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Abstract
We study reinforcement learning (RL) in episodic
tabular MDPs with adversarial corruptions, where
some episodes can be adversarially corrupted.
When the total number of corrupted episodes
is known, we propose an algorithm, Cor-
ruption Robust Monotonic Value Propagation
(CR-MVP), which achieves a regret bound
of Õ

((√
SAK + S2A+ CSA)

)
polylog(H)

)
,

where S is the number of states, A is the number
of actions, H is the planning horizon, K is the
number of episodes, and C is the known corrup-
tion level. We also provide a novel lower bound,
which indicates that our upper bound is nearly
tight. Finally, as an application, we study RL with
rich observations in the block MDP model. We
provide the first algorithm that achieves a

√
K-

type regret in this setting and is oracle efficient.

1. Introduction
Reinforcement Learning (RL) has become a ubiquitous
paradigm for decision-making in multi-stage environments.
In a reinforcement learning problem, an agent is trained to
interact with an environment in order to maximize its cumu-
lative rewards through time. We model the environment as a
Markov decision process (MDP) whose transition dynamics
are unknown. As the agent interacts with the environment
it observes the states, actions and rewards generated by the
system dynamics. This has seen widespread applications
in many areas including robotics (Kober et al., 2013), com-
puter gaming (Mnih et al., 2015; Silver et al., 2017) and
stock market (Yang et al., 2020a).

However, in many real world applications, a trained agent
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is vulnerable to corrupted data stemming from malicious
entities (Huang et al., 2017; Ma et al., 2019), non-malicious
yet non-stationary behavior, or simply errors in the system.
Data corruption may lead the agent to exhibit inefficient and
often unsafe behavior. In order to guarantee the safety and
robustness of the agent against data corruption, it is of great
importance to design efficient algorithms that are robust to
data corruption in RL.

Previous works handling corruption mainly focus on the
multi-armed bandit setting (Lykouris et al., 2018; Gupta
et al., 2019), which is not directly applicable to the RL set-
ting. Recently, Lykouris et al. (2019) initiates the study of
episodic reinforcement learning under adversarial corrup-
tions. They assume that both the reward and the transition
of the underlying system can be corrupted. In this case
they present an algorithm that achieves Õ(C

√
SAHK +

CS2A+ C2SA) regret bound,1 where S is the number of
episodes, A is the number of actions, H is the planning
horizon, K is the number of episodes, and C is the known
number of corrupted episodes (also called corruption level).
Unfortunately, when C is large, say C = Ω

(√
K
)

, their
bound becomes vacuous. Therefore, a better bound with
respect to C is needed. Furthermore, they assume that the
adversary decides whether to corrupt one episode after see-
ing the agent’s policy, but before the agent takes its action
at each step. However, in many real-world applications,
the adversary is allowed to make such decision after the
agent takes an action. For example, in the stock market, the
opponent may choose whether to manipulate the price of
the stock after seeing your operation. This kind of adversary
is typically stronger as it receives more information before
it decides whether to corrupt the environment. In this paper,
we take a step towards answering the following question:

Can we achieve a tight regret bound in RL with
stronger adversarial corruptions?

1Õ (·) hides logarithmic factors. Sometime we write
polylog(H) to highlight the dependency on H .
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1.1. Our Contributions

We study the stronger type adversary which can decide
whether to corrupt the environment after it observes the cur-
rent state and the action of the agent, and we assume that
the adversary only changes the agent’s observation while
not changing the underlying state. Note the adversary can
corrupt consecutive time steps to replace the state and re-
ward according to another MDP, hence we can stimulate the
transition corruption. Different from (Lykouris et al., 2019),
we assume that an upper bound of the corruption level C
is known in prior. Although Lykouris et al. (2019) also
discusses the known case, they assume that the adversary
changes the underlying state, which is different from our
setting. While this is a stronger assumption than the case
where the corruption level is unknown, in many applications,
an upper bound of C is known, for which we will discuss
more in Section 6. We summarize our contributions below.

• We present a conceptually simple and computationally
efficient algorithm. Our algorithm, Corruption Robust
Monotonic Value Propagation (CR-MVP), is similar
to the MVP algorithm in (Zhang et al., 2020a), with
a delicate alteration to the form of the “exploration
bonus” in order to make it robust against corruptions.

• Theoretically, we show that our algorithm
achieves a high probability regret bound
Õ
((√

SAK + S2A+ CSA
)
polylog(H)

)
. Our

bound is much tighter than that in (Lykouris et al.,
2019), which is Õ(C

√
SAHK + CS2A + C2SA).

More importantly, ignoring the CSA term,
our upper bound matches the best known up-
per bound of tabular MDP without corruption,
Õ
((√

SAK + S2A
)
polylog(H)

)
(Zhang et al.,

2020a).

• We further study what is the optimal dependency on the
corruption level C. We establish a novel lower bound,
which states that any algorithm must incur an Ω(CSA)
regret when as long as K ≥ Ω(CSA). This lower
bound, together with previous lower bounds contextual
bandits and tabular reinforcement learning (Osband &
Van Roy, 2016; Jaksch et al., 2010; Bubeck & Cesa-
Bianchi, 2012), shows that our upper bound is nearly-
tight up to an additive S2A factor.

• As an application, we consider block MDP, which has
studied extensively in many previous works (Du et al.,
2019; Misra et al., 2020; Agarwal et al., 2020), and has
widespread applications in image and text tasks. We
provide an algorithm, ID-MVP, based on CR-MVP,
which is a statistically and computationally efficient
algorithm (with access to a least square oracle) with an√
K-type regret bound.

2. Related Work
Multi-armed Bandit and Reinforcement Learning with
Corruption. Many prior works studied Multi-armed Ban-
dit and Reinforcement Learning problems with adversarial
or stochastic corruptions. The model of adversarial corrup-
tion was first introduced by (Lykouris et al., 2018). They
consider stochastic multi-armed bandits with corrupted re-
wards where the corruption level C is unknown, and provide
an algorithm that achieves O

(
AC

∑
a 6=a?

(log(AT/δ))2

∆(a)

)
2

regret with probability at least 1− δ. They also provide a
Ω(C) lower bound. Gupta et al. (2019) provides a better
algorithm in the bandit setting, which improves the upper
bound toO

(
AC +

∑
i 6=i?

log T
∆i

log
(
A
δ log T

))
. They also

claim a bound of Õ
(
C +

∑
i 6=i∗ 1/∆i

)
when C is known.

Zimmert & Seldin (2019) further optimize the dependence
on the number of actions via an elegant modification of
mirror descent, for the weaker notion of pseudoregret and
assuming that the best action is unique. Jin et al. (2019)
considers the bandit-feedback setting in MDPs, where re-
wards are adversarial, and are only observed for state-action
pairs visited. They provide regret bounds under the assump-
tion that the adversary can only corrupt rewards and not
transition dynamics.

The most related work is (Lykouris et al., 2019), which ex-
tends the adversarial corruption setting to episodic reinforce-
ment learning. They assume that both the reward and the
transition of the underlying system could be corrupted, and
the corruption level is unknown. In this case they present an
algorithm that achieves Õ(C

√
SAHK + CS2A+ C2SA)

regret bound. However, when C is large, their bound be-
comes vacuous. For example, when C = O(

√
K), their

bound grows linearly with respect to K, which is unac-
ceptable. Also, their setting is different from ours. To
be concrete, in their setting, before each episode the ad-
versary decides whether to corrupt the episode, and if an
episode is corrupted, the reward function and transition will
be changed. As a comparison, we allow the adversary to
decide whether to corrupt the step after it sees the action of
the agent in this episode, and the adversary will only mis-
lead the agent by disturbing its observation on the state and
reward signal, while leaving the underlying state and reward
that the agent actually receives unchanged. See Section 3
for more discussions.

Episodic Tabular MDP. There is a long list of sample
complexity guarantees for episodic tabular RL. Previous
papers use two measures to quantify sample complexity:
regret (Bartlett & Tewari, 2012; Jaksch et al., 2010; Osband
et al., 2013; Azar et al., 2017; Osband & Van Roy, 2017;

2Here ∆i is the suboptimal gap of arm i, A is the number of
arms, and C is the total injected corruption.
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Agrawal & Jia, 2017; Fruit et al., 2018; Talebi & Maillard,
2018; Simchowitz & Jamieson, 2019; Russo, 2019; Zhang
& Ji, 2019; Cai et al., 2020; Zhang et al., 2020b; Yang et al.,
2020b; Pacchiano et al., 2020; Neu & Pike-Burke, 2020)
and PAC-RL sample complexity (Kearns & Singh, 2002;
Brafman & Tennenholtz, 2002; Kakade et al., 2003; Strehl
et al., 2006; Strehl & Littman, 2008; Kolter & Ng, 2009;
Szita & Szepesvári, 2010; Lattimore & Hutter, 2012; Dann
& Brunskill, 2015; Dann et al., 2019; Dong et al., 2019).
As is pointed out in (Dann et al., 2017; Jin et al., 2018),
suppose that one has an algorithm that achieves CK1−α

regret for some α ∈ (0, 1) and some C independent of T, by
randomly selecting from policy πk used in K episodes, π
satisfies [Es1∼µ [V ∗1 (s1)− V π (s1)] = O (CK−α) . This
reduction is often near-optimal to obtain PAC-RL sample
complexity guarantee. On the other hand, there is no general
near-optimal reduction that transform a PAC-RL bound to a
regret bound.

Contextual Decision Process and Block Markov Deci-
sion Process The block Markov decision process (BMDP)
setting belongs to a broader class of settings called contex-
tual decision process (CDP), which was first studied in
(Krishnamurthy et al., 2016). Jiang et al. (2017) gives an
algorithm with polynomial sample complexity guarantee
under the low bellman rank assumption. Dann et al. (2018)
gives an oracle-efficient algorithm when the transition of
hidden state is deterministic. Recently, Dong et al. (2020)
develop an online learning algorithm that learns the optimal
value function while at the same time achieving low cumu-
lative regret during the learning process. This is the first
algorithm that achieves

√
K regret in CDP. However, their

algorithm is also computationally intractable.

BMDP was first considered in (Du et al., 2019). Their
algorithm, PCID, learns a policy cover with polynomial
sample complexity under the reachability and separability
assumption. Misra et al. (2020) removes the separability
assumption, at the cost of higher sample complexity. Feng
et al. (2020) also designed provably efficient algorithms
for BMDP but using a different oracle. Recently, Agarwal
et al. (2020) considers a more general low rank MDP setting,
which includes BMDP as a special case. Their algorithm
does not rely on reachability and separability, but the sample
complexity is much higher. To our knowledge, none of these
works provides a

√
K-type regret bound.

3. Preliminaries
3.1. Notations

We use ∆(·) to represent the set of all probability distribu-
tions on a set. For n ∈ N+, we denote [n] = {1, 2, ..., n}.
We use O(·), Θ(·), Ω(·) to denote the big-O, big-Theta, big-
Omega notations. We use Õ(·) to hide logarithmic factors.

Sometime we explicitly write out the polylog-dependency
on H . For any finite set S, we write U(S) to denote the
uniform distribution over S. Given an h-step policy π we
write π � a for the (h+ 1) -step policy that executes π for
h steps and chooses action a in step h + 1. Similarly, if η
is a policy mixture and ν a distribution over A, we write
η� ν for the policy mixture equivalent to first sampling and
following a policy according to η and then independently
sampling and following an action according to ν. We write
4d for the simplex in Rd.

3.2. Problem Formulation

We consider tabular MDP, which is represented by a tuple
M = (S,A, H, P,R), where S and A are the set of states
and actions, H is the number of steps in each episode, P
is the transition probability matrix. With a slight abuse of
notation, We denote by P (·|s, a) ∈ ∆(S) the probability
distribution over the next state after the agent takes action
a in state s. R : S ×A → ∆(R) is the reward distribution
so that R(s, a) is the reward distribution after the agent
takes action a in state s. We denote r : S × A → R as
the expectation of the reward. For notational convenience,
we use Ps,a and Ps,a,s′ to denote P (·|s, a) and P (s′|s, a),
respectively.

In each episode, the agent starts from an initial state s1.
At each step h ∈ [H], the agent takes action ah in state
sh and receive a reward rh generated from the distribution
R(s, a), the state transits to sh+1 according to the distribu-
tion P (·|s, a).

Previous works assume that rh ∈ [0, 1] for all h ∈ [H],
which implies that the total reward

∑H
h=1 rh ∈ [0, H]. In

order to eliminate artificial regret blow up due to scaling,
one should scale down the reward by a 1

H factor such that
the total reward is in [0, 1], hence leads to the rh ∈ [0, 1

H ]
assumption, a.k.a. the uniformly bounded reward assump-
tion. In this paper, we follow the more general assumption
1 in previous works (Jiang & Agarwal, 2018; Wang et al.,
2020; Zhang et al., 2020a) which says that the total reward∑H
h=1 rh is bounded by 1.

Assumption 1 (Bounded Total Reward). The reward rh
satisfied that rh ≥ 0 for all h ∈ [H]. Moreover, for all
policy π,

∑H
h=1 rh ≤ 1 almost surely.

We point out that by adopting either Assumption 1 or the
uniformly bounded reward assumption, one ignores the diffi-
culty caused by the scaling which is unimportant, and focus
on the hardness due to the planning horizon and unknown
transition.



Reinforcement Learning with Adversarial Corruption

3.2.1. EPISODIC TABULAR MDP WITH ADVERSARIAL
CORRUPTIONS

In this section we discuss our definition of corruption, and
the difference between our setting and previous settings
such as (Lykouris et al., 2019). In the corrupted setting, we
have a nominal MDPM, which the learner faces in all steps
that are not corrupted by the adversary. There are two major
kinds of adversary, which we denote by weak adversary
and strong adversary respectively.

Weak adversary: Most prior works adopt this kind of ad-
versary, for example (Lykouris et al., 2019). Assume that
after the agent takes the action at−1 at state st−1 and re-
ceives a reward rt−1, the adversary first observe the next
step policy πt and decides whether to corrupt the tth time
step before the environment generate the next state st. If
the adversary decides to corrupt the next step, it generates
an arbitrary state s′t and the corresponding reward func-
tion r̃(s′t, ·) ∈ RS . After the agent observes the corrupted
state s′t, it takes action at and observes r̃(s′t, at) instead of
r(st, at).

Strong adversary: In contrast to a weak adversary, a strong
adversary can decide whether to corrupt the current step
reward rt and the next state st+1 after the agent takes an
action. In other words, after the agent takes action at at
state st, the adversary decides whether to corrupt the current
reward and the next time step. If the adversary decides to
corrupt, it replaces the reward rt with an arbitrary corrupted
reward r′t and generates an arbitrary state s′t+1 as well as
the corresponding reward function r̃(s′t+1, ·) ∈ RS .

A strong adversary at time t − 1 and a weak adversary at
time t have the same ability to corrupt the state and reward
function at the tth step, but the strong adversary can do more
by corrupting the reward function at time step t− 1. More
importantly, a strong adversary can corrupt the reward after
seeing the agent’s action at this timestep, while the weak one
can only see the random policy instead of a deterministic
action.

In our setting, we assume that the adversary only confuses
the agent’s observation while not changing the underlying
state and reward that the agent actually receives. To be more
specific, when an adversary decides to corrupt the state st
into s′t, the agent will observe s′t, while staying in st actually.
This kind of corruption is common in practice. For exam-
ple, a robot may only receive images with stochastically
or adversarially perturbations, while the true environment
remains unchanged (Eykholt et al., 2018).

The corruption level is defined as the total number of steps
at which is corrupted. Note that our definition of corrup-
tion level is different from the definition in (Lykouris et al.,
2019). We assume that the agent knows an upper bound
of corruption level C at the beginning. However, the agent

does not know which steps are corrupted. This is where the
difficulty of the problem lies.

Remark: Under the strong adversary assumption there
does not exist an algorithm that can achieve an
Õ(poly(S,A,H)(

√
K + C)) regret upper bound without

knowing the corruption level C beforehand. In fact, even in
the multi-armed bandit setting, Proposition 1 shows that if
an algorithm achieves a Õ(KαCβ) regret upper bound in
this setting, then α+β/2 ≥ 1. However, the above argument
does not mean that the Õ(poly(H,S,A)(

√
KC + C2)) re-

gret bound in (Lykouris et al., 2019) is optimal, since they
studied the weak adversary instead of strong adversary. The
proof of Proposition 1 is in Appendix C.

Proposition 1. In a MAB instance with adversarial corrup-
tions, assume that the corruption level C is unknown. If
there exists an algorithm A that can achieve a high prob-
ability regret upper bound Õ

(√
K +KαCβ

)
for any C

and K, then α+ β/2 ≥ 1.

A policy π is a set of functions {πh : S 7→ ∆(A)}h∈[H].
Given a policy π, a level h ∈ [H] and a state-action pair
(s, a) ∈ S × A, the Q−function and the value function
without corruption are defined as:

Qπh(s, a) = E[

H∑
h′=h

rh′ |sh = s, ah = a, π],

V πh (s) = E[

H∑
h′=h

rh′ |sh = s, π].

We let VH+1(s) = 0 and QH+1(s, a) = 0 for all s ∈
S, a ∈ A. We use Q∗h and V ∗h to denote the optimal Q-
function and V -function at level h ∈ [H] without cor-
ruptions, which satisfies Q∗h(s, a) = maxπ Q

π
h(s, a) and

V ∗h (s) = maxaQ
∗(s, a) respectively.

We use Q̃ and Ṽ to denote theQ-function and value function
with corruptions, which is the reward the agent actually
receives under with corruption. Let s̃t be the state observed
by the agent, i.e., s̃t = s′t if it is corrupted by the adversary,
otherwise s̃t = st. Due to corruptions, the agent will play
action π(s̃t) instead of π(st). Then Q̃ and Ṽ are defined as:

Q̃πh(s, a) = E[r(s, a)+

H∑
h′=h+1

r(sh′ , π(s̃h′))|sh = s, ah = a],

Ṽ πh (s) = E[
H∑

h′=h

r(sh′ , π(s̃h′))|sh = s].

In such setting, we define regret as the difference between
the optimal value of the original MDP (without corruption)
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and the expected cumulative reward the agent actually re-
ceives. That is,

Regret(K) =

K∑
k=1

V ∗1 (sk1)− Ṽ π
k

1 (sk1), (1)

where πk is the policy in the k-th episode.

4. Corruption Robust Monotonic Value
Propogation

In this section we introduce our algorithm Corruption Ro-
bust Monotonic Value Propagation (CR-MVP) for episodic
tabular MDP with adversarial corruptions, which is inspired
by the MVP algorithm by (Zhang et al., 2020a) with some
novel modifications in order to deal with corruptions.

The pseudocode of CR-MVP is listed in Algorithm 1. The
algorithm adopt an update framework similar to the doubling
framework proposed in (Jaksch et al., 2010). We define a
trigger set L = {2i−1 + C|2i−1 + C ≤ KH, i = 1, 2, ...}.
The algorithm proceeds through epochs where each epoch
ends whenever there exists an (s, a) pair such that the num-
ber of visits of (s, a) falls in L. During each epoch, we keep
using the same policy πk induced by the current Q-function.

At the beginning of each epoch, we update the empirical
reward and transition probability of the triggered (s, a) pair.
For the transition probability, we use maximum likelihood
approach. Suppose Ñk(s, a, s′) and Ñk(s, a) are the num-
ber of visit of (s, a, s′) and (s, a) observed by the agent
before the kth update, we set P̃ ks,a = Ñk(s,a,s′)

Ñk(s,a)
. For the

ease of exposition we abuse the notation and drop the de-
pendencies on k. Note that Ñ is not the actual number of
visit due to corruptions. We denote N̂(s, a) and N̂(s, a, s′),
the actual visitation of (s, a) and (s, a, s′), respectively.
Note P̃ is biased because of the contaminated nature of
Ñh(s, a) and Ñh(s, a, s′). We denote the unbiased estima-
tor by P̂s,a = N̂(s,a,s′)

N̂(s,a)
to distinguish it from the biased

estimator P̃ . We emphasize that the agent only have the
access to the biased counter Ñ and biased transition P̃ .

Our algorithm follows the idea of optimism in the face of un-
certainty. A typical optimistic algorithm usually maintains
an optimistic estimation of Q-function by adding a bonus
term to the empirical Bellman Equation, i.e., Q̂h(s, a) =

r̂(s, a) + P̂s,aVh+1 + b̂h(s, a). For example, Zhang
et al. (2020a) constructed a Bernstein type bonus of the

form b̂h(s, a) = c1

√
V(P̂ ,Vh+1)

max{N̂(s,a),1} + c2
√

r̂(s,a)ι

max{N̂(s,a),1} +

c3
ι

max{N̂(s,a),1} .

However, the above result relies on the access to the unbi-
ased estimators N̂ and P̂ . In order to maintain the optimism
of the Q-function in the corrupted setting, we view Qh as

Algorithm 1 Corruption Robust Monotonic Value Propaga-
tion

Input: Trigger set L ← {2i−1+C|2i−1+C ≤ KH, i =
1, 2, ...}, where C is the corruption level. Constants c1 =
460
9 , c2 = 2

√
2, c3 = 544

9
for (s, a, s′, h) ∈ S ×A× S × [H] do
Ñ(s, a)← 0; θ(s, a)← 0;n(s, a)← 0;Vh(s)← 1;
Ñ(s, a, s′)← 0; P̃s,a,s′ ← 0;Qh(s, a)← 1.

end for
for k = 1, 2, ...,K do

for h = 1, 2, ...,H do
Observe skh, take action akh = arg maxaQh(skh, a);
Receive reward rkh and next state skh+1.
Set (s, a, s′, r)← (skh, a

k
h, s

k
h+1, r

k
h).

Set Ñ(s, a, s′)← Ñ(s, a, s′) + 1,
Ñ(s, a)← Ñ(s, a) + 1,
θ(s, a)← θ(s, a) + r.

if Ñ(s, a) ∈ L then
Set r̃(s, a)← θ(s,a)

Ñ(s,a)
,

P̃s,a,· ← Ñs,a,·/Ñ(s, a),

n(s, a)← Ñ(s, a).
Set TRIGGERED= TRUE.

end if
if TRIGGERED then

for h = H,H − 1, ..., 1 do
for (s, a) ∈ S ×A do

Set b̃h = 2 min{ 2C
|n−C| , 1} +

c1 min{
√

V(P̃ ,Vh+1)ι
|n−C| +

√
Cι

|n−C| , 1} +

c2 min{
√

r̃ι
|n−C| +

√
Cι

|n−C| , 1} +

c3 min{ ι
|n−C| , 1},

Qh(s, a) ← min{r̃(s, a) + P̃s,aVh+1 +

b̃h(s, a), 1},
Vh(s)← maxaQh(s, a).

end for
end for

end if
Set TRIGGERED=FALSE

end for
end for

a function of Ñ , P̃ , which we denote as Qh(Ñ , P̃ ), and
design b̃h such that Qh is an upper bound of the Q̂h(N̂ , P̂ )
constructed by the unbiased estimators, i.e.,

Qh(Ñ , P̃ )(s, a) = r̃(s, a) + P̃s,aVh+1 + b̃h

≥Q̂h(N̂ , P̂ )(s, a) = r̂(s, a) + P̂s,aVh+1 + b̂h.

We specify a choice of b̃h according to the following lemma,

Lemma 1. Suppose c1, c2, c3 ≥ 0, let b̃h = b̃h,con + b̃h,bia,
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where

b̃h,con =c1 min

{√
V(P̃ , Vh+1)ι

|Ñ − C|
, 1

}

+c2 min

{√
r̃ι

|Ñ − C|
, 1

}
+ c3 min

{
ι

|Ñ − C|
, 1

}
,

and

b̃h,bia =2 min

{
2C

|Ñ − C|
, 1

}
+(c1 + c2) min

{ √
Cι

|Ñ − C|
, 1

}
.

Then Qh ≥ Q̂h.

Note that the term b̃h consists of two terms b̃h,con and b̃h,bia,
where the first one b̃h,con comes from a standard concentra-
tion process. The second term b̃h,bia is novel because it is
designed to offset the bias. To analyze the regret, we first
note that it can be decomposed into the sum of bonus and
a sum of martingales which is bounded by

√
SAK + S2A,

i.e.,

Regret ≤ Õ(

K∑
k=1

H∑
h=1

b̃kh) +
√
SAK + S2A.

The bonus term can be further decomposed into the
concentration-induced term

∑K
k=1

∑H
h=1 b̃h,con and the

bias-offset term
∑K
k=1

∑H
h=1 b̃h,bia. The concentration-

induced term can be bounded by
√
SAK + CSA using

standard techniques from (Zhang et al., 2020a). Hence,
we only need to deal with the bias-offset term b̃h,bia.
We can upper bound this term by using the inequality∑K

k=1

∑H
h=1 min{ D

|Ñ−C| , 1} ≤ CSA + DSAι which
holds for any D ≥ 0, where ι = log(HSAK/δ) is a
log factor. Set D = 2C and

√
Cι respectively, we obtain∑K

k=1

∑H
h=1 b̃

k
h,bia ≤ Õ(CSA). In other words, we prove

the following theorem regarding the upper bound. The full
proof in given in Appendix A.
Theorem 1. (Regret upper bound of CR-MVP) Under as-
sumption 1, with probability at least 1 − δ, the regret of
algorithm 1 satisfies:

Regret(K) ≤ Õ(
√
SAK + S2A+ CSA),

whereK is the total number of episodes. In other words, the
regret caused by the corruptions only scales linearly with
regard to C.

In the unknown C setting, Lykouris et al. (2019) proposed
the algorithm with Õ(poly(H,S,A)(

√
KC + C2)) regret.

Our theorem improves the regret in the known C setting
to Õ(poly(S,A)(

√
K + C)) which separates

√
K and C.

Also, our algorithm is computationally efficient.

5. Lower Bounds
In this section we show that the bound Õ(

√
SAK + CSA)

in Theorem 1 is unimprovable. Previous literature (Osband
& Van Roy, 2016; Jaksch et al., 2010; Bubeck & Cesa-
Bianchi, 2012) have shown that the Õ(

√
SAK) term cannot

be improved in tabular MDP without corruption. The fol-
lowing theorem guarantees that the second term Õ(CSA)
is optimal.

Theorem 2. For any fixed C, S, A, and any algorithm A,
there exists an episodic MDP with horizon H = O(logA S),
such that the regret A incurred after K episodes in this
MDP is at least Ω(CSA), where K satisfies K ≥ 2CSA.

The full proof is deferred to Appendix C. Here we give
a brief description for the proof ideas. For simplicity we
only consider the bandit setting with A arms (which means
H = 1 and S = 1) and every time the agent chooses to pull
an arm a, the agent may mislead the agent to believe that it
pulls another arm a′.

Now we consider two environments. In the first environment
there is no corruptions. Since an adversary can corrupt
the bandit for at most C times, we claim that the agent
must pull each arm for at least C times. Otherwise, there
must exists an arm ã that the agent pulls for less than C
times. Then we can find another environment in which
the adversary chooses to corrupt the agent and gives a low
reward in steps that the agent chooses ã while the reward
of ã is actually the largest. So the agent will falsely regard
ã as a suboptimal arm and thus incur a linear regret in this
environment. However,if the agent pulls all the arms for at
least C times, then it will suffer an O(AC) regret since it
pulls all the A− 1 suboptimal arms for C times. Hence we
reached the conclusion.

Note that our lower bound requires the adversary to be
adaptive to the action taken by the agent, so it does not
conflict with the claim in (Gupta et al., 2019) since they
assume that the adversary cannot observe the action of the
agent in each round.

6. Application to Block MDP
In this section we study RL with Rich Observations (a.k.a.
block MDPs), as an application of our algorithm. We pro-
pose a new algorithm ID-MVP based on CR-MVP, and
obtain a statistically and computationally efficient algorithm
(with access to a least square oracle) with a regret bound
that achieves

√
K growth rate.

6.1. Settings

A block Markov decision process, or BMDP, refers to an
environment described by a finite but unobservable latent
state space S, a finite action space A, a possibly infinite
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but observable context space X , and a reward distribution
R(s, a) for each s ∈ S, a ∈ A. The dynamics of a BMDP
is described by the initial state s1, the transition probability
function p(s′|s, a), and the context emission function q(x|s)
for all s, s′ ∈ S, a ∈ A, x ∈ X .

In this paper we consider episodic reinforcement learning
tasks with a finite horizon H . In each episode, the envi-
ronment starts from the initial state s1. In step h ∈ [H],
the environment generates a context xh ∼ q (· | sh), then
the agent observes xh, takes action ah and receives a
reward rh ∼ R(sh, ah). The environment transits to
sh+1 ∼ p(·|sh, ah). We assume that the total reward in
an episode is bounded by 1, as previously mentioned. We
assume that the MDP admits a block structure:
Assumption 2 (Block Structure). We assume that each con-
text x ∈ X uniquely determines its generating state s ∈ S,
i.e. there is a decoding function f∗ : X 7→ S, such that
q(·|s) is supported on (f∗)−1(s).

The block structure implies that a BMDP is actually an
MDP with X being its state set and P (x′ | x, a) =
q (x′ | f∗ (x′)) p (f∗ (x′) | f∗(x), a) being the transition
operator. However, the state space is too large that tradi-
tional algorithms cannot be directly applied to this problem.

To streamline our analysis, we make a standard assumption
for episodic settings. We assume that S can be partitioned
into disjoints sets Sh, h ∈ [H + 1], such that p(· | s, a) is
supported on Sh+1 whenever s ∈ Sh. We refer to h as the
level and assume that it is observable as part of the context,
so the context space is also partitioned into sets Xh. We use
notation S[h] = ∪`∈[h]S` for the set of states up to level
h and similarly define X[h] = ∪`∈[h]X`. We assume that
|Sh| ≤M and |A| = A.

We also present several crucial concepts. The first one is
policy cover. For any state s, we define the maximum reach-
ing probability of s as µ(s) := maxπ Pπ(s), where Pπ(s)
is the probability of reaching the state s when executing π.
We assume that all the states are reachable, i.e., µ(s) > 0
for all s. We write µmin = mins∈S µ(s). We say that a set
of policies Πh is an ε-policy cover of Sh if for any s ∈ Sh,
there is a policy π ∈ Πh, such that Pπ(s) ≥ µ(s) − ε. A
set of policies Π is an ε-policy cover of S if it is an ε-policy
cover of Sh for all h ∈ [H + 1].

The second core concept is backward probability vector. For
any distribution ν over (sh−1, ah−1), any s ∈ Sh−1, a ∈ A
and s′ ∈ Sh, the backward probability is defined as

bν (s, a | s′) =
p (s′ | s, a) ν(s, a)∑
s̃,ã p (s′ | s̃, ã) ν(s̃, ã)

(2)

For a given s′ ∈ Sh,we collect the probabilities bν (s, a | s′)
across all s ∈ Sh−1, a ∈ A into the backward probability
vector bν (s′) ∈ 4MA, padding with zeros if |Sh−1| < M .

Algorithm 2 ID-MVP
Input: Ng, Nφ, τ > 0, εf , δ > 0
\\ Phase 1
Run PCID and obtain a µmin

2 -policy cover Π =
{Π1, ...,ΠH+1}, where Πi is a policy cover of the i-th
layer.
\\ Phase 2
Let Ŝ1 = {s1} . Let Π1 = {π0} for the 0 -step policy π0.
for h = 2, ...,H + 1 do

Let ηh = U (Πh−1)� U(A).
Execute ηh for Ng times. Let Dg ={
ŝih−1, a

i
h−1, x

i
h

}Ng
i=1

where ŝh−1 is the index
of πŝh−1

sampled by ηh.
Learn ĝh by calling the ERM oracle on inputDg: ĝh =

argming∈G
∑

(ŝ,a,x′)∈Dg

∥∥g (x′)− e(ŝ,a)

∥∥2
.

Initialize Z = ∅ (dataset for learning latent states).
Execute ηh for Nφ times. Let Z = {ẑi = ĝh(xhi )}Ngi=1.
Learn Ŝh and the state embedding map φ̂h : Ŝh → Z
by clustering Z with threshold τ (see Algorithm 3).
Define f̂h (x′) = argminŝ∈Ŝh

∥∥∥φ̂(ŝ)− ĝh (x′)
∥∥∥

1
.

end for
\\ Phase 3
Call Algorithm 1 for the remaining T ′ steps, with state

set {Ŝh}Hh=1 and corruption level 2εfT
′ +
√

2T ′ ln δ
2 .

We make the following separability assumption as in (Du
et al., 2019):

Assumption 3 (γ-Separability). There exists γ > 0 such
that for any h ∈ {2, . . . ,H+1} and any distinct s′, s′′ ∈ Sh
the backward probability vectors with respect to the uniform
distribution are separated by a margin of at least γ, i.e.,
‖bν (s′)− bν (s′′)‖1 ≥ γ, where ν = U (Sh−1 ×A).

For deterministic transition we have γ = 2. This is a fairly
general non-degenerate condition imposed on the transition
dynamics.

6.2. An Algorithm with
√
K Regret

In this section we propose our algorithm that achieves sub-
linear regret. The algorithm is called ID-MVP (Inductive
Decoding and Monotonic Value Propagation), and is de-
scribed in Algorithm 2.

The algorithm consists of three phases. In phase 1, we call
PCID directly to obtain a µmin

2 -policy cover. In phase 2,
we learn a decoding function f̂ with εf -decoding error. That
is, for each level h we learn a state set Ŝh, together with a
function f̂h : Xh 7→ Ŝh, such that there exists a bijection
αh : Ŝh → Sh, such that Px∼q(·|αh(ŝ))

[
f̂h(x) = ŝ

]
≥

1− εf . Here εf depends on our input Ng, Nφ.
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Algorithm 3 Clustering
Input: Data points Z = {zi}ni=1 and threshold τ > 0.
Output: Cluster indices Ŝ and centers φ̂ : Ŝ → Z .
Let Ŝ = ∅, k = 0 (number of clusters).
while Z 6= ∅ do

Pick any z ∈ Z (a new cluster center).
Let Z ′ = {z′ ∈ Z : ‖z− z′‖1 ≤ τ}.
Add cluster: k ← k + 1, Ŝ ← Ŝ ∪ {k}, φ̂(k) = z.
Remove the newly covered points: Z ← Z\Z ′.

end while

In order to construct f , we learn low dimensional repre-
sentations of contexts as well as latent states in a shared
space, namely 4MA. We learn embedding functions g :
X → 4MA for contexts and φ : S → 4MA for states,
with the goal that g(x) and φ(s) should be close if and only
if x ∈ Xs. We assume that g is chosen from a function class
G, and make the following realizability assumption.

Assumption 4. For any h ∈ [H + 1] and φ : Sh →4MA,
there exists gh ∈ G such that gh(x) = φ(s) for all x ∈ Xs
and s ∈ Sh.

ID-MVP learns the decoding function by the following
steps:

(1) Regression step: learn ĝh. We define ηh =
U (Πh−1) � U(A), execute ηh for Ng times, and collect
a dataset of samples Dg = {ŝih−1, a

i
h−1, x

i
h}
Ng
i=1, where

ŝih−1 = f̂h−1(xih−1). Each sample is drawn from distribu-
tion ν = U (Sh−1 ×A). Then we solve the following least
square problem:

ĝh ∈ argmin
g∈G

E(s,a,x′)∼Dg

[∥∥g (x′)− e(s,a)

∥∥2
]
. (3)

Our choice of ηh ensures that each state on the next level
is reached with sufficient large probability. And under
Assumption 3, Theroem 3.1 in (Du et al., 2019) implies
that ĝh (x′) ≈ gh (x′) = bν (s′) for the distribution
ν (ŝh−1, ah−1) induced by ηh.

Note that the optimization problem (3) is typically not hard
to solve, as plenty of researches focus on developing effi-
cient algorithms for such least square problems (Newville
et al., 2016). Therefore we may assume that we have access
to a computationally efficient least square oracle to solve
the problem.

(2) Clustering Step: learn φ̂ and f̂h. Thanks to separa-
bility, we can use the learned context embedding gh as the
foundation of clustering. We again run ηh for Nφ times,
collecting a dataset Z =

{
ẑi = ĝh

(
xih
)}Nφ
i=1

. Then we run
Algorithm 3 to identify all contexts generated by the same
latent state. Each cluster corresponds to some latent state

s′ and any vector ĝh (x′) from that cluster can be used to
define the state embedding φ̂ (s′) . The decoding function
f̂h is defined to map any context x′ to the state s′ whose
embedding φ̂ (s′) is the closest to ĝh (x′).

After f̂ is learned, we can run Algorithm 1 with state set Ŝ ,
and when the agent observes a context x, it uses ŝ = f̂(x)

as the current state. Since f̂ has εf -decoding error, there

will be approximately 2εfT
′+
√

2T ′ ln δ
2 steps in which the

agent makes a mistake, where T ′ is the number of remaining
steps. And if in time step t the decoding function makes a
mistake so that f̂(xt) = s′t 6= st , it is just like that there is
an ”adversary” corrupting this step by replacing st with s′t
and r(s′t, at) with r̃(s′t, at) = r(st, at). Then the problem
reduces to a special case of tabular reinforcement learning

with 2εfT
′ +
√

2T ′ ln δ
2 adversarial corruptions. Thus CR-

MVP guarantees that we can learn the underlying MDP with
low regret. By setting εf = O(K−1/2), Theorem 3 shows
that Algorithm 2 ensures O(

√
K) regret after running K

episodes, which is optimal in terms of K.

Theorem 3. In Algorithm 2, assume that K >

M2A2

Hµ3
minγ

2 log
(
|G|H
δ

)
· min

{
µ3
minγ

100M4A3 ,
δ

100HNφ

}−1

. Set

εf =

√
M2A2

µ3
minγ

2T
log
(
|G|H
δ

)
, Nφ = Θ

(
MA
µmin

log
(
MH
δ

))
andNg = Ω

(
M3A3

εfµ3
minγ

2 log
(
|G|H
δ

))
. Then with probability

at least 1−O(δ), the regret of Algorithm 1 is upper bounded

by Õ
(
H3/2M2A2

√
K

µ
3/2
minγ

+ poly(H,M,A, µ−1
min, γ

−1)

)
.

The proof of Theorem 3 is in Appendix B. Note that the
regret is proportional to

√
K, which is optimal. Also, Al-

gorithm 2 is computationally efficient if we have an access
to a least square oracle. Previous algorithms such as (Dong
et al., 2020) is not computationally efficient. Although the
AVE algorithm in (Dong et al., 2020) can deal with general
low Bellman rank MDPs, their algorithm relies on an elimi-
nation process on a general function class, which is proved
to be oracle inefficient (Dann et al., 2018).

7. Conclusion and Future Work
In this paper we consider episodic tabular MDP with adver-
sarial corruptions. We provide a statistically efficient and
computationally efficient algorithm, CR-MVP, and derive
an upper bound on the regret. We also derive a lower bound,
which shows that our algorithm is optimal. As an appli-
cation, we provide an algorithm in BMDP that achieves
O(
√
K) regret and is oracle efficient.

Lastly, we list some future directions. First, our algorithm
requires knowledge of C. When C is unknown, it is still
unknown what is the optimal regret bound. Second, in the



Reinforcement Learning with Adversarial Corruption

BMDP setting, our regret bound may not be tight, since
we treat the (randomly) mistaken steps as adaptive adver-
sarial corruptions. It remains an open question whether
we can develop a corresponding algorithm for stochastic
corruptions.
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