit heuristic in the derivation of ẐWW>z

also shows ẐWW>z is jointly Gaussian with ZWh with
Cov(ẐWW>z, ZWh) = EZW>zZh. So, to put Eq. (29) in
a form more suggestive of the general case, we will write

ZWx = ẐWx + aZz, where

ẐWx = ZWh + aẐWW>z d
= N (0,E(Zx)2).

(30)

General φ Unwinding the definition of x, we have

x = φ(h+ aW>z � φ′(h0)). (31)

By Taylor-expanding φ, we can apply a similar (though
more tedious) argument as above to derive

ZWx = ẐWx + cZz (32)

where c = aEφ′(Zh1)φ′(Zh0) and ẐWx d
=

N (0,E(Zx)2). In the case of φ = id, c reduces to
a as above, recovering Eq. (30). For general φ, we
can immediately see that ZWx is not Gaussian because
Zz = Zdx̄0φ′(Z h̄0) is not. In the Tensor Programs
framework formalized in Appendix G, cZz is denoted
ŻWx.

Similarly, coordinates distribution of dx1 = W>1 dh̄1 will
also change in the backward pass.

General t For general t, we obtain dynamical equations
in Z identical to those in Theorem F.1 except that Eq. (26)
and Eq. (27) need to be modified. We state the general result
below.
Theorem F.2. Consider a 2-hidden-layer MLP in µP and
any training routine with learning rate 1. Suppose φ′

is pseudo-Lipschitz.34 As n → ∞, for every input ξ,
ft(ξ)

a.s.−−→ f̊t(ξ) where f̊t(ξ) is defined the same way as in
Theorem F.1 except that Eq. (26) should be replaced with

Z h̄t(ξ) def
= ẐWxt(ξ) + ŻWxt(ξ) −

t−1∑
s=0

χ̊sZ
dh̄s EZxsZxt(ξ)

{ẐWxt(ξ)}ξ,t centered, jointly Gaussian with

Cov(ẐWxt(ξ), ẐWxs(ζ)) = EZxt(ξ)Zxs(ζ)

and Eq. (27) should be replaced with

Zdxt def
= ẐW

>dh̄t + ŻW
>dh̄t −

t−1∑
s=0

χ̊sZ
xs EZdh̄sZdh̄t

{ẐW
>dh̄t}t centered, jointly Gaussian with

Cov(ẐW
>dh̄t , ẐW

>dh̄s) = EZdh̄tZdh̄s .

Like in Theorem F.1, by definition, {ẐWxt(ξ)}ξ,t,
{ẐW>dh̄t}t, ZU0 , and ZnV0 are mutually independent sets
of random variables.

Here, ŻWxt(ξ) def
=
∑t−1
r=0 θrZ

dh̄r where θr is calculated like
so: Zxt(ξ) by definition is constructed as

Zxt(ξ) = Φ(ẐW
>dh̄0 , . . . , ẐW

>dh̄t−1 , ZU0)

for some function35 Φ : Rt+1 → R. Then

θr
def
= E ∂Φ(ẐW

>dh̄0 , . . . , ẐW
>dh̄t−1 , ZU0)/∂ẐW

>dh̄r .

Likewise, ŻW
>dh̄t def

=
∑t−1
r=0 θrZ

xr where θr is calculated
as follows: Zdh̄t by definition is constructed as

Zdh̄t = Ψ(ẐWx0 , . . . , ẐWxt−1 , ZV0)

34This roughly means that φ′ has a polynomially bounded weak
derivative; see Definition L.3.

35that may depend on various scalars such as χ̊s, EZxsZxs′ (ξ),
and EZdh̄sZdh̄s′
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for some function35 Ψ : Rt+1 → R. Then

θr
def
= E ∂Ψ(ẐWx0 , . . . , ẐWxt−1 , ZV0)/∂ẐWxr .

For example, generalizing Eq. (31), for any input ξ, we have

Zx1(ξ) = Φ(ZW
>dh̄0 , ZU0), where

Φ(z, u) def
= φ(ξu− χ̊0ξ0ξφ

′(ξ0u)z).

Then θ0 = E ∂zΦ(ZW
>dh̄0 , ZU0) =

−χ̊0ξ0ξ Eφ′(Zh1(ξ))φ′(Zh0), which special-
izes to c in Eq. (32). Altogether, ŻWx1(ξ) =
−χ̊0ξ0ξZ

dh̄0 Eφ′(Zh1(ξ))φ′(Zh0).

Note that ẐWxt here does not equal ZWxt in Eq. (26)
in general, because the covariance Cov(ẐWxt , ẐWxs) =
EZxtZxs is affected by the presence of ŻWxr for all
r ≤ max(s, t).

F.3. MLP of Arbitrary Depth

The µP limit of deeper MLPs can be derived along similar
logic; see Appendices N.3 to N.5 for a rigorous treatment
within the Tensor Programs framework, which also covers
all stable abc-parametrizations.

What happens in other feature learning parametriza-
tions If we are in the feature learning regime, then any
W l that is not maximally updated (Definition E.1) will be
effectively fixed (to its initialized value) in the infinite-width
limit (i.e. no learning occurs).

F.4. Summary of Main Intuitions for Deriving the µP
Limit

Law of Large Numbers Any vector z has roughly iid co-
ordinates given by Zz . For any two vectors z, z′ ∈ Rn,
1
n

∑n
α=1 zαz

′
α → EZzZz′ .

1. This is all we needed to derive the 1-hidden-layer
dynamics of Section 5.1, since all the matrices
there are size-n vectors.

2. In Appendices F.1 and F.2, this is also used in
calculating the limit of ∆Wtxt.

Central Limit If the underlying computation graph never
involves the transpose W> of a n×n Gaussian matrix
W in a matrix multiplication, then Wz is roughly iid
Gaussian with coordinate ZWz d

= N (0,E(Zz)2) (if
Wαβ ∼ N (0, 1/n))

1. This along with the last intuition are all we used
to derive the 2-hidden-layer decoupled dynamics
of Appendix F.1, where W is the middle layer
weight matrix.

(W , W>) Correlation IfW> is involved, thenWz has co-
ordinates distributed like random variable ẐWz+ŻWz

where ẐWz is the Gaussian obtained by pretending W
is independent from W>, and ŻWz results from the
correlation between W and W>. ŻWz is purely a lin-
ear combination of Zz

′
for previously defined vectors

z′ such that z depends on W>z′.

1. All three intuitions above are needed to derive
the 2-hidden-layer dynamics of normal SGD (Ap-
pendix F.2), where W> is used in backpropaga-
tion.

2. The calculation of ŻWx is quite intricate, which
is why we first discussed decoupled SGD in Ap-
pendix F.1, which doesn’t need ŻWx calculation,
before discussing normal SGD in Appendix F.2.

G. Tensor Programs Framework
While the previous section demonstrates the intuition of
how to derive the µP limit, it also lays bare 1) the increasing
complexity of a manual derivation as the training goes on,
as well as 2) the mounting uncertainty for whether the intu-
ition still holds after many steps of SGD. This is a perfect
call for the Tensor Programs framework, which automates
(and makes rigorous) the limit derivation for any “computa-
tion graph” — including the computation graph underlying
SGD. Here we review this framework (developed in Yang
(2019a;b; 2020a;b)) in the context of µP limit. Fig. 5 graph-
ically overviews the content of this section.

As seen abundantly in Section 5, the computation underlying
SGD can be expressed purely via three instructions: matrix
multiplication (by a Gaussian matrix, e.g. W0x0), coordi-
natewise nonlinearities (e.g. φ), and taking coordinatewise
average (e.g. 1

n

∑n
α=1(nV1)αx1α). In deriving the µP SGD

limit, we focused mostly on keeping track of Rn vectors (e.g.
x̄t or dht), but importantly we also computed scalars ft and
χt by (what amounts to) taking coordinatewise average (e.g.
f1 = 1

n

∑n
α=1(nV1)αx1α). We implicitly compute scalars

as well inside ∆Wtxt. This motivates the following notion
of a program, which can be thought of as a low-level sym-
bolic representation of a computation graph common in deep
learning (e.g. underlying Tensorflow and Pytorch).

Definition G.1. A Tensor Program36 is a sequence of Rn-
vectors and R-scalars inductively generated via one of the
following ways from an initial set C of random scalars,
V of random Rn vectors, and a set W of random Rn×n
matrices (which will be sampled with iid Gaussian entries
in Setup G.2)

36What we refer to as Tensor Program is the same as
NETSOR>+ in Yang (2020b); we will not talk about other lan-
guages (like NETSOR>) so this should not cause any confusion
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Figure 5. Graphical overview of the Tensor Programs framework. For the Master Theorem, we illustrate Theorem G.4(2) since
Theorem G.4(1) is a corollary of Theorem G.4(2) for a larger program.
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MatMul Given W ∈ Rn×n and x ∈ Rn, we can generate
Wx ∈ Rn or W>x ∈ Rn

Nonlin Given φ : Rk × Rl → R, previous scalars
θ1, . . . , θl ∈ R and vectors x1, . . . , xk ∈ Rn, we can
generate a new vector

φ(x1, . . . , xk; θ1, . . . , θl) ∈ Rn

where φ(−; θ1, . . . , θl) applies coordinatewise to each
“α-slice” (x1

α, . . . , x
k
α).

Moment Given same setup as above, we can also generate
a new scalar

1

n

n∑
α=1

φ(x1
α, . . . , x

k
α; θ1, . . . , θl) ∈ R.

Explanation of Definition G.1 The vectors mentioned in
Definition G.1 are exemplified by ht, xt, dht, dxt in Sec-
tion 5. The scalars mentioned are exemplified by ft, χt as
well as e.g. x>s xt/n inside the calculating of ht (Eq. (25)).
The θis in Nonlin and Moment rules may appear cryp-
tic at first. These scalars are not needed in the first for-
ward and backward passes. But in the second forward
pass, for example for the 1-hidden-layer MLP (Section 5.1),
x1 = φ(h1) = φ(ξ1U0−χ0ξ1ξ0nV0φ

′(h0)) depends on the
scalar χ0, ξ0, ξ1, and can be written in the form of Nonlin
as φ̄(U0, nV0, h0;χ0) for some φ̄ appropriately defined.

The initial set of scalars C is the training sequence {ξt, yt}t
for all three examples of Section 5. In our 2-hidden-layer
MLP examples, the initial set of matricesW is {W} (Ap-
pendix F.2) or {W, W̃} (Appendix F.1), i.e. the random
Rn×n Gaussian matrices. On the other hand, in the 1-
hidden-layer MLP example (Section 5.1), W is empty.
The initial set of vectors V in all three examples are
V = {U0, nV0}.3738 Notice how the vectors of these V
are sampled with iid standard Gaussian coordinates. We for-
malize a more general setup for arbitrary Tensor Programs:

Setup G.2. 1) For each initial W ∈ W , we sample iid
Wαβ ∼ N (0, σ2

W /n) for some variance σ2
W associated to

W , independent of otherW ′ ∈ W; 2) for some multivariate
Gaussian ZV =

{
Zh : h ∈ V

}
∈ RV , we sample the initial

set of vectors V like {hα : h ∈ V} ∼ ZV iid for each α ∈
[n]. 3) For each initial scalar θ ∈ C, we require θ a.s.−−→ θ̊

for some deterministic θ̊ ∈ R.

37Here we write nV0 instead of V0 because we want all vectors
to have Θ(1) coordinates; see Setup G.2.

38In Section 5 we assumed input dimension is 1. In general,
each column of U0 would be a separate initial vector. Likewise, if
the output dimension is greater than 1, then each row of V0 would
be a separate initial vector.

In all of our examples, we took σ2
W = 1 for simplicity,

but Setup G.2 allows for other initializations (e.g. a typical
initialization for relu networks is σ2

W = 2); additionally,
Zh, h ∈ V , are all standard Gaussians, independent from
one another, since U0, nV0 are sampled this way; and our
initial scalars {ξt, yt}t are fixed with n, so they are their
own limits.39

What Does a Tensor Program Vector Look Like? Re-
call that we represented the coordinate distribution of each
vector h with a random variable Zh in Section 5 and kept
track of how different Zs are correlated with each other. We
also calculated scalar limits like ft → f̊t, χt → χ̊t. These
calculations led to a set of formulas for the µP limit (e.g.
Theorems 5.1, F.1 and F.2). We can also construct such Zh

and θ̊ for vectors h and scalars θ in any Tensor Program.
They intuitively capture the coordinate distribution of vector
h and the deterministic limit of θ. The following definition
formally defines Zh and θ̊, but the connection between Zh

(resp. θ̊) and the coordinates of h (resp. θ) is not made rig-
orously until Theorem G.4 later. The ZMatMul rule below
perhaps asks for some discussion, and we shall do so after
the definition.

Definition G.3 (Zh and θ̊). Given a Tensor Program, we
recursively define Zh for each vector h and θ̊ for each scalar
θ as follows.

ZInit If h ∈ V , then Zh is defined as in Setup G.2. We
also set Ẑh def

= Zh and Żh def
= 0.

ZNonlin+ Given φ : Rk × Rl → R, previous scalars
θ1, . . . , θl ∈ R and vectors x1, . . . , xk ∈ Rn, we have

Zφ(x1,...,xk;θ1,...,θl) def
= φ(Zx

1

, . . . , Zx
k

; θ̊1, . . . , θ̊l).

ZMoment Given same setup as above and scalar θ =
1
n

∑n
α=1 φ(x1

α, . . . , x
k
α; θ1, . . . , θl), then

θ̊ def
= Eφ(Zx

1

, . . . , Zx
k

; θ̊1, . . . , θ̊l).

Here θ̊1, . . . , θ̊l are deterministic, so the expectation is
taken over Zx

1

, . . . , Zx
k

.

ZMatMul ZWx def
= ẐWx+ ŻWx for every matrixW (with

N (0, σ2
W /n) entries) and vector x, where

ZHat ẐWx is a Gaussian variable with zero mean.
Let VW denote the set of all vectors in the pro-
gram of the form Wy for some y. Then {ẐWy :

39Since {ξt, yt}t are fixed with n, we can WLOG absorb
them into any nonlinearities in Nonlin that they are involved
in, and set C = ∅. But, in kernel regime or nonmaximal feature
learning parametrization, we usually have initial scalars, such as
n−2aL+1−c, that tend to 0 with n; see Appendix N.4.
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Wy ∈ VW } is defined to be jointly Gaussian with
zero mean and covariance

Cov
(
ẐWx, ẐWy

)
def
= σ2

W EZxZy,

for any Wx,Wy ∈ VW . Furthermore, {ẐWy :
Wy ∈ VW } is mutually independent from {Ẑv :
v ∈ V ∪

⋃
W̄ 6=W VW̄ }, where W̄ ranges over

W ∪ {A> : A ∈ W}.
ZDot We can always unwind Zx =

Φ(· · · ), for some arguments (· · · ) =

({ẐW>yi}ki=1, {Ẑz
i}ji=1; {θ̊i}li=1), zi 6∈ VW>

(where VW> is defined in ZHat), and deter-
ministic function Φ : Rk+j+l → R. Define
∂Zx/∂ẐW

>yi def
= ∂iΦ(· · · ). Then we set

ŻWx def
= σ2

W

k∑
i=1

Zy
i

E
∂Zx

∂ẐW>yi
, (33)

There is some nuance in this definition, so see
Remark L.1 and L.2.

Explanation of Definition G.3 Nonlin and Moment
should appear only natural. However, we pause to digest
the meaning of ZMatMul by relating back to our examples
in Section 5. First notice that ŻWx = 0 if W> is not used
in the program, so that ZWx = ẐWx. This is the case
in Appendix F.1, where W̃ is used in backprop instead of
W>. There (in Eq. (26)), ZWxt is Gaussian with covari-
ance Cov(ZWxt , ZWxs) = EZxtZxs for any s, consistent
with ZHat. In Appendix F.2, however, ŻWx 6= 0 in general.
The ZDot rule is a direct generalization of the calculation
of Ż in Theorem F.2.

ŻWxt and ŻW
>dh̄t of Appendix F.2 for general t will

all be nonzero but have no easy expression. Here we seek
to convey the complexity of computing them; this is op-
tional reading for the first time reader. To calculate ŻWxt

(ŻW
>dh̄t is similar), we need to express Zxt as a function

of purely ẐW
>dh̄s , s < t, and ZU0 = ẐU0 . Then we sym-

bolically differentiate Zxt by ẐW
>dh̄s and take expectation

to obtain the coefficient of Zdh̄s in ŻWxt . For t = 1 as
in the examples in Appendix F.2, this task is easy because
ẐW

>dh̄0 = Ẑdx0 = Zdx0 . But in general, the calculation
can balloon quickly. Indeed, note Zxt = φ(Zht) and

Zht = ξtZ
Ut = ξtZ

U0 − ξt
t−1∑
s=0

χ̊sξsZ
dhs

= ξtZ
U0 − ξt

t−1∑
s=0

χ̊sξsφ
′(Zhs)Zdxs .

However, each Zdxs is a linear combination of ZW
>dh̄s =

ẐW
>dh̄s + ŻW

>dh̄s and Zxr , r < s (coming from

∆W>t dh̄s). Each of ŻW
>dh̄s and Zxr then needs to be

recursively expanded in terms of Ẑ before we can calculate
the symbolic partial derivative ∂Zxt/∂ẐW

>dh̄s .

Master Theorem Finally, we relate the symbolic nature
of a Tensor Program given in Definition G.3 to the analytic
limit of its computation, in the following Master Theorem.
Pseudo-Lipschitz functions are, roughly speaking, func-
tions whose (weak) derivatives are polynomially bounded.
We state the theorem assuming mild regularity conditions
(Assumption L.4) that roughly says most nonlinearities in
the program should be pseudo-Lipschitz.

Theorem G.4 (Tensor Program Master Theorem, c.f. The-
orem E.15 of (Yang, 2020b)). Fix a Tensor Program ini-
tialized accordingly to Setup G.2. Adopt Assumption L.4.
Then

1. For any fixed k and any pseudo-Lipschitz ψ : Rk → R,
as n→∞,

1

n

n∑
α=1

ψ(h1
α, . . . , h

k
α)

a.s.−−→ Eψ(Zh
1

, . . . , Zh
k

),

(34)
for any vectors h1, . . . , hk in the program, where Zh

i

are as defined in Definition G.3.

2. Any scalar θ in the program tends to θ̊ almost surely,
where θ̊ is as defined in Definition G.3.

Intuitively, Theorem G.4(1) says that each “coordinate
slice” (h1

α, . . . , h
k
α) can be thought of as an iid copy of

(Zh
1

, . . . , Zh
k

).40 This intuition is consistent with our
heuristic derivation in Section 5, and Theorem G.4 under-
lies the proof of Theorems 5.1, F.1 and F.2. Theorem G.4(2)
allows us to directly obtain the function learned at the end of
training: For example, for a 1-hidden-layer MLP, it shows
that the network’s output on any input ξ at time t converges
to f̊t(ξ) given in Theorem 5.1.

Algorithm 1 summarizes how to compute the infinite-width
limit of any network in any abc-parametrization and for
any task, using the Tensor Programs framework laid out
in this section. It generalizes the manual derivations of
Section 5. We carry out Algorithm 1 for MLPs in all of our
experiments.

Architectural and algorithmic universality Given that
Tensor Programs can express the first forward and backward
computation of practically any architecture (Yang, 2019a;
2020a), it should perhaps come as no surprise that they can

40This implies an explicit convergence in distribution (see (Yang,
2020b)), but this convergence in distribution is strictly weaker than
the formulation in Theorem G.4, which is in general much more
useful.
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Algorithm 1 Compute the infinite-width limit of an NN in
any abc-parametrization and any task

1: Write the computation graph underlying training and
inference in a Tensor Program (akin to writing low level
PyTorch or Tensorflow code).

2: Calculate Zh for each vector h and θ̊ for each scalar θ
in the program, according to Definition G.3.

3: The logits ft(ξ) of the neural network at any time t
should be written as a collection of scalars, so f̊t(ξ) is
calculated in the previous step. For t being inference
time, f̊t(ξ) is the output of the infinite-width network
after training.

also express practically any training and inference procedure
— or just any computation — involving any such architecture.
This includes both feature learning and kernel limits. We
leverage this flexibility to derive and compute the µP and
kernel limits for metalearning and Word2Vec; see Section 6.

Extensions We focused on programs whose vectors all
have the same dimension n here. But it’s easy to gener-
alize to the case where vectors have different dimensions,
which corresponds to e.g. when a network’s widths are non-
uniform. See (Yang, 2020b).

H. Computational Considerations
While the TP framework is very general, computing the
feature learning limits analytically is inherently computa-
tionally intensive aside from special cases like the linear
1-hidden-layer MLP (Corollary 5.2). Here we explain why,
so as to motivate our experimental choices below.

No closed-form formula for evaluating the expectations
(e.g. in Eq. (34)) involving general nonlinearities except
in special cases For example, for a 1-hidden-layer MLP
(Section 5.1), after 1 step of SGD, the logit is of the form
E(Z1 + bφ(Z2))φ(Z3 + cZ1φ

′(Z2)) where Zis denote dif-
ferent (correlated) Gaussians (Eq. (7)). While one can still
evaluate this via Monte-Carlo, the error will compound
quickly with training time. On the other hand, because of
the nesting of φ′ inside φ, there is no closed-form formula
for this expectation in general.

Notable Exception: If the nonlinearity φ is polynomial, then
the expectation is a polynomial moment of a multivariate
Gaussian and can be evaluated analytically, e.g. using Is-
serlis’ theorem from the covariance matrix.

Even with nonlinear polynomial φ, there is exponential
computational bottleneck As training time t increases,
due to the nesting of φ and φ′ in the preactivations, the
integrand of the expectation, e.g. EZ x̄tZnVt , will turn out

to be a polynomial in Ω(1) Gaussian variables with degree
Ω(2t). The covariance matrix of the Gaussian variables
will in general be nontrivial, so evaluating the expectation,
e.g. using Isserlis’ theorem, requires super-exponential time.
This is because we would need to expand the polynomial
integrand into monomials, and there would be Ω(2t) mono-
mials, each of which require Ω(2t) time to evaluate using
Isserlis’ theorem.

n × n Gaussian matrices Both points above apply to
1-hidden-layer MLPs. Additional difficulties with deeper
networks is caused by the n × n initial Gaussian matrix
W l

0, 2 ≤ l ≤ L, in the middle of the network. 1) In general,
due to the nonlinearities, xl−1

t would be linearly indepen-
dent from xl−1

s for all s < t. Therefore, in calculating
W l
tx
l−1
t = W l

0x
l−1
t + ∆W l

tx
l−1
t , we create a new Gaus-

sian variable ẐW
l
0x
l−1
t linearly independent from all pre-

vious ẐW
l
0x
l−1
s , s < t. This then requires us to compute

and store the covariance between them. Thus, t steps of
SGD costs Ω(t2) space and time (not mentioning that the
computation of each covariance entry can require exponen-
tial time, as discussed above). 2) In addition, due to the
interaction between W l

t in the forward pass and W l>
t in

the backward pass, there is nonzero Ż, as demonstrated
in Eq. (32). This Ż is generally a linear combination of
Ω(t) terms, and the coefficients of this combination require
evaluation of some expectations that typically run into the
exponential bottleneck discussed above.

Summary From easiest to hardest in terms of µP limit’s
computational cost, we have 1) 1-hidden-layer linear net-
works; 2) L-hidden-layer linear MLP, L ≥ 2; 3) nonlinear
MLP with polynomial activations; 4) nonlinear MLP with
nonpolynomial activations. Nevertheless, 1-hidden-layer
linear networks are more than sufficient to demonstrate
feature learning in Word2Vec and few-shot learning with
MAML, as we show below.

I. Assumptions
I.1. Assumptions of Section 3

Assumption I.1. Our main results in Section 3 (and this sec-
tion only) will assume φ is either tanh or a smooth version of
relu called σ-gelu (see Definition N.1), for sufficiently small
σ > 0 (which means σ-gelu approximates relu arbitrarily
well).

Note this assumption is only needed for the classification of
abc-parametrizations. For deriving the infinite-width limits,
the much weaker Assumption N.21 suffices. We believe our
results here will hold for generic nonlinearities, but making
this precise is outside our scope. (See Remark N.14 for
some discussion).
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Figure 6. Empirical Simulation Agrees with Theory. We ana-
lytically compute the infinite-width µP limit for the three kinds
of networks (depth 1, depth 2 decoupled, depth 2) described in
Section 5, with either quadratic φ(x) = x2 or linear φ(x) = x
activation. The training set is random ξt ∈ {±1}, yt ∈ {±1},
so that the deviation of finite width from infinite width losses are
accentuated. We compare against finite width µP networks with
width 1024 or 4096. For each width, we randomly initialize with
100 different seeds and aggregate the loss curves. The mean across
these seeds is plotted as solid curves, and the standard deviation
represented by the shade. As discussed in Appendix H, nonlinear
activation functions and higher depth face computational difficul-
ties exponential with training time. Thus here we only train for a
few steps. We observe that the quadratic network converges slower
to the limit with width. This is expected since the tail of Zxt is
fatter for a quadratic activation than a linear activation.

J. Experiments
J.1. Verifying the Theory

In Fig. 6, we analytically computed the µP limits derived in
Section 5 for quadratic and linear activations, and verified
them against finite width networks.

J.2. Few-Shot Learning on Omniglot via First Order
MAML

J.2.1. OVERVIEW

MAML In Model Agnostic Meta-Learning (MAML), the
model performs few-shot learning by one or more SGD
steps on the given training data; this is called adaptation.
In a pretraining (also called meta-training) phase, MAML
learns a good initialization of the model parameters for this
adaptation. The training objective is to minimize the loss
on a random task’s test set after the model has adapted to its
training set. More precisely, the basic First Order MAML at
training time goes as follows: With fθ denoting the model
with parameters θ, and with step sizes ε, η, we do

1. At each time point, sample a few-shot task T

2. From T , sample a training set D

3. Adapt θ′ ← θ−ε∇θLD(fθ), where LD(fθ) is the loss
of fθ over D

4. Sample a test set D′ from T

5. Update θ ← θ− η∇θ′LD′(fθ′), where LD′(fθ′) is the
loss of fθ′ over D′

6. Repeat

In practice, we batch the tasks, just like batches in SGD, so
that we accumulate all the gradients from Step 5 and update
θ only at the end of the batch.

During meta-test time, we are tested on random unseen
few-shot tasks, where each task T provides a training set
D and a test set D′ as during meta-training. We adapt to D
as in Step 3 above (or more generally we can take multiple
gradient steps to adapt better) to obtain adapted parameters
θ′. Finally, we calculate the accuracy of θ′ on the test set
D. We average this accuracy over many tasks T , which we
report as the meta-test accuracy.

First Order vs Second Order MAML Notice in Step 5,
we take the gradient of LD′(fθ′) with respect to the adapted
parameters θ′. In Second Order MAML, we would instead
take the gradient against the unadapted parameters θ, which
would involve the Hessian ∇θ∇θLD(fθ). Second Order
MAML generally achieves performance slightly better than
First Order MAML, but at the cost of significantly slower
updates (Nichol et al., 2018). In order to scale up, we will
focus on First Order MAML, hereafter referred to as just
MAML.

Few-Shot Learning Terminologies An N -way classifi-
cation task asks the model to predict a class from N possib-
lities. A K-shot classification task provides K input/output
pairs per class, for a total of NK training points for N -way
classification.

Omniglot Omniglot is a standard few-shot learning bench-
mark. It consists of 20 instances of 1623 characters from 50
different alphabets, each handwritten by a different person.
We test our models on 1-shot 5-way classification: We draw
5 random characters, along with 1 training instance and 1
test instance for each character. After the model adapts to
the training instances, it’s asked to predict the character of
the test instances (choosing among the 5 characters).

Hyperparameters We use (task) batch size 32 and adap-
tation step size 0.4 (ε in Step 3). We also clip the gradient
in Step 5 if the gradient has norm ≥ 0.5.41 For each model,
we tune its weight initializaton variances and the meta learn-
ing rate (η in Step 5). During meta-test time, we take 20

41One can write down gradient clipping easily in a Tensor Pro-
gram, so the its infinite-width limit can be computed straightfor-
wardly via Theorem G.4; see Algorithms 2 and 3.
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gradient steps during adaptation (i.e. we loop Step 3 above
20 times to obtain θ′).

J.2.2. LINEAR 1-HIDDEN-LAYER µP NETWORK

We discuss the implementation details for our µP network.
We consider a linear 1-hidden-layer MLP with bias, input
dimension d, output dimension do, given by

f(ξ) = V h(ξ) ∈ Rdo , h(ξ) = Uξ +B ∈ Rn,

where ξ ∈ Rd. Following µP, we factor U =
√
nu ∈

Rn×d, V = 1√
n
v ∈ Rdo×n, B = α

√
nβ ∈ Rn, where

u, v, β are the trainable parameters. We initialize uαβ ∼
N (0, σ2

u/n), vαβ ∼ N (0, σ2
v/n), β = 0 ∈ Rn. We can

cancel the factors of
√
n and rewrite

f(ξ) = vh(ξ) ∈ Rdo , h(ξ) = uξ + b ∈ Rn,

where b = αβ. We will also consider gradient clipping
with threshold g and weight decay with coefficient γ. So in
summary, the hyperparameters are

σu, σv (init. std.), α (bias multiplier), η (LR),
g (grad. clip), γ (weight decay).

As in Corollary 5.2, it’s easy to see that each column of ut at
any time t is always a linear combination of the columns of
u0 and the rows of v0 such that the coefficients of these lin-
ear combinations converge deterministically in the n→∞
limit; likewise for bt and the rows of vt. To track the evolu-
tion of f , it suffices to track these coefficients. Therefore,
for implementation, we reparametrize as follows:

Coefficient matrix and vector Let
µ1, . . . , µd, ν1, . . . , νdo ∈ Rn be standard Gaussian
vectors such that the columns of u0 will be initial-
ized as σuµ1/

√
n, . . . , σuµd/

√
n and the rows of V0

will be initialized as σvν1/
√
n, . . . , σvνdo/

√
n. Write

µ = (µ1, . . . , µd) ∈ Rn×d, ν = (ν1, . . . , νdo) ∈ Rn×do .
Define coefficient matrices

u> ∈ Rd×(d+do),v ∈ Rdo×(d+do),

such that at any time, (u, v>) ∈ Rn×(d+do) is
1√
n

(µ, ν)(u,v>) in the infinite-width limit. We initialize(
u>

v

)
←
(
σuI 0

0 σvI

)
,

i.e. a “diagonal” initialization. Likewise, define coefficient
vector b ∈ Rd+do , initialized at 0, such that, at any time,
b is approximately distributed as 1√

n
(µ, ν)b. To track the

evolution of the infinite-width network, we will track the
evolution of u,v, b.

Algorithm 2 SGD Training of Finite-Width Linear µP 1-
Hidden-Layer Network

Require: Hyperparameters n, σu, σv, α, η, g, γ.
1: Initialize uαβ ∼ N (0, σ2

u/n)
2: Initialize vαβ ∼ N (0, σ2

v/n)
3: Initialize b← 0
4: for each batch of inputs Ξ ∈ RB×d and labels Y ∈

RB×do do
5: // Forward Pass
6: H ← Ξu> + b ∈ RB×n
7: f(Ξ)← Hv> ∈ RB×do
8: // Backward Pass
9: χ← L′(f(Ξ), Y ) ∈ RB×do

10: du← −v>χ>Ξ ∈ Rn×d
11: dv ← −χ>H ∈ Rdo×n
12: db← −α21>χv ∈ Rn
13: // Gradient Clipping

14: G←
√
‖du‖2F + ‖dv‖2F + ‖dbα ‖2

15: ρ← min(1, g/G)
16: du← ρdu
17: dv ← ρdv
18: db← ρdb
19: // Gradient Step w/ Weight Decay
20: u += ηdu− ηγu ∈ Rd×n
21: v += ηdv − ηγv ∈ Rdo×n
22: b += ηdb− ηγb ∈ Rn
23: end for

In general, we use bold to denote the coefficients (in µ, ν)
of a tensor (e.g. b for coefficients of b). We also use capital
letters to denote the batched version (e.g. H for batched
version of h). Algorithms 2 and 3 below summarize the
SGD training of the finite- and the infinite-width networks.
Note that aside from initialization and the hidden size (n vs
d+ do), the algorithms are essentially identical.

During inference, we just run the Forward Pass section with
Ξ substituted with test data.

The algorithms for MAML can then be obtained by a
straightforward modification of these algorithms. (Note
that in MAML, we do not clip gradients during adaptation,
but rather clip the gradient against the validation loss of
task; we also disable weight decay by setting the coefficient
γ to 0).

Hyperparameter Sweep We sweep σu, σv , η and α with
the following grid for finite width and µP networks.

• σu : [0.5, 1, 2, 4, 8],

• σv : [2−5, 2−4, 2−3, 2−2, 2−1],

• η : [0.025, 0.05, 0.1, 0.2, 0.4],
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Algorithm 3 SGD Training of Infinite-Width Linear µP
1-Hidden-Layer Network

Require: Hyperparameters σu, σv, α, η, g, γ.
1: Initialize u> ← (σuI, 0)
2: Initialize v ← (0, σvI)
3: Initialize b← 0
4: for each batch of inputs Ξ ∈ RB×d and labels Y ∈

RB×do do
5: // Forward Pass
6: H ← Ξu> + b ∈ RB×(d+do)

7: f(Ξ)←Hv> ∈ RB×do
8: // Backward Pass
9: χ← L′(f(Ξ), Y ) ∈ RB×do

10: du← −v>χ>Ξ ∈ R(d+do)×d

11: dv ← −χ>H ∈ Rdo×(d+do)

12: db← −α21>χv ∈ Rd+do

13: // Gradient Clipping

14: G←
√
‖du‖2F + ‖dv‖2F + ‖dbα ‖2

15: ρ← min(1, g/G)
16: du← ρdu
17: dv ← ρdv
18: db← ρdb
19: // Gradient Step w/ Weight Decay
20: u += ηdu− ηγu ∈ R(d+do)×d

21: v += ηdv − ηγv ∈ Rdo×(d+do)

22: b += ηdb− ηγb ∈ Rd+do

23: end for

• α : [0.25, 0.5, 1, 2, 4]

We are interested in 1-shot, 5-way learning with Omniglot.
This means that each task provides 5 training samples, each
corresponding to one of the 5 labels of the task. Each hy-
perparameter combination above is used to train for 100
epochs over 3 random seeds, where each epoch consists of
100 batches of 32 tasks. We average the validation accuracy
across the last 10 epochs and document the best hyperpa-
rameters in Table 4, along with the test accuracy from a
15-seed rerun42 for better benchmarking. For NTK and GP,
we additionally tune the initialization σb for biases, which
is set to 0 for both finite and µP networks for simplicity.

J.2.3. NNGP AND NTK FOR RELU NETWORKS

We discuss the implementation details for our relu NTK and
GP baselines.

Consider a kernelK, which in our case will be the NNGP or
NTK of a 1-hidden-layer relu network. WLOG, it is induced
by an embedding Φ such that K(ξ, ζ) = 〈Φ(ξ),Φ(ζ)〉
where 〈, 〉 is the inner product in the embedding space; we

42After excluding outliers at least one standard deviation away
from the mean.

Algorithm 4 MAML Training of Kernel Model with Kernel
K

Require: Kernel K, adaptation step size ε, meta learning
rate η, batch size B, gradient clip g

1: Initialize Q = {}
2: while True do
3: Draw a batch of tasks
4: for each task in batch do
5: // Adaptation
6: Sample training set D
7: for each input/label pair (ξi, yi) ∈ D do
8: χi ← L′(fQ(ξi), yi)
9: end for

10: for each input/label pair (ξi, yi) ∈ D do
11: Q.push((ξi,−εχi))
12: end for
13: // Calculate Test Set Gradient
14: Sample test set D̂
15: for each input/label pair (ξ̂i, ŷi) ∈ D̂ do
16: χ̂i ← L′(fQ(ξ̂i), ŷi)
17: end for
18: for each input/label pair (ξi, yi) ∈ D do
19: Q.pop((ξi,−εχi))
20: end for
21: // Gradient Clip

22: G←
√∑

(ξ̂i,ŷi)∈D̂
∑

(ξ̂j ,ŷj)∈D̂ χ̂iχ̂jK(ξ̂i, ξ̂j)

23: ρ← min(1, g/G)
24: // Gradient Update
25: for each input/label pair (ξ̂i, ŷi) ∈ D̂ do
26: Q.push((ξ̂i,−ρηχ̂i))
27: end for
28: end for
29: end while

do not care about the details of Φ or 〈, 〉 as eventually our
algorithm only depends on K.

In our setting, we will train a linear layer W on top of Φ
via MAML, f(ξ) def

= 〈W,Φ(ξ)〉. One can see easily that
W is always a linear combination of Φ(ζ) for various ζ
from the training set we’ve seen so far. Thus, to track
W , it suffices to keep an array Q of pairs (ζ, q) such that
W =

∑
(ζ,q)∈Q qΦ(ζ) at all times. Let fQ be the function

with W given by Q. Then

fQ(ξ) =
∑

(ζ,qζ)∈Q

qζK(ζ, ξ).

In our case, the number of possible inputs is too large to
instantiate a value q for every ζ, so we gradually grow a
dynamic array Q, which we model as a stack. Then MAML
can be implemented as in Algorithm 4.
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Table 4. Best hyperparameters for the MAML experiment.

log2Width/Limit σu σv σb η α Val. Acc. (%) Test Acc. (%)

1 0.5 0.5 - 0.05 2 46.72± 4.30 55.34± 1.24
3 0.5 0.25 - 0.1 1 65.30± .27 64.54± .70
5 1 0.125 - 0.4 0.5 68.74± .18 66.21± .15
7 1 0.125 - 0.1 1 69.03± .04 66.31± .16
9 1 0.03125 - 0.1 1 69.32± .07 66.43± .23
11 1 0.03125 - 0.1 1 69.27± .11 66.36± .22
13 1 0.03125 - 0.1 1 69.27± .14 66.41± .18
µP 1 0.03125 - 0.1 1 69.26± .13 66.42± .19

NTK 0.25 1 1 0.05 1 47.47± .13 47.82± .04
GP 1 0.25 1 0.05 1 38.92± .15 47.60± .02

Hyperparameter Sweep We sweep σu, σv, σb and η
with the following grid for GP and NTK.

• σu : [0.25, 0.5, 1, 2, 4],

• σv : [0.25, 0.5, 1, 2, 4],

• σb : [0.25, 0.5, 1, 2, 4],

• η : [0.05, 0.1, 0.2, 0.4, 0.8]

Each hyperparameter combination above is used to train for
5 epochs (the first epoch is almost always the best) over 3
random seeds, where each epoch consists of 100 batches of
32 tasks. We take the validation accuracy among all epochs
and document the best hyperparameters in Table 4, along
with the test accuracy from a 15-seed rerun.

J.3. Word2Vec

Word2Vec Pretraining Consider training on a corpus
with vocabulary V . At each time step, we sample a sen-
tence for the corpus and choose a word i ∈ V . This word’s
context J ⊆ V is a window of words around it in the sen-
tence, thought of as a bag of words. Let ξi ∈ R|V| be the
one-hot vector corresponding to word i. We pass the aver-
aged context ξJ def

=
1
|J|
∑n
j∈J ξ

j through a 1-hidden-layer
MLP with hidden size n and identity activation:

f(ξJ) = V h(ξJ) ∈ R|V|, h(ξJ) = UξJ ∈ Rn, (35)

where V ∈ R|V|×n, U ∈ Rn×|V| factor as
V = n−avv, U = n−auu with initialization vα ∼
N (0, n−2bv ), uα ∼ N (0, n−2bu), where {av, bv, au, bu}
specify the parametrization of the network. After each for-
ward pass, we sample a target word τ from V: with proba-
bility p, we take τ = i; with probability 1− p, we sample τ
uniformly from V\{i}. Following (Mikolov et al., 2013a;b),
we take p = 1/21 ≈ 4.76%. The loss is then calculated

with the Sigmoid function σ(·) :

L(f(ξJ), ξτ ) =

{
log(1− σ(f(ξJ)>ξτ )) τ = i

log σ(f(ξJ)>ξτ ) τ 6= i
(36)

Then v and u are updated via SGD as usual (causing V and
U to update). Conventionally, h(ξ) ∈ Rn is taken as the
Word2Vec embedding for a word ξ after many iterations of
forward-backward updates.

Word Analogy Evaluation We evaluate the word embed-
dings h(ξ) with the word analogy task. This task asks the
question of the kind: What to a ‘queen’ is as a ‘man’ to a

‘woman’? (answer is ‘king’). The Word2Vec model answers
this question by computing

argmax
i

h(ξi)>(h(ξ‘man’)−h(ξ‘woman’)+h(ξ‘queen’)) (37)

where i ranges over V \ {‘man’, ‘woman’, ‘queen’}. If the
argmax here is i = ‘king’, then the model answers cor-
rectly; otherwise, it’s incorrect. The accuracy score is the
percentage of such questions answered correctly.

Dataset We train the models on text8,43 a clean dataset
consisting of the first 100 million characters of a 2006
Wikipedia dump. The dataset has been featured in the
original Word2Vec codebase and the Hutter Prize. text8
contains the first 100 million characters of fil9, a larger
dataset obtained by filtering the first 1 billion characters in
the aforementioned Wikipedia dump. We space-separate
the datasets into tokens and keep ones that appear no less
than 5 times in the entire dataset for text8 and 10 times
for fil9. The resulting datasets have 71,291 and 142,276
unique vocabulary items.

43http://mattmahoney.net/dc/textdata.html

http://mattmahoney.net/dc/textdata.html
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J.3.1. IMPLEMENTATION OF µP LIMIT

We shall derive the training algorithm for µP Word2Vec.
First, we introduce the notation for word embeddings. We
denote Φi def

= h(ξi). If ξi is a one-hot vector with the
ith element set to 1, Φi is essentially the ith column of
the weight matrix U . We also define the following short-
hands for the context embedding: ΦJ def

= Ej∈J Φj = h(ξJ).
Similarly, V >ξτ describes a row in V ; we can define
Φτ̂ def

= ĥ(ξτ ) def
= V >ξτ and rewrite the loss function.

L(f(ξJ), ξτ ) =

{
log(1− σ(ΦJ>Φτ̂ )) τ = i

log σ(ΦJ>Φτ̂ ) τ 6= i.
(38)

Consequently, the backward pass becomes:

∆Φj =
1

|J |
∆ΦJ =

η

|J |
∂L
∂ΦJ

=

{
η
|J|Φ

τ̂ (1− σ(ΦJ>Φτ̂ )) τ = i

− η
|J|Φ

τ̂σ(ΦJ>Φτ̂ ) τ 6= i.

(39)

Following µP, we initialize Uαβ ∼ N (0, σun
−1) and

Vαβ ∼ N (0, σvn
−1), where n is the width of the finite

network. (Here the explicit multipliers of
√
n in U and

1/
√
n in V cancel out because the network is linear). The

tunable hyperparameters are the initialization std σuand σv ,
learning rate η and weight decay ratio γ. Rather than tuning
the hyperparameters extensively for each width, we pick
some reasonable values and use them for all of our experi-
ments. Specifically, we have σu = σv = 1, η = 0.05 and
γ = 0.001.

Again, using Corollary 5.2, we can train the µP limit in the
coefficient space of u> ∈ R|V|×2|V|,v ∈ R|V|×2|V|, with
the same “diagonal” initialization:

(
u>

v

)
←
(
σuI 0

0 σvI

)
,

We can adopt the embedding notation and represent a row of
u with the embedding coefficient vector Φ• and a column
of v with Φ•̂. This is computationally equivalent to training
with a hidden size of 2|V| and with embeddings initialized
as rows (or columns) of one-hot vectors. The full algorithm
is described in Algorithm 2 and Algorithm 3; in this case,
we remove biases and use weight decay with coefficient
γ = 0.001. After training, rows of the weight matrix u
(resp. coefficient matrix u), i.e. Φ• (resp. Φ•), are taken as
the word vectors.

J.3.2. IMPLEMENTATION OF NTK LIMIT

In the NTK parametrization, V and U in Eq. (35) factor as
V = 1√

n
v and U = u, and the learning rate is Θ(1). Each

column U•i of U is equal to h(ξi). At any fixed time t, it is
easy to see via Tensor Programs that

ht(ξ
i) = h0(ξi) +

∑
j∈V

O(1/
√
n)vj +Ocoord(1/n)

where vj denotes the jth row of v at initialization, and where
Ocoord(1/n) means a vector that is O(1/n) coordinatewise.
Recall that U = u and v are initialized with iid standard
Gaussian entries. Because ξi is one-hot, this in particular
implies h0(ξi) has standard Gaussian entries, and h0(ξi) is
independent from h0(ξj) for i 6= j. Then for any i 6= j,

1√
n
ht(ξ

i)>ht(ξ
j)− 1√

n
h0(ξi)>h0(ξj)

a.s.−−→ 0,

1√
n
h0(ξi)>h0(ξj)

d−→ N (0, 1)

by Law of Large Numbers (or more formally,
Theorem G.4) and Central Limit Theorem. In other
words, 1√

n
h0(ξi)>h0(ξj) is distributed completely ran-

domly, with no regard to the semantic similarities of i and j.
Likewise, the inner product in Eq. (37) is random, and the
argmax is a uniform sample.44 Therefore, in the NTK limit,
Word2Vec gives random answers and achieves an accuracy
of 1
|V|−3 .

K. abc-Parametrization for General Neural
Architectures

We can straightforwardly generalize abc-parametrizations
to an arbitrary neural architecture. Each parameter tensor
W would get its own aW and bW , such that W = n−aWw
and w is the actual trainable parameter with initialization
wαβ ∼ N (0, n−2bW ). The learning rate is still ηn−c for
some fixed η.

K.1. Maximal Update Parametrization

MLP with Biases Suppose in Eq. (1), for each l ∈ [L],
we have hl(ξ) = W lxl−1(ξ) + bl instead, for bias bl ∈
Rn. Then in µP, the bias bl should have abl = −1/2 and
bbl = 1/2. We can also have bias bL+1 in the logits f(ξ) =
WL+1xL(ξ) + bL+1. Then we set abL+1 = bbL+1 = 0.

General Neural Architectures More generally, µP can
be defined easily for any neural architecture whose forward
pass can be written down as a Tensor Program (e.g. ResNet
or Transformer; see (Yang, 2019a) for explicit programs).
The learning rate is always independent of width, i.e. c = 0.
For any parameter tensor W , bW is always 1/2, and aW
can be defined as follows: If W is not an output weight

44Here the randomness comes from initialization: the argmax is
different for different random initializations, but it is fixed through-
out training in the large width limit.
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matrix, then aW should be set to −1 + 1
2pW , where pW =

limn→∞ logn #(W ) is a) 0 if both sides of W are fixed
w.r.t. n; b) 1 if W is a vector (e.g. bias) or with one side
being fixed dimensional (e.g. W 1); and c) 2 if W is a matrix
with both sides scaling like n (e.g. weights in the middle
of an MLP). If W is an output weight matrix (and thus the
output dimension is fixed w.r.t. n), then aW should be 1

2 . If
W is an output bias, then aW should be 0.

Optimality Properties One can formalize, in this general
context, the notion of stability and the notions of a param-
eter tensor being updated maximally and (a set of readout
weights) being initialized maximally. Then one can show
that µP is the unique stable abc-parametrization such that
all of its parameter tensors are updated maximally and all
of its readout weights are initialized maximally.

L. Nuances of the Master Theorem
Remark L.1 (Partial derivative). The partial derivative in
ZDot should be interpreted as follows. By a simple induc-
tive argument, Zx for every vector x in the program is de-
fined uniquely as a deterministic function ϕ(Ẑx

1

, . . . , Ẑx
k

)
of some x1, . . . , xk in V or introduced by MatMul (nota-
tionally, we are suppressing the possible dependence on
limit scalars θ̊1, . . . , θ̊l). For instance, if in a program
we have A ∈ W, v ∈ V , y = Av, x = A>y, then
Zx = Ẑx + Ẑv , so ϕ is given by ϕ(a, b) = a+ b. Then

∂Zx/∂Ẑx
i def

= ∂iϕ(Ẑx
1

, . . . , Ẑx
k

)

∂Zx/∂Ẑz def
= 0 for any z 6∈ {x1, . . . , xk}.

Note this definition depends on the precise way the program
is written, not just on the underlying mathematics. For
example, if y, z ∈ V and x = φ(W (y + z)), then Zx =
φ(ẐW (y+z)) so that ∂Zx/∂ẐWy = ∂Zx/∂ẐWz = 0. If
instead, we have x = φ(Wy +Wz), then Zx = φ(ẐWy +
ẐWz) so that ∂Zx/∂ẐW (x+y) = 0. However, in both cases,
ŻW

>x = (Zy + Zz)Eφ′(ẐW (y+z)).

Remark L.2 (Partial derivative expectation). The quantity
E ∂Zx

∂ẐW>y
is well defined if Zx is differentiable in ẐW

>y.
However, even if this is not the case, e.g. if x = θ(W>y)
where θ is the Heavyside step function, we can still define
this expectation by leveraging Stein’s lemma:

In ZDot, suppose {W>yi}ki=1 are all elements of VW>
introduced before x. Define the matrix C ∈ Rk×k by
Cij

def
= EZyiZyj and define the vector b ∈ Rk by bi def

=

E ẐW>yiZx. If a = C+b (where C+ denotes the pseudoin-
verse of C), then in ZDot we may set

σ2
W E

∂Zx

∂ẐW>yi
= ai. (40)

This definition agrees with the partial derivative expec-
tation by Stein’s lemma when the latter is well defined.
Theorem G.4 holds with this broader definition of partial
derivative expectation.

Pseudo-Lipschitz functions are, roughly speaking, func-
tions whose weak derivatives are polynomially bounded.

Definition L.3. A function f : Rk → R is called pseudo-
Lipschitz of degree d if |f(x) − f(y)| ≤ C‖x − y‖(1 +∑k

i=1 |xi|d + |yi|d) for some C. We say f is pseudo-
Lipschitz if it is so for any degree.

Here are some basic properties of pseudo-Lipschitz func-
tions:

• The norm ‖·‖ in Definition L.3 can be any norm equiv-
alent to the `2 norm, e.g. `p, p ≥ 1, norms. Similarly,∑k
i=1 |xi|d + |yi|d can be replaced by ‖x‖dp + ‖y‖dp,

for any p ≥ 1.

• A pseudo-Lipschitz function is polynomially bounded.

• A composition of pseudo-Lipschitz functions of de-
grees d1 and d2 is pseudo-Lipschitz of degree d1 + d2.

• A pseudo-Lipschitz function is Lipschitz on any com-
pact set.

We adopt the following assumption for the Master Theorem
Theorem G.4.

Assumption L.4. Suppose

1. If a function φ(;−) : R0+l → R with only parameter
arguments is used in Moment, then φ is continuous in
those arguments.

2. Any other function φ(−;−) : Rk+l → R with param-
eters (where k > 0) used in Nonlin or Moment is
pseudo-Lipschitz in all of its arguments (both inputs
and parameters).

Statement 1 in Assumption L.4 essentially says that if we
have scalars θ1, . . . , θl in the program, then we can produce
a new scalar by applying a continuous function (a weaker re-
striction than a pseudo-Lipschitz function) to them. Indeed,
if θ1, . . . , θl converge almost surely, then this new scalar
does too. In our setting, statement 1 is used to allow any
loss function whose derivative is continuous.

Other versions of the Master Theorem can be found in (Yang,
2020b), for example, versions where the we do not assume
any smoothness condition at all on the nonlinearities be-
yond that they be polynomially bounded, in exchange for
assuming what’s called a rank stability condition. This rank
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stability should be generically true, but checking it rigor-
ously is subtle, so we are content with the pseudo-Lipschitz
condition in this paper.

M. A Rough Sketch of the Geometry of
abc-Parametrizations

By the results of Section 3, the stable abc-parametrizations
form a polyhedron defined by the inequalities of
Theorem 3.2. We call the polyhedron obtained by quoti-
enting Eq. (13) the stable polyhedron. In this section, we
remark on some geometric properties of this polyhedron.

First, observe that the stable polyhedron is unbounded (thus,
we say polyhedron instead of polytope). Indeed, given any
stable parametrization, for any l, we can set al ← al +
θ, bl ← bl − θ for any θ ≥ 0 to obtain another stable
parametrization. This corresponds decreasing the layer l
learning rate, so that as θ →∞, W l is not trained.

Second, by Theorem 3.3, the nontrivial parametrizations
reside in two facets of the stable polyhedron. These facets
are unbounded for the same reason as above.

Next, we show that NTP (as well as µP) is a vertex on
the intersection of these two facets, and NTP and µP are
connected by an edge.

Definition M.1. Consider a stable abc-parametrization of
the MLP in Eq. (1). We say the body of the MLP is uni-
formly updated if, for some training routine, time t ≥ 1,
and input ξ, ∆W l

tx
l
t(ξ) = Θ(n−r) for all l simultaneously,

where r is as defined in Definition 3.1.

In the results of this section below, we assume
Assumption N.21.

Proposition M.2. In a stable abc-parametrization, the
MLP body is uniformly updated iff rl = r for all l ∈ [L],
where rl is as defined in Proposition E.2.

Theorem M.3. In NTP, the MLP body is updated uniformly
and WL+1 is both initialized and updated maximally. Fur-
thermore, at initialization, f0 converges in distribution45 to
a Gaussian Process with nonzero kernel. NTP is the unique
(modulo Eq. (13)) stable abc-parametrization with both of
these properties.

Theorem M.4. For any r ∈ [0, 1/2], there is a unique (mod-
ulo Eq. (13)) stable abc-parametrization with 1) that value
of r and the property that 2) the MLP body is updated uni-
formly andWL+1 is both initialized and updated maximally.
We call this parametrization the Uniform Parametrization

45as is conventional in the machine learning literature, the
convergence in distribution we mean here is really over fi-
nite dimensional marginals, i.e. (f0(ξ1), . . . , f0(ξk))

d−→
(f̊0(ξ1), . . . , f̊0(ξk)) where f̊0 is the limit GP.
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Figure 7. 2D Projection of the Boundary of the Uniform Stable
Polyhedron (Equivalently, the Boundary of the Stable Polyhe-
dron for L = 1). Here, we label each facet and edge of the graph
with orange text to indicate the corresponding defining algebraic
condition in the L = 1 case (as part of the stable polyhedron,
assuming c = 0 and b1 = −a1), and with black text to indicate
the verbal interpretation valid for all L (as part of the uniform
stable polyhedron). We obtain the caricature in Fig. 2 by taking
the nontrivial subspace of the graph here and quotienting the two
facets by their respective points at infinity. Explanation of some
captions: GP limit means the training dynamics amounts to train-
ing only the last layer in the infinite-width limit, starting from a
nonzero initial GP. Body NTK limit means NTK dynamics except
the last layer does not contribute to the NT kernel.

with r-value r, denoted UPr. Its abc values are

al = −1

2
I(l = 1) + r ∀l ∈ [L], aL+1 = 1/2;

bl = 1/2− r; c = 0.

In particular, UP0 is µP and UP1/2 is NTP. For r > 1/2,
such a uniform parametrization is not stable because W0

would need to be Θ(nr−1), which would cause the initial
GP to blow up. Thus, geometrically, UPr, r ∈ [0, 1/2], form
an edge of the stable polyhedron.

We can define the uniform stable polyhedron to be the subset
of the stable polyhedron corresponding to parametrizations
which update the MLP body uniformly. This is isomor-
phic to the stable polyhedron when L = 1. Since stable
abc-parametrizations with L = 1 has only 3 degrees of
freedom, say a1, a2, b2 while we fix c = 0 (via Eq. (13))
and b1 = −a1, we can visualize the corresponding stable
polyhedron in 3D. However, the nontrivial parametrizations
only reside in the boundary of this polyhedron. Because of
its unbounded nature, we can project its boundary in 2D and
visualize it. This is done in Fig. 7.
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N. Proofs of Main Results
N.1. Rigorous Statements of Main Results

Applicable Nonlinearities For technical reasons, in our
main results we restrict our attention to the canonical exam-
ples of nonlinearities: tanh and relu — or rather, a smooth
version of relu called gelu (Hendrycks & Gimpel, 2020)
common in transformer models (Brown et al., 2020a). More
precisely,

Definition N.1. Define σ-gelu to be the function x 7→
1
2xerf(σ−1x) + σ e

−σ−2x2

2
√
π

+ x
2 .

σ-gelu is a smooth approximation of relu and is the integral
of 1

2 (erf(σ−1x) + 1) that is 0 at −∞. The large σ is, the
smoother σ-gelu is. As σ → 0, σ-gelu converges to relu.
We believe our results will hold for generic nonlinearities,
but making this precise is outside our scope here. (See
Remark N.14 for some discussion).

Notations and Terminologies

Definition N.2 (Big-O Notation). Given a sequence of
scalar random variables c = {cn ∈ R}∞n=1, we write
c = Θ(n−a) if there exist constantsA,B such thatAn−a ≤
|c| ≤ Bn−a for sufficiently large n, almost surely46. Given
a sequence of random vectors x = {xn ∈ Rn}∞n=1, we say
x has coordinates of size Θ(n−a) and write x = Θ(n−a) to
mean the scalar random variable sequence {

√
‖xn‖2/n}n

is Θ(n−a). Similarly for the notations O(n−a),Ω(n−a).
We use the notations Θξ(n

−a), Oξ(n
−a),Ωξ(n

−a) if the
hidden constants A,B are allowed to depend on some ob-
ject ξ. For brevity, we will often abuse notation and say c
itself is a random variable or x itself is a random vector.

Most often, the vector x will have “approximately iid” co-
ordinates, so the notation x = Θ(n−a) can be interpreted
intuitively to say x has coordinates of “standard deviation”
Θ(n−a), which justifies the name.

Definition N.3. An abc-parametrization is a joint
parametrization of an MLP and the learning rate specified
by the numbers {al, bl}l ∪ {c} as in Eq. (1). Below we
will often say abc-parametrization of an MLP for short,
even though the parametrization affects the learning rate as
well. A training routine is a combination of learning rate
ηn−c, training sequence {(ξt, yt)}t≥0, and a loss function
L(f(ξ), y) that is continuously differentiable in the predic-
tion of the model f(ξ).

46Here almost surely means for almost every instantiation of
c1, c2, . . ., i.e. it is with regard to the product probability space
generated by all of {cn}∞n=1. In this paper, this probability space
will be generated by random initializations of a neural network at
every width n. Very importantly, note the order of the qualifiers:
we are saying for almost every instantiation of c1, c2, . . ., for large
enough n, An−a ≤ |c| ≤ Bn−a.

Main Results We will mainly focus on stable parametriza-
tions, defined below, which intuitively means 1) the preacti-
vations {hl}l and activations {xl}l have Θ(1) coordinates
at initialization, and 2) their coordinates and the logit f(ξ)
all stay O(1) (i.e. bounded independent of n) throughout
the course of SGD.47 Otherwise, they tend to ∞ with n,
eventually going out of floating point range. Indeed, this is
an acute and real problem common in modern deep learning,
where float16 is necessary to train large models.

Definition N.4 (Stability). We say an abc-parametrization
of an L-hidden layer MLP is stable if

1. For every nonzero input ξ ∈ X ,

hl0(ξ), xl0(ξ) = Θξ(1),∀l ∈ [L], and

E f0(ξ)2 = Oξ(1),
(41)

where the expectation is taken over the random initial-
ization.

2. For any training routine, any time t ≥ 0, l ∈ [L],
ξ ∈ X , we have

∆hlt(ξ),∆x
l
t(ξ) = O∗(1),∀l ∈ [L], and
ft(ξ) = O∗(1),

where the hidden constant inside O can depend on the
training routine, t, ξ, and the initial function values
f0(X ).48

Recall from the main text,

Definition N.5. For any abc-parametrization, we write r
for the quantity

r def
= min(aL+1+bL+1, 2aL+1+c)+c−1+

L
min
l=1

[2al + I(l = 1)] .

For example, in NTP, r = 1/2, while in µP, r = 0. In-
tuitively, r is the exponent such that ∆xLt (ξ) = Θξ(n

−r).
Thus, to avoid activation blowup, we want r ≥ 0; to perform
feature learning, we want r = 0.

Theorem N.6 (Stability Characterization). Suppose φ
is tanh or σ-gelu for sufficiently small σ. An abc-
parametrization is stable iff all of the following are true
(with intuitions in parentheses):

1. ((pre)activations at initialization are Θ(1) and logits
are O(1))

a1 + b1 = 0; al + bl = 1/2, ∀l ∈ [2, L];

aL+1 + bL+1 ≥ 1/2.
(42)

47but they may depend on training time and η; in particular, it’s
possible that they diverge with time

48For e.g. the NTK limit, f0 is a GP, so that we should expect
the bounds on ∆hlt(ξ),∆x

l
t(ξ) to depend on f0.
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2. (features don’t blowup, i.e. ∆xlt = O(1) for all l)

r ≥ 0. (43)

3. (logits don’t blow up during training, i.e.
∆WL+1

t xLt ,W
L+1
0 ∆xLt = O(1))

2aL+1 + c ≥ 1; aL+1 + bL+1 + r ≥ 1. (44)

Here, r is as defined in Definition N.5.

In Eq. (44), ∆WL+1
t turns out to be Θ(n−(2aL+1+c)) and

is correlated with xLt = Θ(1) such that their product be-
haves according to Law of Large Numbers; the first in-
equality says this should not blow up. Similarly, WL+1

0 =
Θ(n−(aL+1+bL+1)) and it turns out ∆xLt = Θ(n−r) and
they will interact via Law of Large Numbers, so the second
inequality says their product shouldn’t blow up.

Our main results concern nontrivial parametrizations:

Definition N.7 (Nontriviality). We say an abc-
parametrization of an L-hidden layer MLP is trivial
if for every training routine, ft(ξ) − f0(ξ)

a.s.−−→ 0 for
any time t ≥ 1 and input ξ ∈ X (i.e. the function
does not evolve in the infinite-width limit). We say the
parametrization is nontrivial otherwise.

Theorem N.8 (Nontriviality Characterization). Suppose φ
is tanh or σ-gelu for sufficiently small σ. A stable abc-
parametrization is nontrivial iff aL+1 + bL+1 + r = 1 or
2aL+1 + c = 1.

Definition N.9 (Feature Learning). We say an abc-
parametrization of an L-hidden layer MLP admits feature
learning in the lth layer if there exists some training routine
such that

∆xlt(ξ) = Ω∗(1) (45)

for some t ≥ 0, ξ ∈ X , where the hidden constant inside
Ω can depend on the training routine, t, ξ, and the initial
function values f0(X ). We say the parametrization admits
feature learning if it does so in any layer.

We say the parametrization fixes the lth layer features if for
all training routine,

‖∆xlt(ξ)‖2/n
a.s.−−→ 0

for all t ≥ 0, ξ ∈ X . We say the parametrization fixes all
features if it does so in every layer.

We make similar definitions as above replacing feature with
prefeature and xl with hl.

Note that the probabilistic nature of Ω∗(1) means that no
feature learning does not imply fixing all features (because
∆xlt(ξ) can just fluctuate wildly between 0 and infinity),

but we will see that in the context of nontrivial stable abc-
parametrizations, this is true.

A somewhat stronger notion of feature learning is that the
feature kernel evolves. This is, for example, essential for
linear transfer learning such as in self-supervised learning
of image data.

Definition N.10 (Feature Kernel Evolution). We say an abc-
parametrization of an L-hidden layer MLP evolves the lth
layer feature kernel if there exists some training routine
such that

xlt(ξ)
>xlt(ζ)/n− xl0(ξ)>xl0(ζ)/n = Ω∗(1)

for some t ≥ 0, ξ, ζ ∈ X , where the hidden constant inside
Ω can depend on the training routine, t, ξ, ζ, and the initial
function values f0(X ). We say the parametrization evolves
feature kernels if it does so in any layer.

We say the parametrization fixes the lth layer feature kernel
if for all training routine,

xlt(ξ)
>xlt(ζ)/n− xl0(ξ)>xl0(ζ)/n

a.s.−−→ 0, as n→∞,

for all t ≥ 0, ξ, ζ ∈ X . We say the parametrization fixes all
feature kernels if it does so in every layer.

We make similar definitions as above replacing feature with
prefeature and xl with hl.

Intuitively, for a stable parametrization, feature kernel evo-
lution should imply feature learning (one can see the con-
trapositive easily). In fact, we shall see below they are
equivalent notions.

On the other hand, from the NTK example, we know certain
limits can be described entirely through kernel gradient
descent with some kernel. Appropriately, we make the
following definition.

Definition N.11 (Kernel Regime). We say an abc-
parametrization of an L-hidden layer MLP is in kernel
regime if there exists a positive semidefinite kernel K :
X 2 → R such that for every training routine, the MLP func-
tion evolves under kernel gradient descent, i.e. there exist
random variables f̊t(ξ) for each time t ≥ 0 and input ξ ∈ X
such that, as n→∞,49

{ft(ξ)}t≤T,ξ∈X
d−→ {f̊t(ξ)}t≤T,ξ∈X , ∀T ≥ 1,

where d−→ denotes convergence in distribution, and

f̊t+1(ξ) = f̊t(ξ)− ηK(ξ, ξt)L′(f̊t(ξt), yt), ∀t ≥ 0.
(46)

49Here because we want to avoid topological issues arising for
convergence in distribution of infinite sequences, we only require
convergence in distribution jointly in all ξ ∈ X and time t below
some cutoff T for every finite T .
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Observe that, in kernel regime, f̊t(ξ) is deterministic condi-
tioned on f̊0(ξ), as evident inductively from Eq. (46). For
example, in the NTK limit, {f̊0(ξ) : ξ ∈ X} is a nontrivial
Gaussian Process (GP), but the function evolution condi-
tioned on this GP is deterministic.

All of the concepts defined above are related to each other
by the following theorem.

Theorem N.12 (Classification of abc-Parametrizations).
Suppose φ is tanh or σ-gelu for sufficiently small σ. Con-
sider a nontrivial stable abc-parametrization of anL-hidden
layer MLP. Then

1. The following are equivalent to r = 0

(a) feature learning
(b) feature learning in the Lth layer
(c) feature kernels evolution
(d) feature kernel evolution in the Lth layer
(e) prefeature learning
(f) prefeature learning in the Lth layer
(g) prefeature kernels evolution
(h) prefeature kernel evolution in the Lth layer

2. The following are equivalent to r > 0

(a) kernel regime
(b) fixes all features
(c) fixes features in the Lth layer
(d) fixes all feature kernels
(e) fixes feature kernel in the Lth layer
(f) fixes all prefeatures
(g) fixes prefeatures in the Lth layer
(h) fixes all prefeature kernels
(i) fixes prefeature kernel in the Lth layer

3. If there is feature learning or feature kernel evolution
or prefeature learning or prefeature kernel evolution
in layer l, then there is feature learning and feature
kernel evolution and prefeature learning and prefeature
kernel evolution in layers l, . . . , L.

4. If r = 0, then for all ξ ∈ X , f0(ξ)
a.s.−−→ 0 and

ft(ξ)
a.s.−−→ f̊t(ξ) for some deterministic f̊t(ξ). How-

ever, the converse is not true.

5. If r > 0, aL+1 + bL+1 + r > 1 and 2aL+1 + c = 1,
then we have the Neural Network-Gaussian Process
limit.

In particular, Statement 4 implies that feature learning, at
least in our context, is incompatible with Bayesian, distri-
butional perspectives of neural network limits, such as the
NNGP limit.

The characterization above then trivially implies the follow-
ing dichotomy.

Corollary N.13 (Dynamical Dichotomy). For φ being
tanh or σ-gelu for sufficiently small σ, a nontrivial stable
parametrization of an L-hidden layer MLP either admits
feature learning or is in kernel regime, but not both.

Remark N.14 (The Role of the φ Assumption). The depen-
dence on φ being tanh or σ-gelu for sufficiently small σ is
only needed to explicitly construct a training routine that
leads to feature learning for r = 0. We expect this should
be true for generic φ, but we leave this for future work. We
expand more on the role of the φ assumption below.

To calculate the infinite width limit of any abc-
parametrization rigorously, we only need the nonlinearity to
have a polynomially bounded 2nd derivative (or more gener-
ally pseudo-Lipschitz, so as to apply the Master Theorem).
The specific choice of tanh or gelu is needed to prove the
part of the Dynamical Dichotomy that says a limit cannot
be simultaneously in kernel regime and in feature learning
regime (which, e.g. is not true for linear activation). To
do so, we use Properties N.43 and N.46 of tanh and gelu,
expanded below. This is really for a more convenient proof,
but we believe a more general approach should work for
general nonlinearities. Our argument is as follows (this is
also overviewed in the start of Appendix N.7): If r = 0, we
show that a sufficiently small nonzero learning rate (scaled
with width in the corresponding parametrization) in 1 SGD
step 1) induces a change in the features but 2) the resulting
change in the NN output is not linear in the loss derivative χ.
1) means it’s feature learning, and 2) means it’s not in kernel
regime. This argument involves showing certain derivatives
of certain expectations with respect to learning rate is posi-
tive. In the case of tanh and gelu, this is checked explicitly
using Properties N.43 and N.46.

Remark N.15. The equivalence between kernel regime and
fixed feature kernel implies that linear transfer learning is
trivialized in any kernel regime limit. This is where the
classifier layer of the pretrained network is discarded and
a new one (potentially outputting to a new output space) is
trained on top of the body of the pretrained network. But
we can in fact say more: any nonlinear transfer learning,
where we replace the classifier layer with a neural network
instead of a linear layer, is trivialized as well. In addition,
linear or nonlinear transfer learning has no effect even if
we finetune the entire network, instead of just the new clas-
sification network. The intuitive reason for this is that, as
discussed in Appendix B, the effect of ∆xL(ξ) on the out-
put of the MLP is solely through the interaction with WL+1

0 .
If WL+1,WL+2, . . . , are sampled anew, then this effect
vanishes. We formalize this below.

Theorem N.16 (Kernel Regime Limit Trivializes Transfer
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Learning). Suppose f is an L-hidden-layer MLP50 in a
stable kernel regime parametrization. Let A and B be two
training routines.51

For any T, t ≥ 0,52 we define a network53 gT ;t as follows.
Train f on A for T steps to obtain fT . Then discard WL+1

in fT and extend the body of fT into an M -hidden-layer
MLP g, where M ≥ L.54 Parametrize and initialize the new
weights of g according to any stable abc-parametrization
that extends the parametrization of f . Train g on B for t
steps to obtain gT ;t.

Then

1. (Finetuning the whole network) As n → ∞, for any
ξ ∈ X and T, t ≥ 0,

gT ;t(ξ)− g0;t(ξ)
a.s.−−→ 0.

2. (Training only the classifier) The above is true even
if we define gT ;t by only training the new weights
WL+1, . . . ,WM in g.

The Organization for the Proof of Our Main Results
Above
Definition N.17. Below, we will abbreviate abc-
parametrization of an L-layer MLP to just parametriza-
tion. We will call parametrizations satisfying the condi-
tions of Theorem N.6 pseudostable while we try to prove
Theorem N.6 (which, in this terminology, says stability and
pseudostability are equivalent).

We first characterize stability at initialization and prove
Eq. (41) holds iff Eq. (42) (Appendix N.2). Then, we de-
scribe the Tensor Program encoding the SGD of an MLP,
assuming its parametrization is pseudostable. The Master
Theorem then naturally lets us calculate its infinite-width
limit. We then divide into the case of r > 0 and r = 0.
In the former case, we show the infinite-width limit is de-
scribed by kernel gradient descent as in Eq. (46). In the
latter case, we construct a training routine where feature
learning occurs and where the limit is not given by kernel
gradient descent for any kernel. Finally, in Appendix N.8,
we combine all of our analyses to prove the main results in
this section.

N.2. Stability at Initialization

In this section, we characterize stability at initialization,
which will form a foundation for our later results.

50the “pretrained network”
51the “pretraining dataset” and the “finetuning dataset”
52the “pretraining time” and “finetuning time”
53the “finetuned network”
54If M = L, then this is linear transfer learning where we

replace just the last layer of f ; otherwise, it’s nonlinear transfer
learning.

Theorem N.18. Assume φ is not zero almost everywhere.
For any parametrization, Eq. (41) holds iff Eq. (42) holds,
i.e. the following are equivalent

1. For every nonzero input ξ ∈ X ,

hl0(ξ), xl0(ξ) = Θξ(1),∀l ∈ [L], and

E f0(ξ)2 = Oξ(1),

where the expectation is taken over the random initial-
ization.

2. a1 + b1 = 0; al + bl = 1/2, ∀l ∈ [2, L]; aL+1 +
bL+1 ≥ 1/2.

Proof. Fix an input ξ 6= 0. Here, because we focus on
initialization, we will suppress the time 0 subscript and ξ
dependence of hl, xl to mean t = 0, applied to ξ.

Obviously, h1 = W 1ξ is a Gaussian vector with
N (0, n−(a1+b1)‖ξ‖2) coordinates, so h1 = Θξ(1) iff
a1 + b1 = 0. Assume a1 + b1 = 0. By Law of Large Num-
bers, 1

n‖x
1‖2 a.s.−−→ Eφ(Zh

1

)2 where Zh
1

= N (0, ‖ξ‖2).
Since φ is not almost everywhere zero and ξ 6= 0, this
expectation is nonzero so that x1 = Θξ(1).

We construct the following Tensor Program: the lone initial
vector is h1, the initial matrices are Ŵ l, 2 ≤ l ≤ L, and ini-
tial scalars θl def

= n1/2−(al+bl). We sample h1
α ∼ N (0, ‖ξ‖2)

and Ŵ l
αβ ∼ N (0, 1/n). Mathematically, we will represent

W l = θlŴ
l. The program is then given by

xl = φ(hl),∀l ∈ [L], ĥl = Ŵ lxl−1, hl = θlĥ
l,∀l ∈ [2, L],

where we used Nonlin, MatMul, and Nonlin (with parameter
θl).

Suppose al + bl = 1/2 (i.e. θl = 1) for all 2 ≤ l ≤ L.
Then, Zh

l

= Z ĥ
l

= N (0,Eφ(Zh
l−1

)2) for each l ≤ L.
Because φ is not everywhere zero, this inductively im-
plies E(Zh

l

)2 > 0 (and so also E(Zx
l

)2 > 0) for all
l ≤ L. By the Master Theorem, 1

n‖h
l‖2 a.s.−−→ E(Zh

l

)2

and 1
n‖x

l‖2 a.s.−−→ E(Zx
l

)2 so this implies hl, xl = Θξ(1)
for all l ≤ L as desired.

Conversely, suppose m is the smallest l ≥ 2 such that
al + bl 6= 1/2. Then by the above reasoning, ĥm = Θξ(1)
so hm = Θξ(n

1/2−(al+bl)) is either blowing up to ∞ or
shrinking to 0 with n. This shows that hl, xl = Θξ(1) for all
l ≤ L iff a1 + b1 = 0 and al + bl = 1/2 for all 2 ≤ l ≤ L.

Finally, if a1 + b1 = 0 and al + bl = 1/2 for all 2 ≤ l ≤ L,
then we see E f0(ξ)2 = (n1/2−(aL+1+bL+1))2 E ‖ZxL‖2/n.
For large n, this is Θξ((n

1/2−(aL+1+bL+1))2) and is Oξ(1)
iff aL+1 + bL+1 ≥ 1/2.

Definition N.19. We say a parametrization is initialization-
stable if it satisfies Eq. (41) (or equivalently, Eq. (42)).
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N.3. Program Setup

In the next section, we construct the Tensor Program that
encodes the training of anL-hidden layer MLP under an abc-
parametrization. Here we first describe the initial matrices,
vectors, and scalars of the program, along with necessary
notations.

We first remark on a simplification we will make to stream-
line the proof.

The Size of WL+1
0 vs ∆WL+1

t By construction,
WL+1

0 = Θ(n−(aL+1+bL+1)). If xLt (ξ) = Θ(1) as in a
stable parametrization, then ∆WL+1

t = Θ(n−(2aL+1+c)).
Therefore, if aL+1 + bL+1 ≤ 2aL+1 + c, then WL+1

0 is at
least as large as ∆WL+1

t , so that WL+1
t will stay the same

order (in terms of n) for all t. If the reverse inequality is
true, then WL+1

0 is smaller than WL+1
t for t ≥ 1. This in

particular implies that the gradients at time 0 is smaller than
gradients at subsequent times. For example, we can take
aL+1 + bL+1 →∞ while fixing 2aL+1 + c, in which case
WL+1

0 = 0 and the weight gradients at initialization are all
0 except for that of WL+1. One can thus think of this as a
“lag” in the training dynamics for 1 step.

Assumption N.20. For clarity of the proof, we will assume
aL+1 + bL+1 ≤ 2aL+1 + c, i.e. WL+1

t stays the same
order for all t. The case of aL+1 + bL+1 > 2aL+1 + c,
corresponding to a 1-step “lag” as explained above, can be
dealt with similarly. We will remark whenever this requires
some subtlety.

For the construction of the program and the application of
the Master Theorem, we will also assume the following for
the rest of this paper.

Assumption N.21. φ′ is pseudo-Lipschitz and not almost
everywhere zero.

Initial Matrices, Vectors, Scalars We will assume the
parametrization is initialization-stable. For ease of presenta-
tion, we also assume the input dimension d = 1.

1. Initial matrices: W 2
0 , . . . ,W

L
0 , sampled like

(W l
0)αβ ∼ N (0, 1/n).

2. Initial vectors: input layer matrix W 1
0 ∈ Rn×1

and normalized output layer matrix ŴL+1
0

def
=

WL+1
0 naL+1+bL+1 ∈ R1×n, sampled like

(W 1
0 )α, (Ŵ

L+1
0 )α ∼ N (0, 1).

3. Initial scalars: We define the following scalars (where
we explain the intuition in parenthesis). The reader
can skip this part on a first read but come back when
referred to.

(a) (n times the scale of coordinates of ∆W l
t ) For

l ≥ 2, define

θW l
def
= n−(aL+1+bL+1+c−1+2al)

(b) (scale of coordinates of ∆W 1
t and ∆h1

t ) Define

θ1 = θW 1
def
= n−(aL+1+bL+1+c+2a1)

(c) (scale of coordinates of ∆WL+1
t )

θL+1 = θWL+1
def
= n−2aL+1−c

(d) (scale of ∆hlt and ∆xlt) For l ∈ [L], define

θhl = θxl = θl
def
= max

m≤l
θWm = max(θW l , θl−1)

(47)

= n−(aL+1+bL+1+c−1+minlm=1(2am+I(m=1)))

Note that θL = n−r with r defined in
Definition N.5.

(e) (scale of WL+1
t )

θf
def
= n−(aL+1+bL+1)

(f) (convenience scalars)

θxl−1/hl = θxl−1/θhl

θW l/hl = θW l/θhl

θW lxl−1/hl = θW lθxl−1/θhl

θL+1/f = θL+1/θf

θ′L+1 = nθL+1 = n1−2aL+1−c

θ′Lf = nθLθf = n1−(r+aL+1+bL+1)

(g) Depending on the the value of aL+1 + bL+1, we
will also construct the values of f at initializa-
tion as initial scalars. See Appendix N.4.1 for an
explanation.

By our assumption that aL+1 + bL+1 ≤ 2aL+1 + c, the
pseudostability inequalities of Theorem N.6 imply all of
these θs either converge to 0 or stay constant at 1. This
means that, assuming appropriate regularity conditions on
the nonlinearities and rank stability, we can apply the Master
Theorem (if θ blows up to∞ then we can’t do that).

Notations We use := to more clearly denote assignment
happening in the program, as opposed to mathematical
equality. To clearly demonstrate the application of Non-
lin, we will also freely introduce function symbols Ψ to put
things into Nonlin form.
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Preview of Names for Vectors In the program, for each
z ∈ {xl, hl}l, we will construct vectors δzt(ξ) to mathemat-
ically represent θ−1

z (zt(ξ) − zt−1(ξ)) (intuition: change
in z scaled to have Θ(1) coordinates). Similarly, for
w ∈ {WL+1,W 1}, we will construct δwt to mathemat-
ically represent θ−1

w (wt − wt−1) (intuition: change in w
scaled to have Θ(1) coordinates). Then, mathematically,
zt(ξ) = zt−1(ξ) + θzδzt(ξ), wt = wt−1 + θwδwt.

We will also construct dz to mathematically represent
θ−1
f ∇zf (intuition: gradient∇zf scaled to have Θ(1) coor-

dinates). For weight changes, we have the following identity

W l
t −W l

t−1 = −ηn−cχt−1n
−2alθfdh

l
t−1x

l−1>
t−1

= −ηχt−1θW l

1

n
hlt−1x

l−1>
t−1 , ∀l ∈ [2, L],

(48)
and for l = 1,

W l
t −W l

t−1 = −ηn−cχt−1n
−2alθfdh

l
t−1ξ

>
t−1

= −ηχt−1θW lhlt−1ξ
>
t−1.

(49)

N.4. Program Construction

Here we construct the Tensor Program encoding the SGD of
an MLP. We separately describe the first forward and back-
ward passes followed by the later forward and backward
passes.

N.4.1. FIRST FORWARD PASS

For every ξ ∈ X , we compute h1
0(ξ) := W 1

0 ξ ∈ Rn via
Nonlin (as Ψ(W 1

0 ; ξ), where Ψ is multiplication by ξ), and
we construct the following vectors via Nonlin and MatMul

xl0(ξ) := φ(hl0(ξ)) ∈ Rn, hl+1
0 (ξ) := W l+1

0 xl0(ξ) ∈ Rn,
for l = 1, . . . , L− 1,

(50)

Function Output The first output is f0(ξ) =
WL+1

0 xL0 (ξ), but we will define f0(ξ) in the program
slightly differently.

Case when aL+1 + bL+1 > 1/2 Then f0(ξ)
a.s.−−→ 0 for

all ξ ∈ X . In the program, we will construct f0(ξ) as an
initial scalar mathematically defined by WL+1

0 xL0 (ξ).5556

55It is completely OK to define an initial scalar using random-
ness from other parts of the program, as long as this scalar con-
verges almost surely to a deterministic limit

56We cannot define it using a Moment instruction because,
intuitively, the mechanism of this convergence is through CLT, not
Law of Large Numbers.

Case when aL+1 + bL+1 = 1/2 If aL+1 + bL+1 = 1/2,
then f0(ξ) converges to a nontrival Gaussian via CLT (Yang,
2019a), so we will condition on f0(ξ) for all ξ ∈ X . Given
values g(ξ) ∈ R for all ξ ∈ X , let E be the event that
f0(ξ) = 1√

n
ŴL+1

0 xL0 (ξ) equals g(ξ) for all ξ ∈ X . The

distribution of ŴL+1
0 conditioned on E is given by

ŴL+1
0

d
=E
√
nX+g + ΠW̃L+1

0

where W̃L+1
0 is an iid copy of ŴL+1

0 , g ∈ RX is the vector
of {g(ξ) : ξ ∈ X}, X ∈ RX×n has xL0 (ξ) as rows, and Π is
the orthogonal projection into the orthogonal complement of
the space spanned by {xL0 (ξ) : ξ ∈ X}. Here X+ denotes
the pseudo-inverse of X .

By standard formulas for pseudo-inverse and orthogonal
projection, we can write X+ = 1

nX
>(XX>/n)+,Π =

I − 1
nX
>(XX>/n)+X .

Let Σ def
= XX>/n and γ def

= (XW̃L+1
0 /n). Then

ΠW̃L+1
0 = W̃L+1

0 − X>Σ+γ, and
√
nX+g =

1√
n
X>Σ+g.

By the Master Theorem, γ a.s.−−→ 0 because W̃L+1
0 is inde-

pendent from X , and Σ
a.s.−−→ Σ̊ for some PSD matrix Σ̊. At

this point in the program, all scalars we used (like ξ) are
constant with n and can be absorbed into nonlinearities. By
the rank stability property of any program without scalars
(Yang, 2020b), the rank of Σ is fixed for large enough n,
almost surely, so Σ+ a.s.−−→ Σ̊+ by the continuity of pseudo-
inverse on fixed rank matrices.

We will now replace ŴL+1
0 in the program with

ŴL+1
E

def
= X>

(
Σ+ g√

n

)
+ W̃L+1

0 −X>
(
Σ+γ

)
constructed using Nonlin, where

(
Σ+ g√

n

)
and (Σ+γ) are

finite dimensional and formally considered (collections
of) scalars involved as coefficients for linear combina-
tion of rows of X . Since Σ+ g√

n
,Σ+γ

a.s.−−→ 0, we have

ZŴ
L+1
E = ZW̃

L+1
0 . Intuitively, this means that, even af-

ter conditioning on f0 = g, the conditional distribution
of W̃L+1

0 is practically the same as the original distribu-
tion. We can then proceed exactly as in the case when
aL+1 + bL+1 > 1/2, with ŴL+1

E taking the role of W̃L+1
0 .

The program then encodes the evolution of f conditioned
on f0(ξ) = g(ξ),∀ξ ∈ X .57

Assumption N.22. For the above reason, we will assume
aL+1 + bL+1 > 1/2, and remark whenever the case aL+1 +
bL+1 = 1/2 involves subtleties.

57Formally, we can also have {g(ξ) : ξ ∈ X} as initial scalars,
but since they are fixed with n, they can be absorbed into the
Nonlin that defines ŴL+1

E .
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N.4.2. FIRST BACKWARD PASS

Next, we write the backward pass

dxL0 (ξ) := ŴL+1
0

dhl0(ξ) := dxl0(ξ)� φ′(hl0(ξ))

dxl−1
0 (ξ) := W l>

0 dhl0(ξ)

where, recall, dz mathematically equals θ−1
f ∇zf .

For ξ = ξ0 and its label y0, we define the first loss derivative
as

χ0 := L′(f0(ξ0), y0)
a.s.−−→ χ̊0(ξ) = L′(0, y0)

where the convergence is because L′ is continuous by as-
sumption.

We also define

δWL+1
1 := −ηχ0x

L
0 (ξ0)

to represent the (normalized) change in WL+1 due to the
first gradient step.

N.4.3. tTH FORWARD PASS, t ≥ 1

Overview We iteratively define δzt(ξ) to mathematically
represent θ−1

z (zt(ξ)− zt−1(ξ)), for z ∈ {xl, hl}l. Then we
eventually set

zt(ξ) := z0(ξ) + θzδz1(ξ) + · · ·+ θzδzt(ξ).

Likewise, we will define δWL+1
t so that WL+1

t =

θfŴ
L+1
0 + θL+1(δWL+1

1 + · · · + δWL+1
t ). In the pro-

gram, we will not directly use WL+1
t but instead use

ŴL+1
t := ŴL+1

0 +θL+1/f (δWL+1
1 +· · ·+δWL+1

t ) (51)

where θL+1/f = θL+1/θf . Mathematically, ŴL+1
t =

θ−1
f WL+1

t .

Recall we shorthand zt = zt(ξt) for all z ∈
{xl, hl, dxl, dhl}l ∪ {f, χ}.

The Construction of (Pre)Activations We start with
h = h1: By Eq. (49), we have

δht(ξ) := −ηχt−1ξ
>
t−1ξdht−1 = Ψ(dht−1; ξ>t−1ξ, ηχt−1).

(Notationally, recall we freely introduce function symbols
Ψ to clarify the way we apply Nonlin). For higher layers,
if h = hl, x = xl−1, and W = W l, then h = Wx. By

Eq. (48), we have, mathematically,

θhδht(ξ)

= θxWt−1δxt(ξ) + (Wt −Wt−1)xt(ξ)

= θx

(
W0δxt(ξ) +

t−1∑
s=1

(Ws −Ws−1)δxt(ξ)

)
+ (Wt −Wt−1)xt(ξ)

= θx

(
W0δxt(ξ)− ηθW

t−1∑
s=1

χs−1
x>s−1δxt(ξ)

n
dhs−1

)

− ηχt−1θW
x>t−1xt(ξ)

n
dht−1

Recall θx/h = θ−1
h θx, θW/h = θ−1

h θW , θWx/h =

θ−1
h θW θx. With cs denoting x>s δxt(ξ)

n , we construct

δht(ξ) := θx/hW0δxt(ξ)− ηθWx/h

t−1∑
s=1

χs−1cs−1dhs−1

− ηχt−1θW/hct−1dht−1

= Ψ(W0δxt(ξ), dh0, . . . , dht−1;

η, θx/h, θWx/h, θW/h, {cs, χs}t−1
s=0)

If x = xl, h = hl, then x = φ(h), and (using θx = θh
(Eq. (47))),

δxt(ξ) := θ−1
h (φ(ht−1(ξ) + θhδht(ξ))− φ(ht−1(ξ)))

= Ψ(ht−1(ξ), δht(ξ); θh) (52)

where Ψ is precisely the difference quotient for the function
φ.58

The Function Outputs We do not construct ft(ξ) di-
rectly, but rather through scalars δft(ξ) = ft(ξ)− ft−1(ξ),
so that

ft(ξ) := f0(ξ) + δf1(ξ) + · · ·+ δft(ξ).

Mathematically, δft(ξ) = θL+1δW
L+1
t xLt (ξ) +

WL+1
t−1 θLδx

L
t (ξ), but we shall write it slightly differ-

ently in the program:

δft(ξ) := θ′L+1

δWL+1
t xLt (ξ)

n
+ θ′Lf

ŴL+1
t−1 δx

L
t (ξ)

n

where θ′L+1 = nθL+1, θ
′
Lf = nθLθf and ŴL+1

t−1 is con-
structed in Eq. (51).

58The pseudo-Lipschitzness of φ′ assumed in Assumption N.21
implies that Ψ here is pseudo-Lipschitz, so that we can ultimately
apply our Master Theorem.
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N.4.4. tTH BACKWARD PASS, t ≥ 1

In the last layer, we construct

dxLt (ξ) := ŴL+1
t .

For each l = L, . . . , 1 for dhl and l = L, . . . , 2 for dxl−1,
we also calculate

dhlt(ξ) := dxlt(ξ)� φ′(hlt(ξ))

dxl−1
t (ξ) := W l>

0 dhlt(ξ)− ηθW l

t−1∑
s=0

χscsx
l−1
s

= Ψ(W l>
0 dhlt(ξ), x

l−1
0 , . . . , xl−1

t−1; ηθW l , {χs, cs}t−1
s=0)

where cs =
dhl>s dhlt(ξ)

n . For ξ = ξt and its label yt, we
define59

χt := L′(ft(ξt), yt).
Finally, we compute the (normalized) change inWL+1 after
this SGD update.

δWL+1
t+1 := −ηχtxLt (ξt).

N.5. The Infinite-Width Limit

In this section, we describe the Z random variables
(Definition G.3) corresponding to the vectors of the program
constructed above. According to the Master Theorem, each
such vector z will have roughly iid coordinates distributed
like Zz in the large n limit.

Let θ̊• denote the limit of any θ• in Appendix N.3. If pseu-
dostability holds, then θ̊• is either 0 or 1, as one can easily
verify. We can construct the Z random variables for each
vector in the program, as follows.

1. For the first forward and backward passes, we have,

Zh
1
0(ξ) = ξZW

1
0 , Zh

l+1
0 (ξ) = ZW

l+1
0 xl0(ξ),

Zx
l
0(ξ) = φ(Zh

l
0(ξ)), Zdh

l
0(ξ) = Zdx

l
0(ξ)φ′(Zh

l
0(ξ)),

Zdx
L
0 (ξ) = ZŴ

L+1
0 , Zdx

l−1
0 (ξ) = ZW

l>
0 dhl0(ξ)

2. For z ∈ {xl, hl}l, we have

Zzt(ξ) = Zz0(ξ) + θ̊zZ
δz1(ξ) + · · ·+ θ̊zZ

δzt(ξ) (53)

3. For l ∈ [L], x = xl, h = hl, we have Zδxt(ξ) =

Ψ(Zht−1(ξ), Zδht(ξ); θ̊h) where Ψ is as in Eq. (52). If
θ̊h = 0 (e.g. if r > 0), then

Zδxt(ξ) = φ′(Zht−1(ξ))Zδht(ξ). (54)

59Here we use Moment with the function φ(; ft(ξt)) =
L′(ft(ξt), yt) with no input and one parameter (we absorb yt
into φ since it does not change with n). The continuity of L′ in its
first argument satisfies Assumption L.4(1), so the Master Theorem
can apply.

Otherwise, θ̊h = 1, and

Zδxt(ξ) = φ(Zht(ξ))− φ(Zht−1(ξ)). (55)

4. For h = h1, we have

Zδht(ξ) = −ηχ̊t−1ξ
>
t−1ξZ

dht−1 .

5. For l ≥ 2, h = hl, x = xl−1,W = W l, we have

Zδht(ξ) = θ̊x/hZ
W0δxt(ξ)

− ηθ̊Wx/h

t−2∑
s=0

χ̊sZ
dhs EZxsZxt(ξ)

− ηχ̊t−1θ̊W/hZ
dht−1 EZxt−1Zxt(ξ)

(56)

where at least one of θ̊x/h and θ̊W/h equals 1. As
usual, here we have the ZHat-ZDot decomposition of
ZW0δxt(ξ).

ZW0δxt(ξ) = ẐW0δxt(ξ) + ŻW0δxt(ξ)

= ẐW0δxt(ξ) +

t−1∑
s=0

Zdhs E
∂Zδxt(ξ)

∂ẐW
>
0 dhs

.

6. For last layer weight

ZδW
L+1
t = −ηχ̊t−1Z

xLt−1 (57)

and

ZŴ
L+1
t = ZŴ

L+1
0 +θ̊L+1/f (ZδW

L+1
1 +· · ·+ZδW

L+1
t )
(58)

7. The output deltas have limits

δf̊t(ξ) = θ̊′L+1 EZδW
L+1
t Zx

L
t (ξ)

+ θ̊′Lf EZŴ
L+1
t−1 Zδx

L
t (ξ)

(59)

and
f̊t(ξ) = δf̊1(ξ) + · · ·+ δf̊t(ξ).

8. For gradients:

Zdx
L
t (ξ) = ZŴ

L+1
t

Zdh
l
t(ξ) = Zdx

l
t(ξ)φ′(Zh

l
t(ξ))

Zdx
l−1
t (ξ) = ZW

l>
0 dhlt(ξ)

− ηθ̊W l

t−1∑
s=0

χ̊sZ
xl−1
s EZdh

l
sZdh

l
t(ξ)

9. Loss derivative

χ̊t = L′(f̊t, y0).
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The following fact follows from the results of (Yang, 2020a)
(or can be verified by straightforward calculation) and will
be useful for us.

Proposition N.23. Żdx
l
0(ξ) = 0 and Zdx

l
0(ξ) = Ẑdx

l
0(ξ) for

any ξ ∈ X .

If the parametrization is pseudostable, then all the θ• con-
verge to 0 or 1 so Setup G.2 is satisfied. Therefore, the
Master Theorem applies and says that, for any collection of
vectors v1, . . . , vk such that Zv

i

is defined above, we have

1

n

n∑
α=1

ψ(v1
α, . . . , v

k
α)

a.s.−−→ Eψ(Zv
1

, . . . , Zv
k

)

for any pseudo-Lipschitz ψ. In addition,60

δft(ξ)
a.s.−−→ δf̊t(ξ), ft(ξ)

a.s.−−→ f̊t(ξ),

χt
a.s.−−→ χ̊t, ∀ξ ∈ X , t ≥ 1.

We now describe some immediate consequences of this.

N.5.1. SOME IMMEDIATE RESULTS

Proposition N.24. A pseudostable parametrization is triv-
ial if

2aL+1 + c > 1 and aL+1 + bL+1 + r > 1.

Proof. In this case, θ′L+1, θ
′
Lf , θ

′
L,L+1 → 0, and δf̊t(ξ) =

0 for all t and ξ ∈ X by Eq. (59).

Proposition N.25. A pseudostable parametrization is sta-
ble.

Proof. For a pseudostable parametrization, all of θs con-
verge to 1 or 0, and all of the Zδh

l
t(ξ), Zδx

l
t(ξ) have well

defined (finite) limits, which implies ∆hlt(ξ),∆x
l
t(ξ) =

O∗(1),∀l ∈ [L], and ft(ξ) = O∗(1).

Proposition N.26. Consider a pseudostable parametriza-
tion. If r > 0, then it fixes all (pre)features and all
(pre)feature kernels. In addition, ∆WL+1

t ∆xLt (ξ)
a.s.−−→ 0.

Proof. If r > 0, then θl → 0 for all l ∈ [L], so that for
all z ∈ {xl, hl}l, ∆zt(ξ) = zt(ξ) − z0(ξ) = θzδz1(ξ) +

· · ·+θzδzt(ξ) has ‖∆zt(ξ)‖2/n
a.s.−−→ 0 by Eq. (53) and the

Master Theorem, i.e. all features are fixed. Similarly, for
any pair ξ, ξ̄ ∈ X , zt(ξ)>zt(ξ̄)/n− z0(ξ)>z0(ξ̄)/n

a.s.−−→ 0,
so all feature kernels are fixed. Finally, r > 0 implies
θ′L,L+1 → 0, which means ∆WL+1

t ∆xLt (ξ)
a.s.−−→ 0 by the

Master Theorem.
60Again, if aL+1 +bL+1 = 1/2, remember we are conditioning

on f0(ξ), ξ ∈ X .

Proposition N.27. An initialization-stable parametrization
with r < 0 is not stable.

Proof. If r < 0, then there is some ` ∈ [L] such that
θL ≥ · · · ≥ θ` > 1 ≥ θ`−1 ≥ · · · ≥ θ1. For h = h`, x =
x`−1,W = W `, we would have θx/h = θ`−1/θ` → 0,
θW/h = 1, and θWx/h = θW/hθ`−1 → 0. The Tensor Pro-
gram up to the definition of δh1(ξ0) satisfies the conditions
of the Master Theorem. Therefore, ‖δh1(ξ0)‖2/2 a.s.−−→
E(Zδh1(ξ0))2 = E(ηχ̊t−1Z

dh0 EZx0Zx1(ξ0))2. If ξ0 6= 0,
then E(Zdh0)2 > 0. If η is in addition sufficiently small but
nonzero, then EZx0Zx1(ξ0) ≈ E(Zx0)2 > 0. Therefore,
under these conditions, and with a training sequence that has
χ̊0 6= 0, we have E(ηχ̊t−1Z

dh0 EZx0Zx1(ξ0))2 > 0, so
that δh1(ξ0) = Θξ0(1). However, ∆h1(ξ0) = θhδh1(ξ0)
and θh = θ` → ∞. Hence ∆h1(ξ0) 6= Oξ0(1), as de-
sired.

N.6. r > 0 Implies Kernel Regime

In this section, we analyze the case when r > 0. Our main
result is deriving the corresponding infinite-width kernel
gradient descent dynamics (Theorem N.31). Nothing here
depends on φ being tanh or σ-gelu.

Preliminary Derivations If r > 0, then θ̊l = θ̊W l = 0
for all l ∈ [L], so that we have

Zh
l
t(ξ) = Zh

l
0(ξ), Zx

l
t(ξ) = Zx

l
0(ξ), Zdh

l
t(ξ) = Zdh

l
0(ξ),

Zdx
l
t(ξ) = Zdx

l
0(ξ), ZŴ

L+1
t = ZŴ

L+1
0

for all t and ξ ∈ X . Let ` ∈ [L] be the unique ` such that
1 = θL/θL = · · · = θ`/θL > θ`−1/θL ≥ · · · ≥ θ1/θL.
Then for l ≥ `+ 1 and shorthand h = hl, x = xl−1,W =
W l, we have θ̊x/h = 1, θ̊Wx/h = 0 and, by Eq. (56),

Zδht(ξ) = ZW0δxt(ξ) − ηχ̊t−1θ̊W/hZ
dht−1 EZxt−1Zxt(ξ),

= ZW0δxt(ξ) − ηχ̊t−1θ̊W/hZ
dh0(ξt−1) EZx0(ξt−1)Zx0(ξ)

(60)

where θ̊W/h can be either 0 or 1. For l = `, because θh =
θl = maxm≤l θWm = max(θW l , θl−1) = max(θW l , θx)

so θ̊x/h = θ̊Wx/h = 0 and θ̊W/h = 1, we also have

Zδht(ξ) = −ηχ̊t−1Z
dht−1 EZxt−1Zxt(ξ)

= −ηχ̊t−1Z
dh0(ξt−1) EZx0(ξt−1)Zx0(ξ). (61)

Finally, for all l ∈ [L], we have, by Eq. (54),

Zδxt(ξ) = φ′(Zht−1(ξ))Zδht(ξ) = φ′(Zh0(ξ))Zδht(ξ).

Definition N.28. For 1 ≤ m ≤ l and ξ, ζ ∈ X , define

Σml(ξ, ζ) def
= EZx

m
0 (ξ)Zx

m
0 (ζ)

× Eφ′(Zh
m+1
0 (ξ))φ′(Zh

m+1
0 (ζ))× · · ·

× Eφ′(Zh
l
0(ξ))φ′(Zh

l
0(ζ)).
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We also define

Σ0l(ξ, ζ) def
= ξ>ζ × Eφ′(Zh

m+1
0 (ξ))φ′(Zh

m+1
0 (ζ))× · · ·

× Eφ′(Zh
l
0(ξ))φ′(Zh

l
0(ζ))

For example,

Σll(ξ, ζ) = EZx
l
0(ξ)Zx

l
0(ζ)

Σl,l+1(ξ, ζ) = EZx
l
0(ξ)Zx

l
0(ζ) Eφ′(Zh

l+1
0 (ξ))φ′(Zh

l+1
0 (ζ)),

and so on.

Notation For brevity, below we will shorthand ϑm =
θWm/hm . We write Zx ≡ Zy mod ẐW• if Zx − Zy is a
linear combination of ẐWu for various vectors u.

Lemma N.29. For any input ξ, any l ≥ `, at any time t,

Zδh
l
t(ξ) ≡ −ηχ̊t−1Z

dhl0(ξt−1a)

×
l−1∑

m=`−1

ϑ̊m+1Σm,l−1(ξt−1, ξ) mod ẐW
l
0•.

(62)

Proof. We proceed by induction.

Base Case l = `: this is given by Eq. (61).

Induction: Assume Eq. (62) holds for l − 1, and we shall
prove it for l.

To alleviate notation, we write x = xl−1
t , x̄ = xl−1

t−1, x0 =

xl−1
0 , h = hl−1

t , h̄ = hl−1
t−1, h0 = hl−1

0 , ξ̄ = ξt−1,W =
W l

0, i.e. we use •̄ to denote time t − 1 in contrast to • for
time t, and we suppress layer index. In contrast, we will
write hl0, h

l
t, and ξ for their usual meanings.

First, note that Zδx(ξ) = φ′(Z h̄(ξ))Zδh(ξ) by Eq. (54).
Because Z h̄(ξ) = Zh0(ξ), and, by induction hy-
pothesis, Zδh(ξ) is a scalar multiple of Zdh0(ξ̄) =
Zdx0(ξ̄)φ′(Zh0(ξ̄)), Zδx(ξ) is symbolically solely a function
of Zh0(ξ), Zh0(ξ̄), Zdx0(ξ̄),all of which are equal to their Ẑ
versions (with the last due to Proposition N.23). Among
these, only Zdx0(ξ̄) = ZW

>dhl0(ξ̄) is constructed from ma-
trix multiplication with W>0 . Thus,

ŻW0δx(ξ) = Zdh
l
0(ξ̄) E

∂Zδx(ξ)

∂Zdx0(ξ̄)

= Zdh
l
0(ξ̄) Eφ′(Zh0(ξ))

∂Zδh(ξ)

∂Zdx0(ξ̄)
.

(63)

By induction hypothesis,

∂Zδh(ξ)

∂Zdx0(ξ̄)
= −ηχ̊t−1φ

′(Zh0(ξ̄))

l−2∑
m=`−1

ϑ̊m+1Σm,l−2(ξ̄, ξ).

Therefore,

Eφ′(Zh0(ξ))
∂Zδh(ξ)

∂Zdx0(ξ̄)

= −ηχ̊t−1 E
[
φ′(Zh0(ξ))φ′(Zh0(ξ̄))

]
×

l−2∑
m=`−1

ϑ̊m+1Σm,l−2(ξ̄, ξ).

By definition of Σml, this equals

Eφ′(Zh0(ξ))
∂Zδh(ξ)

∂Zdx0(ξ̄)
= −ηχ̊t−1

l−2∑
m=`−1

ϑ̊m+1Σm,l−1(ξ̄, ξ).

Plugging this back into Eq. (63), we get

ŻW0δx(ξ) = −ηχ̊t−1Z
dhl0(ξ̄)

l−2∑
m=`−1

ϑ̊m+1Σm,l−1(ξ̄, ξ).

(64)
Finally, by Eq. (60),

Zδh
l
t(ξ) = ŻW0δx(ξ) − ηχ̊t−1ϑ̊lZ

dhl0(ξ̄) EZx0(ξ̄)Zx0(ξ)

= ŻW0δx(ξ) − ηχ̊t−1ϑ̊lZ
dhl0(ξ̄)Σl−1,l−1(ξ̄, ξ).

Together with Eq. (64), this completes the induction.

Lemma N.30. Assume pseudostability, r > 0, and aL+1 +
bL+1 ≤ 2aL+1 + c. If θ̊L+1/f = 1 then θ̊′Lf = 0.

Proof. aL+1 + bL+1 ≤ 2aL+1 + c iff θL+1 ≤ θf . So
θ̊L+1/f = 1 implies θL+1 = θf . By pseudostability,
nθL+1 ≤ 1. Since θL = n−r, we have θ′Lf = n ·n−r ·θf =

n−r · nθL+1 < 0 since r > 0. Therefore θ̊′Lf = 0.

Theorem N.31. Consider a pseudostable parametrization.
At any time t, for any input ξ ∈ X , we have

δf̊t(ξ) = −ηχ̊t−1Σ(ξt−1, ξ),

where the kernel Σ is defined for any ξ, ζ ∈ X by

Σ(ζ, ξ) def
= θ̊′L+1ΣLL(ζ, ξ) + θ̊′Lf

L−1∑
m=`−1

ϑ̊m+1ΣmL(ζ, ξ).

Observe that in the NTK parametrization, ` = 1, and
θ̊′L+1 = θ̊′Lf = ϑ̊m+1 = 1 for all m, so Σ =

∑L
m=0 ΣmL

is precisely the NTK (for MLP without biases).

Proof. By Eqs. (58) and (59),

δf̊t(ξ) = θ̊′L+1 EZδW
L+1
t Zx

L
t (ξ) + θ̊′Lf EZŴ

L+1
t−1 Zδx

L
t (ξ)

ZŴ
L+1
t = ZŴ

L+1
0 + θ̊L+1/f (ZδW

L+1
1 + · · ·+ ZδW

L+1
t ).
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Now by Lemma N.30, either θ̊L+1/f = 0 or θ̊′Lf = 0. In

both cases, (ZδW
L+1
1 + · · · + ZδW

L+1
t ) contributes 0 to

δf̊t(ξ). So we can replace ZŴ
L+1
t−1 with ZŴ

L+1
0 above, and

write

δf̊t(ξ) = θ̊′L+1 EZδW
L+1
t Zx

L
t (ξ) + θ̊′Lf EZŴ

L+1
0 Zδx

L
t (ξ).

If Eq. (62) is true for l = L, then

EZŴ
L+1
0 Zδx

L
t (ξ)

= −ηχ̊t−1 EZŴ
L+1
0 Zdh

L
0 (ξt−1)φ′(Zh

L
0 (ξ))

×
L−1∑

m=`−1

ϑ̊m+1Σm,L−1(ξt−1, ξ)

where the contributions from ẐW
L
0 • in Zδx

L
t (ξ) vanish

as they are independent from ZŴ
L+1
0 . Since Zdh

L
0 (ξ) =

ZŴ
L+1
0 φ′(Zh

L
0 (ξ)), we continue

EZŴ
L+1
0 Zδx

L
t (ξ)

= −ηχ̊t−1

× E
(
ZŴ

L+1
0

)2

φ′(Zh
L
0 (ξt−1))φ′(Zh

L
0 (ξ))

×
L−1∑

m=`−1

ϑ̊m+1Σm,L−1(ξt−1, ξ)

= −ηχ̊t−1

L−1∑
m=`−1

ϑ̊m+1ΣmL(ξt−1, ξ).

Similarly, by Eq. (57),

EZδW
L+1
t Zx

L
t (ξ) = −ηχ̊t−1 EZx

L
t−1(ξt−1)Zx

L
t (ξ)

= −ηχ̊t−1 EZx
L
0 (ξt−1)Zx

L
0 (ξ)

= −ηχ̊t−1ΣLL(ξt−1, ξ).

Altogether, these prove the desired claim.

Corollary N.32. A pseudostable parametrization with r >
0 is nontrivial iff aL+1 + bL+1 + r = 1 or 2aL+1 + c = 1.

Proof. The kernel Σ in Theorem N.31 is nonzero iff θ̊′L+1 or
θ̊′Lf is 1, which is equivalent to saying aL+1 +bL+1 +r = 1
or 2aL+1 + c = 1.

Corollary N.33. An initialization-stable parametrization
with r > 0 but aL+1 + bL+1 + r < 1 or 2aL+1 + c < 1 is
not stable.

Proof. If aL+1 + bL+1 + r < 1 or 2aL+1 + c < 1, then
θ′L+1 → ∞ or θ′Lf → ∞. Clearly, from the definition,
ΣmL(ξ, ξ) > 0 for any ξ 6= 0 and m ∈ [0, L]. All of our
reasoning leading up to Theorem N.31 applied at t = 1
holds, so Theorem N.31 (along with the Master Theorem)
implies |δft(ξ)|

a.s.−−→∞.

Corollary N.34. If aL+1 + bL+1 + r > 1 and 2aL+1 +

c = 1, then for all ξ ∈ X , f̊t(ξ)
a.s.−−→ 0 and δf̊t(ξ) =

−ηχ̊t−1ΣLL(ξt−1, ξ), i.e. we have the Neural Network-
Gaussian Process (NNGP) limit.

Conventionally, the NNGP limit is associated with only
training the last layer and nothing else. This result says that
the same limit can be achieved if we train the body of the
network slightly, so that ∆xLt does not interact with WL+1

0

enough (embodied in the inequality aL+1 + bL+1 + r > 1)
to cause changes in ft.

Proof. The premise implies θ̊′L+1 = 1 and θ̊′Lf = 0, and
the rest follows from Theorem N.31.

Remark N.35. We have assumed for simplicity of the proof
that aL+1 + bL+1 ≤ 2aL+1 + c. If this is not the case, then
we can easily see Corollary N.34 applies anyway.

N.7. r = 0 Implies Feature Learning

In this section, we assume r = 0 and show any such pseu-
dostable parametrization 1) admits (pre)feature learning and
(pre)feature kernel evolution, and 2) is not in kernel regime
(Theorem N.50). The overarching logic goes like this.

1. The Master Theorem shows that the specific en-
try 1

n‖x
L
1 (ξ0)‖2 of the feature kernel converges to

E(Zx
L
1 (ξ0))2. If the learning rate η = 0, then xL1 (ξ0) =

xL0 and E(Zx
L
1 (ξ0))2 = E(Zx

L
0 )2. We hope to say

that as η increases, E(Zx
L
1 (ξ0))2 moves away from

E(Zx
L
0 )2, which would imply feature kernel evolution

in layer L. To do so, we compute ∂2
η E(Zx

L
1 (ξ0))2 eval-

uated at η = 0 and show it is nonzero (it turns out
∂η vanishes, so the next best thing is ∂2

η). This then
also implies feature learning in layer L. Analogous re-
sults for prefeatures and for other layers can be derived
similarly.

2. If the parametrization is in the kernel regime with ker-
nel K, the first step of SGD in the large width limit
would look like f̊1(ξ)−f̊0(ξ) = −ηχ̊0K(ξ, ξ0); in par-
ticular, f̊1(ξ)−f̊0(ξ) is linear in η. To show that a pseu-
dostable parametrization with r = 0 is not in the kernel
regime, we will show ∂3

η(f̊1(ξ) − f̊0(ξ)) = ∂3
η f̊1(ξ)

is nonzero. (It turns out ∂2
η vanishes, so the next best

thing is ∂3
η).

To calculate these η derivatives, we will derive recurrence re-
lations involving quantities defined below (see Lemma N.37
and Theorem N.40).

Setup and Notation First, write

Zlt
def
= Zh

l
t(ξ0), Ẑlt

def
= ẐW

lxl−1
t (ξ0), Żl0

def
= Zdh

l
0 .
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Note that Żl0 is a centered Gaussian independent from
Ẑlt, Z

l
t . Then we define

γl(η) def
= Eφ(Zl0)φ(Zl1), γl11(η) def

= Eφ′(Zl0)φ′(Zl1),

γl02(η) def
= Eφ(Zl0)φ′′(Zl1),

γl20(η) def
= Eφ′′(Zl0)φ(Zl1), λl(η) def

= Eφ(Zl1)2

where the dependence on η is from Zl1. Naturally,
since φ and φ′ are not almost everywhere zero, we have
γl(0), λl(0), γl11(0) > 0. Note at η = 0, we have Zl1 = Zl0,
so γl(0) = λl(0) = Eφ(Zl0)2. Observe that (Ẑl1, Ẑ

l
0) is

jointly Gaussian with mean zero and covariance

Γl(η) def
=

(
λl(η) γl(η)
γl(η) λl(0)

)
. (65)

WLOG, for simplicity of notation, we assume we choose a
training routine such that χ̊0 = 1. We assume ξ0 6= 0.

Since r = 0, WLOG we can suppose for some ` ∈ [L], we
have θL = · · · = θ` = 1 > θ`−1 ≥ · · · ≥ θ1.

Lemma N.36. With the setup above, we have

Z`−1
0 = Z`−1

1 , . . . , Z1
0 = Z1

1 ,

and
Zl1 = Ẑl1 + ηβlŻl0φ

′(Zl0), ∀l ∈ [`, L],

where βl is defined recursively by

βl = βl(η) def
= −γl−1(η) + βl−1(η)γl−1

11 (η)

β`−1(η) def
= 0.

Additionally, βl(0) < 0 for all l ≥ `.

Proof. Straightforward calculation using Moment and
Zdot. Here, −γl−1(η) comes from ∆W l

1x
1
1(ξ0)

and βl−1(η)γl−1
11 (η) comes from Żh

l
1(ξ0). Since

γl(0), γl−1
11 (0) > 0 for all l, the recurrence on βl implies

that βl(0) < 0 for all l ≥ `.

N.7.1. DERIVING RECURRENCE RELATIONS ON
∂ηλ

l, ∂ηγ
l, ∂2

ηλ
l, ∂2

ηγ
l

Below, we derive the recurrence relations required for our
main result. They depend on the following constants.

κl1
def
= E

[
(φ2)′′(Zl0)

]
, κl2

def
= E

[
(φ2)′′(Zl0)φ′(Zl0)2

]
,

κl3
def
= E

[
φ(Zl0)φ′′(Zl0)φ′(Zl0)2

]
.

Lemma N.37. With the setup above, we have, for all l ∈
[L],

∂ηλ
l =

1

2
κl1∂ηλ

l−1 (66)

∂ηγ
l =

1

2
γl02∂ηλ

l−1 + γl11∂ηγ
l−1.

Proof. We first derive the recurrence on ∂ηλ
l. By

Lemma N.38 below, we have

∂ηλ
l = 2Eφ(Zl1)∂ηφ(Zl1) +

1

2
E(φ2)′′(Zl1)∂ηλ

l−1.

Since

∂ηφ(Zl1) = φ′(Zl1)(βlŻl0φ
′(Zl0) + ηŻl0φ

′(Zl0)∂ηβ
l),
(67)

we compute

Eφ(Zl1)∂ηφ(Zl1) = Eφ(Zl1)φ′(Zl1)(βlŻl0φ
′(Zl0)

+ ηŻl0φ
′(Zl0)∂ηβ

l) = 0

because Żl0 is independent from everything else in the first
expectation. This directly implies the result for ∂ηλl.

For ∂ηγl, let Σ = Σ(η) def
=

(
γl02 γl11

γl11 γl20

)
. With Γl−1 as in

Eq. (65), we have

∂ηγ
l = Eφ(Zl0)∂ηφ(Zl1) +

1

2
〈Σ, ∂ηΓl−1〉

By same reasoning as in Eq. (66), the first term of this sum is

zero. Since ∂ηΓl−1(η) def
=

(
∂ηλ

l−1(η) ∂ηγ
l−1(η)

∂ηγ
l(η) 0

)
, we

have

∂ηγ
l =

1

2
〈Σ, ∂ηΓl−1〉 =

1

2
γl02∂ηλ

l−1 + γl11∂ηγ
l−1.

Lemma N.38. Consider a twice continuously differentiable
f and Gaussian vector Z ∼ N (0,Σ) such that f and Σ
both depend on a parameter η. Then

∂η E f(Z) = E ∂ηf(Z) +
1

2
〈E∇2f(z), ∂ηΣ〉,

where ∇2 denotes Hessian wrt z, and 〈, 〉 denotes trace
inner product of matrices.

Proof. Let p(z) denote the PDF of Z. We have

∂η E f(Z) = ∂η

∫
f(z)p(z) dz

=

∫
∂ηf(z)p(z) dz +

∫
f(z)∂ηp(z) dz

The first integral is E ∂ηf(Z). The second integral can
be rewritten using integration-by-parts as 〈E∇2f(z), ∂ηΣ〉.
(e.g. see Lemma F.18 of (Yang et al., 2019))

We then easily have
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Theorem N.39. For all l ∈ [L],

∂ηγ
l(0) = ∂ηλ

l(0) = 0.

Proof. For l < `, we obviously have ∂ηγl(η) = ∂ηλ
l(0) =

0 for all η. Then this follows from Lemma N.37 and a
simple induction.

Unfortunately, this means that the first η derivative doesn’t
give us what we need. So we try the second derivative,
which will turn out to work.
Theorem N.40. For all l < `,∂2

ηλ
l(0) = ∂2

ηγ
l(0) = 0, and

for all l ≥ `,

∂2
ηλ

l(0) = Cκl2 +
1

2
κl1∂

2
ηλ

l−1(0)

∂2
ηγ

l(0) = Cκl3 +
1

2
γl02(0)∂2

ηλ
l−1(0) + γl11(0)∂2

ηγ
l−1(0),

where C = 2(βl(0))2 E(Żl0)2 > 0.

Proof. We start with the ∂2
ηλ

l(0) recurrence. For l ≥ `,
∂2
ηλ

l is a sum of 3 terms, representing 1) 2 derivatives in the
integrand, 2) 2 derivatives in the Gaussian variance, and 3) 1
derivative each. When evaluated at η = 0, only the first two
terms survive because ∂ηλl−1(0) = 0 by Theorem N.39:

∂2
ηλ

l(0) = E ∂2
ηφ

2(Zl1)|η=0 +
1

2
E(φ2)′′(Zl0)∂2

ηλ
l−1(0).

Now

E ∂2
ηφ

2(Zl1)

= 2∂η(Eφ(Zl1)φ′(Zl1)(βlŻl0φ
′(Zl0) + ηŻl0φ

′(Zl0)∂ηβ
l))

= 2E(φ2)′′(Zl1)(βlŻl0φ
′(Zl0) + ηŻl0φ

′(Zl0)∂ηβ
l)2 + · · ·

where other terms appear in this sum but they vanish because
Żl0 appears unpaired in the expectation. Thus,

E ∂2
ηφ

2(Zl1)|η=0 = 2(βl(0))2 E(Żl0)2 E(φ2)′′(Zl0)φ′(Zl0)2.

Plugging this back in, we get the recurrence on ∂2
ηλ

l(0).

The ∂2
ηγ

l(0) recurrence is derived similarly.

The following result will be useful for showing ∂3
η f̊1(ξ0) 6=

0.
Theorem N.41. Define

κ̇l3
def
= E

[
φ′′′(Zl0)φ′(Zl0)3

]
, γl13

def
= Eφ′(Zl0)φ′′′(Zl0),

γl22
def
= Eφ′′(Zl0)2.

Then for all l ≥ `,

∂2
ηγ

l
11(0) = Cκ̇l3 +

1

2
γl13∂

2
ηλ

l−1(0) + γl22∂
2
ηγ

l−1(0),

where C = 2(βl(0))2 E(Żl0)2 > 0.

Proof. Similar to the proof of Theorem N.40.

The following result will be useful for showing prefeature
kernel evolution.

Theorem N.42. For all l ≥ `,

∂2
η E(Zl1)2|η=0 = 2C + γl11(0)∂2

ηλ
l−1(0),

where C = 2(βl(0))2 E(Żl0)2 > 0.

Proof. Similar to the proof of Theorem N.40.

N.7.2. APPLICATIONS TO σ-GELU

The following proposition regarding σ-gelu is easy to verify.

Proposition N.43. Let φ be σ-gelu. For any centered Gaus-
sian Z ∈ R with nonzero variance,

E(φ2)′′(Z) >0

E(φ2)′′(Z)φ′(Z)2 >0

Eφ(Z)φ′′(Z)φ′(Z)2 >0

Eφ(Z)φ′′(Z) >0

Eφ′′(Z)2 >0,

and they converge to 0 as σ → 0. Also,

Eφ′′′(Z)φ′(Z)3,Eφ′(Z)φ′′′(Z) < 0,

and they converge to −∞ as σ → 0.

This particularly implies that κl1, κ
l
2, κ

l
3, γ

l
02(0), γl22 > 0

and converges to 0 with small σ, but κ̇l3, γ
l
13 < 0 and di-

verges to −∞ with small σ.

Theorem N.44. Consider a pseudostable parametrization
with r = 0. If φ is σ-gelu, then for all l ≥ `,

∂2
ηγ

l(0), ∂2
ηλ

l(0) > 0

and they converge to 0 as σ → 0.

Proof. We always have (βl(0))2,E(Żl0)2 > 0. By
Proposition N.43, κl1, κ

l
2 > 0 as well. Thus, by

Theorem N.40, ∂2
ηλ

l(0) > 0 for all l ≥ `. By
Proposition N.43, κl3, γ

l
02(0) > 0, so by Theorem N.40,

∂2
ηγ

l(0) > 0 for all l ≥ ` as well. As σ → 0,
κl1, κ

l
2, κ

l
3, γ

l
02(0)→ 0, so ∂2

ηλ
l(0), ∂2

ηγ
L(0)→ 0.

Theorem N.45. Consider a pseudostable parametrization
with r = 0. Suppose aL+1+bL+1+r = 1 or 2aL+1+c = 1.
If φ is σ-gelu for sufficiently small σ, then

∂3
η f̊1(ξ0) 6= 0.
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Proof. We have f̊1(ξ0) = θ̊′L+1 EZδW
L+1
1 Zx

L
1 (ξ0) +

θ̊′Lf EZŴ
L+1
0 Zδx

L
1 (ξ0), where at least one of θ̊′Lf and θ̊′L+1

is 1 because aL+1 + bL+1 + r = 1 or 2aL+1 + c = 1. We
have

EZδW
L+1
1 Zx

L
1 (ξ0) = −η EZx

L
0 Zx

L
1 (ξ0)

and

EZŴ
L+1
0 Zx

L
1 (ξ0)

= EZŴ
L+1
0 φ(Zh

L
0 − ηZŴ

L+1
0 φ′(Zh

L
0 )EZx

L−1
0 Zx

L−1
1 (ξ0))

= −η Eφ′(Zh
L
1 (ξ0))φ′(Zh

L
0 )EZx

L−1
0 Zx

L−1
1 (ξ0)

where we used Stein’s Lemma for the last equality. Thus

∂3
η f̊1(ξ0) = −

(
θ̊′L+1∂

2
ηγ

L(0) + θ̊′Lf∂
2
η(γL11γ

L−1)(0)
)
.

Below we will show that for small σ, ∂2
ηγ

L(0) is small
and positive and ∂2

η(γL11γ
L−1)(0) is large and negative, so

∂3
η f̊1(ξ0) cannot be 0 no matter the values of θ̊′L+1 and θ̊′Lf .

Claim: For sufficiently small σ, ∂2
ηγ

L
11(0) < 0. It converges

to −∞ as σ → 0.

Proof: By Theorem N.41, ∂2
ηγ

l
11(0) = Cκ̇l3 +

1
2γ

l
13∂

2
ηλ

l−1(0) + γl22∂
2
ηγ

l−1(0). Note ∂2
ηλ

l−1(0) ≥ 0 by
Theorem N.44. Also, by Proposition N.43, κ̇l3, γ

l
13 <

0, γl22 > 0, and as σ → 0, κ̇l3, γ
l
13 → −∞, γl22 → 0 (as

well as ∂2
ηγ

L−1(0), ∂2
ηλ

l(0) → 0 by Theorem N.44). One
can see that C converges to a positive constant as σ → 0 as
well. Therefore, for small enough σ, ∂2

ηγ
l
11(0) < 0, and as

σ → 0, ∂2
ηγ

L
11(0)→ −∞.

Claim: For sufficiently small σ, ∂2
η(γL11γ

L−1)(0) < 0. It
converges to −∞ as σ → 0.

Proof: Observe ∂2
η(γL11γ

L−1)(0) = ∂2
ηγ

L
11(0)γL−1(0) +

γL11(0)∂2
ηγ

L−1(0) because ∂ηγ
L−1(0) = 0 by

Theorem N.39. So the above claim and Theorem N.44
yield the desired results.

Finishing the main proof: Therefore, if θ̊′L+1 = 1 but
θ̊′Lf = 0, then −∂3

η f̊1(ξ0) > 0 because ∂2
ηγ

L(0) > 0;
if θ̊′L+1 = 0 but θ̊′Lf = 1, then −∂3

η f̊1(ξ0) < 0 for small
σ because ∂2

η(γL11γ
L−1)(0) < 0; if θ̊′L+1 = θ̊′Lf = 1, then

−∂3
η f̊1(ξ0) < 0 for small σ because ∂2

η(γL11γ
L−1)(0) →

−∞ while ∂2
ηγ

L(0)→ 0 as σ → 0.

N.7.3. APPLICATIONS TO TANH

The following property of tanh is easy to verify.

Proposition N.46. Let φ = tanh. For any centered Gaus-
sian Z ∈ R with nonzero variance,

E(φ2)′′(Z),E(φ2)′′(Z)φ′(Z)2,Eφ′′(Z)2 > 0,

and

Eφ(Z)φ′′(Z)φ′(Z)2,Eφ(Z)φ′′(Z),Eφ′′′(Z)φ′(Z)3,Eφ′(Z)φ′′′(Z) < 0.

In particular, this means

κl1, κ
l
2, γ

l
22 > 0, κl3, γ

l
02(0), κ̇l3, γ

l
13 < 0.

Theorem N.47. Consider a pseudostable parametrization
with r = 0. If φ is tanh, then for all l ≥ `,

∂2
ηγ

l(0) < 0, ∂2
ηλ

l(0) > 0.

Proof. Similar to the proof of Theorem N.44, except that
here κl3, γ

l
02(0) < 0, making ∂2

ηγ
l(0) < 0.

Theorem N.48. Consider a pseudostable parametrization
with r = 0. Suppose aL+1+bL+1+r = 1 or 2aL+1+c = 1.
If φ is tanh, then

∂3
η f̊1(ξ0) 6= 0.

Proof. Similar to the proof of Theorem N.45, except in the
expression

∂3
η f̊1(ξ0) = −

(
θ̊′L+1∂

2
ηγ

L(0) + θ̊′Lf∂
2
η(γL11γ

L−1)(0)
)
,

∂2
ηγ

L(0) and ∂2
η(γL11γ

L−1)(0) are both negative. The for-
mer is because of Theorem N.47. The latter is because
∂2
ηγ

L−1(0) ≤ 0 for the same reason, and ∂2
ηγ

L
11(0) < 0

since κ̇l3, γ
l
13 < 0, γl22 > 0 by Proposition N.46.

N.7.4. MAIN RESULTS

Proposition N.49. Suppose φ is tanh or σ-gelu for suffi-
ciently small σ. A pseudostable parametrization with r = 0
is nontrivial iff aL+1 + bL+1 = 1 or 2aL+1 + c = 1.

Proof. If aL+1 + bL+1 + r = 1 or 2aL+1 + c = 1,
then Theorem N.45 and Theorem N.48 show that the
parametrization is nontrivial. Otherwise, it is trivial by
Proposition N.24.

Theorem N.50. Suppose φ is tanh or σ-gelu for sufficiently
small σ. For any nontrivial pseudostable parametrization
with r = 0, the following are true of the parametrization:

1. not in kernel regime

2. feature learning

3. feature learning in the Lth layer

4. feature kernels evolution

5. feature kernel evolution in the Lth layer

6. prefeature learning
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7. prefeature learning in the Lth layer

8. prefeature kernels evolution

9. prefeature kernel evolution in the Lth layer

10. if there is feature learning or feature kernel evolution
or prefeature learning or prefeature kernel evolution
in layer l, then there is feature learning and feature
kernel evolution and prefeature learning and prefeature
kernel evolution in layers l, . . . , L.

Proof. The parametrization cannot be in kernel regime since
∂3
η f̊1(ξ0) 6= 0 by Theorem N.48 or Theorem N.45. By

Theorem N.44 or Theorem N.47, ∂2
ηλ

l(0) > 0 for all l ≥ `,
so the feature kernel evolves in layer `, . . . , L, for some nor-
malized learning rate η > 0. This implies feature learning in
layer `, . . . , L, since Zx

L
1 (ξ0) − ZxL0 6= 0 in this case. This

then implies Zh
L
1 (ξ0) − ZhL0 6= 0, so we have prefeature

learning in layer `, . . . , L. Prefeature kernel evolution in
layer `, . . . , L is implied by Theorem N.42. Finally, the last
statement follows clearly from our logic above.

Corollary N.51. Suppose φ is tanh or σ-gelu for sufficiently
small σ. Consider any initialization-stable parametrization
with r = 0. If aL+1 + bL+1 < 1 or 2aL+1 + c < 1, then
the parametrization is not stable.

Proof. First suppose aL+1 + bL+1 < 1 and 2aL+1 + c ≥ 1.
Then θ′Lf = n1−(aL+1+bL+1) → ∞ but θ̊′L+1 ≤ 1. As
in the proof of Theorem N.45, there is some η 6= 0 such
that EZŴ

L+1
0 Zδx

L
1 (ξ0) = R for some R 6= 0. Therefore,

by the Master Theorem, 1
nŴ

L+1
0 δxL1 (ξ0)

a.s.−−→ R =⇒
|WL+1

0 ∆xL1 (ξ0)| = Θ(n1−(aL+1+bL+1))→∞. This dom-
inates ∆WL+1

1 xL1 (ξ0), which by similar reasoning is O(1).
So f1(ξ0) diverges and the parametrization is not stable.

Now suppose aL+1 + bL+1 ≥ 1 and 2aL+1 + c < 1. This
violates our simplifying assumption that aL+1 + bL+1 ≤
2aL+1 + c, but it’s easy to see that 1

nδW
L+1
1 xL1 (ξ0)

a.s.−−→
−ηχ̊0 EZx

L
0 Zx

L
1 (ξ0). For η small enough, this is

close to −ηχ̊0 E(Zx
L
0 )2 and thus is nonzero. Then

|∆WL+1
1 xL1 (ξ0)| = Θ(n1−(2aL+1+c)) → ∞. This dom-

inates WL+1
0 ∆xL1 (ξ0) = O(1), so f1(ξ0) diverges. There-

fore, the parametrization is not stable.

Finally, suppose both aL+1 + bL+1, 2aL+1 + c < 1.
If aL+1 + bL+1 6= 2aL+1 + c, then we have one of
∆WL+1

1 xL1 (ξ0) and WL+1
0 ∆xL1 (ξ0) dominate the other

like the above, leading to divergence. If aL+1 + bL+1 =
2aL+1 + c, then in the case of σ-gelu with small
σ, WL+1

0 ∆xL1 (ξ0) will dominate ∆WL+1
1 xL1 (ξ0), as in

Theorem N.45; and in the case of tanh, both have the same
sign, as in Theorem N.48. In either case, f1(ξ0) diverges,
so the parametrization is not stable.

N.8. Putting Everything Together

Finally, in this section we tie all of our insights above to
prove our main theorems.

Theorem N.52. Suppose φ is tanh or σ-gelu for sufficiently
small σ. A parametrization is stable iff it is pseudostable.

Proof. The “if” direction is given by Proposition N.25. We
now show that when any (in)equality of pseudostability is
violated, the parametrization is not stable.

First, if Eq. (42) is not satisfied, then Theorem N.18 shows
lack of stability.

Second, if Eq. (42) is satisfied but r < 0, then
Proposition N.27 shows lack of stability.

Finally, if Eq. (42) is satisfied and r ≥ 0 but aL+1 +bL+1 <
1 or 2aL+1 + c < 1, then Corollary N.51 or Corollary N.33
shows lack of stability.

Given this result, we will now just say “stable” instead of
“pseudostable” from here on.

Theorem N.8 (Nontriviality Characterization). Suppose φ
is tanh or σ-gelu for sufficiently small σ. A stable abc-
parametrization is nontrivial iff aL+1 + bL+1 + r = 1 or
2aL+1 + c = 1.

Proof. The case of r = 0 and the case of r > 0 are resp.
given by Proposition N.49 and Corollary N.32.

Theorem N.12 (Classification of abc-Parametrizations).
Suppose φ is tanh or σ-gelu for sufficiently small σ. Con-
sider a nontrivial stable abc-parametrization of anL-hidden
layer MLP. Then

1. The following are equivalent to r = 0

(a) feature learning
(b) feature learning in the Lth layer
(c) feature kernels evolution
(d) feature kernel evolution in the Lth layer
(e) prefeature learning
(f) prefeature learning in the Lth layer
(g) prefeature kernels evolution
(h) prefeature kernel evolution in the Lth layer

2. The following are equivalent to r > 0

(a) kernel regime
(b) fixes all features
(c) fixes features in the Lth layer
(d) fixes all feature kernels
(e) fixes feature kernel in the Lth layer
(f) fixes all prefeatures
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(g) fixes prefeatures in the Lth layer
(h) fixes all prefeature kernels
(i) fixes prefeature kernel in the Lth layer

3. If there is feature learning or feature kernel evolution
or prefeature learning or prefeature kernel evolution
in layer l, then there is feature learning and feature
kernel evolution and prefeature learning and prefeature
kernel evolution in layers l, . . . , L.

4. If r = 0, then for all ξ ∈ X , f0(ξ)
a.s.−−→ 0 and

ft(ξ)
a.s.−−→ f̊t(ξ) for some deterministic f̊t(ξ). How-

ever, the converse is not true.

5. If r > 0, aL+1 + bL+1 + r > 1 and 2aL+1 + c = 1,
then we have the Neural Network-Gaussian Process
limit.

Proof. A nontrivial stable parametrization has either r =
0 or r > 0. By Theorem N.50, Proposition N.26, and
Theorem N.31, r = 0 implies all of the statements in (1)
and r > 0 implies all of the statements in (2). Consequently,
if feature learning happens, then clearly r cannot be positive,
so r must be 0. Likewise, all of the statements in (1) imply
r = 0. Symmetrically, all of the statements in (2) about
fixing features imply r > 0. Finally, if the parametrization
is in kernel regime, then by Theorem N.50(1), r cannot be
0, so r > 0. This proves (1) and (2).

If the premise of (3) holds, then by the above, r = 0, so the
conclusion follows from Theorem N.50. This proves (3).

If r = 0, then nontriviality means aL+1 + bL+1 ≥ 1. This
implies f0(ξ)

a.s.−−→ 0 for all ξ ∈ X (more precisely, f0(ξ)
has standard deviation Θ(n1/2−(aL+1+bL+1))→ 0 by Cen-
tral Limit Theorem). The program describes the uncondi-
tional SGD trajectory of f (as opposed to the case when
aL+1 + bL+1 = 1/2), so ft(ξ)

a.s.−−→ f̊t(ξ) does not depend
on f0. The converse is not true, for example because of
Corollary N.34. This prove (4).

(5) follows from Corollary N.34 (which actually allows
much more general φ).

Proofs of Theorems 5.1, F.1 and F.2 For any finite sub-
set X of the input space Rd (where d = 1 here), we can
write out the SGD computation as a Tensor Program like
in Appendix N.4. Then the Master Theorem implies the
convergence of ft(ξ)

a.s.−−→ f̊t(ξ) for every ξ ∈ X . Let
X1 ⊆ · · · ⊆ Xk ⊆ · · · be an infinite chain of finite subsets
of Rd such that

⋃
k Xk is a dense subset of Rd. Then the

convergence of ft(ξ)
a.s.−−→ f̊t(ξ) holds for every ξ ∈

⋃
k Xk

(because we have almost sure convergence). Finally, we
apply a continuity argument to get this convergence for all
of Rd:

Because φ′ and thus φ are pseudo-Lipschitz, they are locally
Lipschitz (i.e. Lipschitz on any compact set). In addition,
the operator norms of WL are almost surely bounded from
standard matrix operator bounds. Thus one can see that
the Tensor Program is locally Lipschitz in ξ. Consequently,
f̊t(ξ) is continuous in ξ. This allows to pass from

⋃
k Xk to

Rd.

Proofs of Propositions E.2, M.2 and E.4
and Theorems M.3 and M.4 follow by dividing
into cases of r > 0 and r = 0 and easy modification of the
reasoning in Appendices N.6 and N.7.

Proof of Theorem N.16 follows from straightforward cal-
culations. The basic outline of the calculations is: 1) During
pretraining, f ’s change is purely due to a) the interaction
betwen ∆W l, l ≤ L, and WL+1

0 , and b) the interaction be-
tween xL and ∆WL+1. 2) When WL+1 is re-initialized in
g, these interactions are killed. The pretrained ∆W l, l ≤ L,
will cause xM to differ by Θ(1/

√
n) coordinatewise com-

pared to if ∆W l, l ≤ L, are all reset to 0, but this difference
is uncorrelated with the last layer weights WM+1 of g, so
their interaction is subleading in n, i.e. in the infinite-width
limit,

gT ;t(ξ)− g0;t(ξ)
a.s.−−→ 0,

whether all of g or just the new weights are trained during
fintetuning.


