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A. Appendix
A.1. More Results of Preliminary Studies

In this section, we show more preliminary results on the ro-
bust fairness phenomenon of adversarial training in various
settings. In addition to the results shown in Section 2, we
present the results in the settings with one more architecture
(WRN28), one more type of adversarial attack (l2-norm
attack), one more defense method (Randomized Smooth-
ing) and one more dataset (SVHN). From all these settings,
we observe the similar phenomenon as in Section 2, which
show that the fairness phenomenon can be generally happen-
ing in adversarial training under different scenarios and can
be a common concern during its application. Furthermore,
we also present the detailed results as in Table 2, to show
the fact that adversarial training usually gives an unequal
influence on different classes, which can be a reason that
causes this fairness phenomenon.

In detail, for each dataset under PreAct ResNet18 archi-
tecture, for each adversarial training algorithm (includ-
ing PGD-adversarial training (Madry et al., 2017) and
TRADES (Zhang et al., 2017)), we train the models fol-
lowing that as suggested by the original papers. We train
the models for 200 epochs with learning rate 0.1 and decay
the learning rate at the epoch 100 and 150 by factor 0.1.
During the evaluation phase, we report the trained model’s
classwise standard error rate and robust error rate. In gen-
eral settings without explicit mention, we study the models’
robustness against l∞-norm adversarial attack under 8/255,
where we implement PGD attack algorithm for 20 steps for
robustness evaluation.

A.1.1. ROBUST FAIRNESS IN WRN28 IN CIFAR10

Figure 5 presents robust fairness issues in CIFAR10 dataset
under WRN28 models. Note that in Section 2 we also
presented the corresponding results under PreAct ResNet18
models in Figure 1. We can observe the similar phenomenon
about the robust fairness issues under both models. More-
over, as clear evidence of the unequal effect of adversarial
training among different classes, in Table 5 and Table 6, we
compare the classwise standard error and robust error be-
tween natural training and PGD adversarial training. From
the experimental results, we get the conclusion that adver-
sarial training usually increases a larger error rate for the
classes, such as “dog” and “cat”, which originally have
larger errors in natural training. Similarly, adversarial train-
ing will also give less help to reduce the robust errors for
these classes.

A.1.2. ROBUST FAIRNESS IN l2-NORM ADVERSARIAL
TRAINING

Figure 6 presents the robust fairness issues of adversarial
training methods which target on l2-norm attacks in CI-

FAR10 dataset. We further confirm the existence of robust
unfairness in adversarial training methods. In Figure 6,
we present the classwise standard errors and robust errors,
which target on l2-norm 0.5 adversarial attack. During the
robustness evaluation, we implement PGD attack algorithm
with step size 0.1 for 20 steps.

A.1.3. ROBUST FAIRNESS FOR CERTIFIED DEFENSES

Certified defenses are another main type of effective de-
fense strategies. Even though certified defenses do not train
in the same way as traditional adversarial training meth-
ods, which train the models on the generated adversarial
examples, they minimize the probability of the existence
of adversarial examples near the input data. This process
also implicitly minimizes the model’s overall robust error.
Thus, in this section we study whether this certified defense
will have robust fairness issues. As a representative, we
implement Randomized Smoothing (Cohen et al., 2019),
which is one state-of-the-art methods to certifiably defense
against l2-norm adversarial attacks. In this experiment, we
run Randomized Smoothing against l2-norm 0.5 attacks in
CIFAR10 dataset and report its class-wise certified standard
error and certified robust error under different intensities.

Figure 4. Randomized Smoothing on CIFAR10

The results also suggest that the Randomized Smoothing
certified defense method presents the similar disparity phe-
nomenon as the traditional adversarial training methods.
Moreover, it also preserves the similar classwise perfor-
mance relationship, i.e., it has both high standard & robust-
ness error on the classes “cat” and “dog”, but has relatively
low errors on “car” and “ship”.

A.1.4. ROBUST FAIRNESS ON SVHN DATASET

Figure 7 presents the robust fairness issues of adversarial
training methods in SVHN dataset under PreAct ResNet18
model. From the experimental results, we also observe
the strong disparity of classwise standard errors and robust
errors, which do not exist in natural training. In particular,
the classes “3” and “8” have the largest standard error in a
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naturally trained model. After adversarial training, these two
classes also have the largest standard error increases among
all classes, as well as the least robust error decreases. As a
result, there is also a significant disparity of the standard /
robustness performance among the classes. The full results
are shown in Table 7.

A.2. Theoretical Proof of Section 3

In this section, we formally calculate the classwise stan-
dard & robust errors in an optimal linear classifier and an
optimal linear robust classifier. Then, we present our main
conclusion that robust optimization will unequally influence
the performance of the two classes and therefore result in a
severe performance disparity.

A.2.1. PROOF OF THEOREM 1

In this subsection, we study an optimal linear classifier
which minimizes the average standard error. By calculating
its standard errors, we can get the conclusion that the class
“+1” in distribution D is indeed harder than class “-1”. We
first start from a lemma to calculate the weight vector of an
optimal linear model.

Lemma 1 (Weight Vector of an Optimal Classifier) For
the data following the distribution D defined in Eq. 2, an
optimal linear classifier fnat which minimizes the average
standard classification error:

fnat(x) = sign(〈wnat, x〉+ bnat)

where wnat, bnat = argmin
w,b

Pr.(sign(〈w, x〉+ b) 6= y)

has the optimal weight that satisfy: wnat = 1.

Proof 2 (Proof of Lemma 2) In the proof we will use w =
wnat and b = bnat for simplicity. Next, we will prove
w1 = w2 = · · · = wd by contradiction. We define
G = {1, 2, . . . , d} and make the following assumption: for
the optimal w and b, we assume if there exist wi < wj for
i 6= j and i, j ∈ G. Then we obtain the following standard
errors for two classes of this classifier with weight w:

Rnat(f ;−1) = Pr{
∑

k 6=i,k 6=j

wkN (−η, σ2
−1) + b

+ wiN (−η, σ2
−1) + wjN (−η, σ2

−1) > 0}

Rnat(f ; +1) = Pr{
∑

k 6=i,k 6=j

wkN (+η, σ2
+1) + b

+ wiN (+η, σ2
+1) + wjN (+η, σ2

+1) < 0}
(12)

However, if we define a new classier f̃ whose weight w̃ uses
wj to replace wi, we obtain the errors for the new classifier:

Rnat(f̃ ;−1) = Pr{
∑

k 6=i,k 6=j

wkN (−η, σ2
−1) + b

+ wjN (−η, σ2
−1) + wjN (−η, σ2

−1) > 0}

Rnat(f̃ ; +1) = Pr{
∑

k 6=i,k 6=j

wkN (+η, σ2
+1) + b

+ wjN (+η, σ2
+1) + wjN (+η, σ2

+1) < 0}.

(13)

By comparing the errors in Eq 12 and Eq 13, it can imply
the classifier f̃ has smaller error in each class. Therefore,
it contradicts with the assumption that f is the optimal
classifier with least error. Thus, we conclude for an optimal
linear classifier in natural training, it must satisfies w1 =
w2 = · · · = wd and w = 1.

Given the results in Lemma 1, we can calculate the errors of
classifiers by only calculating the interception term bnat and
brob. Recall Theorem 1, we calculate the classwise errors of
an optimal classifier with minimal average standard error.

Theorem 1 For a data distribution D in Eq. 2, for the opti-
mal linear classifier fnat which minimizes the average stan-
dard classification error, it has the intra-class standard error
for the two classes:

Rnat(fnat,−1) = Pr.{N (0, 1) ≤ A−K ·
√
A2 + q(K)}

Rnat(fnat,+1) = Pr.{N (0, 1) ≤ −K ·A+
√
A2 + q(K)}

where A = 2
K2−1

√
dη
σ and q(K) = 2 logK

K2−1 which is a
positive constant and only depends on K, As a result, the
class “+1” has a larger standard error:

Rnat(fnat,−1) < Rnat(fnat,+1).

Proof 3 (Proof of Theorem 1) From the results in Lemma
1, we define our optimal linear classifier to be fnat(x) =

sign(
∑d
i=1 xi + bnat). Now, we calculate the optimal bnat

which can minimize the average standard error:

Rnat(f) = Pr.{f(x) 6= y}
∝ Pr{f(x) = 1|y = −1}+ Pr{f(x) = −1|y = 1}

= Pr.{
d∑
i=1

xi + bnat > 0|y = −1}

+ Pr{
d∑
i=1

xi + bnat < 0|y = +1}

= Pr.{N (0, 1) < −
√
dη

σ
+

1√
dσ
· bnat}

+ Pr.{N (0, 1) < −
√
dη

Kσ
− 1

K
√
dσ
· bnat}

(14)
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(a) Natural Training (b) PGD Adversarial Training (c) TRADES (1/λ = 1) (d) TRADES (1/λ = 6)

Figure 5. The class-wise performance of natural / adversarial training (target on l∞-norm 8/255 attack) on CIFAR10 under WRN28.

(a) Natural Training (b) PGD Adversarial Training (c) TRADES (1/λ = 6) (d) TRADES (1/λ = 6)

Figure 6. The class-wise performance of natural / adversarial training (target on l2-norm 0.5 attack) on CIFAR10 under PreActResNet18

(a) Natural Training (b) PGD Adversarial Training (c) TRADES (1/λ = 1) (d) TRADES (1/λ = 6)

Figure 7. The class-wise performance of natural / adversarial training (target on l∞-norm 8/255 attack) on SVHN under PreActResNet18.

The optimal bnat to minimizeRnat(f) is achieved at the point
that ∂Rnat(f)

∂bnat
= 0. Thus, we find the optimal bnat:

bnat =
K2 + 1

K2 − 1
· dη −K

√
4d2η2

(K2 − 1)2
+ q(K)dσ2 (15)

and q(K) = 2 logK
K2−1 which is a positive constant and only

depends onK. By incorporating the optimal bnat into Eq. 17,
we can get the classwise standard errors for the two classes:

Rnat(fnat,−1) = Pr.{N (0, 1) ≤ A−K ·
√
A2 + q(K)}

Rnat(fnat,+1) = Pr.{N (0, 1) ≤ −K ·A+
√
A2 + q(K)}

where A = 2
K2−1

√
dη
σ . Since q(K) > 0, we have the direct

conclusion thatRnat(f ;−1) < Rnat(f ; +1).

A.2.2. PROOF OF THEOREM 2

In this subsection, we focus on calculating the errors of
robust classifiers which minimize the average robust errors

of the model. By comparing natural classifiers and robust
classifiers, we get the conclusion that robust classifiers can
further exacerbate the model’s performance on the “harder”
class. Similar to Section A.2.1, we start from a Lemma to
show an optimal robust classifier frob has a weight vector
wrob = 1.

Lemma 2 (Weight of an Optimal Robust Classifier)
For the data following the distribution D defined in Eq. 2,
an optimal linear classifier fnat which minimizes the
average standard classification error:

frob(x) = sign(〈wrob, x〉+ brob)

where wrob, brob = argmin
w,b

Pr.(∃δ, ||δ|| ≤ ε,

s.t. sign(〈w, x+ δ〉+ b) 6= y).
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Table 5. The Changes of Standard & Robust Error in Natural & Adversarial Training in CIFAR10 on PreAct ResNet18.
Std. Error plane car bird cat deer dog frog horse ship truck

Natural Training 4.0 1.8 6.4 11.3 6.1 10.0 5.1 5.2 3.5 4.3
PGD Adv. Training 11.7 6.1 23.3 34.8 20.8 26.9 12.6 9.8 6.4 9.5
Diff. (Adv. - Nat.) 7.7 4.3 16.9 23.5 14.6 16.9 7.5 4.6 2.9 5.2

Rob. Error plane car bird cat deer dog frog horse ship truck
Natural Training 100 100 100 100 100 100 100 100 100 100

PGD Adv. Training 44.9 34.3 68.4 82.7 74.7 66.4 51.5 47.0 40.8 42.3
Diff. (Adv. - Nat.) -55.1 -65.7 -31.6 -17.3 -25.3 -33.5 -48.5 -53.0 -59.2 -57.7

Table 6. The Changes of Standard & Robust Error in Natural & Adversarial Training in CIFAR10 on WRN28.
Std. Error plane car bird cat deer dog frog horse ship truck

Natural Training 3.9 1.9 6.4 10.0 6.2 9.0 5.0 4.6 3.3 4.2
PGD Adv. Training 10.0 4.9 21.4 24.6 17.4 26.2 12.4 9.4 6.3 9.2
Diff. (Adv. - Nat.) 6.1 3.0 15.0 14.6 11.2 17.2 7.4 4.8 3.0 5.0

Rob. Error plane car bird cat deer dog frog horse ship truck
Natural Training 100 100 100 100 100 100 100 100 100 100

PGD Adv. Training 41.4 29.3 65.8 77.2 75.5 61.6 60.9 40.7 40.8 39.4
Diff. (Adv. - Nat.) -58.6 -70.7 -34.2 -22.8 -24.5 -38.4 -39.1 -59.3 -59.2 -60.6

Table 7. The Changes of Standard & Robust Error in Natural & Adversarial Training in SVHN in PreAct ResNet18.
Std. Error “0” “1” “2” “3” “4” “5” “6” “7” “8” “9”

Natural Training 3.6 2.7 3.2 5.8 4.0 5.1 3.6 4.6 6.1 5.3
PGD Adv. Training 8.8 6.2 7.9 15.8 6.9 13.2 13.3 13.4 19.8 11.4
Diff. (Adv. - Nat.) 5.2 3.5 4.8 10.1 4.9 8.1 9.6 8.9 13.6 6.4

Std. Error “0” “1” “2” “3” “4” “5” “6” “7” “8” “9”
Natural Training 100 100 100 100 100 100 100 100 100 100

PGD Adv. Training 47.2 38.8 49.0 63.4 41.9 57.1 62.6 55.2 73.7 57.1
Diff. (Adv. - Nat.) -52.8 -61.2 -51.1 -36.6 -58.1 -42.9 -37.4 -44.8 -26.3 -42.9

has the optimal weight which satisfy: wrob = 1.

We leave the detailed proof out in the paper because it can be
proved in the similar way as the proof of Lemma 1. Recall
Theorem 2, we formally calculate the standard errors of an
optimal robust linear classifier.

Theorem 2 For a data distribution D in Eq. 2, the optimal
robust linear classifier frob which minimizes the average
robust error with perturbation margin ε < η, it has the
intra-class standard error for the two classes:

Rnat(frob,−1)

=Pr.{N (0, 1) ≤ B −K ·
√
B2 + q(K)−

√
d

σ
ε}

Rnat(frob,+1)

=Pr.{N (0, 1) ≤ −K ·B +
√
B2 + q(K)−

√
d

Kσ
ε}

(16)

where B = 2
K2−1

√
d(η−ε)
σ and q(K) = 2 logK

K2−1 is a positive
constant and only depends on K,
Proof 4 (Proof of Theorem 2) From the results in
Lemma 2, we define our optimal linear robust classifier to

be frob(x) = sign(
∑d
i=1 xi + brob). Now, we calculate the

optimal brob which can minimize the average robust error:

Rrob(f) =Pr.(∃||δ|| ≤ ε s.t. f(x+ δ) 6= y)

= max
||δ||≤ε

Pr.(f(x+ δ) 6= y)

=
1

2
Pr.(f(x+ ε) 6= −1|y = −1)

+
1

2
Pr.(f(x− ε) 6= +1|y = +1)

=Pr.{
d∑
i=1

(xi + ε) + brob > 0|y = −1}

+ Pr{
d∑
i=1

(xi − ε) + brob < 0|y = +1}

=Pr.{N (0, 1) < −
√
d(η − ε)
σ

+
1√
dσ
· brob}

+ Pr.{N (0, 1) < −
√
d(η − ε)
Kσ

− 1

K
√
dσ
· brob}

(17)
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Table 8. Average & worst-class standard error, boundary error and robust error for various algorithms on CIFAR10 under WRN28.
Avg. Std. Worst Std. Avg. Bndy. Worst Bndy. Avg. Rob. Worst Rob.

PGD Adv. Training 14.0 29.3 38.1 53.0 52.2 78.8
TRADES(1/λ = 1) 12.6 25.2 40.2 58.7 52.8 76.7
TRADES(1/λ = 6) 15.5 29.1 31.8 45.7 47.3 71.8
Baseline Reweight 14.2 26.3 38.6 53.7 52.8 77.9

FRL(Reweight, 0.05) 14.5 23.2 40.0 53.3 54.4 76.8
FRL(Remargin, 0.05) 15.4 24.9 38.1 49.6 53.5 70.5

FRL(Reweight+Remargin, 0.05) 15.4 25.0 37.8 46.7 53.2 67.1
FRL(Reweight, 0.07) 14.1 23.8 39.5 54.1 53.6 77.0
FRL(Remargin, 0.07) 14.8 24.3 39.5 50.6 54.3 73.0

FRL(Reweight+Remargin, 0.07) 14.9 24.7 37.8 48.3 52.7 68.2

Table 9. Average & worst-class standard error, boundary error and robust error for various algorithms on SVHN under WRN28.
Avg. Std. Worst Std. Avg. Bndy. Worst Bndy. Avg. Rob. Worst Rob.

PGD Adv. Training 8.1 16.8 38.5 57.3 46.7 71.2
TRADES(1/λ = 1) 8.0 19.6 40.1 60.0 48.1 73.3
TRADES(1/λ = 6) 10.6 23.1 32.1 52.5 42.7 70.6
Baseline Reweight 8.5 16.2 40.3 57.8 48.8 71.1

FRL(Reweight, 0.05) 7.8 13.4 38.9 56.9 46.7 70.7
FRL(Remargin, 0.05) 8.4 13.4 40.8 52.1 49.2 65.5

FRL(Reweight+Remargin, 0.05) 8.4 13.2 38.4 52.1 46.8 63.1
FRL(Reweight, 0.07) 8.2 13.5 41.2 56.3 49.4 69.8
FRL(Remargin, 0.07) 8.6 14.9 38.8 51.2 47.4 67.0

FRL(Reweight+Remargin, 0.07) 8.2 13.9 39.9 50.2 48.1 65.4

The optimal brob to minimizeRrob(f) is achieved at the point
that ∂Rrob(f)

∂brob
= 0. Thus, we find the optimal brob:

brob =
K2 + 1

K2 − 1
· d(η − ε)−K

√
4d2(η − ε)2
(K2 − 1)2

+ q(K)dσ2

(18)

and q(K) = 2 logK
K2−1 which is a positive constant and only

depends onK. By incorporating the optimal bnat into Eq. 17,
we can get the classwise robust errors for the two classes:

Rrob(frob,−1) = Pr.{N (0, 1) ≤ B −K ·
√
B2 + q(K)}

Rrob(frob,+1) = Pr.{N (0, 1) ≤ −K ·B +
√
B2 + q(K)}

where B = 2
K2−1

√
d(η−ε)
σ . As a direct result, the classwise

standard errors for the two classes:

Rnat(frob,−1)

=Pr.{N (0, 1) ≤ B −K ·
√
B2 + q(K)−

√
d

σ
ε}

Rnat(frob,+1)

=Pr.{N (0, 1) ≤ −K ·B +
√
B2 + q(K)−

√
d

Kσ
ε}.

A.2.3. PROOF OF COROLLARY 1

Giving the results in Theorem 1 and Theorem 2, we will
show that a robust classifier will exacerbate the performance
of the class “+1” which originally has higher error in a natu-
rally trained model. In this way, we can get the conclusion

that robust classifiers can cause strong disparity, because it
exacerbates the “difficulty” difference among classes.

Corollary 1 Adversarially Trained Models on D will in-
crease the standard error for class “+1” and reduce the
standard error for class “-1”:

Rnat(frob,−1) < Rnat(fnat,−1).
Rnat(frob,+1) > Rnat(fnat,+1).

Proof 5 (Proof of Corollary 1) From the intermediate re-
sults in Eq.15 and Eq. 18 in the proofs of Theorem 1 and
Theorem 2, we find the only difference between a naturally
trained model fnat and a robust model frob is about the inter-
ception term bnat and brob. Specifically, we denote g(·) is the
function of the interception term, then we have the results:

bnat =
K2 + 1

K2 − 1
· dη −K

√
4d2η2

(K2 − 1)2
+ q(K)dσ2 := g(η)

brob =
K2 + 1

K2 − 1
· d(η − ε)−K

√
4d2(η − ε)2
(K2 − 1)2

+ q(K)dσ2

:= g(η − ε)

Next, we show that the function g(·) is a monotone increas-
ing function between 0 and η:

dg(η)

dη
≥ K2 + 1

K2 − 1
d−K

4
(K2−1)2 d

2 · 2η

2
√

4
(K2−1)2 d

2η2
=
K − 1

K + 1
d > 0
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As a direct results, we have the interception terms:
bnat > brob. This will result a linear classifier f(x) =
sign(〈1T , x〉+ b) present more samples in the overall distri-
bution to be class “-1”. As a result, we have the conclusion:

Rnat(frob,−1) < Rnat(fnat,−1).
Rnat(frob,+1) > Rnat(fnat,+1).

A.3. Robust / Non-Robust Features

In Section 3.1, we discussed a theoretical example where
adversarial training will unequally treat the two classes in
the distribution D, which will increase the standard error of
one class and decrease the error for the other one. However,
in the real applications of deep learning models, we always
observe that each class’s error will increase after adversarial
training. In this subsection, motivated by the work (Tsipras
et al., 2018; Ilyas et al., 2019), we extend the definition ofD,
to split the features into two categories: robust features and
non-robust features, where adversarial training will increase
the standard errors for both classes. Formally, the data
distribution D′ is defined as as following:

y
u.a.r∼ {−1,+1}, θ = (

dim = d︷ ︸︸ ︷
η, ..., η,

dim = m︷ ︸︸ ︷
γ, ..., γ),

x ∼

{
N (θ, σ2

+1I) if y = +1

N (−θ, σ2
−1I) if y = −1

(19)

where in the center vector θ, it includes robust features with
scale η > ε, and non-robust features with scale γ < ε. Here
we specify that non-robust feature space has much higher
dimension than robust feature space (m >> d) and there is
a K-factor difference between the variance of two classes:
σ+1 = K · σ−1. From the main results in the work (Tsipras
et al., 2018), it is easy to get that each class’s standard error
will increase after adversarial training. In the following
theory, we will show that in distribution D′ , adversarial
training will increase the error for the class “+1” by a larger
rate than the class “-1”.

Theorem 3. For a data distribution D′ in Eq. 19, the robust
optimizer frob increases the standard error of class “+1” by
a larger rate than the increase of the standard error of class

“-1’:

Rnat(frob; +1)−Rnat(fnat; +1) >

Rnat(frob;−1)−Rnat(fnat;−1)
(20)

Proof 6 (Proof of Theorem 3) The proof of Theorem 3 re-
sembles the process of the proofs of Theorem 1 and Theorem
2, where we first calculate the classwise standard errors for
each model. Note that from the work (Tsipras et al., 2018),
an important conclusion is that a natural model fnat uses

both robust and non-robust features for prediction. While, a
robust model frob only uses robust features for prediction (a
detailed proof can be found in Section 2.1 in (Tsipras et al.,
2018)). Therefore, we can calculate the classwise standard
errors for both classes of a natural model fnat:

Rnat(fnat,−1) = Pr.{N (0, 1) ≤ A−K ·
√
A2 + q(K)}

Rnat(fnat,+1) = Pr.{N (0, 1) ≤ −K ·A+
√
A2 + q(K)}

where A = 2
σ(K2−1)

√
mγ2 + dη2. The classwise standard

errors of a robust model frob are:

Rnat(frob,−1)

=Pr.{N (0, 1) ≤ B −K ·
√
B2 + q(K)−

√
d

σ
ε}

Rnat(frob,+1)

=Pr.{N (0, 1) ≤ −K ·B +
√
B2 + q(K)−

√
d

Kσ
ε}

where B = 2
σ(K2−1)

√
d(η − ε)2. Next, we compare the

standard error increase after adversarial training between
the two classes. We have the results:

(Rnat(frob; +1)−Rnat(fnat; +1))−
(Rnat(frob;−1)−Rnat(fnat;−1))

> (K + 1)((A−B) + (
√
B2 + q(K)−

√
A2 + q(K)))

∝ (
√
B2 + q(K)−B)− (

√
A2 + q(K)−A)

because A includes high dimensional non-robust feature
and A >> B, the equation above is positive and we get the
conclusion as in Eq. 20.

A.4. Fairness Performance on WRN28

Table 8 and Table 9 presents the empirical results to vali-
date the effectiveness of FRL algorithms under the WRN
28 model. The implementation details resemble those in
Section 5.1. In the training, we start FRL from a pre-trained
robust model (such as PGD-adversarial training), and run
FRL with model parameter learning rate 1e-3 and hyperpa-
rameter learning rate α1 = α2 = 0.05 in the first 40 epochs.
Then we decay the model parameter learning rate and the
hyperparameter learning rate by 0.1 every 40 epochs. From
the results, we have the similar observations as these for
PreAct ResNet18 models, which is that FRL can help to
improve the worst-class standard performance and robust-
ness performance, such that the unfairness issue is miti-
gated. In particular, FRL (Reweight) is usually the most
effective way to equalize the standard performance, but not
sufficient to equalize the boundary errors and robust errors.
FRL (Reweight + Remargin) is usually the most effective
way to improve robustness for the worst class.


