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Abstract
Predicting molecular conformations (or 3D struc-
tures) from molecular graphs is a fundamental
problem in many applications. Most existing ap-
proaches are usually divided into two steps by
first predicting the distances between atoms and
then generating a 3D structure through optimizing
a distance geometry problem. However, the dis-
tances predicted with such two-stage approaches
may not be able to consistently preserve the ge-
ometry of local atomic neighborhoods, making
the generated structures unsatisfying. In this pa-
per, we propose an end-to-end solution for molec-
ular conformation prediction called ConfVAE
based on the conditional variational autoencoder
framework. Specifically, the molecular graph is
first encoded in a latent space, and then the 3D
structures are generated by solving a principled
bilevel optimization program. Extensive experi-
ments on several benchmark data sets prove the
effectiveness of our proposed approach over ex-
isting state-of-the-art approaches. Code is avail-
able at https://github.com/MinkaiXu/
ConfVAE-ICML21.

1. Introduction
Recently we have witnessed much success of deep learning
for molecule modeling in a variety of applications ranging
from molecule property prediction (Gilmer et al., 2017) and
molecule generation (You et al., 2018; Shi et al., 2020b) to
retrosynthesis planning (Shi et al., 2020a). In these applica-
tions, molecules are generally represented as graphs with
atoms as nodes and covalent chemical bonds as edges. Al-
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2Université de Montréal, Canada 3Massachusetts Institute of Tech-
nology, USA 4Peking University, China 5Canadian Institute for
Advanced Research (CIFAR), Canada 6HEC Montréal, Canada.
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though this is empirically effective, in reality molecules are
better represented as 3D structures (also known as confor-
mations), where each atom is characterized by 3D Cartesian
coordinates. Such 3D structures are also more intrinsic
and informative, determining many chemical and biolog-
ical properties such as chemical sensing and therapeutic
interactions with proteins.

However, determining the 3D structures from experiments is
challenging and costly. Effectively predicting valid and low-
energy conformations has been a very important and active
topic in computational chemistry. Traditional computational
approaches are typically based on Markov chain Monte
Carlo (MCMC) or molecular dynamics (MD) (De Vivo et al.,
2016) to propose conformations combined with simulations
to assign energies through cheap empirical potentials or
expensive quantum chemical simulations (Ballard et al.,
2015). Recently, there is growing interest in developing
machine learning approaches (Mansimov et al., 2019; Simm
& Hernández-Lobato, 2020; Xu et al., 2021) to model the
conditional distribution p(R|G) of stable conformations R
given the molecular graph G by training on a collection of
molecules with available stable conformations. Specifically,
two recent works (Simm & Hernández-Lobato, 2020; Xu
et al., 2021) propose to first predict the distances between
atoms and then generate molecular conformations based
on the predicted distances by solving a distance geometry
problem (Liberti et al., 2014). Such approaches based on
distance geometry effectively take into account the rotation
and translation invariance of molecular conformations and
have hence achieved very promising performance.

However, there is still a significant limitation for these two-
stage approaches, which predict the distances and confor-
mations separately: the predicted distances might not be
able to properly preserve the 3D geometry of local atomic
neighborhoods. Some invalid combinations of distances
could be assigned a high likelihood according to the distance
prediction model. The errors in these distances could be sig-
nificantly exaggerated by the distance geometry program of
the second stage, yielding unrealistic outlier samples of 3D
structures. This is not surprising as the distance prediction
model is trained by maximizing the factorized likelihood
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of distances while our end goal is to predict valid and sta-
ble conformations. We propose to effectively address this
issue with an end-to-end solution which directly predicts
the conformation given the molecular graph. Indeed, in
a related problem of predicting 3D structures of proteins
(a.k.a. protein structure prediction) based on amino-acid
sequences, the recent huge success of the AlphaFold2 algo-
rithm shows the importance and effectiveness of developing
an end-to-end solution compared to the previous AlphaFold
algorithm (though exact details of AlphaFold2 algorithm
are still lacking) (Senior et al., 2020a; Jumper et al., 2020).

In this paper, we propose such an end-to-end solution called
ConfVAE for molecular conformation generation, based on
bilevel programming. To model the rotational and transla-
tional invariance of conformations, we still take the pairwise
distances among atoms as intermediate variables. However,
instead of learning to predict distances by minimizing er-
rors in the space of distance, we formulate the whole prob-
lem as bilevel programming (Franceschi et al., 2018), with
the distance prediction problem and the distance geometry
problem for conformation generation being simultaneously
optimized. The whole framework is built on the condi-
tional variational autoencoder (VAE) framework (Kingma
& Welling, 2013), in which the molecular graph is first en-
coded into the VAE latent space, and the conformations
are generated based on the latent variable and molecular
graph. During training, we iteratively sample a set of dis-
tances from the distance prediction model, generate the 3D
structures by minimizing an inner objective (defined by the
distance geometry problem), and then update the distance
prediction model by optimizing the outer objective, i.e., the
likelihood directly defined on the conformations.

To the best of our knowledge, ConfVAE is the first method
for molecular conformation generation which can be trained
in an end-to-end fashion and at the same time keep the
property of rotational and translational invariance. Extensive
experiments demonstrate the superior performance of the
proposed method over existing state-of-the-art approaches
on several widely used benchmarks including conformation
generation and distance distribution modeling. We also
verify that the end-to-end objective is of vital importance
for generating realistic and meaningful conformations.

2. Background
2.1. Problem Definition

Notations. Following existing work (Simm & Hernández-
Lobato, 2020; Xu et al., 2021), each molecule is represented
as an attributed atom-bond graph G = 〈V, E〉, where V
is the set of vertices representing atoms and E is the set
of edges representing inter-atomic bonds. Each node v in
V describes the chosen atomic features such as element

type. Each edge euv in E describes the corresponding chem-
ical bond connecting u and v, and is labeled with its bond
type. Since the distances of bonds existing in the molecular
graph are not sufficient to determine an unique conformation
(e.g.due to so-called internal rotations around the axis of the
bond), we adopt the common pre-processing methodology
in existing works (Simm & Hernández-Lobato, 2020; Xu
et al., 2021) to expand the graphs by incorporating auxiliary
edges, which force multi-hop distance constraint eliminat-
ing some ambiguities in the 3D conformation, as elaborated
in Appendix A.

For the geometry R, each atom in V is represented by a
3D coordinate vector r ∈ R3, and the full set of positions
{rv}v∈V is represented by the matrix R ∈ R|V|×3. Let
duv denote the Euclidean distance ‖ru − rv‖2 between the
uth and vth atom, then all the distances between connected
nodes {duv}euv∈E can be summarized as a vector d ∈ R|E|.

Problem Definition. The problem of molecular conforma-
tion generation is a conditional generation process, where
the goal is to model the conditional distribution of molecular
conformations R given the graph G, i.e., p(R|G).

2.2. Bilevel Optimization

Bilevel programs are defined as optimization problems
where a set of variables involved in the (outer) objective
function are obtained by solving another (inner) optimiza-
tion problem (Colson et al., 2007). Formally, given the outer
objective function F and the inner objective H , and the cor-
responding outer and inner variables θ and w, a bilevel
program can be formulated by

min
θ
F (wθ) such that wθ ∈ arg min

w
H(w, θ). (1)

Bilevel programs have shown effectiveness in a variety of
situations such as hyperparameter optimization, adversarial
and multi-task learning, as well as meta-learning (Maclaurin
et al., 2015; Bengio, 2000; Bennett et al., 2006; Flamary
et al., 2014; Muñoz-González et al., 2017; Franceschi et al.,
2018).

Typically solving equation 1 is intractable since the solu-
tion sets of wθ may not be available in closed form (Ben-
gio, 2000). A common approach is to replace the exact
minimizer of the inner object H with an approximation
solution, which can be obtained through an iterative opti-
mization dynamics Φ such as stochastic gradient descent
(SGD) (Domke, 2012; Maclaurin et al., 2015; Franceschi
et al., 2017). Starting from the initial parameter w0, we
can get the approximate solution wθ,T by running T iter-
ations of the inner optimization dynamics Φ, i.e., wθ,T =
Φ(wθ,T−1, θ) = Φ(Φ(wθ,T−2, θ), θ), and so on. In the gen-
eral case where θ and w are real-valued and the objectives
and optimization dynamics is smooth, the gradient of the
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object F (wθ,T ) w.r.t. θ, named hypergradient ∇θF (wθ,T ),
can be computed by:

∇θF (wθ,T ) = ∂wF (wθ,T )∇θwθ,T (2)

where ∂ denotes the partial derivative to compute the Jaco-
bian on immediate variables while ∇ denotes a total deriva-
tive taking into account the recursive calls to F . The above
gradient can be efficiently calculated by unrolling the op-
timization dynamics with back-propagation, i.e., reverse-
mode automatic differentiation (Griewank & Walther, 2008),
where we repeatedly substitute wΦ,t = Φ(wθ,t−1, θ) and
apply the chain rule.

3. Implicit Distance Geometry
In this section we elaborate on the proposed end-to-end
framework. We first present a high-level description of our
bilevel formulation in Sec. 3.1. Then we present the model
schematic and training objectives in Sec. 3.2. Finally we
show how to learn the model via hypergradient descent in
Sec. 3.3 and how to draw samples in Sec. 3.4.

3.1. Overview

Since a molecule can have multiple stable conformations,
we model the distribution of conformations R condition-
ing on molecular graph G (i.e. p(R|G)) with a conditional
variational autoencoder (CVAE) (Kingma & Welling, 2013),
in which a latent variable z is introduced to model the un-
certainty in molecule conformation generation. The CVAE
model includes a prior distribution of latent variable pψ(z|G)
and a decoder pθ(R|z,G) to capture the conditional dis-
tribution of R given z. During training, we also involve
an additional inference model (encoder) qφ(z|R,G). The
encoder and decoder are jointly trained to maximize the
evidence lower bound (ELBO) of the data log-likelihood:

logP (R|G) ≥Ez∼qφ(z|R,G) [log pθ(R|z,G)]

−DKL [qφ(z|R,G)‖pψ(z|G)]

,LELBO(θ, φ, ψ),

(3)

The ELBO can be interpreted as the sum of the negative
reconstruction error Lrecon (the first term) and a latent
space prior regularizer Lprior (the second term). In practice,
qφ(z|R,G) and pψ(z|G) are all modeled as diagonal Gaus-
sians N(z|µφ(R,G), σφ(R,G)) and N(z|µψ(G), σψ(G)),
whose mean and standard deviation are predicted by graph
neural networks. To efficiently optimize the ELBO during
training, sampling from qφ(z|R,G) is done by reparametriz-
ing z as zφ = µφ(R,G)+σφ(R,G) ·ε, where ε ∼ N (0, I).

With similar encoder and prior models, the key differences
among different methods lie in the architecture and learning
method of the decoder (generator) model pθ(R|z,G), i.e.,

how to parameterize the decoder and train it with respect
to the reconstruction loss Lrecon. Let Dθ(z,G) denote the
decoder function taking prior z and graph G to obtain a
distance vector, we now elaborate how we formulate the
optimization problem of the decoder as a bilevel program:

Inner objective: Directly generating conformations as
Cartesian coordinates heavily depends on the arbitrary ro-
tation and translation. Therefore, previous effective ap-
proaches (Simm & Hernández-Lobato, 2020; Xu et al.,
2021) instead make the decoder generate inter-atomic dis-
tances d, i.e., dθ,φ = Dθ(zφ,G). The distances d are taken
as intermediate variables to generate conformations, which
are invariant to rotation and translation. To generate a con-
formation R, one needs to first generate the set of distances
d, and then post-process d to obtain the 3D positions R, by
solving a distance geometry optimization problem:

Rθ,φ = arg min
R

H(R, Dθ(zφ,G))

= arg min
R

H(R,dθ,φ)

= arg min
R

{ ∑
euv∈E

(
‖ru − rv‖2 − duv

)2}
,

(4)

which we take as the inner loop objective.

Outer objective: Ultimately, we are interested in di-
rectly minimizing the generalization error on 3D struc-
tures to make the generated conformation consistent with
the ground-truth up to rotation and translation. The
post-alignment Root-Mean-Square Deviation (RMSD) is
a widely used metric for this purpose. To calculate this
metric, another conformation R̂ is first obtained by an align-
ment function R̂ = A(R,R∗), which rotates and translates
the reference conformation R∗ to have the smallest distance
to the generated one R according to the RMSD metric:

RMSD(R, R̂) =
( 1

n

n∑
i=1

‖Ri − R̂i‖2
) 1

2

. (5)

where n is the number of atoms. Then the reconstruction
objective Lrecon can be written as:

F (Rθ,φ) = log pθ(R|z,G)

= −
n∑
i=1

3∑
j=1

(Rij −A(R,R∗)ij)
2
,

(6)

which is the outer loop objective for computing the recon-
struction loss and maximize the log-likelihood.

Bilevel program: Now we can consider equation 4 and
equation 6 as the inner and outer objectives of a bilevel pro-
gramming problem. In this formulation, the outer objective
aims to model the true conditional distribution p(R|G), and
the inner objective solves for the conformation given a set
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Figure 1. The overall framework of ConfVAE. At training time, given the graph G and conformation R, we: 1) compute the distributions
of qφ(z|G,R) and pψ(z|G), and calculate Lprior; 2) sample z from qφ by reparameterization, and feed it into the decoder (generator) pθ
to generate inter-atomic distances d, after which we can obtain an auxiliary objective Laux from the true distances d̂ derived from R; 3)
run the inner loop (distance geometry) to recover the 3D structure from d, and compute the reconstruction RMSD loss Lrecon. The model
is trained end-to-end by optimizing the sum of three object components Lprior , Laux and Lrecon.

of predicted distances. By taking the expectation over latent
variable z, the resulting bilevel program for calculating the
reconstruction term Lreconin equation 3 can be written as:

max
θ,φ

Ez∼qφ(z|R,G) [F (Rθ,φ, θ)] (7)

such that Rθ,φ = arg min
R

H(R, Dθ(zφ,G)). (8)

The derived bilevel problem is still challenging because: 1)
the solution of conformation structure in the inner problem is
not available in closed form; 2) computing this expectation
exactly over the continuous latent space is intractable. Thus,
in practice we compute an empirical estimation of the output
with a variational inference model and the reparametrization
trick. We elaborate on how we address these issues in the
following parts.

3.2. Generative Model

We now have the tools needed to define our conditional gen-
erative model of molecular conformation. The cornerstone
of all modules (encoder, prior and decoder) is message-
passing neural networks (MPNNs) (Gilmer et al., 2017),
which is a variant of graph neural networks that achieves
state-of-the-art performance in representation learning for
molecules (Scarselli et al., 2008; Bruna et al., 2013; Du-
venaud et al., 2015; Kipf & Welling, 2016; Kearnes et al.,
2016; Schütt et al., 2017). The MPNN directly operates
on the graph representation G and is invariant to graph iso-
morphism. In each convolutional (message passing) layer,
atomic embeddings are updated by aggregating the informa-
tion from neighboring nodes.

For the encoder qφ(z|R,G) and prior pψ(z|G), we use the
same MPNN architecture as Mansimov et al. (2019); Simm
& Hernández-Lobato (2020). Since bilevel optimization
has a relatively high memory cost, we use an ordinary
differential equation (ODE)-based continuous normalizing

flow (Chen et al., 2018) (CNF) for the decoder pθ(R|z,G),
which has constant memory cost. We describe the details of
our decoder model below.

Decoder Architecture. As illustrated in Sec. 3.1, our de-
coder is composed of two cascaded levels: a distance pre-
diction model Dθ(z,G) that decodes z back into a set of
distances d, and a differentiable distance geometry proce-
dure to recover geometry R from distances d. The model
Dθ(z,G) is implemented as a conditional extension of the
CNF which transforms noise variables d(t0) (also the initial
distances in the CNF ODE trajectory) sampled from the
prior distributionN (0, I) to final distances d = d(t1). The
transformation is conditioned on the latent variable z as well
as the graph G:

d = Dθ(z,G)

= d(t0) +

∫ t1

t0

gθ(d(t), t,G, z)dt,
(9)

where gθ is an MPNN that defines the continuous-time dy-
namics of the flow Dθ conditioned on z and G. Note that,
given the true distances d(t1) = d, d(t0) can also be eas-
ily computed by reversing the continuous dynamics Dθ:
D−1
θ (z,G) = d(t1) +

∫ t0
t1
gθ(d(t), t, z,G)dt. And thus the

exact conditional log-likelihood of distances given G can be
computed by:

Laux = log pθ(d|z,G)

= log p(d(t0))−
∫ t1

t0

Tr

(
∂gθ
∂d(t)

)
dt.

(10)

An ODE solver can then be applied to estimate the gradi-
ents on parameters for optimization. In practice, Laux can
be taken as an auxiliary objective defined on distances to
supervise the training. In summary, the training objective
can be interpreted as the sum of three parts:

L(θ, φ, ψ) = Lrecon + λLprior + αLaux, (11)
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Figure 2. Schematic illustration of the forward and backward computational graph through the inner loop (distance geometry optimization).
We repeatedly update R with the gradient ∇RH during the forward computation, and accumulate hypergradients ∇θ,φR to update
parameters θ and φ from backward computation.

where λ and α are hyperparameters to reweight each com-
ponent. The overall framework is illustrated in Fig. 1.

3.3. End-to-end Learning via Hypergradient Descent

We now discuss how to optimize the bilevel problem de-
fined by equation 8 and equation 7 through a practical al-
gorithm. The inner problem in equation 8 is a classic dis-
tance geometry problem about how to infer 3D coordinates
from pairwise distances (Anand & Huang, 2018; Simm &
Hernández-Lobato, 2020; Xu et al., 2021). Others have
used a semi-definite program (SDP) to infer protein struc-
ture from nuclear magnetic resonance data (Alipanahi et al.,
2013), or an Alternating Direction Method of Multipliers
(ADMM) algorithm to fold the protein into the 3D Cartesian
coordinates (Anand & Huang, 2018). In this initial work
we choose gradient descent (GD), with tractable learning
dynamics Φ, to approximately solve for the geometry:

Rθ,φ,t+1 = Φ(Rθ,φ,t,dθ,φ) = Rθ,φ,t−η∇H(Rθ,φ,t,dθ,φ),
(12)

where η is the learning rate and dθ,φ is the distance set
generated from the distance prediction model. Under ap-
propriate assumptions and for a number of updates t→∞,
GD can converge to a proper geometry Rθ,φ that depends
on the predicted pairwise distances (Bottou, 2010).

Now we consider how to calculate the hypergradient
∇θ,φEz∼qφ(z|R,G) [F (Rθ,φ)] from the outer loop recon-
struction objective (equation 7) to train the model. Let
Rθ,φ,T denote the conformation generated by approxi-
mately solving for the distance geometry with T steps gra-
dient descent. Now we can write the hypergradient as:

∇θ,φEz∼qφ(z|R,G) [F (Rθ,φ,T )] (13)

= Ez∼qφ(z|R,G)∂R [F (Rθ,φ,T )]∇θ,φRθ,φ,T ,

where the gradient ∇θ,φRθ,φ,T can be computed by fully
unrolling the dynamics of inner loop from RT to R0.
Specifically, in the forward computation, successive geome-
tries R0,··· ,T resulting from the optimization dynamics are

cached. In the backward call, the cached geometries are used
to compute gradients in a series of Vector-Jacobian Products
(VJPs). During the reverse computation, the gradient start-
ing from the ∂RT

F can be propagated to the intermediate
geometries Rt through ∇Rt

Rt+1:

∇RtRt+1 = ∇Rt

(
Rt − η∇RtH(dφ,θ,Rt)

)
= 1− η∇2

Rt
H(dφ,θ,Rt)

(14)

where ∇2
Rt

denotes the Hessian w.r.t. Rt. With iteratively
computed derivatives ∇Rt

RT , the adjoints on dφ,θ can be
computed in forms of VJPs and further backpropagated to
the parameters of encoder qφ and decoder pθ. Formally,
∇dRT is computed by:

∇dθ,ψRT =

0∑
t=T−1

[∇Rt+1
RT ]∇dRt+1

= −η
0∑

t=T−1

[∇Rt+1
RT ]∇d

(
∇Rt

H(dφ,θ,Rt)
)
,

(15)
where ∇Rt+1RT can be substituted by equation 14. The
computation can be done efficiently with reverse-mode au-
tomatic differentiation software such as PyTorch (Paszke
et al., 2019). A schematic illustration of the forward and
backward computational graph through distance geometry
is presented in Fig. 2. We provide a detailed algorithm of
the training procedure in Appendix. B.

3.4. Sampling

Given the graph G, to generate a conformation R, we
first draw the latent variable z̃ from the prior distribution
pψ(z|G). Then we sample the random initial distances d(t0)

from a Gaussian distribution, then pass d̃(t0) through the
invertible Neural ODE Gθ conditioned on z̃ and G to obtain
the distance set d̃ = Gθ(d̃(t0); z,G). Then we produce the
conformation R by solving the distance geometry optimiza-
tion problem arg minRH(R,dθ,φ) as defined in equation 4.
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Table 1. Comparison of different methods on the conformation generation task. Top 5 rows: deep generative models for molecular
conformation generation. Bottom 6 rows: different methods with an additional rule-based force field to further optimize the generated
structures. We report the COV and MAT scores, where Mean and Median are calculated over different molecular graphs in the test set of
GEOM. In practice, the size of the generated set is sampled as two times of the reference set following Xu et al. (2021).

Dataset GEOM-QM9 GEOM-Drugs

Metric COV∗ (%) MAT (Å) COV∗ (%) MAT (Å)
Mean Median Mean Median Mean Median Mean Median

CVGAE 8.52 5.62 0.7810 0.7811 0.00 0.00 2.5225 2.4680
GraphDG 55.09 56.47 0.4649 0.4298 7.76 0.00 1.9840 2.0108
CGCF 69.60 70.64 0.3915 0.3986 49.92 41.07 1.2698 1.3064
ConfVAE- 75.57 80.76 0.3873 0.3850 51.24 46.36 1.2487 1.2609
ConfVAE 77.98 82.82 0.3778 0.3770 52.59 56.41 1.2330 1.2270

RDKit 79.94 87.20 0.3238 0.3195 65.43 70.00 1.0962 1.0877

CVGAE + FF 63.10 60.95 0.3939 0.4297 83.08 95.21 0.9829 0.9177
GraphDG + FF 70.67 70.82 0.4168 0.3609 84.68 93.94 0.9129 0.9090
CGCF + FF 73.52 72.75 0.3131 0.3251 92.28 98.15 0.7740 0.7338
ConfVAE- + FF 77.95 79.14 0.2851 0.2817 91.48 99.21 0.7743 0.7436
ConfVAE + FF 81.46 83.80 0.2702 0.2709 91.88 100.00 0.7634 0.7312
* For COV, the threshold δ is set as 0.5Å for QM9 and 1.25Å for Drugs following Xu et al. (2021).

4. Experiments
4.1. Experiment Setup

Evaluation Tasks. Following previous work on conforma-
tion generation (Mansimov et al., 2019; Simm & Hernández-
Lobato, 2020; Xu et al., 2021), we conduct extensive exper-
iments by comparing our method with the state-of-the-art
baseline models on several standard tasks. Conformation
Generation is formulated by Xu et al. (2021), who con-
centrate on the models’ capacity to generate realistic and
diverse molecular conformations. Distance distribution
modeling is first proposed by Simm & Hernández-Lobato
(2020), who evaluate whether the methods can model the
underlying distribution of distances.

Baselines. We compared our proposed model with the fol-
lowing state-of-the-art conformation generation methods.
CVGAE (Mansimov et al., 2019) is a conditional VAE-
based model, which applied a few layers of graph neural
networks to learn the atom representation from the molec-
ular graph, and then directly predicts the 3D coordinates.
GraphDG (Simm & Hernández-Lobato, 2020) also em-
ploys the conditional VAE framework. Instead of directly
generating the conformations in 3D coordinates, they in-
stead learn the distribution over distances. Then the dis-
tances are converted into conformations with a distance
geometry algorithm. CGCF (Xu et al., 2021), another two-
stage method, uses continuous normalizing flows to predict
the atomic pairwise distances. Following the baselines, we
also compare our model with RDKit (Riniker & Landrum,
2015), a classical distance geometry approach built upon an

extensive calculation collection of edge lengths by compu-
tational chemistry.

Featurization and Implementation. The MPNNs used for
the encoder, prior and decoder are all implemented as Graph
Isomorphism Networks (Xu et al., 2018; Hu et al., 2019).
For the input features of the graph representation, we only
derive the atom and bond types from molecular graphs. As a
default setup, the MPNNs are all implemented with 3 layers,
and the hidden embedding dimension is set as 256. For the
training of ConfVAE, we train the model on a single Tesla
V100 GPU with a batch size of 128 and a learning rate of
0.001 until convergence, with Adam (Kingma & Welling,
2013) as the optimizer.

4.2. Conformation Generation

Datasets. Following Xu et al. (2021), we use the recent
proposed GEOM-Drugs and GEOM-Drugs (Axelrod &
Gomez-Bombarelli, 2020) datasets for the conformation
generation task. The Geometric Ensemble Of Molecules
(GEOM) dataset contains millions of high-quality stable
conformations, which is suitable for the conformation gener-
ation task. The GEOM-Drugs dataset consists of generally
medium-sized organic compounds, containing an average
of 44.2 atoms. We follow the setting from Xu et al. (2021)
to randomly take 50000 conformation-molecule pairs as the
training set, and another 9161 conformations (covering 100
molecular graphs) as the test split. By contrast, GEOM-
QM9 is a much smaller dataset limited to small molecules
with 9 heavy atoms. Similarly, we randomly draw 50000
conformation-molecule pairs to constitute the training set,
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Figure 3. Visualization of generated conformations from state-of-the-art baselines, our method and the reference set, where four molecular
graphs are randomly taken from the test set of GEOM-Drugs. C, O, H, S and Cl are colored gray, red, white, yellow and green respectively.

and another 17813 conformations covering 150 molecular
graphs as the test set.

Evaluation metrics. In this task we hope the generated
samples to be of both high quality and diversity. We follow
previous work (Hawkins, 2017; Mansimov et al., 2019; Xu
et al., 2021) to calculate the RMSD of the heavy atoms
between generated samples and reference ones. Given
the generated conformation R and the reference R∗, we
take the same alignment function A(R,R∗) defined in
equation 5 to obtain the aligned conformation R̂, and
then calculate the evaluation metric by RMSD(R, R̂) =(

1
n

∑n
i=1 ‖Ri − R̂i‖2

) 1
2

, where n is the number of heavy
atoms. Built upon the RMSD metric, Xu et al. (2021) de-
fined Coverage (COV) and Matching (MAT) scores to mea-
sure the diversity and quality respectively. COV counts
the fraction of conformations in the reference set that are
covered by at least one conformation in the generated set:

COV(Sg(G),Sr(G)) =

1

|Sr|

∣∣∣{R ∈ Sr
∣∣RMSD(R,R′) < δ, ∃R′ ∈ Sg

}∣∣∣.
(16)

where Sg(G) and Sr(G) denote the generated and the ref-
erence conformations set respectively. Typically, a higher
COV score indicates a better diversity performance to cover
the complex true distribution.

While COV is able to detect mode-collapse, there is no guar-
antee for the quality of generated samples. Thus, the MAT
score is defined as a complement metric that concentrates
on the quality (Xu et al., 2021):

MAT(Sg(G),Sr(G)) =
1

|Sr|
∑

R′∈Sr

min
R∈Sg

RMSD(R,R′).

(17)
Generally, more realistic generated samples lead to a lower
MAT score.

Results. We calculate the COV and MAT evaluations on

both GEOM-QM9 and GEOM-Drugs datasets for all base-
lines, and summarize the results in Tab. 1. We visualize
several representative examples in Fig. 3. Our ConfVAE out-
performs all existing strong baselines with an obvious mar-
gin (top 5 rows). By incorporating an end-to-end training
objective via bilevel optimization, we consistently achieved
a better result on all four metrics. By contrast, current state-
of-the-art models GraphDG and CGCF suffer much worse
performance due to the two-stage generation process, where
the extra error caused by the distance geometry cannot be
taken into account during training. CVGAE enjoys the same
training and testing objective, but still shows inferior perfor-
mance since it fails to keep the vital translation and rotation
invariant property.

Similar to previous work (Mansimov et al., 2019; Xu et al.,
2021), we also further test all models by incorporating a rule-
based empirical force field (Halgren, 1996b) and compare
the performance with the classic RDKit toolkit. Specifically,
we first generate the conformations with the generative mod-
els as initial structures, and then utilize the force field to
further optimize the generated structures. The additional
results are reported in Tab. 1 (bottom 6 rows). As shown
in the table, ConfVAE still achieves the best results among
all generative models. More importantly, our method out-
performs RDKit on 7 out of 8 evaluations and achieves
competitive results on the other one, making our method
the first generative model that already practically useful for
real-world applications.

Ablation Study. So far we have demonstrated the supe-
rior performance of the proposed method. However, be-
cause we adopt a slightly different architecture, it remains
unclear where the effectiveness comes from. In this part,
we carefully conduct an ablation study by removing the
bilevel component defined in equation 7 during training,
i.e., remove Lrecon and learn the model with only Laux and
Lprior. We denote this variant of ConfVAE as ConfVAE-.
and summarize the additional results in Tab. 1.
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Table 2. Comparison of different models on the distance distribu-
tion modeling task. We compare the marginals (p(duv|G)), pairs
(p(duv, dij |G)) and joint distribution (p(d|G)) of edges connect-
ing C and O atoms. We report the Median and Mean of the MMD
metric. Molecular graphs G are taken from the test set of ISO17.

Single Pair All
Mean Median Mean Median Mean Median

RDKit 3.4513 3.1602 3.8452 3.6287 4.0866 3.7519
CVGAE 4.1789 4.1762 4.9184 5.1856 5.9747 5.9928
GraphDG 0.7645 0.2346 0.8920 0.3287 1.1949 0.5485
CGCF 0.4490 0.1786 0.5509 0.2734 0.8703 0.4447

ConfVAE- 0.2551 0.1352 0.2719 0.1742 0.2968 0.2132
ConfVAE 0.1809 0.1153 0.1946 0.1455 0.2113 0.2047

As shown in the table, removing the bilevel component hurts
performance. These results verify that only learning from
distances will introduce an extra bias for the generated con-
formations, and our end-to-end method for directly learning
on the 3D structure helps to overcome this issue. Another
observation is that as a combination of flow-based and VAE-
based model, ConfVAE- still achieves significantly better re-
sults than the Flow-based CGCF and VAE-based GraphDG,
with exactly the same training and sampling process. This
result indicates that incorporating both global (z) and local
d(t0) latent variables will contribute to the generated con-
formations, which can help to capture both the global and
local geometric structure and atomic interactions.

4.3. Distance Distribution Modeling

Dataset. For the distances modeling task, we follow Simm
& Hernández-Lobato (2020); Xu et al. (2021) and use the
ISO17 dataset (Simm & Hernández-Lobato, 2020). ISO17
is constructed from the snapshots of ab initio molecular
dynamics simulations, where the coordinates are not just
equilibrium conformations but are samples that reflect the
underlying density around equilibrium states. We follow
previous work to split ISO17 into a training set with 167
molecules and a test set with the other 30 molecules.

Evaluation metrics. To obtain a distribution over distances
from a distribution over conformations, we sample a set
of conformations R and then calculate the corresponding
atomic lengths between C and O atoms (H atoms are usually
ignored). Let p(duv|G) denote the conditional distribution
of distances on each edge euv given a molecular graph G.
To evaluate the distance distributions, we use the maxi-
mum mean discrepancy (MMD) (Gretton et al., 2012) to the
ground-truth distributions. More specifically, we evaluate
against the ground truth the MMD of marginal distributions
of each individual edge’s distance p(duv|G), pairs of dis-
tances p(duv, dij |G) and the joint distance p(d|G). For this
benchmark, the size of the generated sample set is the same
as the reference set.

Results. The results of MMDs are summarized in Tab. 2.
The statistics show that the generated distance distribution
of ConfVAE is significantly closer to the ground-truth dis-
tribution compared with the baseline models. These results
demonstrate that our method can not only generate realistic
conformations, but also model the density around equilib-
rium states. By contrast, though RDKit shows competi-
tive performance for conformation generation, it seems to
struggle with the distribution modeling benchmark. This
is because RDKit is only designed to find the equilibrium
states by using the empirical force field (Halgren, 1996a),
and thus it lacks the capacity to capture the underlying dis-
tribution. The further ablation study between ConfVAE
and ConfVAE- also verifies the effectiveness of the bilevel
optimization components.

5. Related Work
In recent years, deep learning has shown significant progress
for 3D structure generation. There have been works using
neural networks to derive energy prediction models, which
then are taken as faster alternatives to quantum mechanics-
based energy calculations (Schütt et al., 2017; Smith et al.,
2017) for molecular dynamics simulation or molecule op-
timization (Wang et al., 2020). However, though acceler-
ated by neural networks, these approaches are still time-
consuming due to the lengthy sampling process. Recently,
(Gebauer et al., 2019) and (Hoffmann & Noé, 2019) provide
methods to generate new 3D molecules with deep genera-
tive models, while (Simm et al., 2020a) and (Simm et al.,
2020b) employ reinforcement learning to search the vast
geometric space. However, none of these methods is de-
signed to generate the conformations from the molecular
graph structure, making them orthogonal to our framework.
(Gogineni et al., 2020) proposes TorsionNet, which uses
RL for conformation search by determining torsional an-
gles, and takes a classical force field for state transition
and reward evaluation. However, this model is specifically
designed for larger molecules, and incapable of modeling
other complex geometric structures such as bond angles and
lengths. Therefore, it is also not comparable in our setting.

Many other works (Lemke & Peter, 2019; AlQuraishi, 2019;
Ingraham et al., 2019; Noé et al., 2019) also learn to di-
rectly predict 3D structures, but focus on the protein folding
problem. Specifically, Senior et al. (2020b); Jumper et al.
(2020) significantly advance this field with an end-to-end
attention-based model called AlphaFold. Unfortunately, pro-
teins are amino-acid sequences with low chemical diversity,
much larger scale and for which abundant structural exists
while general molecules are highly structured graphs with a
variety of cycles and much broader chemical composition,
making it unclear whether these methods are transferable to
the general conformation generation task.
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6. Conclusion
In this paper, we propose ConfVAE, an end-to-end frame-
work for molecular conformation generation via bilevel pro-
gramming. Our generative model can overcome significant
errors of previous two-stage models, thanks to the end-to-
end training based on bilevel programming, while keeping
the property of rotational and translational invariance. Ex-
perimental results demonstrate the superior performance
of our method over all state-of-the-art baselines on several
standard benchmarks. Future work includes combining our
bilevel optimization framework with other kinds of genera-
tive models, and extending our method to other challenging
structures such as proteins.
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