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Abstract
Motivated by the needs from an airline crew
scheduling application, we introduce structured
convolutional kernel networks (Struct-CKN),
which combine CKNs from Mairal et al. (2014)
in a structured prediction framework that sup-
ports constraints on the outputs. CKNs are a
particular kind of convolutional neural networks
that approximate a kernel feature map on training
data, thus combining properties of deep learn-
ing with the non-parametric flexibility of kernel
methods. Extending CKNs to structured outputs
allows us to obtain useful initial solutions on a
flight-connection dataset that can be further re-
fined by an airline crew scheduling solver. More
specifically, we use a flight-based network mod-
eled as a general conditional random field capable
of incorporating local constraints in the learning
process. Our experiments demonstrate that this
approach yields significant improvements for the
large-scale crew pairing problem (50,000 flights
per month) over standard approaches, reducing
the solution cost by 17% (a gain of millions of
dollars) and the cost of global constraints by 97%.

1. Introduction
Since crew costs are the second-highest spending source for
air passenger carriers, crew scheduling is of crucial impor-
tance for airlines. The crew pairing problem (CPP) searches
for a minimum-cost set of anonymous feasible pairings (ro-
tations) from the scheduled flights, such that all flights are
covered exactly once, and all airline regulations and col-
lective agreements are respected. The complexity of this
problem lies in the large number of possible pairings, as
the selection of pairings at minimal cost—a large integer
programming problem—cannot be performed using stan-
dard solvers. Seeking to obtain an efficient algorithm for
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large-scale monthly CPPs (up to 50,000 flights) and build-
ing on the column generation-based solver by Desaulniers
et al. (2020), Yaakoubi et al. (2020) proposed Commercial-
GENCOL-DCA, an improved solver starting with an ag-
gregation, in clusters, of flights. The initial aggregation
partition permits replacing all flight-covering constraints
of flights in a cluster by a single constraint, thus allowing
the solver to cope with larger instances. Initial clusters can
either be extracted from the initial solution (Desaulniers
et al., 2020) or given separately, as in Yaakoubi et al. (2020),
where authors used convolutional neural networks (CNN)
to solve the flight-connection problem (a supervised multi-
class classification problem). The objective of this problem
is to predict the next flight that a crew follows in its sched-
ule given the previous flight. They used CNN to harness
the spatial locality (localized spatial features) and used a
similarity-based input, where neighboring factors have sim-
ilar features. By passing initial clusters of flights to the
CPP solver, the reported reduction of solution cost averages
between 6.8% and 8.52%, mainly due to the reduction in
the cost of global constraints between 69.79% and 78.11%.
The cost of global constraints refers to the penalties incurred
when the workload is not fairly distributed among the bases
in proportion to the available personnel at each base.

However, a major weakness of their approach is that they
can only produce initial clusters and not an initial solution,
since they use a greedy predictor making one prediction at
a time (predicting sequentially the next flight given only the
previous flight). This prevents the predictor from incorpo-
rating constraints on the output and the produced solutions
cannot be used as initial solutions for the solver as they are
not sufficiently close to being feasible. A pairing is deemed
feasible if it satisfies safety rules and collective agreement
rules (Kasirzadeh et al., 2017); examples include minimum
connection time between two flights, minimum rest time,
and maximum number of duties in a pairing. By providing
an initial solution, we not only accelerate the optimization
process and calculate the feasibility of proposed pairings,
but we also propose clusters similar to the initial solution,
thus reducing the degree of incompatibility between current
solution and proposed pairings (Elhallaoui et al., 2010).

In this paper, we address this lack of constraint modeling,
while still enabling the use of a convolutional architecture.
For this purpose, we investigate the convolutional kernel
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network (CKN), an approximation scheme similar to CNN
proposed by Mairal et al. (2014). To bypass the major limi-
tations in Yaakoubi et al. (2020), we incorporate local con-
straints on the outputs (imposing that each flight has to be
preceded by at most one flight). We harness the spatiotem-
poral structure of the CPP problem by combining kernel
methods and structured prediction. The outputs start the
optimizer and solve a large-scale CPP, where small savings
of a mere 1% translate into an increase of annual revenue
for a large airline by dozens of millions of dollars. Note
that, to the best of our knowledge, we are not aware of any
ML approach that can directly solve the CPP (which has
complex airline-dependent costs and constraints that are not
necessarily available to the ML system at train time).

We thus consider instead to use the ML system to pro-
pose good initial clusters and an initial solution for the
CPP solver. The results of training on the flight-connection
dataset (Yaakoubi et al., 2019), a flight-based network struc-
ture modeled as a general conditional random field (CRF)
graph, demonstrate that the proposed predictor is more suit-
able than other methods. Specifically, it is more stable than
CNN-based predictors and extensive tuning is not required,
in that no Bayesian optimization (to find a suitable configu-
ration) is needed, as we observe in our experiments. This
is crucial to integrate ML into a solver for the CPP or any
real-world scheduling problem. Note that unlike recurrent
neural networks (RNNs) or neural networks by (Yaakoubi
et al., 2020) which cannot produce initial solutions that are
sufficiently close to being feasible, the proposed predic-
tor incorporates local constraints in the learning process.
Furthermore, note that while previous studies focused on us-
ing ML (either through imitation learning or reinforcement
learning) to solve small-scale CO problems such as vehicle
routing (≤ 100 customers) and airline crew scheduling (
≤ 714 flights) problems, we use the proposed predictor to
warm-start a monthly CPP solver (up to 50,000 flights). For
an extensive literature review on using machine learning for
combinatorial optimization, see Bengio et al. (2020).

Contributions. Bridging the gap between kernel methods
and neural networks, we propose the structured convolu-
tional kernel network (Struct-CKN)1. We first sanity check
the approach on the OCR dataset (Taskar et al., 2004) yield-
ing a test accuracy comparable to state of the art. Then, to
warm-start an airline crew scheduling solver, we apply the
proposed method on a flight-connection dataset, modeled
as a general CRF capable of incorporating local constraints
in the learning process. We show that the constructed so-
lution outperforms other approaches in terms of test error
and feasibility, an important metric to initialize the solver.
The predicted solution is fed to the solver as an initial solu-

1The code is available at the following link: https://
github.com/Yaakoubi/Struct-CKN

tion and initial clusters, to solve a large-scale CPP (50,000
flights). Our experiments demonstrate that this approach
yields significant improvements, reducing the solution cost
by 17% (a gain of millions of dollars) and the cost of global
constraints by 97%, compared to baselines.

Outline. The remainder of this paper is structured as
follows. Section 2 describes related methods. Section 3
presents CKNs. CRFs are outlined in Section 4. Section 5
presents Struct-CKN. Section 6 reports Computational re-
sults on OCR dataset, flight-connection dataset, and CPP.

2. Related Work
Upon a succinct review of previous work to compare avail-
able approaches in the literature to Struct-CKN, we argue
for the use of the latter on the flight-connection dataset to
solve CPPs.

Combining networks and energy-based models is a well-
known approach since the 1990s. For instance, Bottou
(2012) introduced graph transformer networks trained end-
to-end using weighted acyclic directed graphs to represent a
sequence of digits in handwritten character recognition. Fur-
thermore, inspired by Q-learning, Gygli et al. (2017) used an
oracle value function as the objective for energy-based deep
networks, and Belanger & McCallum (2016) introduced
structured prediction energy networks (SPENs) to address
the inductive bias and to learn discriminative features of the
structured output automatically. By assigning a score to an
entire prediction, SPENs take into consideration high-order
interactions between predictors using minimal structural
assumptions. Nevertheless, due to the non-convexity, opti-
mizing remains challenging, which may cause the learning
model to get stuck in local optima. Another approach is to
move step by step and predict one output variable at a time
by applying the information gathered from previous steps.
The linking between the steps is learned using a predefined
order of input variable where the conditional is modeled
with RNNs (Zheng et al., 2015b). Although this method has
achieved impressive results in machine translation (Leblond
et al., 2017), its success ultimately depends on the neural net-
work’s ability to model the conditional distribution and it is
often sensitive to the order in which input data is processed,
particularly in large-size graphs, as in CPPs (50,000 nodes).

In contrast to these approaches, instead of using continuous
relaxation of output space variables (Belanger & McCallum,
2016), Struct-CKN uses supervised end-to-end learning of
CKNs and CRF-based models. Accordingly, any of the
existing inference mechanisms—from belief propagation
to LP relaxations—can be applied. This allows us to natu-
rally handle general problems that go beyond multi-label
classification, and to apply standard structured loss func-
tions (instead of extending them to continuous variables,

https://github.com/Yaakoubi/Struct-CKN
https://github.com/Yaakoubi/Struct-CKN
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as in the case of SPENs). More importantly, Struct-CKN
allows us to apply our method to a large-scale CRF graph
containing up to 50,000 nodes. Furthermore, in contrast
to methods in the literature (e.g., CNN-CRF (Chu et al.,
2016), CRF-RNN (Zheng et al., 2015a), and deep structured
models (Chen et al., 2015)), it has far fewer parameters, thus
bypassing the need for extensive tuning.

Finally, note that in recent papers, convolutional graph neu-
ral networks (ConvGNNs) (Kipf & Welling, 2016) are used
either (1) to warm-start a solver (trained under the imita-
tion learning framework) (Owerko et al., 2020), (2) to solve
the optimization problem end-to-end (Khalil et al., 2017),
or (3) to guide an optimization process (variable selection
in branch-and-bound Gasse et al. (2019)), and ConvGNNs
might appear to be a good candidate-solution for CPPs when
coupled with a CRF layer to impose constraints on the out-
put. However, in the case of graphs with up to 50,000 nodes,
the number of parameters used by ConvGNN and the com-
putational limitations prevents us from considering it. In
fact, we are not aware of any prior work where ConvGNNs
were used at this scale. Furthermore, the implicit motiva-
tion for our proposed approach is an end-to-end solution
method that can (1) harness the predictive capabilities of
the ML predictor and the decomposition capacity of the
solver (Yaakoubi et al., 2020), and (2) can be used on a
standard machine with no specific resource requirements, to
replace existing solvers in the industry. Future research will
look into the possibility of integrating a distributed version
of ConvGNNs into the proposed framework.

3. Convolutional Kernel Networks
CKN is a particular type of CNN that differs from the latter
in the cost function to be optimized to learn filters and in the
choice of non-linearities. We review CKNs, with the same
notation as in Mairal (2016); Bietti & Mairal (2019). For
further detail, see Appendix A.

3.1. Unsupervised Convolutional Kernel
Networks (Mairal et al., 2014)

We consider an image I0 : Ω0 → Rp0 , where p0 is the
number of channels, e.g., p0 = 3 for RGB, and Ω0 ⊂ [0, 1]2

is a discrete set of pixel locations. Given two image patches
x, x′ of size e0 × e0, represented as vectors in Rp0e

2
0 , we

define a kernel K1(x, x′) = ‖ x‖‖ x′‖ · κ1(〈 x
‖ x‖ ,

x′

‖ x′‖ 〉) if
x, x′ 6= 0 and 0 otherwise, where ‖.‖ and 〈, 〉 denote the Eu-
clidian norm and inner-product, respectively, and κ1(〈·, ·〉)
is a dot-product kernel on the sphere. We have implicitly
defined the reproducing kernel Hibert space (RKHS) H1

associated to K1 and a mapping ϕ1 : Rp0e
2
0 → H1.

First, we build a database of n patches x1, . . . ,xn ran-
domly extracted from various images and normalized to

have unit `2-norm. Then, we perform a spherical K-means
algorithm (Buchta et al., 2012), acting as a Nyström ap-
proximation, to obtain p1 centroids z1, . . . , zp1 with unit
`2-norm. Given a patch x of I0, the projection of ϕ1(x)
onto F1 := Span(ϕ1(z1), . . . , ϕ1(zp1

)) admits a natural
parametrization given in (1) where Z = [z1, . . . , zp1

], and
κ1 is applied pointwise to its arguments.

Γ1(x) := ‖x‖κ1(Z>Z)−1/2κ1

(
Z>

x

‖ x‖

)
if x 6= 0 and 0 o.w.

(1)

Consider all overlapping patches of I0. We set M1(z) =
Γ1(xz), z ∈ Ω0 where xz is the patch from I0 centered
at pixel location z. The spatial map M1 : Ω0 → Rp1 thus
computes the quantities Z>x for all patches x of image I
(spatial convolution after mirroring the filters zj), then ap-
plies the pointwise non-linear function κ1.

The previous steps transform the image I0 : Ω0 → Rp0 into
a map M1 : Ω0 → Rp1 . Then, the CKNs involve a pooling
step to gain invariance to small shifts, leading to another
finite-dimensional map I1 : Ω1 → Rp1 with a smaller res-
olution: I1(z) =

∑
z′∈Ω0

M1(z′)e−β1‖z′−z‖22 , z ∈ Ω1,
where β1 is a subsampling factor. We build a multilayer im-
age representation by stacking and composing kernels. Sim-
ilarly to the first CKN layer transforming I0 : Ω0 → Rp0 to
the map I1 : Ω1 → Rp1 , we apply the same procedure to
obtain I2 : Ω2 → Rp2 , where p2 is the number of centroids
in the second layer, then I3 : Ω3 → Rp3 , etc.

3.2. Supervised Convolutional Kernel
Networks (Mairal, 2016)

Let I1
0 , I2

0 , . . . , In0 be the training images with respective la-
bels y1, . . . , yn in {-1 ; +1} for binary classification. We also
haveL: R×R→ R, a convex smooth loss function. Given a
positive definite kernel K on images, the classical empirical
risk minimization formulation consists of finding a predic-
tion function in the RKHSH associated to K by minimiz-
ing the objective minf∈H

1
n

∑n
i=1 L(yi, f(Ii0)) + λ

2 ‖f‖
2
H,

where the parameter λ controls the smoothness of the pre-
diction function f with respect to the geometry induced by
the kernel, hence regularizing and reducing overfitting.

After training a CKN with k layers, such a positive definite
kernelKZ may be defined as in (2) where Ik, I ′k are the k-th
finite-dimensional feature maps of I0 and I ′0, respectively,
and fk, f ′k are the corresponding maps in Ωk → Hk, which
have been defined in Section 3.1.

KZ(I0, I
′
0) =

∑
z∈Ωk

〈fk(z), f ′k(z)〉Hk =
∑
z∈Ωk

〈Ik(z), I ′k(z)〉

(2)
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The kernel KZ is also indexed by Z , representing network
parameters (subspacesF1, . . . , Fk, or equivalently the set of
filters Z1, . . . , Zk). Then, the formulation becomes as in (3)
where ‖·‖F is the Frobenius norm extending the Euclidean
norm to matrices and, with an abuse of notation, the maps
Iik are seen as matrices in Rpk×|Ωk|. Then, the supervised
CKN formulation consists of jointly minimizing (3) w.r.t.
W in Rpk×|Ωk| and with respect to the set of filters Z1, . . . ,
Zk, whose columns are constrained to be on the Euclidean
sphere.

min
W∈Rpk×|Ωk|

1

n

n∑
i=1

L(yi, 〈W, Iik〉) +
λ

2
‖W‖2F (3)

4. Graph-Based Learning
In structured prediction, models are typically estimated with
surrogate structured loss minimization, such as with struc-
tured SVM (SSVM) or CRFs. We used CRFs for the struc-
tured prediction that we briefly review below. We also tested
SSVM integration instead of CRFs, but it yielded slightly
worse results, see Appendices B.2 and C for details and
experimental results using SSVM.

A CRF models the conditional probability of a structured
output y ∈ Y given an input x ∈ X where the prob-
ability to observe y when x is observed is p(y|x;w) ∝
exp(〈w,F (x, y)〉), F is the feature mapping, and w is the
vector of weights (to be learned). The CRF predictor of y
when x is observed is: hw(x) = arg maxy∈Y〈w,F (x, y)〉.
The CRF primal problem formulation is shown in (4), where
LCRF denotes the negative log likelihood loss.

min
ω
λ‖ω‖2 +

1

n

N∑
i=1

LCRF (xi, yi;ω) (4)

To optimize CRFs, we use stochastic dual coordinate ascent
(SDCA) (Shalev-Shwartz & Zhang, 2013; 2014) as Le Priol
et al. (2018) showed it yielded state-of-the-art results for
CRFs. Although one can also use the stochastic aver-
age gradient (SAG) algorithm (Schmidt et al., 2015) or
the online exponentiated gradient (OEG) algorithm, an
advantage of SDCA over OEG (and SAG) is that it en-
ables performing an “exact” line search with only one
call to the marginalization oracle. We now rewrite (4)
using the notation for the SDCA setup for multi-class
classification (Shalev-Shwartz & Zhang, 2014). Denote
Mi = |Yi| the number of labelings for sequence i. De-
note Ai the matrix whose columns are the corrected fea-
tures {ψi(y) := F (xi, yi) − F (xi, y)}y∈Yi . Denote also
Φi(s) := log(

∑
y∈Yi exp(sy)) the log-partition function

for the scores s ∈ RMi . Since the negative log-likelihood
can be written as − log(p(yi|xi;w)) = Φi(−A>i w) (Mur-

phy, 2012), the primal objective function to minimize over
w ∈ Rd becomes P (w) := λ

2 ‖w‖
2
2+ 1

n

∑n
i=1 Φi(−A>i w).

This minimization problem has an equivalent Fenchel con-
vex dual problem. Denote ∆M the probability simplex over
M elements. Denote αi ∈ ∆Mi

the set of dual variables for
a given xi, we define the conjugate weight function ŵ as
follows: ŵ(α) = 1

λn

∑
iAiαi = 1

λn

∑n
i=1 Ey∼αi(ψ(y)).

We can show that ŵ(α∗) = w∗ where w∗ and α∗ are re-
spectively the optimal primal parameters and the optimal
dual parameters. As such, we can also define the primal
sub-optimality as: P (w)− P (w∗).

Le Priol et al. (2018) adapted SDCA to CRF by considering
marginal probabilities over cliques of the graphical model.
Because the dual variable αi is exponentially large in input
size xi, α is replaced by µ = (µ1, . . . , µn), where µi ∈ Π∆C

C

is the concatenation of all the clique marginal vectors for
sample i. Given its state-of-the-art performance, we decided
to use it, although we will compare it with other optimizers
in Section 6 (see Appendix B.1 for further details).

5. The Struct-CKN Framework
As in Figure 1, the Struct-CKN model consists of two com-
ponents intended to train CRFs: (1) the CKN and (2) the
structured predictor, using CRF loss, and SDCA. Upon ini-
tializing the CKN layers and the structured predictor, for
each iteration, we pass the input image through the CKN
multilayers. The last map of CKN is passed through to
the structured predictor to infer probabilities, which are
employed to train CKN weights by backpropagating using
rules in Mairal (2016).

Algorithm 1 Training the Struct-CKN Model
1: Initialize CKN parameters in unsupervised manner as

described in Sec. 3.1
2: Initialize structured predictor and CRF model as in

Alg. 2 (see Appendix B.1, steps 1-2)
3: for t = 0 . . . do
4: For each input, construct an unary feature map, as

described in Sec. 3.1
5: (Optional) Center and rescale these representations

to have unit `2-norm on average
6: Infer probabilities by providing image map as input

to structured predictor
7: Train the structured predictor using the feature map

as an input for nEp epochs
8: Use the inferred probabilities to compute the gradient

by using the chain rule (backpropagation) and update
the CKN weights (Mairal, 2016)

9: end for

To do inference for CRF models with a small number of
nodes (as in Section 6.1), we use max-product belief prop-
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Embedding
(optional) CKN

Scaler
(optional)

Structured predictor – CRF (SDCA):
Infer probabilities, then train the

structured predictor

Flatten
input

unary
feature maps Un-flatten input

Flatten inferred
probabilities

forward flow backward flow

Figure 1. The Architecture Diagram for the Struct-CKN Predictor

agation, since chains can be solved exactly and efficiently.
For the flight-connection dataset (as in Section 6.2), since
CRF models contain 50,000 nodes, we use AD3 (alternating
directions dual decomposition) (Martins et al., 2015) for ap-
proximate maximum a posteriori (MAP) inference. It allies
the modularity of dual decomposition with the effectiveness
of augmented Lagrangian optimization via the alternating di-
rections method of multipliers and has some very interesting
features in comparison to other message-passing algorithms.
Indeed, AD3 has been empirically shown to reach consen-
sus faster than other algorithms Martins et al. (2015) and
outperforms state-of-the-art message-passing algorithms on
large-scale problems. Besides, AD3 provides a library of
computationally-efficient factors that allow handling declar-
ative constraints within an optimization problem. This is
particularly interesting for the CPP use case since we add
a constraint to impose that each flight is preceded by one
flight at most. To use SDCA (requiring a marginalization or-
acle) with AD3 (used to do approximate MAP), we propose
a simple approximation, using MAP label estimates. See
Appendix B.1 for details on integrating SDCA and AD3.

Note that an embedding layer may be used before passing
the input through to the CKN layers. Indeed, for categorical
variables with a large number of categories, the input ma-
trix is sparse, making the learning process difficult, as the
extracted patches have mostly null values. Furthermore, as
in Chandra et al. (2017), using deep structured predictors
may require using scaling. Specifically, the last map of the
“deep” layer needs to be rescaled before being passed to the
“structured layer”. We propose to use one of the following
scalers within the Scikit-learn library: Min-Max scaler, Nor-
malizer scaler, Standard scaler, and Robust scaler. When
using the SDCA optimizer, line search requires computing
the entropy of the marginals. Since this is costly, in order
to minimize the number of iterations, we used the Newton-
Raphson algorithm. This requires storing the logarithm
of the dual variable, which may be expensive, so a decent
amount of memory should be allocated.

Finally, note that we use a batch-version of the Struct-CKN
predictor on the flight-connection dataset (Yaakoubi et al.,
2019), where one batch corresponds to one CRF model

Table 1. Test Error on the OCR Dataset
Test error (%)

SDCA - linear features (Le Priol et al., 2018) 12.0

LSTM (Greff et al., 2016) 4.6
CNN-CRF (Chu et al., 2016) 4.5
SCRBM (Tran et al., 2020) 4.0
NLStruct (Graber et al., 2018) 3.6

Struct-CKN 3.4

(CPP instance): (1) We initialize the CKN weights (in an
unsupervised manner) and the CRF model sequentially by
considering each one of the six instances separately. (2)
We ”flatten” the input by considering each one of the six
instances separately. (3) We center and rescale the repre-
sentations for all the instances at once. (4) We pass small
batches of image maps as inputs to the structured predictor
(e.g., 128 image maps) to infer the probabilities and train the
structured predictor. Then, we use the inferred probabilities
of the batch to update the CKN weights.

6. Experiments
In this section, we report the results of experiments using
Struct-CKN. First, we sanity-check Struct-CKN on the stan-
dard OCR dataset in Section 6.1, showing that it’s compara-
ble to the state of the art. Then, in Section 6.2, we use the
proposed predictor on the flight-connection dataset to warm-
start Commercial-GENCOL-DCA.We use Pytorch (Paszke
et al., 2019) to declare said model and perform operations
on a 40-core machine with 384 GB of memory, and use K80
(12 GB) GPUs. The CRF model is implemented using PyS-
truct (Müller & Behnke, 2014), while the SDCA optimizer
is implemented using SDCA4CRF. Scalers are implemented
using Scikit-learn (Pedregosa et al., 2011).

6.1. OCR - Chain CRF

Each example in the OCR dataset (Taskar et al., 2004) con-
sists of a handwritten word pre-segmented into characters,
with each character represented as a 16×8 binary image.
The task is to classify the image into one of the 26 charac-
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Figure 2. Comparison of Primal Sub-optimality

ters (a−z). It comes with pre-specified folds; one fold is
considered the test set, while the rest as the training set, as in
max-margin Markov networks (Taskar et al., 2004). Since
the CRF optimizers (SAG-NUS, SAG-NUS* (Schmidt et al.,
2015), SDCA, SDCA-GAP (Le Priol et al., 2018), and
OEG (Schmidt et al., 2015)) yield similar test errors (11.8-
12%), we only report SDCA (with linear features) in Ta-
ble 1. LSTM (standard two-layer) (Greff et al., 2016) and
CNN-CRF (standard two-layer) (Chu et al., 2016) yield
comparable results (4.4-4.6%). Sequence Classification Re-
stricted Boltzmann Machine (SCRBM) (Tran et al., 2020)
and NLStruct (Graber et al., 2018) provide better results
(4.0%, and 3.6%). However, Struct-CKN outperforms all
aforementioned methods, reducing test errors to 3.40%.

Note that some structured predictors can lower test error to
1−3% (Pérez-Cruz et al., 2007), such as SeaRNN (Leblond
et al., 2017), which adapts RNN to the learning-to-search ap-
proach. However, such models approximate the cost-to-go
for each token by computing the task loss for as many roll-
outs as the vocabulary size at each time step, and are thus
difficult to scale to real-world datasets (with long sequences
or large vocabulary), such as the flight-connection dataset
(see Section 6.2). Figure 2 reports primal sub-optimality
w.r.t parameter updates (see Appendix C). Struct-CKN out-
performs other methods for the first 50 epochs and is com-
parable to other methods for subsequent epochs. We usually
train predictors only for several epochs; thus, the precision
of primal sub-optimality (below 10−5) is negligible.

6.2. Airline Crew Scheduling Dataset - Graph CRF

This section reports results of using Struct-CKN to warm-
start Commercial-GENCOL-DCA (Yaakoubi et al., 2020)
and solve large-scale CPP. Section 6.2.1 presents CPP. Sec-
tion 6.2.2 outlines the flight-connection prediction problem

and CRF models. Section 6.2.3 reports results of predic-
tions. Section 6.2.4 describes the optimization process and
analyzes the feasibility of proposed monthly solutions. Sec-
tion 6.2.5 reports results of solving CPPs using the solver.

6.2.1. CREW PAIRING PROBLEM

The CPP aims to find a set of pairings at minimal cost
for each category of the crew and each type of aircraft
fleet (Desaulniers et al., 1997). A flight sequence operated
by a single crew forms a duty and a consecutive sequence
of duty periods is named a pairing. A pairing is deemed
feasible if it satisfies safety rules and collective agreement
rules (Kasirzadeh et al., 2017), such as:

• minimum connection time between two consecutive
flights and minimum rest-time between two duties;

• maximum number of flights per duty and maximum
span of a duty;

• maximum number of landings per pairing and maxi-
mum flying time in a pairing;

• maximum number of days and maximum number of
duties in a pairing.

In addition, CPPs use base constraints (referred to as global
constraints) to distribute the workload fairly amongst the
bases proportionally to the personnel available at each base.
Penalties when the workload is not fairly distributed is called
the cost of global constraints. In our approach, the predictor
does not consider these very complex airline-dependent
constraints as well as the solution cost and the cost of global
constraints, as doing so would require more data than are
currently available. Whenever a flight appears in more than
one pairing, we use deadheads: one crew operates the flight,
while the others are transferred between two stations for
repositioning.

The CPP has been traditionally modelled as a set partitioning
problem, with a covering constraint for each flight and a
variable for each feasible pairing (Desaulniers et al., 1997;
Kasirzadeh et al., 2017). Formally, we consider F to be a
set of flights that must be operated during a given period
and Ω to be the set of all feasible pairings that can be used
to cover these flights. It is computationally infeasible to
list all pairings in Ω when solving CPPs with more than
hundreds of flights. Therefore, it is not tractable to do so
in this context (CPPs with 50,000 flights). For each pairing
p ∈ Ω, let cp be its cost and afp, f ∈ F , be a constant equal
to 1 if it contains leg f and 0 otherwise. Moreover, let xp be
a binary variable that takes value 1 if pairing p is selected,
and 0 otherwise. Using a set-partitioning formulation, the
CPP can be modelled as follows:
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minimize
x

∑
p∈Ω

cpxp (5)

subject to
∑
p∈Ω

afpxp = 1 ∀f ∈ F (6)

xp ∈ {0, 1} ∀p ∈ Ω (7)

The objective function (5) minimizes the total pairing costs.
Constraints (6) ensure each leg is covered exactly once, and
constraints (7) enforce binary requirements on the pairing
variables. The methodology to solve CPPs depends on the
size of the airline’s network, rules, collective agreements,
and cost structure (Yen & Birge, 2006). Since the 1990s, the
most prevalent method has been column generation inserted
in branch-&-bound (Desaulniers et al., 1997). This algo-
rithm was combined with multiple methods in Desaulniers
et al. (2020) to solve large-scale CPPs. Yaakoubi et al.
(2020) proposed Commercial-GENCOL-DCA with a dy-
namic control strategy and used CNNs to develop initial
monthly crew pairings. Because the constructed solution
contained too many infeasible pairings, it was passed to the
solver only as initial clusters and a generic standard initial
solution was used. In this work, we first use Struct-CKN to
construct initial monthly crew pairings passed to the solver
both as initial clusters and an initial solution. First, we
use the GENCOL solver (used to assign crews to under-
covered flights),2 then we run Commercial-GENCOL-DCA.
Because solvers can only handle a few thousand flights,
the windowing approach is used: the month is divided into
multiple windows, where each window is solved (sequen-
tially) while flights in pairings from previous windows are
frozen. GENCOL requires using two-day windows and
one-day overlap period, while Commercial-GENCOL-DCA
permits to use one-week windows and two-day overlap pe-
riod. The latter starts with an aggregation, in clusters, of
flights. The initial aggregation partition permits replacing
all flight-covering constraints of the flights in a cluster by a
single constraint, allowing to cope with larger instances.

6.2.2. PREDICTION PROBLEM FORMULATION

We aim to provide the CPP solver with an initial solution
and initial clusters. Using the flight-connection dataset built
in Yaakoubi et al. (2019), the flight-connection prediction
problem is a multi-class classification problem, formulated
as follows: “Given the information about an incoming flight
in a specific connecting city, choose among all possible de-
parting flights from this city the one that the crew should
follow” (see Appendix D). Thus, each input contains infor-
mation on the previous flight performed by the crew as well
as information on all possible next flights (up to 20 candi-

2http://www.ad-opt.com/optimization/
why-optimization/column-generation/

dates), sorted by departure time, and the output (class) is the
rank of the flight performed by the crew in past solutions.
In Yaakoubi et al. (2019), the authors propose a similarity-
based input where neighboring factors have similar features,
allowing the use of CNNs. We extend their approach with
our Struct-CKN model, thus starting the CPP solver with an
initial solution, and not only the initial clusters.

The training set in the flight-connection dataset consists
of six monthly crew pairing solutions (50,000 flights per
month) and the test set is a benchmark that airlines use
to decide on the commercial solver to use. Each flight is
characterized by the cities of origin and destination, the air-
craft type, the flight duration, and the departure and arrival
time. For each incoming flight, the embedded representation
of the candidate next flights is concatenated to construct
a similarity-based input, where neighboring factors have
similar features. The intuition is that each next flight is
considered a different time step, enabling the use of con-
volutional architecture across time. Yaakoubi et al. (2019)
compare multiple predictors on the flight-connection dataset
and empirically confirm this intuition (see Appendix D).

The dataset is used to define a pairwise CRF on a general
graph where each example consists of a flight-based net-
work structure with nodes corresponding to flights and arcs
representing the feasibility of two flights being successive.
Each flight corresponds to a node connected to nodes that
are possible successors/predecessors; the true label is the
rank of the next flight in the set of sorted possible successors.
We impose local constraints to the output by imposing that
each flight has to be preceded by at most one flight (using
a XOR constraint, which contributes −∞ to the potential).
Unlike for the OCR dataset where “max-product” is used for
belief propagation, in this section, we use AD3 (alternating
directions dual decomposition) (Martins et al., 2015) for
approximate maximum a posteriori (MAP) inference.

6.2.3. RESULTS ON THE FLIGHT-CONNECTION DATASET

As Struct-CKN has fewer hyperparameters than CNNs, we
observed that Struct-CKN is more stable than CNNs in our
experiments, in that it does not requires Bayesian optimiza-
tion to find a good architecture, thus justifying our use of
CKN (see Appendix C). Table 2 reports the number of pa-
rameters and the test error on the flight-connection dataset
using (1) CNNs and Bayesian optimization to search for
the best configuration of hyperparameters (Yaakoubi et al.,
2020); (2) standard CNN-CRF (with non-exhaustive hyper-
parameter tuning) (Chu et al., 2016); and (3) Struct-CKN.
Struct-CKN outperforms both CNN and CNN-CRF while
having far fewer parameters (97% fewer parameters). While
Bayesian optimization can be used to fine-tune hyperparam-
eters, this is not feasible in a real-case usage scenario, as
practitioners cannot perform it each time new data become

http://www.ad-opt.com/optimization/why-optimization/column-generation/
http://www.ad-opt.com/optimization/why-optimization/column-generation/
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Table 2. Test Error on the Flight-connection Dataset (Yaakoubi
et al., 2019)

Test error (%) # parameters

CNN (Yaakoubi et al., 2020) 0.32 459 542
CNN-CRF (Chu et al., 2016) 0.38 547 542
Struct-CKN 0.28 15 200

break all illegal pairings

Generate deadheads and solve with OR solver
(GENCOL then Commercial-GENCOL-DCA)

Standard -
initial

Standard-feasible

Baseline

CNN -
initial CNN

Struct-CKN -
initial

CNN-feasible

CNN

Struct-CKN-feasible

Struct-CKN

Struct-CKN

Struct-CKN+CNN+

Figure 3. The Optimization Process for the CPP

available and the need for extensive fine-tuning makes a
predictor impossible to integrate into any scheduling solver.

6.2.4. CONSTRUCTION AND FEASIBILITY OF A
MONTHLY SOLUTION

As in Figure 3, we compare four approaches to construct
monthly pairings. The first approach is a standard monthly
solution, called “Standard - initial”, a “cyclic” weekly solu-
tion (from running the optimizer on a weekly CPP) rolled to
cover the whole month (Desaulniers et al., 2020). A cyclic
solution is where the number of crews in each city is the
same at the beginning and end of the horizon. In the second
approach, CNNs predict the flight-connection probabilities.
Then, using the same heuristics as in Yaakoubi et al. (2020)
(see Appendix D.3), we build a monthly crew pairing called

“CNN - initial”. In the third and fourth approaches, CNN-
CRF (Chu et al., 2016) and Struct-CKN are used to build
monthly crew pairings called “CNN-CRF - initial”, and

“Struct-CKN - initial”. Then, we break all illegal pairings and
freeze the legal sub-part in initial crew pairings, resulting in

“Standard - feasible”, “CNN - feasible”, “CNN-CRF - feasi-
ble” and “Struct-CKN - feasible”. We generate deadheads
on all flights and pass it to the solver.

Note that to reproduce the following results, we obtain the
commercial dataset from Yaakoubi et al. (2019), which can-
not be distributed because it contains too much flight-data
information sensitive to airlines’ operations. Since the first
step of the CPP solver can solve up to several thousand
flights, we are constrained to use two-day windows. Since
pairings extend to over two days, it cannot “fix” the mis-
predicted and illegal pairings. Therefore, the more illegal
pairings the constructed solution contains, the longer it will
take the solver to find a suitable final solution. Furthermore,

Table 3. Characteristics of Monthly Solutions
#pairings Cost % infeasible

(×108) pairings
Standard - initial 6 525 37.93 50.56
Standard - feasible 3 226 29.75
CNN - initial 4 883 24.13 21.05
CNN - feasible 3 855 16.58
CNN-CRF - initial 4 567 21.15 12.12
CNN-CRF - feasible 4 010 16.15
Struct-CKN - initial 4 515 20.29 11.07
Struct-CKN - feasible 4 015 16.46

when the constructed solution is highly infeasible, it can
only be proposed as initial clusters as in all past research
(e.g., Yaakoubi et al. (2019; 2020)) and not as an initial
solution. In this case, a generic standard initial solution is
used, and since the initial solution and the initial clusters are
different, an adaptation strategy is required to adapt the pro-
posed clusters of the current window to the solution of the
previous window. This is a major limitation of past research
since the explored neighborhood needed to be large enough
to reach a good LP (linear programming) solution but small
enough to maintain a small number of fractional variables
permitting to have an efficient heuristic branch-&-bound.
Thus, not only can we conclude that the primary metric
of interest in our case is the feasibility of the constructed
monthly solution. But, it also becomes crucial to propose a
feasible pairing solution that can be proposed both as initial
clusters and as an initial solution, therefore bypassing the
adaptation strategy and permitting to reduce the resolution
time (by reducing the neighborhood in which to explore in
order to find a suitable solution).

Table 3 summarizes the computational results on the feasi-
bility and characteristics of constructed monthly pairings.
First, breaking all illegal pairings in “Standard - initial solu-
tion” removes 50.56% of the pairings, while that in “CNN
- initial solution” led to removing 21.05%. Note that even
though the test error is low for CNNs, due to the large num-
ber of infeasible pairings, running the optimization using
this initial solution is problematic. Breaking all illegal pair-
ings in “CNN-CRF - initial solution” removes 12.12% of
the pairings, while only 11.07% are removed from “Struct-
CKN - initial solution”. Clearly, although Struct-CKN has
97% fewer parameters than other methods and its hyper-
parameters are not exhaustively fine-tuned, it outperforms
other methods in terms of test error and feasibility. In what
follows, we provide the constructed monthly pairings to the
solver and compare the resulting solutions when using the
baseline solution (Desaulniers et al., 2020), CNN (Yaakoubi
et al., 2020) and the proposed approach (Struct-CKN).
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Table 4. Computational Results for Monthly Solutions
Solution Cost of global Number of Total

cost constraints deadheads time
(×106 $) (×105) (hours)

Baseline 20.64 21.27 992 45.92
(Desaulniers et al., 2020)

CNN (Yaakoubi et al., 2020) 18.88 4.66 1014 95.72
Struct-CKN 18.68 4.20 915 64.48

CNN+ 18.62 3.34 997 126.62
Struct-CKN+ 17.15 0.59 583 41.44

6.2.5. RESULTS ON THE CREW PAIRING PROBLEM

As in Figure 3, the baseline solution (“Baseline”) for the
monthly CPP is obtained by feeding the solver initial clus-
ters from “Standard - feasible” (Desaulniers et al., 2020).
The previous state-of-the-art was obtained by feeding the
solver initial clusters from “CNN - feasible”, yielding a
solution called “CNN”. Instead of CNNs, we can use Struct-
CKN to propose both initial clusters and an initial solu-
tion from “Struct-CKN - feasible” to the solver, yielding a
monthly solution called “Struct-CKN”. To work on finding
the best monthly solution possible and overcome the limita-
tions of using the windowing approach, we feed the solution
obtained from “Struct-CKN” to the solver (again) as initial
clusters and initial solution, yielding “Struct-CKN+”. Be-
cause we cannot use the constructed monthly pairing as an
initial solution, when using CNNs, we claim that re-running
the optimization using the solution “CNN” as initial clusters
does not improve the monthly solution much. To support our
claim, we feed solution “CNN” to the solver as initial clus-
ters, yielding “CNN+” (see Figure 3). See Appendix D.5
for detailed statistics of the optimization process.

Table 4 reports computational results for the final monthly
solution. Note that we do not report variances since the
CPP solver is deterministic. Struct-CKN outperforms both
Baseline and CNN reducing the solution cost (in millions of
dollars) and cost of global constraints by 9.51% and 80.25%,
respectively, while also being 33% faster than CNN. By re-
running the optimization, on the one hand, CNN+ does not
improve the solution much. On the other hand, the Struct-
CKN+ solution yields the best statistics, reducing solution
cost and cost of global constraints by 16.93% and 97.24%,
respectively. More interestingly, the number of deadheads
(see Section 6.2.1) is reduced by 41.23%, compared to Base-
line. Therefore, we can conclude that proposing a feasible
monthly solution both as initial clusters and as an initial
solution allowed us to achieve better results in less time and
to provide the possibility to re-optimize the solution and
improve it further. Thus, this permits to update the train-
ing solutions, suggesting that Struct-CKN can be further
optimized and that further research to avoid the windowing
approach and use a one-month window can present better
results than the current version of solver.

7. Conclusion
Seeking an initial solution to a crew pairing solver, this
study proposes Struct-CKN, a new deep structured predic-
tor. Its supervised use outperforms state-of-the-art methods
in terms of primal sub-optimality of the structured predic-
tion “layer” and test accuracy on the OCR dataset. The pro-
posed method is then applied on a flight-connection dataset,
modeled as a general CRF capable of incorporating local
constraints in the learning process. To warm-start the solver,
we use Struct-CKN to propose initial clusters and an initial
solution to the solver, reducing the solution cost by 17% (a
gain of millions of dollars) and the cost of global constraints
by 97%, compared to baselines. Future research will look
into combining deep structured methods with various opera-
tions research methods and designing new reactive/learning
metaheuristics that learn to guide the search for better solu-
tions in real-time.
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