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Abstract
Transformers have been successful for many natu-
ral language processing tasks. However, applying
transformers to the video domain for tasks such
as long-term video generation and scene under-
standing has remained elusive due to the high
computational complexity and the lack of natural
tokenization. In this paper, we propose the Object-
Centric Video Transformer (OCVT) which uti-
lizes an object-centric approach for decomposing
scenes into tokens suitable for use in a generative
video transformer. By factoring the video into
objects, our fully unsupervised model is able to
learn complex spatio-temporal dynamics of mul-
tiple interacting objects in a scene and generate
future frames of the video. Our model is also
significantly more memory-efficient than pixel-
based models and thus able to train on videos
of length up to 70 frames with a single 48GB
GPU. We compare our model with previous RNN-
based approaches as well as other possible video
transformer baselines. We demonstrate OCVT
performs well when compared to baselines in gen-
erating future frames. OCVT also develops use-
ful representations for video reasoning, achieving
start-of-the-art performance on the CATER task.

1. Introduction
Recent advances in natural language processing (NLP) have
shown that models trained with an autoregressive language
modeling objective using large transformers (Vaswani et al.,
2017) can learn to generate realistic text passages (Rad-
ford, 2018; Radford et al., 2019; Brown et al., 2020). Fur-
thermore, the representations learned with these generative
pre-trained (GPT) models are effective at downstream tasks
such as question answering, machine translation, reading
comprehension, and summarization. While it is of primary
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interest to develop an analogous generative pre-training pro-
cedure for videos, the computational overhead in dealing
with videos has made this a difficult endeavor.

The main challenges in developing video transformers are
(1) how to tokenize a video and (2) how to serialize the
tokens because unlike text the ordered symbolic structure is
not naturally given in videos. Several previous attempts for
images (Chen et al., 2020; Parmar et al., 2018) and videos
(Weissenborn et al., 2020) operate at the pixel level, flatten-
ing out an image into a sequence of pixels. However, since
the memory and computation of the self-attention layers
used in transformers are quadratic in the input sequence
length, in order to train these models efficiently, these works
either lower the resolution of the image or use local attention
instead of global attention across the entire image or video.

In this paper, we investigate a potentially different approach
to tackling this quadratic cost. We leverage the inductive
bias that our world is made of objects and working at an
object-level granularity can be beneficial for many down-
stream tasks, especially in scenes where the objects inter-
act with each other. To this end, we investigate different
design choices for tokenizing and serializing a video and
propose the Object-Centric Video Transformer (OCVT).
In OCVT, we combine object-centric representations with
a transformer trained using an autoregressive object-level
next-frame prediction objective. Our model leverages a
class of object-centric latent representations (Eslami et al.,
2016; Crawford & Pineau, 2019b; Lin et al., 2020b;a) which
can learn structured representations without object-level la-
beling. The learned object representation includes explicit
location and size information about the objects in each video
frame. We use this to find a bipartite matching of objects be-
tween frames, allowing us to construct the object-wise loss
function. The use of an object-centric transformer allows
OCVT to learn spatial and long-term temporal interactions
between objects in a video.

We evaluate OCVT in a number of environments con-
structed to demonstrate the strengths and limitations of
the model. Given a number of initial ground-truth video
frames, OCVT is able to generate future predictions of a
video, even in scenarios where the dynamics of the objects
in the video depend on interactions made many frames in
the past. Lastly, the representations OCVT learns are also
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able to handle downstream video understanding tasks that
require long-term spatial-temporal reasoning, achieving re-
sults comparable with the state of the art on the CATER
(Girdhar & Ramanan, 2020) snitch localization task.

2. Related Works
Unsupervised Object-Centric Representation. Recent
advances in unsupervised object-centric representation
learning for images can be split into two approaches. Scene-
mixture models (Greff et al., 2017; Van Steenkiste et al.,
2018; Burgess et al., 2019; Greff et al., 2019; Engelcke
et al., 2019; Locatello et al., 2020) decompose a scene into
objects using a mixture of image-sized components that
are each generated by a distributed representation. Bound-
ing box methods (Eslami et al., 2016; Crawford & Pineau,
2019b) use spatial attention to explicitly obtain object po-
sition and size information. SPACE (Lin et al., 2020b)
combines these two approaches by obtaining both explicit
bounding boxes for objects as well as image-sized object
segmentation masks for parts of the image that cannot be
cleanly captured by bounding boxes. Previous works that
extend these models to videos utilize an RNN for temporal
modeling (Veerapaneni et al., 2019; Watters et al., 2019;
Kosiorek et al., 2018; Crawford & Pineau, 2019a; Jiang
et al., 2019; Lin et al., 2020a). Several of these models,
namely STOVE (Kossen et al., 2019) and GSWM (Lin et al.,
2020a), also model interactions among objects with a graph
neural network.

Transformers for Images & Videos. Several recent works
have applied transformer-based architectures to various
tasks for visual scenes. To handle the quadratic memory
and computation cost in the number of pixels of an image,
Parmar et al. (2018) restrict the self-attention mechanism to
attend to local neighborhoods instead of the entire image.
Weissenborn et al. (2020) extend this technique to videos.
Other attempts at solving this quadratic cost lower reduce
the resolution of the image (Chen et al., 2020), use approx-
imations of global attention (Child et al., 2019), restrict
self-attention along an axis (Ho et al., 2019; Wang et al.,
2020), or work with patches of the original image (Dosovit-
skiy et al., 2021). Other works operate in the latent space
instead of directly on the image pixels. DETR (Carion et al.,
2020) uses the convolutional feature map as input to the
transformer for effective object detection and Trackformer
(Sun et al., 2020) extends this technique to videos for object
tracking. Rakhimov et al. (2020) use a VQ-VAE (van den
Oord et al., 2017) to obtain discrete latent representations
before applying the transformer in the latent space.

Object-centric Approaches with Transformers. There
have also been several recent attempts at combining object-
centric representations with transformers. Hopper (Zhou
et al., 2021) uses object-centric representations obtained

by DETR (Carion et al., 2020) in a multi-hop transformer
for spatio-temporal reasoning and is applied to the CATER
snitch localization task. In addition to requiring supervised
object labels (bounding boxes) for the objects, Hopper also
uses several auxiliary losses that require knowing the first
and second movements of the snitch. AlignNet (Creswell
et al., 2020b;a) uses MONet (Burgess et al., 2019) for object-
centric representations and leverages a transformer’s atten-
tion matrix to align objects between frames to track objects
over a video. While AlignNet provides good performance
for tracking tasks that require modeling of object perma-
nence, it is not experimented on any tasks that require the
generation of future frames. Concurrent with our work,
Objects-Align-Transition (Creswell et al., 2021) extends
AlignNet by including a transition model to perform future
generation. Ding et al. (2020) also use MONet to obtain
object-centric representations and input the learned repre-
sentations into a transformer. In addition to the supervised
loss for the particular task, a self-supervised BERT-style
(Devlin et al., 2019) masked prediction loss is included.
While the self-supervised loss helps to improve the model’s
performance in downstream tasks, without autoregressive
modeling, this model cannot generate future frames.

3. Object-Centric Video Transformer
3.1. Key Ideas

3.1.1. DISCRETIZING VIDEO

To design a generative video transformer, we must first
decide how to appropriately tokenize a video into discrete
entities to use as input to a transformer. While the discrete
structure of words or sub-words provides a natural choice
for language modeling, it is not obvious what analogous
tokenization is for video.

One option is to consider each image as a token. However,
without a properly disentangled representation, this choice
may limit the ability of the transformer to model interactions
within an image. This would be analogous to sentence-level
tokenization in text, where the encoding of each sentence,
e.g. using an RNN, is used as input to the transformer. The
other extreme is to consider each pixel as a token. However,
the quadratic memory and computation cost of transformers
in sequence length would limit the ability of such a model
to work on long videos.

Therefore, we arrive at the following observations about the
proper tokenization to use for a generative video transformer:
the area for each visual discrete entity should (1) cover as
large of a pixel area as possible for computational efficiency,
but (2) without being too large as to prevent the modeling
of interactions between different parts of the image.

One possible approach to such a middle ground is to use con-
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volutional feature maps as a tokenization strategy for each
image of the video. In this work, we investigate an object-
centric approach, tokenizing an image into its constituent
object representations. We argue that this is a reasonable
choice for videos because in the physical world, the spa-
tiotemporal dynamics of a scene is governed mostly by the
causal interaction among the objects of the scene. It is also
true that an object may change its state rather independently
of other objects, e.g., clock hands or a walking person, but
the updated state would still be dependent on its previous
states. Thus, we hypothesize that accessing such historical
states at the individual object-level would also be beneficial
compared to doing it at pixel, image, or feature map levels
where the identity of the objects is not necessarily preserved
in the representation across frames.

3.1.2. SERIALIZING OBJECTS

Continuing the analogy with language modeling, if we con-
sider objects as visual words, we may consider an image to
be a visual sentence. However, unlike words in a sentence,
objects in an image do not have a natural order because they
consist of a set of object representations, not a sequence.
Therefore, unlike the serialization of words in text, we can-
not simply concatenate the object representations for use as
input to the transformer.

Suppose we were able to impose an artificial order for the
objects in the image, e.g. raster scan order based on ob-
ject positions. Then we would be able to concatenate the
sorted objects in a predefined way and predict each object
autoregressively. Since the generation of each object would
depend on previous objects in the scene, this results in a
flexible model capable of modeling dependencies within
objects in the scene. However, in dynamic scenes where the
object positions change over time with complex interactions,
predicting the correct object ordering may not be an easy
task to learn (Vinyals et al., 2015; Kosiorek et al., 2018).
Further, such a model would scale linearly with the number
of objects in an image and thus may not be practical for
scenes with many objects.

A different approach that we leverage in this work is to
predict the entire image at once by generating all the objects
in the image simultaneously given their previous states. The
autoregressive prediction objective in this case would be an
object-wise loss between subsequent video frames. Instead
of requiring the model to learn an arbitrary ordering of the
set of objects, we would only need to correctly align the
objects in adjacent frames so that the object-wise loss can
be applied. This alignment can be done based on object
location by leveraging object representations with explicit
position and size information of the objects, such as those
given by SPACE (Lin et al., 2020b). By generating an
entire image in one forward pass through the transformer,

generation time for each video frame is constant with respect
to the number of objects in a scene. Furthermore, this choice
also provides a natural objective for future prediction in
physical scenes as the object-wise loss forces the model to
learn the dynamics for how objects change over time.

3.2. Architecture

We now describe the overall architecture for our proposed
model, the Object-Centric Video Transformer (OCVT).
Given a length-T video x1:T = (x1, . . . ,xT ), we use an
encoder to produce a set of latents z1:T . This encoder is part
of a structured VAE designed so that z1:T are object-centric
representations of the scene with explicit bounding box in-
formation. These latents are used as input to a transformer
decoder to obtain ẑ2:T+1, the predicted latents at the next
timestep. In order to align the objects in ẑt with the objects
in zt, we obtain a permutation matrix Pt by leveraging the
Hungarian algorithm with a cost matrix that consists of the
pairwise matching cost between each object in zt and ẑt.
This permutation matrix is then multiplied with zt to pro-
duce z̃t, which is aligned with ẑt. After alignment, we can
then train our model with an object-wise loss between ẑt
and z̃t. To generate a reconstruction of the image, we input
ẑt into the decoder of the structured VAE to obtain x̂t. This
architecture is depicted in Figure 1a. We now describe each
of these components in more detail.

3.2.1. OBJECT-CENTRIC REPRESENTATIONS

As described earlier, in order to correctly align objects be-
tween frames, it is crucial for the object-centric represen-
tations in our model to contain explicit location and size
information. Thus, we leverage a structured VAE similar to
SPACE (Lin et al., 2020b). The encoder of the VAE consists
of a fully convolutional network that transforms the input
image to a grid of H ×W cells. The feature map of each
grid cell is then run through another fully convolutional
network to produce the latents z. Each latent variable z
consists of four components z = [zpres, zwhere, zdepth, zwhat].
zpres ∈ {0, 1} is a binary random variable denoting the pres-
ence of an object, zwhere = [zh, zw, zx, zy] represents the
bounding box and center location of the object, zdepth ∈ R
specifies the depth of an object, and zwhat is a representation
for everything else about the object (e.g., appearance).

We do this for each timestep t resulting in one latent repre-
sentation zt for each image in the video xt. Note that since
each grid cell produces a set of latents for an object, we are
able to detect up to H ×W objects in one image. In our
experiments, we choose H ×W to be larger than the total
number of objects O and use zpres to determine whether or
not a grid cell detects an object.

The decoder uses a series of deconvolutional layers to create
an image for each object. zpres is used to determine the
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Figure 1. (a) Overview of model architecture. Object-centric representations of a video are used in a transformer to predict future frames
in the latent space. A alignment algorithm is used to ensure that an object-wise loss can be used between frames. (b) The alignment
algorithm uses the Hungarian algorithm obtain a permutation matrix, which is then multiplied by zt to obtained the aligned latents z̃t. (c)
The transformer’s causal self-attention mask allows objects within the same timestep to attend to each other.

transparency of the object. A low zpres would result in an
object not appearing in the reconstructed image. A spatial
transformer (Jaderberg et al., 2015) is then used with zwhere

to place each object onto the final reconstructed image. For
scenes with a background that cannot be completely cap-
tured by objects, we also train a fully convolutional back-
ground module to generate a background latent zg. In this
case, we also generate a foreground mask α that controls
the weighting between the foreground objects and the back-
ground in the final rendered image.

We pretrain the encoder and decoder networks on the video
frames and freeze the weights of the networks when the
transformer is being trained. Full implementation and train-
ing details can be found in the Supplementary Material.

3.2.2. OBJECT-CENTRIC TRANSFORMER

In order to model the dynamics of the objects over time, we
use a transformer decoder where the inputs are the object-
centric latents zt. Compared to using an RNN as is done

in other models (Kosiorek et al., 2018; Crawford & Pineau,
2019a; Jiang et al., 2019; Lin et al., 2020a), the transformer
can model both dynamics of an object over time as well as
interactions between objects without requiring a separate in-
teraction module. Moreover, while RNNs store information
from past states in their hidden state, transformers have di-
rect access to states in the past, allowing for better modeling
of long-term dependencies.

In addition to zt, we also use a sinusoidal encoding for the
timestep t, similar to the positional encoding in the original
transformer (Vaswani et al., 2017) as input to the transformer
decoder. Furthermore, we modify the causal attention mask
from the traditional transformer decoder so that the objects
within a timestep can attend to each other (Figure 1c).

After the final transformer block, we run the output through
a single hidden layer MLP to produce ẑt+1, the predicted ob-
ject representations for the next timestep. ẑwhat

t+1 , ẑdepth
t+1 , and

ẑpres
t+1 are predicted directly as the output of the MLP, but for

the bounding box of the object ẑwhere
t+1 , we predict an update
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∆ẑwhere
t+1 . We then apply the following formula to obtain the

predicted bounding box: ẑwhere
t+1 = zwhere

t + c · tanh(∆ẑwhere
t+1 ),

where c is a hyperparameter between 0 and 1 controlling the
maximum update in one timestep. This choice reflects the
fact that objects generally do not change size and location
significantly from one timestep to the next. Additionally,
since the cost matrix used for alignment (discussed in the
next section) is based on the distance between the predicted
bounding box and the actual bounding box, centering ẑwhere

t+1

around the previous bounding box zwhere
t essentially initial-

izes the alignment to be between objects that are the closest
between two timesteps, which in most cases would be the
correct alignment. This facilities training early on before
the model has learned the correct dynamics of the objects.

3.2.3. OBJECT ALIGNMENT

As an object moves around in the image, it may end up being
detected by different grid cells at different time steps. This
means that the objects in one timestep may not be aligned
with the same objects at other timesteps. As discussed
earlier, alignment is necessary for our model because we
use an object-wise loss between frames. That is, we need
the objects in our VAE inferred latents zt to be in the same
order as the latents predicted by the transformer ẑt. It should
be noted that the input of the transformer does not need to
be aligned across timesteps because the object-wise self-
attention works on an order-less set of objects.

In order to align the objects between timesteps, we leverage
the Hungarian algorithm (Kuhn, 1955), which solves the bi-
partite matching problem given a cost matrix in polynomial
time. The explicit position and size information from the
latent zwhere makes it easy to define a position-based cost
function for the matching of objects in adjacent frames. Let
us denote zt,k as the latent corresponding to grid cell k at
timestep t. We construct a cost matrix that consists of the
pairwise matching cost Cmatch(ẑt,i, zt,j) between the trans-
former predicted latents ẑt,i and the VAE inferred latents
zt,j . Cmatch is defined as: Cmatch(ẑt,i, zt,j) =

||ẑwhere
t,i − zwhere

t,j ||1 + ||ẑdepth
t,i − zdepth

t,j ||1

− (ẑpres
t,i )z

pres
t,j (1− ẑpres

t,i )
1−zpres

t,j .

To keep all the terms commensurate, we scale zwhere to be
between 0 and 1 and use a standard normal distribution for
the prior of zdepth. In scenes that are strictly 2D with no
occlusion, such as our bouncing ball experiments, we do not
include the depth term in this loss.

After applying the Hungarian algorithm with this cost ma-
trix, we obtain a permutation matrix Pt. We then left multi-
ply Pt with zt to obtain the aligned latents z̃t. This process
is depicted in Figure 1b. Note that since we pre-train the en-
coder and freeze the weights when training the transformer,

this alignment operation is not part of the computational
graph. Thus, we are able to leverage the non-differentiable
Hungarian algorithm to obtain the permutation matrix.

We should also mention that while we leverage the object
positions with the Hungarian algorithm in our architecture,
other alignment strategies, e.g. incorporating appearance
information and learning the permutation matrix, may be
used as well. We leave this investigation for future work.

3.2.4. OBJECT-WISE LOSS

After aligning the objects over all timesteps, we are then
able to train the transformer using the object-wise next-step
prediction loss: Lobject(ẑt,k, z̃t,k) =

||ẑwhat
t,k − z̃what

t,k ||1 + βwhere||ẑwhere
t,k − z̃where

t,k ||1
+ βdepth||ẑdepth

t,k − z̃depth
t,k ||1 − βpres[z̃

pres
t,k log(ẑpres

t,k )

+ (1− z̃pres
t,k ) log(1− ẑpres

t,k )].

βwhere, βdepth, and βpres are hyperparameters used to control
the contribution of each loss term.

4. Experiments
Goal. In our experiments, we seek to answer the following
questions: (1) Can the model capture complex long-term
spatiotemporal dependencies of the scene? (2) Can the
model be effective at video generation? (3) Can the model
provide good representations to use in downstream tasks?
(4) How effective are our design choices (i.e., object-centric
representations, transformer for dynamics prediction, scene
prediction vs. autoregressive component prediction)?

Datasets. We evaluate OCVT on a series of bouncing ball
datasets designed to test jointly the long-term dependency,
object interaction dynamics, and generation aspect of our
model. We also evaluate on the CATER dataset (Girdhar
& Ramanan, 2020), a video-understanding benchmark that
requires long-term temporal reasoning.

Baselines. For the bouncing balls dataset, we compare our
model with GSWM, the previous RNN-based state-of-the-
art for generation in this dataset. We further test against the
following ablations of OCVT:

• LSTM+GNN: To test the effectiveness of using a
transformer for temporal and interaction modeling, we
replace the transformer in OCVT with an LSTM for
temporal modeling and a GNN for interaction mod-
eling. This model is conceptually similar to GSWM,
except the encoder and decoder are pre-trained.

• To test the effectiveness of object-level tokeniza-
tion, we replace the object-centric VAE with two
other choices. (1) Single-Vector Video Transformer
(SVVT): The latent here is a single distributed vector
representation for each image, tokenizing the video
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at the image level. (2) ConvVT: The latent here is
a 4x4 grid of convolutional feature map cells. The
grid is flattened and then used as input to the trans-
former. Similar to OCVT, we modify the transformer
decoder causal mask to allow cells at the same timestep
to attend to each other. The outputs of the transformer
would be the updated states for each input cell at the
next timestep. Note that we do not compare with a
pixel-level tokenization scheme because of the large
amount of compute required for such a model.

• OCVT-AR: To test our design decision of generating
an entire image in one forward pass of the transformer
and the importance of aligning objects between frames,
we sort the objects based on the position from the top
left of the image to the bottom right of the image and
then predict each object autoregressively in the sorted
order.

• ConvVT-AR: We use convolutional feature map cells
as input to the transformer and predict each cell au-
toregressively in raster scan order. The last cell of an
image predicts the first cell of the next image.

For CATER, we compare with Hopper (Zhou et al., 2021),
(Ding et al., 2020), and OPNet (Shamsian et al., 2020).

4.1. Bouncing Balls

In this dataset, four colored balls bounce around in a frame.
Balls bounce off the walls and each other upon interac-
tion. Each ball is one of five colors and each color k has
an associated ordinal number ik: iblue = 0, ired = 1,
iyellow = 2, iviolet = 3, icyan = 4. If we denote the color
of ball o at frame t by co,t, then when a ball hits the wall at
frame t, it changes color according to the following formula:
(co,t + co′,t′) mod 5. Here t′ is the timestep of a previous
interaction and o′ is the ball o interacted with at time t′. We
test 4 different settings for t′ in our experiments. The Mod1
dataset sets t′ to be the frame of the most recent interaction
for object o. The Mod2 and Mod3 datasets set t′ to be the
frame of the second and third most recent interaction of
object o, respectively. The Mod1234 dataset uses a different
t′ depending on the wall object o is interacting with at time
t. If the ball interacts with the left wall, t′ is set to be the
frame of the most recent interaction. If the ball interacts
with the top wall, t′ is set to be the frame from the second
most recent interaction, and so on.

Each of these datasets is progressively more difficult in that
they require longer-term and more complex (in the case of
Mod1234) dependencies to be able to accurately predict
future frames. In order for a model to do well on these
tasks, it needs to learn both the physical dynamics of the
bouncing balls as well as the pattern of the color changes,
which requires modeling of long-term dependencies, since
the interactions may happen many timesteps in the past. We
evaluate the models under three settings: next-step predic-

Table 1. Average next-step prediction color change accuracy

MOD1 MOD2 MOD3 MOD1234

GSWM 71.69 17.51 14.63 11.72
LSTM+GNN 73.64 69.08 22.30 51.38
SVVT 37.53 18.23 11.96 29.47
CONVVT 88.31 82.83 46.49 67.29
CONVVT-AR 8.70 4.20 3.25 6.10
OCVT-AR 78.70 76.99 54.49 64.97

OCVT (OURS) 89.61 88.18 82.70 78.43

tion, long-term generation, and forced generation.

Next-Step Prediction. In the next-step prediction setting,
we task the models with predicting the next frame of the
video given the history of ground truth frames. To measure
the accuracy of whether or not the models can correctly pre-
dict the color changes of the balls, we train a classifier that
takes as input a patch from the ground truth image around
each ball and predicts the color of that ball. During test time,
we use the reconstructed image and the ground truth posi-
tions to obtain a patch from the reconstructed image and use
this classifier to determine the predicted colors of the balls
for the different models. Since the balls usually maintain
their previous colors except for certain frames where they
interact with the walls, this metric only contains the states
where the color of the ball actually changes in the ground
truth video. Note that since we classify the patch of the
reconstructed image where the ground truth ball is, perform-
ing well on this metric requires good performance on both
ball dynamics prediction and ball color change prediction.

The results are shown in Table 1. We see that
OCVT achieves the highest accuracy across all four datasets.
ConvVT also performs well on the Mod1 dataset, but the
accuracy degrades on the other datasets that require longer-
term dependencies. This suggests the effectiveness of
using object-centric representations in modeling object-
level spatiotemporal interactions. Also, we notice a sim-
ilar performance degradation for the RNN-based models
(GSWM and LSTM+GNN), indicating the limitations of
using an RNN for modeling very long-term dependen-
cies. The models that autoregressively generate the scene
(OCVT-AR and ConvVT-AR) do not perform as well as
their non-autoregressive counterparts. ConvVT-AR , in par-
ticular, seems to not be able to correctly model this task at
all, achieving lower accuracy than random (0.2 with five col-
ors). This may be because the generation of a single image
in these models requires multiple passes through the trans-
former and any prediction errors may be compounded. Fur-
thermore, OCVT-AR requires the model to correctly learn
the ordering of the objects based on their positions, which
may not be an easy task.

Long-Term Generation. In the long-term generation set-
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Figure 2. Generation mean Euclidean distance.

Figure 3. Generation pixel mean squared error

ting, we provide a certain number of ground truth frames
and ask the models to autoregressively predict a number of
frames into the future. For Mod1, we train on 20 frames,
provide 10 ground truth frames, and ask the models to pre-
dict the next 90 frames. For Mod2 and Mod3, we train on 50
frames, provide 50 ground truth frames and ask the models
to predict the next 50 frames. For Mod1234, we train on 70
frames, provide 70 ground truth frames and ask the models
to predict the next 80 frames.

Measuring performance of long-term generation in this set-
ting is difficult since early errors compound and can lead to
prediction errors later in the trajectory. In order to obtain the
full picture of generation quality, we need to measure both
the physical trajectories of the balls as well as the accuracy
in the color change predictions of the balls. For the mod-
els that provide explicit object position information (OCVT,
OCVT-AR, LSTM+GNN, GSWM), we can evaluate the tra-
jectory by calculating the mean Euclidean distance between
the predicted ball positions and the ground truth positions
over time. For models that do not provide object position in-
formation (SVVT, ConvVT, ConvVT-AR), we can measure
the pixel mean-squared error between the reconstructed im-
age and the original image. However, the pixel MSE metric
can be misleading because low values may not necessarily
correlate with good predictions. For example, a model that
predicts balls in the wrong positions would lead to a higher
(worse) pixel MSE than a model that predicts a blank image,
even though the model that predicts the blank image would
be objectively incorrect. Nonetheless, this metric can still
provide information about generation quality, especially in
the early parts of the trajectory when the predictions are still
close to the ground truth.

The results are shown in Figures 2 and 3. To highlight the

early part of the trajectory, where pixel MSE is the most in-
formative, we plot the curves until they flatten out instead of
to the end of the trajectory. We notice that GSWM achieves
the best mean Euclidean distance and pixel MSE in this
setting. This is not surprising because GSWM’s object-
RNN encodes only the trajectory of a ball, isolated from
the dynamics of the other objects. Since the prediction of
the dynamics only depends on the last few timesteps, no
modeling of long-term dependencies is needed. Interaction
is dealt with by a separate graph neural network and is also
well separated from the trajectory modeling. OCVT, on the
other hand, needs to learn to perform the more complex
operation of factoring out its own trajectory while consid-
ering interaction as well. Moreover, because GSWM is
trained end-to-end, it can capture dynamics information in
its latent variables, which would help in making trajectory
predictions. Interestingly, we find that OCVT can still learn
the dynamics reasonably despite this, outperforming the
remaining baselines. Furthermore, we note that GSWM’s
training procedure requiring a curriculum makes it take four
times longer to converge than OCVT. This can also lead
to unstable training, especially for longer trajectories, as
evidenced by the Mod1234 experiment where GSWM does
not learn the dynamics well.

ConvVT performs similarly to OCVT in terms of pixel
MSE, although as we see in the qualitative results below, it
makes mistakes predicting the color change. We also see
that ConvVT-AR flattens out quickly to a lower value than
the other curves. This is actually a result of the poor genera-
tion when the model incorrectly remove balls from the scene
(see the qualitative results below). However, since the pixel
MSE between the ground truth and a blank image is around
0.06, this curve saturates at a lower value than the other
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Figure 4. Qualitative generation results for Mod1 dataset. Given the first 10 frames of the video, each model predicts the next 90 frames.
The first 20 predicted frames are shown.

curves. Lastly, we notice that OCVT-AR performs worse
than OCVT across all the datasets, implying that autoregres-
sive generation is not beneficial for of long-term generation.
As mentioned previously, this is likely due to the compound-
ing errors that result from autoregressive object generation
per image.

Qualitative Analysis. Figure 4 shows the long-term gener-
ation results for the different models on the Mod1 dataset
(see Supplementary for additional results). The first 20 pre-
dicted steps are shown in the figure. We see that GSWM
predicts the locations of the balls fairly close to the ground
truth, but makes several errors when predicting the color
change of the balls. For example, in frame 7, it incor-
rectly predicts that the violet ball should change color
to yellow instead of cyan. Similarly, LSTM+GNN and
ConvVT incorrectly predict the color of the ball (eg. the
violet ball at frame 10 for LSTM+GNN and the blue ball at
frame 10 for ConvVT ) while also having worse dynamics
prediction than GSWM. SVVT has even worse dynamics
than the other models and also makes predictions of balls
with mixed colors. ConvVT-AR predicts missing balls after
several frames resulting in a plateau at a lower pixel MSE
than other models, even though the generation is clearly
incorrect. OCVT-AR predicts color changes earlier than the
ground truth frames because of inaccurate dynamics as well
as incorrect color changes later in the trajectory (eg. violet
ball in frame 14).

OCVT’s dynamics prediction is relatively accurate com-
pared to the other models (except for GSWM), but the slight
difference in trajectory also causes the model to predict the
color change of the yellow ball in frame 14 earlier than in
the ground truth video. Note, however, that the color change
here is correct. The ball is previously cyan, which has an
ordinal value of 4, and following this ball earlier in the tra-

jectory, we see the last interaction was with the violet ball
in frame 4. The ordinal value of violet is 3, so the expected
color of the ball when it interacts with the wall at frame 14
is yellow, which has an ordinal value of 2. Therefore, even
though the color change occurred at an incorrect frame, the
color change prediction is actually correct given the pre-
dicted dynamics. This analysis also illustrates the difficulty
of measuring generation quality in this setting where errors
early in the trajectory compound.

Forced Generation. Since the trajectories of the balls in the
long-term generation setting may deviate from the ground
truth (and the deviation compounds over time), we cannot
easily evaluate whether or not the color change of the balls
is correct. To address this, we introduce a forced generation
setting where we can perform this measurement. For the
models that provide explicit location and size information
via the zwhere latent, we can force the balls to follow the
ground truth trajectories by directly manipulating zwhere
during prediction. That is, during the prediction of the next
frame, we manually set the zwhere to be equal to the ground
truth location and size of each ball. All other latents are
generated from the previous frame. This allows us to enforce
the ground truth trajectory of the balls and measure how
well the models learn the color change dynamics during
long-term generation.

We calculate the accuracy using the same classifier as
in the next-step prediction setting and plot the resulting
color change accuracy over time in Figure 5. We see that
OCVT outperforms all the other baselines in this setting,
indicating that our model is better able to learn the color
change dynamics of the videos. Even though GSWM is able
to predict future object positions well, we notice that it does
not perform well in this forced generation setting, with an ac-
curacy of around 0.2 for Mod2, Mod3, and Mod1234, which
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Figure 5. Forced Generation Accuracy

is around the same accuracy of random guessing. Similarly,
LSTM+GNN also performs poorly in this setting, suggest-
ing that the use of the transformer is beneficial for modeling
these long-term dependencies. While OCVT-AR achieves
higher accuracy than the RNN-based baselines, it does not
surpass OCVT. This may again be due to the compounding
errors from the autoregressive generation.

4.2. CATER Snitch Localization

CATER (Girdhar & Ramanan, 2020) is a 3D dataset that
consists of videos of objects moving around in a scene. The
objects lie on a 6x6 grid with the origin in the center of
the scene. The initial number and placement of objects
is chosen randomly and objects also move and potentially
cover other objects randomly as well. Objects that cover
other objects move together until they are uncovered. The
flagship task for this dataset is a snitch localization task, that
requires predicting the location of the golden snitch (one
of the objects that are present in all scenes) at the end of
the video. The snitch may be covered by another object
(which may also be covered by other objects, and so on) so
it may not be visible at the last frame and may have last been
visible many frames prior to the last frame. Therefore, this
task requires a model to understand the effect of different
actions in the environment and reason about them. The final
location is quantized into the 6x6 grid and the problem is
set up as a single label classification task.

In order to handle this task, we modify our model to in-
clude a CLS token with a learned embedding as input to the
transformer. An attention mask is added so that the latents
z cannot attend to the CLS token, but the CLS token can
attend to all the latents at all timesteps. The output of the
transformer corresponding to the CLS token is then used
in an MLP to predict the final snitch location and a cross-
entropy loss is used with the ground truth snitch locations.
We pre-train the transformer and then fine-tune the entire
model with the snitch localization objective.

Table 2 shows the results of our experiments. The Top 1 and
Top 5 accuracy, as well as the final L1 distance between the
prediction and the ground truth location, are reported. We
compare OCVT with several previous attempts to solving
this problem, including two approaches that also combine

Table 2. CATER results

TOP 1 ↑ TOP 5 ↑ L1 ↓
DING ET AL 70.6 93.0 0.53
DING ET AL W/ L1 74.0 94.0 0.44
HOPPER 73.2 93.8 0.85
OPNET 74.8 - 0.54

OCVT (OURS) 76.0 94.4 0.45
OCVT W/ L1 (OURS) 75.9 95.3 0.39

object-centric representations with transformers, Hopper
(Zhou et al., 2021) and (Ding et al., 2020). Hopper re-
quires several auxiliary losses to perform well on this task
including a loss that requires knowing the first and second
movements of the snitch. Ding et al. (2020) use a BERT-like
bidirectional masking scheme and achieves the best perfor-
mance by adding an L1 loss to the objective for the location
of the snitch. Our model outperforms these baselines in Top
1 and Top 5 accuracy without the use of any auxiliary losses.
With the addition of the L1 auxiliary loss, our model also
achieves the lowest L1 distance. This demonstrates that our
model can learn good representations of the scene to be used
in downstream tasks.

5. Conclusion
We proposed OCVT, a generative video transformer that
leverages the recent advances in unsupervised object-centric
representation learning. Our model is able to generate future
frames of videos with complex long-term dependencies and
learn representations that are useful in downstream tasks.
This study shows that given an appropriate representation,
using objects as visual words can be a reasonable induc-
tive bias for tokenizing a video. While our model uses
SPACE to obtain object representations and leverages the
explicit position information to align objects, future work
may involve improving the object-centric representations to
work for more complex, real-world scenes. Furthermore, it
would be interesting to investigate alignment strategies with
representations without explicit position latents.
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