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Abstract
Lossy compression algorithms are typically de-
signed to achieve the lowest possible distortion at
a given bit rate. However, recent studies show that
pursuing high perceptual quality would lead to in-
crease of the lowest achievable distortion (e.g.,
MSE). This paper provides nontrivial results the-
oretically revealing that, 1) the cost of achieving
perfect perception quality is exactly a doubling
of the lowest achievable MSE distortion, 2) an
optimal encoder for the “classic” rate-distortion
problem is also optimal for the perceptual com-
pression problem, 3) distortion loss is unnecessary
for training a perceptual decoder. Further, we pro-
pose a novel training framework to achieve the
lowest MSE distortion under perfect perception
constraint at a given bit rate. This framework
uses a GAN with discriminator conditioned on an
MSE-optimized encoder, which is superior over
the traditional framework using distortion plus
adversarial loss. Experiments are provided to ver-
ify the theoretical finding and demonstrate the
superiority of the proposed training framework.

1. Introduction
Lossy compression is a fundamental problem in modern
digital world for efficient transmission and storage of image,
video and audio data. Recently, due in part to the roar-
ing success of deep learning, the research of deep neural
networks (DNNs) based compression has attracted much
attention and shown promising results in image, audio, and
video compression (Rippel & Bourdev, 2017; M Tschannen,
2018; Agustsson et al., 2019; Toderici et al., 2016; Toderici
et al., 2017; Ballé et al., 2016; Ballé et al., 2017; 2018;
Agustsson et al., 2017; Minnen et al., 2018; Li et al., 2018;
Mentzer et al., 2018; Johnston et al., 2018; Galteri et al.,
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2017; Santurkar et al., 2018; Shaham & Michaeli, 2018).
For lossy compression, Shannon’s rate-distortion theory is
a theoretical cornerstone, which characterizes the tradeoff
between the bit rate of compressed representation and the
distortion in reconstructing the data (Shannon, 1959; Cover
& Thomas, 2006).

Typically, lossy compression algorithms are designed based
on the rate-distortion theory to achieve the lowest possible
distortion at a given bit rate. In this context, lower distortion
is desired, e.g., lower mean square error (MSE), higher peak
signal to noise ratio (PSNR), or higher structural similarity
(SSIM) (Zhou Wang et al., 2004). However, recent studies
have demonstrated that these distortion measures are not
fully consistent with human’s perception (Johnson et al.,
2016; Zhang et al., 2018; Blau & Michaeli, 2018; 2019;
Agustsson et al., 2019; Galteri et al., 2017; Santurkar et al.,
2018; Ma et al., 2017). Specifically, minimizing distortion
alone does not necessarily lead to good perceptual quality.
In fact, it has been shown that pursuing high perceptual qual-
ity would lead to increase of the lowest achievable distortion
(e.g., MSE). Generally, there exist two methods to improve
perceptual quality. The first is to incorporate a perceptual
loss measuring the difference between deep features (John-
son et al., 2016; Simonyan & Zisserman, 2015; Gatys et al.,
2016; Chen & Koltun, 2017; Dosovitskiy & Brox, 2016).
The second is to incorporate an adversarial loss by using
generative adversarial networks (GAN) (Goodfellow et al.,
2014). Noteworthily, using an adversarial loss, the second
method has shown remarkable effectiveness in achieving
high perceptual quality (Rippel & Bourdev, 2017; Agusts-
son et al., 2019; Ledig et al., 2017; Wang et al., 2018; Wu
et al., 2020; Iwai et al., 2020; Mentzer et al., 2020).

For perceptual reconstruction, new insights from recent stud-
ies have revealed that distortion and perceptual quality are
at odds with each other. It can be well characterized by a
perception-distortion tradeoff (Blau & Michaeli, 2018), in
which perceptual quality is defined in terms of the deviation
between the distributions of the source and the reconstructed
data. More recently, this result has been extended to the
lossy compression problem, resulting in a rate-distortion-
perception tradeoff (Matsumoto, 2018a;b; Blau & Michaeli,
2019). The three-way tradeoff indicates that imposing a
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high perceptual quality constraint on the lossy compression
problem would lead to an elevation of the rate-distortion
curve. Hence, a sacrifice in either rate or distortion is neces-
sary to achieve high perceptual quality. The works (Blau &
Michaeli, 2018; 2019) have paved the way for understanding
the perception-distortion tradeoff.

While it has become increasingly accepted that high per-
ceptual quality can be achieved with some increase of the
lowest achievable distortion, there lacks quantitative analy-
sis on such an increase of distortion. This work is motivated
by the following two open questions:

1. Is it possible to quantitatively characterize the effect of
perceptual constraint on the rate-distortion tradeoff?

2. How to build a framework for perfect perception
reconstruction in lossy compression?

Toward answering these two questions, the main contribu-
tions of this work are as follows.

First, we derive a nontrivial result theoretically revealing
that, at a given bit rate, the cost of achieving perfect percep-
tual quality is exactly a doubling of the lowest achievable
MSE distortion. Our analysis also shows that an encoder
optimized in terms of MSE is also an optimal encoder under
perfect perception constraint. This result implies that the
commonly used adversarial loss in state-of-the-art works
(Blau & Michaeli, 2019; Agustsson et al., 2019; Iwai et al.,
2020) is in fact unnecessary for optimizing the encoder.

Second, based on the analysis, we propose a training frame-
work that can achieve the lowest MSE distortion under per-
fect perception constraint at a given bit rate. This framework
uses a GAN with its discriminator conditioned on an en-
coder optimized in terms of MSE, which is superior over
the traditional distortion plus adversarial loss (DAL) based
framework.

Finally, experimental results on the MNIST dataset are pro-
vided to verify the theoretical finding and demonstrate the
superiority of the proposed training framework. Particu-
larly, extensive experimental results show that the effect of
perception constraint on the rate-distortion tradeoff accords
well with our theoretical result, i.e., a doubling of the MSE
distortion in achieving high perceptual quality.

Though our result is restricted to the lossy compression
problem, to the best of our knowledge, it is the first quantita-
tive result on the lowest degradation of distortion in achiev-
ing perceptual reconstruction. Note that the work (Blau &
Michaeli, 2019) has shown that perfect perceptual quality
can be attained at a sacrifice of no more than 2-fold increase
in MSE distortion. Our analysis is fundamentally different
from (Blau & Michaeli, 2019) in three aspects. 1) We obtain
a different result deterministically shows that the increase
is exactly 2-fold. 2) The result in (Blau & Michaeli, 2019)

is derived through analyzing a constructed encoder-decoder
pair that achieves perfect perceptual quality by concatenat-
ing a post-processing perceptual mapping. In contrast, our
analysis follows a different line via directly analyzing the
perception constrained lossy compression formulation itself.
3) Our analysis also provides a new insight that, to achieve
high perceptual quality, perceptual loss is unnecessary for
training an encoder. Besides, distortion loss, either on pixels
or deep features, is unnecessary for training a decoder. We
show that an adversarial loss, with the discriminator condi-
tioned on an encoder optimized in terms of MSE distortion,
is enough to achieve perfect perceptual quality. A more
detailed comparison is provided in Section 4.2.

2. Preliminaries
2.1. Perceptual Quality

In image processing, peak signal to noise rate (PSNR), MSE
and SSIM/MS-SSIM (Wang et al., 2003; Zhou Wang et al.,
2004) are commonly used distortion measures. However,
recent studies have shown that these measures are not fully
consistent with human’s perception (Johnson et al., 2016;
Zhang et al., 2018; Agustsson et al., 2019; Galteri et al.,
2017; Santurkar et al., 2018). An image with lower distor-
tion does not necessarily have better perceptual quality. In
practice, it has been empirically shown that high perceptual
property can be achieved at the cost of increased distor-
tion. This behavior can be theoretically characterized as a
perception-distortion tradeoff, which has been put forward
in (Blau & Michaeli, 2018). It reveals that minimizing dis-
tortion would cause the distribution of reconstructed outputs
deviating from that of the (ground-truth) source, which leads
to worse perceptual quality.

The perceptual quality of a restored sample is the extent
to which it looks like a natural sample from human’s per-
ception, regardless its similarity to any reference sample.
It can be conveniently defined in terms of the deviation of
the distribution of restored outputs X̂ from that of natural
samples X as (Blau & Michaeli, 2018)

d(pX , pX̂), (1)

which is some divergence (e.g., the Kullback-Leibler di-
vergence or Wasserstein distance) satisfying d(p, q) ≥ 0
and d(p, q) = 0 ⇔ p = q for any distributions p and
q. Such a definition conforms with the common practice
of quantifying perceptual quality through real-versus-fake
questionnaire studies (Zhang et al., 2018; Zhang et al., 2016;
Salimans et al., 2016). Basically, this definition of percep-
tual quality is based on the deviation from natural sample
statistics, which correlates well with human subjective score
and has been widely used in designing no-reference image
quality measures.(Mittal et al., 2013; Wang & Simoncelli,
2005)
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2.2. Rate-Distortion-Perception Tradeoff

Shannon’s rate-distortion theory characterizes the funda-
mental tradeoff between the rate (bits per symbol) and the
expected distortion. Specifically, the relation between the
input X ∼ pX of the encoder and the output X̂ ∼ pX̂ of
the decoder can be viewed as a mapping defined by a con-
ditional distribution pX̂|X . The information rate-distortion
function is defined as (Cover & Thomas, 2006)

R(I)(D) = min
pX̂|X

I(X; X̂)

s.t. E[∆(X, X̂)] ≤ D,
(2)

where I stands for mutual information, and ∆ is a distortion
measure such as MSE or hamming distance. It has been well
established that R(I)(D) is a convex and non-increasing
function of D, which demonstrates the rate-distortion trade-
off.

The rate-distortion function (2) does not take into account
the perceptual quality of reconstruction. To take the percep-
tual quality into consideration, the traditional rate-distortion
tradeoff has been extended to a three-way tradeoff model in-
cluding rate, distortion, and perception as (Blau & Michaeli,
2019)

R(I)(D,P ) = min
pX̂|X

I(X; X̂)

s.t. E[∆(X, X̂)] ≤ D, d(pX , pX̂) ≤ P,
(3)

where d(pX , pX̂) is a divergence between the distributions
of the source and the reconstruction output, typically mea-
sured by Kullback-Leibler divergence or Jensen-Shannon
divergence. When P = +∞, the perception constraint is
invalid and (3) degenerates to the traditional rate-distortion
function (2). When P = 0, the distributions ofX and X̂ are
constrained to be identical, which defines a rate-distortion
function under perfect perceptual quality constraint. It has
been shown in the work (Blau & Michaeli, 2019) that, the
rate-distortion curve necessarily elevates when imposing
the perfect perceptual quality constraint, but the elevation
is bounded. Specifically, for the MSE distortion, the rate-
distortion function under perfect perception constraint, i.e.,
R(I)(D, 0), is upper bounded by a scaled version of the
rate-distortion curve under no perception constraint as

R(I)(D, 0) ≤ R(I)

(
1

2
D,+∞

)
. (4)

It implies that, at a given bit rate, the increase of the MSE
distortion incurred by perfect perceptual quality constraint
is no more than 2-fold the MSE distortion in the case with-
out any perception constraint. However, how much is the
elevation of the rate-distortion curve incurred by the perfect
perceptual quality constraint is still unclear.

2.3. Adversarial Loss for Perceptual Reconstruction

To improve the perceptual quality of reconstruction, a natu-
ral way is to minimize the deviation from the distribution
of natural samples. As GAN is very effective in aligning
distributions, the GAN-based methods have shown remark-
able improvement in perceptual quality (Zhang et al., 2018;
Agustsson et al., 2019). For the lossy compression problem,
a typical formulation incorporating an adversarial loss to op-
timize the encoder E and the decoder G through adversarial
training is given by

min
E,G
Lrec+λLadv+βH, (5)

where Lrec is a distortion loss (e.g., MSE, L1 norm, or
distance between feature maps), Ladv is an adversarial (per-
ception) loss which is measured by a discriminator, and H
is the entropy of the compressed representation. λ and β
are positive parameters which balance the three terms. Al-
though adversarial training helps to improve the perceptual
quality, such a training framework has limitations. Specif-
ically, if the value of λ is not large enough, the resulting
perceptual quality would not be satisfactory. On the other
hand, when λ is a relatively large value, the distortion of the
system cannot be well optimized and would finally result
in excessive increase in distortion, as will be shown later
in experiments. Hence, it is difficult to achieve the low-
est distortion under perfect perception constraint by simply
balancing the distortion loss Lrec and the adversarial loss
Ladv .

To address these limitations, we propose a training frame-
work that can achieve the lowest distortion under perfect
perception constraint. It is also based on GAN but avoids
the balance between the distortion and adversarial losses.

3. Main Results and Proposed Training
Framework

3.1. Analysis on the Rate-Distortion Tradeoff Under
Perfect Perception Constraint

Suppose that X is a discrete source with a finite alphabet
χ= {xi ∈ RN : 1 ≤ i ≤ m}, e.g., m = 2563N for 8-
bit RGB image with N pixels. From (3), the information
rate-distortion function under perfect perception constraint
is

R(I)(D,P ) = min
pX̂|X

I(X; X̂)

s.t. E[∆(X, X̂)] ≤ D, d(pX , pX̂) ≤ 0.
(6)

Under the constraint that the distributions of X and X̂ are
identical, χ is also the alphabet of X̂ .

Before proceeding to the analysis, we present some defi-
nitions. Define a joint distribution matrix B ∈ Rm×m, of
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which the elements are given by

bij := p(X = xi, X̂ = xj), 1 ≤ i, j ≤ m. (7)

Meanwhile, define a distortion matrix W ∈ Rm×m, of
which the elements are given by

wij := ∆(xi, xj), 1 ≤ i, j ≤ m. (8)

Then the distortion constraint in (6) can be rewritten as
〈W,B〉 ≤ D. Moreover, let GpX

(B) denote the objective
function of (6), then under perfect perception constraint, it
follows that

GpX
(B) : = I(X; X̂)

= H(X) +H(X̂)−H(X, X̂)

= 2H(X) +

m∑
i=1

m∑
j=1

bij log bij ,

(9)

where the last equaity follows from the fact that X and X̂
have the same distribution under the constaint d(pX , pX̂) ≤
0. For fixed pX , pX̂|X can be equivalently represented by
B. Thus, the formulation (6) can be rewritten as

R(I)(D, 0) = min
B

GpX
(B)

s.t. 〈W,B〉 ≤ D,
m∑
i=1

bij =

m∑
i=1

bji = p(X = xj), 1 ≤ j ≤ m.

(10)

Note that the perception constraint d(pX , pX̂) ≤ 0 in (6),
which means pX = pX̂ , has been rewritten as the equiva-
lence constraint between the row summation and column
summation of B, which are the distributions of X and X̂ ,
respectively. Based on (10), we have the following result
(proof is given in the supplimentary material).

Lemma 1. Suppose that ∆ is symmetric, then any optimal
solution B∗ to (10) is a symmetric matrix.

Lemma 1 shows that when the distortion measure is symmet-
ric (e.g., squared-error), for any optimal encoder-decoder
pair to (10) (equivalently (6)), the joint distribution of X
and X̂ is also symmetric as

p(X = xi, X̂ = xj) = p(X = xj , X̂ = xi). (11)

Since the achievability of the information rate-distortion-
perception function R(I)(D,P ) has not been proved yet,
we analyze the relation between the rate-distortion func-
tions R(D,∞) and R(D, 0). Assume a discrete memory-
less stationary source X , let Y = (X1, X2, ..., Xt) be a
source sequence with length t. Consider a compression task
Y → Z → Ŷ , where Z is the output of the encoder and
Ŷ is the output of the decoder. As defined in (Cover &

Thomas, 2006), R(D,∞) is the infimum of rates R for a
given distortion D, such that (R,D) is achievable. Hence,
R(D,∞) can be expressed as

R(D,∞) = inf
t
Ft(D,∞), (12)

where

Ft(D,∞) := min
pZ|Y ,pŶ |Z

1

t
H(Z)

s.t.
1

t
E[∆(Y, Ŷ )] ≤ D.

(13)

Considering the condition of perfect perception constraint,
R(D, 0) can be similarly expressed as (Matsumoto, 2018b)

R(D, 0) = inf
t
Ft(D, 0), (14)

where

Ft(D, 0) := min
pZ|Y ,pŶ |Z

1

t
H(Z)

s.t.
1

t
E[∆(Y, Ŷ )] ≤ D, d(pY , pŶ ) ≤ 0.

(15)

For the MSE distortion measure, we have the following
result (proof is given in the supplementary material).

Theorem 1. Let X be a discrete memoryless stationary
source and Y = (X1, X2, ..., Xt) be a source sequence
with length t. For a compression task Y → Z → Ŷ , where
Z and Ŷ are the outputs of the encoder and decoder, respec-
tively. Then, to any t, if ∆ is the squared-error distortion,
there exists an optimal encoder-decoder pair to (15) satisfy-
ing

pY |Z = pŶ |Z . (16)

Theorem 1 indicates that when the distortion mea-
sure is MSE, replacing the perfect perception constraint
d(pX , pX̂) ≤ 0 in (15) with the conditional distribution
constraint (16) does not change the optimal objective value.
This is because under the condition that the data source is
memoryless and stationary, it follows from theorem 1 that
there exists an optimal solution to (15) satisfying (16), under
which the distributions of X and X̂ are the same. Therefore,
analyzing the relation between Ft(D,∞) and Ft(D, 0) is
equivalent to analyzing the relation between Ft(D,∞) and

Ft(D, 0) = min
pZ|Y ,pŶ |Z

1

t
H(Z)

s.t.
1

t
E[∆(Y, Ŷ )] ≤ D, pY |Z = pŶ |Z .

(17)

For any encoder-decoder pair satisfying (16), the MSE dis-
tortion between Y and Ŷ can be expressed as (proof is given
in the supplementary material)

1

t
E
[∥∥∥Y − Ŷ ∥∥∥2] =

2

t
E
[
‖Y − E[Y |Z]‖2|Z

]
, (18)



On Perceptual Lossy Compression: The Cost of Perceptual Reconstruction and An Optimal Training Framework

which substituted into (17) yields

Ft(D, 0) = min
pZ|Y ,pŶ |Z

1

t
H(Z)

s.t.
2

t
E
[
‖Y − E[Y |Z]‖2|Z

]
≤ D, pY |Z = pŶ |Z .

(19)

It can be seen that the objective value of (19) is independent
on the decoder pŶ |Z . Hence, with MSE distortion, the
encoder of (17) can be optimized separately as

Ft(D, 0) = min
pZ|Y

1

t
H(Z)

s.t.
2

t
E
[
‖Y − E[Y |Z]‖2|Z

]
≤ D.

(20)

In (20), the constraint pY |Z = pŶ |Z is removed since
it does not affect the objective under the constraint
2
tE
[
‖Y − E[Y |Z]‖2|Z

]
≤ D.

Next, we consider the lossy compression task without per-
ception constraint. Given a compressed representation z and
when the distortion measure is MSE, the output of an opti-
mal decoder is E[Y |z]. Accordingly, the expected distortion
can be expressed as

E[∆(Y,E[Y |Z])] =
1

t
E
[
‖Y − E[Y |Z]‖2|Z

]
, (21)

with which formulation (13) can be rewritten as

Ft(D,∞) = min
pZ|Y

1

t
H(Z)

s.t.
1

t
E
[
‖Y − E[Y |Z]‖2|Z

]
≤ D.

(22)

Then, it follows from (20) and (22) that Ft(D, 0) =
Ft(D/2,∞) for any t, which implies

inf
t
Ft(D, 0) = inf

t
Ft(D/2,∞). (23)

Thus, we have the following result.

Theorem 2. Suppose that ∆ is the squared-error distortion,
then R(D,P ) satisfies

R(D, 0) = R

(
1

2
D,+∞

)
. (24)

Theorem 2 indicates that, when the distortion is measured by
MSE, and for fixed bit rate, the lowest achievable distortion
under perfect perception constraint is 2-fold that under no
perception constraint. In other words, the cost of attaining
perfect perceptual quality is exactly a doubling of the lowest
achievable MSE distortion.

Moreover, (20) and (22) also imply that, with distortioncon-
strained by D/2, an optimal encoder under no perception

Figure 1. The proposed trianing framework. First, the encoder-
decoder pair (E,G1) is trained by MSE loss. Then G2 is trained
by adversarial loss conditioned on E.

constraint is also an optimal encoder under perfect percep-
tion constraint with distortion constrained by D.

Theorem 3. When the distortion is measured by MSE, an
optimal encoder to (13) (without perception constraint) with
distortion constrained by D/2 is also an optimal encoder
to (15) (with perfect perception constraint) with distortion
constrained by D.

Theorem 3 implies that the rate-distortion function with per-
fect perception constraint is achievable. Besides, it sheds
some light on how to optimize an encoder-decoder pair un-
der perfect perception constraint. Specifically, the encoder
can be independently optimized without considering per-
ception constraint. In light of this, we can first optimize an
encoder with only MSE constraint, and then fix the encoder
and optimize the decoder to satisfy (16), which would dou-
ble the MSE distortion and has been proven to be an optimal
decoder that can achieve the bound in Theorem 2. Such a
framework is detailed in the next subsection.

3.2. A Framework for Perfect Perceptual
Reconstruction in Lossy Compression

Based on the above results, we further propose a framework
for training an encoder-decoder pair to achieve perfect per-
ceptual reconstruction in lossy compression. The overall
architecture is shown in Figure 1, which includes an encoder
E, two decoders G1, G2, and a discriminator J . The de-
sired encoder-decoder pair is (E,G2), which is obtained by
a training procedure with two steps:

i) Encoder optimization: (E,G1) are optimized only in
terms of MSE distortion, e.g. by minimizing MSE loss
without considering the perception constraint. From The-
orem 3, such an optimized encoder E is also an optimal
encoder under perfect perception constraint.

ii) Decoder optimization: Fixing the optimized encoder
E in the first step, the decoder G2 is optimized via ad-
versarial training, e.g. iteratively optimize G2 and the
discriminator J . In this step, the goal is to minimize the
divergence between pY |Z and pŶ |Z . To achieve this, we
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Figure 2. Empirically fitted rate-distortion functions in the cases
with or without perception constraint.

use a conditional discriminator (Mirza & Osindero, 2014)
which takes both the data (Y or Ŷ ) and the bit stream Z
as the input.

Our proposed framework is different from traditional DAL
framework as follows. As discussed in Section 2.3, DAL
involves a balance between the distortion and adversarial
losses, and is difficult to achieve the lowest distortion under
perfect perception constraint. Unlike the discriminator in
DAL method being used to discriminate whether its input is
real, the discriminator in our framework not only discrimi-
nate whether input data is real but also discriminate whether
the input data is consistent with the bit stream Z. By this,
though without distortion constraint, G2 is trained to decode
data consistent with the input rather than randomly generate
a realistic output. This results in an advantage that the pro-
posed framework avoids the balance between the distortion
and adversarial losses in DAL, and can achieve the lowest
MSE distortion under perfect perception constraint.

To optimize the decoder to satisfy (16), we add a random
noise input in the decoder G2. This is a commonly used
trick to achieve high perceptual quality (Blau & Michaeli,
2019; Agustsson et al., 2019), In our framework, (16) holds
when (G2, J) are optimal, which means the output of the
decoder would have perfect perceptual quality.

4. Experimental Illustration
We demonstrate the theoretical finding and the effectiveness
of the proposed framework on the MNIST dataset (Lecun
et al., 1998). Note that the rate-distortion-perception func-
tion does not have an analytical expression for a general
data distribution, here we empirically demonstrate the 2-fold
relation in Theorem 2 by experiment. As the compression
task on the MNIST data is relatively simple, and the pro-

posed framework can theoretically achieve the lowest MSE
distortion with perfect perceptual quality as discussed in Sec-
tion 3.2, an implemantation using DNN can be expected to
closely approach the rate-distortion curve under perception
constraint. In this context, we can compare the empirical
rate-distortion curve of the proposed framework with that
under no perception constraint to demonstrate the derived
2-fold relation. Moreover, we demonstrate the superiority
of the proposed framework by comparing it with the DAL
method. The code is available online1.

In the proposed framework, E, G1, G2 and J are convo-
lutional neural networks (CNN). The encoder E maps a
32× 32 image into a d× 1 vector with each element be a
quantized integer. To preserve gradient for backpropagation,
the elements are quantized by

ẑ = z+sg[Q(z)− z], (25)

where Q(·) is a quantization operator and sg[ · ] is the stop-
gradient operator (van den Oord et al., 2017; Razavi et al.,
2019). The bit rate is controlled by limiting the dimension
and quantization level of encoder output. The output is
quantized into binary values and correspondingly the bit
rate is bounded by d.

Our model is trained by two steps as presented in Section
3.2, in which (E,G1) is firstly optimized as

min
E,G1

E‖X −G1(E(X))‖2. (26)

Then, with E fixed, (G2, J) is optimized as

min
J∈F

max
G2

E[J(G2(E(X)), E(X))]− E[J(X,E(X))],

where F denotes the bounded 1-Lipschitz functions. G2 is
trained to generate images of which the distribution is the
same as that of X . The input of G2 is a 100× 1 vector, in
which the first d (d < 100) elements are the output of E
and the other elements are Gaussian noise. When d = 0,
(G2, J) degenerates to a pure generative adversarial network.
Extra experiments show that, with different dimensions of
the noise vector, the MSE curves converge to almost the
same value. To stabilize the process of adversarial training,
WGAN-gp (Arjovsky et al., 2017; Ishaan et al., 2017) is
employed, in which a gradient penalty is added into the loss
function of J as

E[J(G2(E(X)), E(X))]− E[J(X,E(X))] + λgpLgp,

where Lgp is the gradient penalty term and λgp is a param-
eter set to 10. We use a pre-training scheme to address
the degeneration problem in adversarial training, which is
detailed in the supplementary material.

1https://github.com/ZeyuYan/Perceptual-Lossy-Compression
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(a) 2 bits (b) 4 bits (c) 8 bits

(d) 16 bits (e) 32 bits (f) 64 bits

Figure 3. MSE loss versus training epoch for different bit-rates.

4.1. Rate-Distortion Tradeoff with or without
Perception Constraint

For 32 different bit rates,R ∈ {2, 4, 6, · · · , 64}, we train 32
encoder-decoder pairs (E,G1) by minimizing MSE-only
loss and another 32 pairs (E,G2) by our proposed frame-
work. Figure 2 shows the fitted empirical rate-distortion
curves of the encoder-decoder pairs. In Figure 2, R(D,∞)
and R(D, 0) are the fitting results, whilst R(D/2,∞) is
a scaled version of the fitted R(D,∞) curve. Clearly,
the empirical rate-distortion curves are monotonically non-
increasing and convex, which is consistent with the theo-
retical properties of R(D,P ) (Blau & Michaeli, 2019). In-
terestingly, R(D/2,∞) closely approaches R(D, 0), which
empirically demonstrates the result given by Theorem 2,
i.e., the 2-fold relation between the lowest achievable MSE
distortion under perfect perception constraint and that under
no perception constraint.

Figure 3 presents the MSE loss in trainingG1 andG2 versus
training epoch for six rate cases R ∈ {2, 4, 8, 16, 32, 64}.
For each case, the curve which is twice the amplitude of
the MSE of G1 is also plotted for reference. It can be seen
that, without perception constraint, the MSE loss of G1

converges rapidly in all bit-rate cases. In comparison, the
MSE loss of G2 converges slower, which is due to the fact
that G2 is jointly trained with J in an alternating manner.
Although G2 is trained only using an adversarial loss and
without using MSE loss, it closely converges to the 2-fold
MSE curve of G1 in each case, which accords well with
Theorem 2.

Figure 4 shows some samples of the reconstructed images
by G1 and G2 under different bit rates. Obviously, the out-
put of G2 is clearer and sharper than that of G1. As the

Figure 4. Visual comparison between the two cases with or without
perception constraint.

decrease of bit rate, the output of G1 becomes more blurry
and unrecognizable, especially when bit rate is less than 4,
which is due to the information lost in the encoding step.
In comparison, the output of G2 does not suffer from such
deteriorating problem, which is clear and recognizable even
when the bit rate is 2. However, for fixed bit rate, better per-
ceptual quality would lead to larger distortion. Hence clear
output images do not necessarily mean correct numbers.
In principle, G2 additionally takes a noise input to gener-
ate details, which would change the typeface, inclination,
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Figure 5. Performance comparison between the traditional distortion plus adversarial loss based method and the proposed method.

thickness of the original input and may even reconstruct a
completely different but clear number.

Next, we compare our method with the DAL method, of
which the parameter λ balances between the MSE distortion
loss and the adversarial loss. Based on DAL for different
values of λ, we train a number of encoder-decoder pairs for
bit rate R = 4. Figure 5 compares the results of G1, G2 and
the DAL method with selected λ ∈ {0.1, 1, 5}, including
the MSE and output image samples. It can be seen that, for
the DAL method, as the increase of λ, the perceptual quality
improves but in the meantime the distortion increases. Our
method has better peceptual quality than the DAL method
even when the MSE of DAL is larger than that ofG2. As dis-
cussed in Section 2.3 and 3.2, while our method can achieve
the lowest distortion under perfect perception constraint, the
DAL method cannot.

4.2. Related Works

Our work is closely related to (Blau & Michaeli, 2019) but
different from it in the following aspects. First, the anal-
ysis in (Blau & Michaeli, 2019) is based on constructing
an encoder-decoder pair that can attain perfect perception
quality, e.g., by concatenating a post-processing perceptual
mapping after an optimal encoder-decoder pair under MSE
measure. Since the constructed compression system can
attain perfect perception quality with a doubling of the MSE
distortion, in theory the lowest achievable MSE distortion
under perfect perception constraint should be no more than
twice that under no perception constraint. In contrast, we
derive the rate-distortion bound under perfect perception
constraint through a completely different line of analysis,
via analyzing the lossy compression formulation itself as
presented in Section 3.1. Second, our result determinis-
tically shows that the lowest achievable distortion under
perfect perception constraint is exactly 2-fold that under no
perception constraint. Third, we show that, to achieve the
lowest MSE distortion under perfect perception constraint,
perceptual loss is unnecessary for training the encoder whilst
distortion loss, either on pixel or deep features, is unneces-
sary for training the decoder. Fourth, we propose a training

framework that can achieve the lowest MSE distortion under
perfect perception constraint at a given bit rate.

Like (Zhang et al., 2018; Ledig et al., 2017), our method
is also based on GAN. However, unlike the formers using
a distortion plus adversarial loss to train the encoder and
decoder in an end-to-end manner, our method first uses a
MSE loss to train the encoder and, then, uses an adversar-
ial loss to train the decoder conditioned on the so obtained
encoder. The superiority of the new method is discussed
in Section 2.3 and 3.2. Recently, a conditioned discrimina-
tor similar to that in our framework has been employed in
(Mentzer et al., 2020) to achieve high-fidelity image com-
pression. Our work provides a theoretical foundation of the
conditioned discriminator. The work (Mentzer et al., 2020)
still uses a distortion plus adversarial loss, while we show
that the decoder can be trained to achieve perfect perceptual
reconstruction using adversarial-only loss and adversarial
loss is unnecessary when training encoder.

We leave the application of the proposed framework to color
image compression to future work, as it has a high require-
ment on computation hardware and poses a challenge in
tuning a big GAN model.

5. Conclusion
We analyzed the effect of perception constraint on the rate-
distortion function in lossy compression. We proved that,
for fixed bit rate, the cost of imposing a perfect perception
constraint is exactly a doubling of the lowest achievable
MSE. The analysis also provided new insights on how to
build a training framework for perfect perception recon-
struction in lossy compression. Accordingly, we proposed a
framework for training an encoder-decoder pair to achieve
the lowest MSE under perfect perception constraint. Ex-
perimental results well verified the theoretical finding and
demonstrated the superiority of the new framework over the
traditional distortion plus adversarial loss based framework.
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Ballé, J., Minnen, D., Singh, S., Hwang, S. J., and Johnston,
N. Variational image compression with a scale hyper-
prior. In Proceedings of the International Conference on
Learning Representations (ICLR), 2018.
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