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Abstract

As humans, our goals and our environment are
persistently changing throughout our lifetime
based on our experiences, actions, and internal
and external drives. In contrast, typical reinforce-
ment learning problem set-ups consider decision
processes that are stationary across episodes. Can
we develop reinforcement learning algorithms
that can cope with the persistent change in the
former, more realistic problem settings? While
on-policy algorithms such as policy gradients in
principle can be extended to non-stationary set-
tings, the same cannot be said for more efficient
off-policy algorithms that replay past experiences
when learning. In this work, we formalize this
problem setting, and draw upon ideas from the
online learning and probabilistic inference liter-
ature to derive an off-policy RL algorithm that
can reason about and tackle such lifelong non-
stationarity. Our method leverages latent vari-
able models to learn a representation of the envi-
ronment from current and past experiences, and
performs off-policy RL with this representation.
We further introduce several simulation environ-
ments that exhibit lifelong non-stationarity, and
empirically find that our approach substantially
outperforms approaches that do not reason about
environment shift.

1. Introduction
In the standard reinforcement learning (RL) set-up, the agent
is assumed to operate in a stationary environment, i.e., under
fixed dynamics and reward. However, the assumption of
stationarity rarely holds in more realistic settings, such as
in the context of lifelong learning systems (Thrun, 1998).
That is, over the course of its lifetime, an agent may be
subjected to environment dynamics and rewards that vary
with time. In robotics applications, for example, this non-
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stationarity manifests itself in changing terrains and weather
conditions. In some situations, not even the objective is
necessarily fixed: consider an assistive robot helping a hu-
man whose preferences gradually change over time. And,
because stationarity is a core assumption in many existing
RL algorithms, they are unlikely to perform well in these
environments.

Crucially, in each of the above scenarios, the environment
is specified by unknown, time-varying parameters. These
latent parameters are also not i.i.d., and in fact have as-
sociated but unobserved dynamics. For example, outdoor
robots experience weather conditions that are determined
by the season; a user-facing robot’s task depends on the
user’s preferences which can vary based on their day-to-day
routine. We formalize this problem setting with the dy-
namic parameter Markov decision process (DP-MDP). The
DP-MDP corresponds to a sequence of stationary MDPs,
related through a set of latent parameters governed by an au-
tonomous dynamical system. While non-stationary MDPs
are special instances of the partially observable Markov de-
cision process (POMDP) (Kaelbling et al., 1998), in this
setting, we can leverage structure available in the dynamics
of the hidden parameters and avoid solving POMDPs in the
general case.

On-policy RL algorithms can in principle cope with such
non-stationarity (Sutton et al., 2007). However, in highly
dynamic environments, only a limited amount of interaction
is permitted before the environment changes, and on-policy
methods may fail to adapt rapidly enough in this low-shot
setting (Al-Shedivat et al., 2017). Instead, we desire an
off-policy RL algorithm that can use past experience both
to improve sample efficiency and to reason about the envi-
ronment dynamics. In order to adapt, the agent needs the
ability to predict how the MDP parameters will shift. We
thus require a representation of the MDP as well as a model
of how parameters evolve in this space, both of which can
be learned from off-policy experience.

To this end, our core contribution is an off-policy RL al-
gorithm that can operate under non-stationarity by jointly
learning (1) a latent variable model, which lends a compact
representation of the MDP, and (2) a maximum entropy
policy with this representation. We validate our approach,
which we call Lifelong Latent Actor-Critic (LILAC), on a



Deep Reinforcement Learning amidst Continual Structured Non-Stationarity

set of simulated environments that demonstrate persistent
non-stationarity. In our experimental evaluation, we find
that our method far outperforms RL algorithms that do not
account for environment non-stationary, handles extrapolat-
ing environment shifts, and retains strong performance in
stationary settings.

2. Dynamic Parameter Markov Decision
Processes

The standard RL setting assumes episodic interaction with
a fixed MDP (Sutton & Barto, 2018). In the real world, the
assumption of episodic interaction with identical MDPs is
limiting as it does not capture the wide variety of exogenous
factors that may effect the decision-making problem. A
common model to avoid the strict assumption of Marko-
vian observations is the partially observed MDP (POMDP)
formulation (Kaelbling et al., 1998). While the POMDP
is highly general, we focus on leveraging known structure
of the non-stationary MDP in this work to improve perfor-
mance. In particular, we consider an episodic environment,
which we call the dynamic parameter MDP (DP-MDP),
where a new MDP (we also refer to MDPs as tasks) is
presented in each episode. In reflection of the regularity of
real-world non-stationarity, the tasks are sequentially related
through a set of continuous parameters.

Formally, the DP-MDP is equipped with state space S,
action space A, and initial state distribution ρs(s1). Fol-
lowing the formulation of the Hidden Parameter MDP
(HiP-MDP) (Doshi-Velez & Konidaris, 2016), a set of un-
observed task parameters z ∈ Z defines the dynamics
ps(st+1|st,at; z) and reward function r(st,at; z) for each
task. In contrast to the HiP-MDP, the task parameters z in
the DP-MDP are not sampled i.i.d. but instead shift stochas-
tically according to pz(zi+1|z1:i), with initial distribution
ρz(z

1). In other words, the DP-MDP is a sequence of tasks
with parameters determined by the transition function pz.
If the task parameters z for each episode were known, the
augmented state space S × Z would define a fully observ-
able MDP for which we can use standard RL algorithms to
solve. Hence, in our approach, we aim to infer the hidden
task parameters and learn their transition function, allowing
us to leverage existing RL algorithms by augmenting the
observations with the inferred task parameters.

Approximate model of continuously varying environ-
ments. Some environments may not exhibit shifts only
at episode boundaries, and instead change more smoothly
at every timestep. Formally, continuously varying environ-
ments have a set of task parameters zit for each timestep t
in each episodic interaction i. While these environments
do not explicitly fall under the setting of DP-MDPs, the
DP-MDP can exactly represent these environments when
the intra-episode timestep t is either provided as part of the

Figure 1. The graphical model for the RL-as-Inference framework
consists of states st, actions at, and optimality variables Ot. By
incorporating rewards through the optimality variables, learning
an RL policy amounts to performing inference in this model.

state s or can be inferred. One way to see this mapping
is to define our DP-MDP such that the task parameters for
episodic interaction i is the concatenation of all parameters
of the episode, i.e., z̃i = [zit]

T
t=1. Then, if the continuously

varying environment has dynamics p′s(s
i
t+1|sit,ait; zit) and

reward function r′(sit,a
i
t; z

i
t), the equivalent DP-MDP, with

state s̃ = [s, t], is defined by:

ps(s̃
i
t+1|s̃it,ait; z̃i) = p′s(s̃

i
t+1|sit,ait; z̃i[t])

r(s̃it,a
i
t; z̃

i) = r′(sit,a
i
t; z̃

i[t]).

Furthermore, even when the timestep is not provided, the
DP-MDP can still be viewed as quantized model of these
forms of environment shifts, and using this quantization can
be significantly more efficient in computation than modeling
small changes at every single timestep. Under this interpre-
tation, algorithms for solving DP-MDPs are not necessarily
limited to environments with inter-episode shifts, and can
be applied to fairly general non-stationary environments.
We validate this claim in the experiments, and indeed, find
that the algorithm proposed in the next section can solve
instances of continuously varying environments.

3. Preliminaries: RL as Inference
We first discuss an established connection between prob-
abilistic inference and reinforcement learning (Toussaint,
2009; Levine, 2018) to provide some context for our ap-
proach. At a high level, this framework casts sequential
decision-making as a probabilistic graphical model, and
from this perspective, the maximum-entropy RL objective
can be derived as an inference procedure in this model.

3.1. A Probabilistic Graphical Model for RL

As depicted in Figure 1, the proposed model consists of
states st, actions at, and per-timestep optimality variables
Ot, which are related to rewards by p(Ot = 1|st,at) =
exp(r(st,at)) and denote whether the action at taken from
state st is optimal. While rewards are required to be
non-positive through this relation, so long the rewards are
bounded, they can be scaled and centered to be no greater
than 0. A trajectory is the sequence of states and actions,
(s1,a1, s2, . . . , sT ,aT ), and we aim to infer the posterior
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Figure 2. The graphical model for the DP-MDP. Each episode presents a new task, or MDP, determined by latent variables z. The MDPs
are related through a transition function pz(zi+1|z1:i).

distribution p(s1:T ,a1:T |O1:T = 1), i.e., the trajectory dis-
tribution that is optimal for all timesteps.

3.2. Variational Inference

Among existing inference tools, structured variational in-
ference is particularly appealing for its scalability and ef-
ficiency to approximate the distribution of interest. In the
variational inference framework, a variational distribution q
is optimized through the variational lower bound to approxi-
mate another distribution p. Assuming a uniform prior over
actions, the optimal trajectory distribution is:

p(s1:T ,a1:T |O1:T = 1) ∝ p(s1:T ,a1:T ,O1:T = 1)

= p(s1)

T∏
t=1

exp(r(st,at))p(st+1|st,at).

For our approximating distribution, we can choose the form
q(s1:T ,a1:T ) = p(s1)

∏T
t=1 p(st+1|st,at)q(at|st), where

p(s1) and p(st+1|st,at) are fixed and given by the envi-
ronment. We now rename q(at|st) to π(at|st) since this
represents the desired policy. By Jensen’s inequality, the
variational lower bound for the evidence O1:T = 1 is

log p(O1:T = 1) = logEq
[
p(s1:T ,a1:T ,O1:T = 1)

q(s1:T ,a1:T )

]
≥ Eπ

[
T∑
t=1

r(st,at)− log π(at|st)

]
,

which is the maximum entropy RL objective (Ziebart et al.,
2008; Toussaint, 2009; Rawlik et al., 2013; Fox et al., 2015;
Haarnoja et al., 2017). This objective adds a conditional en-
tropy term and thus maximizes both returns and the entropy
of the policy. This formulation is known for its improve-
ments in exploration, robustness, and stability over other RL
algorithms, thus we build upon it in our method to inherit
these qualities. We capture non-stationarity by augment-
ing the RL-as-inference model with latent variables zi for
each task i. As we will see in the next section, by view-
ing non-stationarity from this probabilistic perspective, our
algorithm can be derived as an inference procedure in a
unified model.

4. Off-Policy Reinforcement Learning in
Non-Stationary Environments

Building upon the RL-as-inference framework, in this sec-
tion, we offer a probabilistic graphical model that under-
lies the dynamic parameter MDP setting introduced in Sec-
tion 2. Then, using tools from variational inference, we
derive a variational lower bound that performs joint RL and
representation learning. Finally, we present our RL algo-
rithm, which we call Lifelong Latent Actor-Critic (LILAC),
that optimizes this objective and builds upon on soft actor-
critic (Haarnoja et al., 2018), an off-policy maximum en-
tropy RL algorithm.

4.1. Non-stationarity as a Probabilistic Model

We can cast the dynamic parameter MDP as a probabilistic
hierarchical model, where non-stationarity occurs at the
episodic level, and within each episode is an instance of a
stationary MDP. To do so, we construct a two-tiered model:
on the first level, we have the sequence of latent variables
zi as a Markov chain, and on the second level, a Markov
decision process corresponding to each zi. The graphical
model formulation of the DP-MDP is illustrated in Figure 2.

Within this formulation, the trajectories gathered from each
episode are modeled individually, rather than amortized as
in Subsection 3.2. Let ui represent the sequence of actions
ai1:T taken in trajectory i. Then, the probability distribution
p(z1:N , τ1:N |u1:N ) is defined as follows:

p(z1)p(τ1|z1,u1)

N∏
i=1

p(zi|z1:i−1)p(τ i|zi,ui)

where the probability of each trajectory τ conditioned on z
and action sequence u is

p(τ |z,u) = p(s1)

T∏
t=1

p(Ot = 1|st,at; z)p(st+1|st,at; z)

= p(s1)

T∏
t=1

exp(r(st,at; z))p(st+1|st,at; z).



Deep Reinforcement Learning amidst Continual Structured Non-Stationarity

With this factorization, the non-stationary elements of the
environment are captured by the latent variables z, and
within a task, the dynamics and reward functions are nec-
essarily stationary. This suggests that learning to infer z,
which amounts to representing the non-stationarity elements
of the environment with z, will reduce this RL setting to a
stationary one. Taking this type of approach is appealing
since there already exists a rich body of algorithms for the
standard RL setting. In the next subsection, we describe how
we can approximate the posterior over z, by deriving the
evidence lower bound for this model under the variational
inference framework.

4.2. Joint Representation and Reinforcement Learning
via Variational Inference

Recall the agent is operating in an online learning set-
ting. That is, it must continuously adapt to a stream
of tasks and leverage experience gathered from previous
tasks for learning. Thus, at any episode i > 1, the
agent has observed all of the trajectories collected from
episodes 1 through i− 1, τ1:i−1 = {τ1, · · · , τ i−1}, where
τ = {s1,a1, r1, . . . , sT ,aT , rT }.

We aim to infer, at every episode i, the posterior distri-
bution over actions, given the evidence Oi1:T = 1 and
the experience from the previous episodes τ1:i−1. Fol-
lowing Subsection 3.2, we can leverage variational infer-
ence to optimize a variational lower bound to the log-
probability of this set of evidence conditioned on the actions
taken, log p(τ1:i−1,Oi1:T = 1|u1:i−1), where ui repre-
sents ai1:T . Since p(τ1:i−1,Oi1:T = 1,u1:i−1) factorizes as
p(τ1:i−1|u1:i−1)p(Oi1:T = 1|τ1:i−1), the log-probability of
the evidence can be decomposed into log p(τ1:i−1|u1:i−1)+
log p(Oi1:T = 1|τ1:i−1). These two terms can be separately
lower bounded and summed to form a single objective.

The variational lower bound of the first term follows from
that of a variational auto-encoder (Kingma & Welling, 2014)
with evidence τ1:i−1 and latent variables z1:i−1:

log p(τ1:i−1|u1:i−1) = logEq
[
p(τ1:i−1, z1:i−1|u1:i−1)

q(z1:i−1)

]
.

We choose our approximating distribution over the latent
variables zi to be conditioned on the trajectory from episode
i, i.e. q(zi|τ i). Then, the variational lower bound is:

Lrep = Eq

 i∑
j=1

T∑
t=1

log p(sjt+1, r
j
t |s

j
t ,a

j
t , z

j)

−DKL(q(z
j |τ j)) || p(zj |z1:j−1))

]
.

The lower bound Lrep corresponds to an objective for un-
supervised representation learning in a sequential latent
variable model. By optimizing the reconstruction loss of

Figure 3. An overview of our network architecture. Our method
consists of the actor π, the critic Q, an inference network q, a
decoder network, and a learned prior over latent embeddings. Each
component is implemented with a neural network.

the transitions and rewards for each episode, the learned
latent variables should encode the varying parameters of
the MDP. Further, by imposing the prior p(zi|z1:i−1) on
the approximated distribution q through the KL divergence,
the latent variables are encouraged to be sequentially con-
sistent across time. This prior corresponds to a model of
the environment’s latent dynamics and gives the agent a
predictive estimate of future conditions of the environment
(to the extent to which the DP-MDP is predictable).

For the second term,

log p(Oi1:T = 1|τ1:i−1) = log

∫
p(Oi1:T = 1, zi|τ1:i−1)dzi

= log

∫
p(Oi1:T = 1|zi)p(zi|τ1:i−1)dzi

≥ Ep(zi|τ1:i−1)

[
log p(Oi1:T = 1|zi)

]
≥ E
p(zi|τ1:i−1)

π(at|st,zi)

[
T∑
i=1

r(st,at; z
i)− log π(at|st, zi)

]

= LRL.

The final inequality is given by steps from Subsection 3.2.
The bound LRL optimizes for both policy returns and pol-
icy entropy, as in the maximum entropy RL objective, but
here the policy is also conditioned on the inferred latent em-
beddings of the MDP. This objective essentially performs
task-conditioned reinforcement learning where the task vari-
ables at episode i are given by p(zi|τ1:i−1). Learning a
multi-task RL policy is appealing, especially over a policy
that adapts between episodes. That is, if the shifts in the
environment are similar to those seen previously, we do not
expect its performance to degrade even if the environment is
shifting quickly, whereas a single-task policy would likely
struggle to adapt quickly enough.

Our proposed objective is the sum of the above two terms
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L = Lrep +LRL, which is also a variational lower bound for
our entire model. Hence, while our objective was derived
from and can be understood as an inference procedure in
our probabilistic model, it also decomposes into two very
intuitive objectives, with the first corresponding to unsuper-
vised representation learning and the second corresponding
to reinforcement learning.

4.3. Implementation

We introduce an inference network that outputs a distribu-
tion over latent variables, q(zi|τ i), conditioned on the trajec-
tory from the i-th episode. The network outputs parameters
of a Gaussian distribution, and we use the reparameteriza-
tion trick (Kingma & Welling, 2014) to sample zi. The
weights of the inference network are trained with gradients
from both Lrep and LRL, which we detail below.

Optimizing Lrep. Like in the standard VAE objective, the
lower bound is Lrep = −(Jdec + JKL) where

Jdec = −Eq

 i∑
j=1

T∑
t=1

log p(sjt+1, r
j
t |s

j
t ,a

j
t , z

j)


JKL = Eq

 i∑
j=1

DKL(q(z
j |τ j)) || p(zj |z1:j−1))

 .
A decoder neural network reconstructs transitions and re-
wards given the latent embedding zi, current state st, and
action taken at. Finally, we approximate p(zi|z1:i−1) and
p(zi|τ1:i−1) with a shared long short-term memory (LSTM)
network (Hochreiter & Schmidhuber, 1997), which receives
zi−1 from q(zi−1|τ i−1) and hidden state hi−1, and pro-
duces zi and the next hidden state hi.

Optimizing LRL. To optimize LRL, we extend soft actor-
critic (SAC) (Haarnoja et al., 2018), which implements
maximum entropy off-policy RL. As depicted in Figure 3,
the policy and critic are conditioned on the environment state
and the latent variables z. During training, z is sampled from
q(z|τ) outputted by the inference network. At execution
time, the latent variables z the policy conditions on are given
by the LSTM network, based on the inferred latent variables
from the previous episode. Following SAC (Haarnoja et al.,
2018), the actor loss Jπ and critic loss JQ are

Jπ = E
τ∼D,

z∼q(·|τ)

[
DKL

(
π(a|s, z)

∣∣∣∣∣∣∣∣exp(Q(s,a, z))

Z(st)

)]
,

JQ = E
τ∼D,

z∼q(·|τ)

[
(Q(s,a, z)− (r + V (s′, z)))2

]
,

where V denotes the target network. Our complete algo-
rithm, Lifelong Latent Actor-Critic (LILAC), is summarized
in Algorithm 1.

Algorithm 1 Lifelong Latent Actor-Critic (LILAC)

Input: env, αQ, απ , αenc, αdec, αψ
Randomly initialize θQ, θπ , φenc, φdec, and ψ
Initialize empty replay buffer D
Assign z1 ← ~0
for i = 1, 2, . . . do

Sample zi ∼ pψ(zi|z1:i−1)
Collect trajectory τ i from env with πθ(a|s, z)
Update replay buffer D[i]← τ i

for j = 1, 2, . . . , N do
Sample a batch of episodes E from D
. Update actor and critic
θQ ← θQ − αQ∇θQJQ
θπ ← θπ − απ∇θπJπ
. Update inference network
φenc ← φenc − αenc∇φenc (Jdec + JKL + JQ)
. Update model
φdec ← φdec − αdec∇φdecJdec
ψ ← ψ − αψ∇ψJKL

end for
end for

5. Related Work
Partial observability in RL. The POMDP is a general,
flexible framework capturing non-stationarity and partial ob-
servability in sequential decision-making problems. While
exact solution methods are tractable only for tiny state and
actions spaces (Kaelbling et al., 1998), methods based (pri-
marily) on approximate Bayesian inference have enabled
scaling to larger problems over the course of the past two
decades (Kurniawati et al., 2008; Roy et al., 2005). In recent
years, representation learning, and especially deep learning
paired with amortized variational inference, has enabled
scaling to a larger class of problems, including continuous
state and action spaces (Igl et al., 2018; Han et al., 2020;
Lee et al., 2019a; Hafner et al., 2019) and image observa-
tions (Lee et al., 2019a; Kapturowski et al., 2019). However,
the generality of the POMDP formulation both ignores pos-
sible performance improvements that may be realized by
exploiting the structure of the DP-MDP, and does not ex-
plicitly consider between-episode non-stationarity.

A variety of intermediate problem statements between
episodic MDPs and POMDPs have been proposed. The
Bayes-adaptive MDP formulation (BAMDP) (Duff, 2002;
Ross et al., 2008), as well as the hidden parameter MDP
(HiP-MDP) (Doshi-Velez & Konidaris, 2016) consider
an MDP with unknown parameters governing the reward
and dynamics, which we aim to infer online over the
course of one episode. In this formulation, the exploration-
exploitation dilemma is resolved by augmenting the state
space with a representation of posterior belief over the la-
tent parameters. As noted by Duff (2002) in the RL lit-
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erature and Feldbaum (1960); Bar-Shalom & Tse (1974)
in control theory, this representation rapidly becomes in-
tractable due to exploding state dimensionality. Recent work
has developed effective methods for policy optimization in
BAMDPs via, primarily, amortized inference (Zintgraf et al.,
2020; Rakelly et al., 2019; Lee et al., 2019b). However, the
BAMDP framework does not address the dynamics of the
latent parameter between episodes, assuming a temporally-
fixed structure. In contrast, we are capable of modeling the
evolution of the latent variable over the course of episodes,
leading to better priors for online inference.

A strongly related setting is the hidden-mode MDP (Choi
et al., 2000), which augments the MDP with a latent pa-
rameter that evolves via a hidden Markov model with a
discrete number of states. Algorithms that study the HM-
MDP setting aim to quickly detect changes in the environ-
ment (Da Silva et al., 2006; Hadoux et al., 2014; Banerjee
et al., 2017; Padakandla et al., 2020), while LILAC aims
to anticipate future changes and adapt as they happen. In
both the HM-MDP and the DP-MDP, the latent variable
evolves infrequently, as opposed to at every time step as in
the POMDP. The HM-MDP is limited to a fixed number
of latent variable states due to the use of standard HMM
inference algorithms. In contrast, our approach allows con-
tinuous latent variables, thus widely extending the range of
applicability.

Non-stationarity in learning. LILAC also shares concep-
tual similarities with methods from online learning and life-
long learning (Shalev-Shwartz, 2012; Gama et al., 2014),
which aim to capture non-stationarity in supervised learning,
as well as meta-learning and meta-reinforcement learning al-
gorithms, which aim to rapidly adapt to new settings. Within
meta-reinforcement learning, two dominant techniques ex-
ist: optimization-based (Finn et al., 2017; Rothfuss et al.,
2019; Zintgraf et al., 2019; Stadie et al., 2018) and context-
based, which includes both recurrent architectures (Duan
et al., 2016; Wang et al., 2016; Mishra et al., 2018) and ar-
chitectures based on latent variable inference (Rakelly et al.,
2019; Lee et al., 2019a; Zintgraf et al., 2020). LILAC fits
into this last category within this taxonomy, but extends pre-
vious methods by considering inter-episode latent variable
dynamics. Previous embedding-based meta-RL algorithms—
while able to perform online inference of latent variables
and incorporate this posterior belief into action selection—
do not consider how these latent variables evolve over the
lifetime of the agent, as in the DP-MDP setting. The inner
latent variable inference component of LILAC possesses
strong similarities to the continual and lifelong learning
setting (Gama et al., 2014). Many continual and lifelong
learning aim to learn a variety of tasks without forgetting
previous tasks (Kirkpatrick et al., 2017; Zenke et al., 2017;
Lopez-Paz et al., 2017; Aljundi et al., 2019; Parisi et al.,
2019; Rusu et al., 2016; Shmelkov et al., 2017; Rebuffi et al.,

2017; Shin et al., 2017). We consider a setting where it is
practical to store past experiences in a replay buffer (Rolnick
et al., 2019; Finn et al., 2019). Unlike these prior works,
LILAC aims to learn the dynamics associated with latent
factors, and perform online inference.

Within RL, non-stationarity Chandak et al. (2020) study
a setting similar to ours, where the reward and transition
dynamics change smoothly across episodes, and propose to
use curve-fitting to estimate performance on future MDPs
and learn a single policy that optimizes for future perfor-
mance. This need for continual policy adaptation can result
in performance lag in quickly changing environments; in
contrast, LILAC learns a latent variable-conditioned policy,
where different MDPs map to different values for these la-
tent variables, and thus should be less sensitive to the rate
of non-stationarity.

6. Experiments
In our experiments, we aim to address our central hypoth-
esis: that existing off-policy RL algorithms struggle un-
der persistent non-stationarity and that, by leveraging our
latent variable model, LILAC can make learning in such
settings both effective and efficient. To do so, we evaluate
the agent’s learning performance in various non-stationary
environments, including environments with varying rates
of change, intra-episodic shifts, and task parameters that
exhibit extrapolating shifts.

Environments. We construct four continuous control en-
vironments with varying sources of change in the reward
and/or dynamics. These environments are designed such
that the policy needs to change in order to achieve good
performance. The first is derived from the simulated Sawyer
reaching task in the Meta-World benchmark (Yu et al., 2019),
in which the target position is not observed and moves be-
tween episodes. In the second environment based on Half-
Cheetah from OpenAI Gym (Brockman et al., 2016), we
consider changes in the direction and magnitude of wind
forces on the agent, and changes in the target velocity. We
next consider the 8-DoF minitaur environment (Tan et al.,
2018) and vary the mass of the agent between episodes,
representative of a varying payload. Finally, we construct a
2D navigation task in an infinite, non-episodic environment
with non-stationary dynamics which we call 2D Open World.
The agent’s goal is to collect food pellets and to avoid other
objects and obstacles, whilst subjected to unknown perturba-
tions that vary on an episodic schedule. These environments
are illustrated in Figure 4. For full environment details, see
Appendix A.

Comparisons. We compare our approach to standard soft-
actor critic (SAC) (Haarnoja et al., 2018), which corre-
sponds to our method without any latent variables, allowing
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Figure 4. The environments in our evaluation. Each environment changes over the course of learning, including a changing target reaching
position (left), variable wind and goal velocities (middle left), and variable payloads (middle right). We also introduce a 2D open world
environment with non-stationary dynamics and visualize a partial snapshot of the LILAC agent’s lifetime in purple (right).

Figure 5. Learning curves across our experimental domains. In all settings, our approach is substantially more stable and successful
than SAC, SLAC, and PPO. As demonstrated in Half-Cheetah with varying target velocities and wind forces, our method can cope with
non-stationarity in both dynamics and rewards. Error bars reflect 95% confidence intervals.

us to evaluate the performance of off-policy algorithms amid
non-stationarity. We also compare to stochastic latent actor-
critic (SLAC) (Lee et al., 2019a), which learns to model
partially observed environments with a latent variable model
but does not address inter-episode non-stationarity. This
comparison allows us to evaluate the importance of model-
ing non-stationarity between episodes. Finally, we include
proximal policy optimization (PPO) (Schulman et al., 2017)
as a comparison to on-policy RL. Since the tasks in the
Sawyer and Half-Cheetah domains involve goal reaching,
we can obtain an oracle by training a goal-conditioned SAC
policy, i.e. with the true goal concatenated to the observa-
tion. We provide this comparison to help contextualize the
performance of our method against other algorithms. We
tune the hyperparameters for all approaches, and run each
with the best hyperparameter setting with 3 random seeds1.
For all hyperparameter details, see Appendix B.

Results. Our experimental results are shown in Figure 5.
Since on-policy algorithms tend to have worse sample com-
plexity, we run PPO for 10 million environment steps and
plot only the asymptotic returns. In all domains, LILAC
attains higher and more stable returns compared to SAC,
SLAC, and PPO. Since SAC amortizes experience collected
across episodes into a single replay buffer, we observe that
the algorithm converges to an averaged behavior. Mean-
while, SLAC does not have the mechanism to model non-
stationarity across episodes, and has to infer the unknown

1We ran SAC in the Minitaur task with additional seeds for
a total of 5 seeds, as recommended by a significance test of our
results. The analysis, presented in Appendix C, suggests that no
additional seeds are necessary for each of the other algorithms or
environments.

dynamics and reward from the initial steps taken during each
episode, which the algorithm is not very successful at. Due
to the cyclical nature of the tasks, the learned behavior of
SLAC results in oscillating returns across tasks. Similarly,
PPO cannot adapt to per-episode changes in the environ-
ment and ultimately converges to learning an average policy.
In contrast to these methods, LILAC infers how the envi-
ronment changes in future episodes and steadily maintains
high rewards over the training procedure, despite experi-
encing persistent shifts in the environment in each episode.
Further, LILAC can learn under simultaneous shifts in both
dynamics and rewards, verified by the HC WindVel results.
LILAC can also adeptly handle shifts in the 2D Open World
environment without episodic resets. A partial snapshot of
the agent’s lifetime from this task is visualized in Figure 4.

Varying rates of environment shift. We next evaluate
LILAC under varying rates of non-stationarity. To do so,
we use the Sawyer reaching domain, where the goal moves
along a fixed-radius circle, and vary the step size along
the circle (0.2, 0.4, 0.6, and 0.8 radians/step) to generate
environments that shift at different speeds. As depicted in
Figure 6a, LILAC’s performance is largely independent of
the environment’s rate of change. We also evaluate LILAC
under stationary conditions, i.e. with a fixed goal, and find
it achieves the same performance as SAC, thus retaining the
ability to learn as effectively as SAC in a fixed environment.
These results demonstrate LILAC’s efficacy under a range
of rates of non-stationarity, including the stationary case.

The gap in LILAC’s performance between the non-
stationary and stationary cases can likely be explained by
the estimation error of future environment conditions given
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(a) (b) (c)
Figure 6. (a) LILAC and SAC evaluated in the Sawyer task with varying rates of non-stationarity (0.2, 0.4, 0.6, and 0.8 radians/step).
(b) We introduce a continuously varying variant of the Sawyer task with intra-episodic shifts, and evaluate LILAC with and without the
timestep t included in the state s, finding that both are robust to shifts at every timestep. (c) The task parameters in this setting exhibit
extrapolating shift: the target moves along a never-ending line between episodic trials. The LILAC agent can continually reach new goals,
while the performance of SAC degrades over time.

by the prior pφ(zi|z1:i−1). Currently, the executed policy
uses a fixed z given by the prior for the entire duration of
the episode, but a natural extension that may improve per-
formance is updating z during each episode. In particular,
we could encode the collected partial trajectory with the
inference network and combine the inferred values with the
prior to form an updated estimate, akin to Bayesian filtering.

Intra-episodic environment shifts. As described in Sec-
tion 2, the DP-MDP can exactly represent environments that
change at every timestep, when the timestep t is provided
as part of the state s. Even when the timestep t is not given,
however, the DP-MDP can still be viewed as a quantization
of these environments. To empirically investigate this propo-
sition, we evaluate LILAC in a modified Sawyer reaching
task: the target now moves after every time-step instead
of every episode, thereby introducing intra-episode shifts.
Here, the target moves at the same rate per episode as the
original setting, but moves smoothly over time. We evaluate
LILAC with and without the timestep t given in the state,
and as shown in Figure 6b, LILAC is robust to shifts in both
scenarios and significantly outperforms SAC. Hence, our
approach can handle a wide subset of non-stationary envi-
ronments, including those that change at every time-step.

Extrapolating environment shifts. To understand whether
LILAC can cope within other open-world environments, we
study a setting in which the dynamic parameters of the en-
vironment exhibit extrapolating shift. Deep RL algorithms
generally struggle to generalize to out-of-distribution envi-
ronment conditions (Kumar et al., 2020; Mendonca et al.,
2020; Agarwal et al., 2021). In this experiment, we study
an instance of extrapolating variations in the task. Specifi-
cally, we construct a Sawyer reaching task in which the goal
gradually moves along a never-ending line between trials.
Our results, presented in Figure 6c, indicate that LILAC
can indeed learn to model as well as reach extrapolating
goal positions, especially when compared to the SAC agent
whose performance degrades over time.

7. Conclusion
We considered the problem of reinforcement learning with
persistent but structured non-stationarity, a problem which
we believe is a step towards reinforcement learning systems
operating in the real world. This problem is at the intersec-
tion of reinforcement learning under partial observability
(i.e. POMDPs) and online learning; hence we formalized
the problem as a special case of a POMDP that is also signif-
icantly more tractable. We derive a graphical model underly-
ing this problem setting, and utilize it to derive our approach
under the formalism of reinforcement learning as probabilis-
tic inference (Levine, 2018). Our method leverages this
latent variable model to model the change in the environ-
ment, and conditions the policy and critic on the inferred
values of these latent variables. On several challenging con-
tinuous control tasks with significant non-stationarity, we
observe that our approach leads to substantial improvement
compared to state-of-the-art RL methods.

While the DP-MDP formulation represents a strict general-
ization of the commonly-considered meta-reinforcement
learning settings (typically, a BAMDP (Zintgraf et al.,
2020)), it is still somewhat limited in its generality. In
particular, the assumption of task parameters shifting be-
tween episodes presents a possibly unrealistic limitation,
but can be relaxed when the timestep is given, or can be
inferred. Otherwise, the DP-MDP can still be viewed as an
approximation of environments with intra-episodic shifts.
For highly infrequent shifts however, we may need to lever-
age alternative tools; in particular, this notion of infrequent,
discrete shifts underlies the changepoint detection litera-
ture (Adams & MacKay, 2007; Fearnhead & Liu, 2007).
Previous work within sequential decision making in chang-
ing environments (Da Silva et al., 2006; Hadoux et al., 2014;
Banerjee et al., 2017) and meta-learning within changing
data streams (Harrison et al., 2019) may enable a version of
LILAC capable of handling unobserved changepoints.
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