
Which Transformer architecture fits my data?
A vocabulary bottleneck in self-attention: Supplementary Material

Noam Wies 1 Yoav Levine 1 Daniel Jannai 1 Amnon Shashua 1

Contents

1 Upper bounds on the separation rank 2
1.1 Preliminaries . 2
1.2 Vocabulary based embedding . 2
1.3 Convolution based embedding . 5

2 Lower bounds on the separation rank 8
2.1 Preliminaries . 8

2.1.1 Tensors and their matricization . 8
2.1.2 Grid tensors provide lower bounds for the separation rank . 9

2.2 Proof of the lower bounds . 9
2.2.1 Convolution based embedding . 10
2.2.2 Vocabulary based embedding . 11

2.3 Technical lemmas . 14

3 Experimental details 15
3.1 Rank bottleneck degrades performance . 16
3.2 Vocabulary affects the depth-to-width interplay . 16
3.3 Width bottlenecks the attention dimension . 17
3.4 Low-rank positional embedding . 17

1The Hebrew University of Jerusalem. Correspondence to:
Noam Wies <noam.wies@cs.huji.ac.il>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

Which transformer architecture fits my data? A vocabulary bottleneck in self-attention: Supplementary Material

1. Upper bounds on the separation rank
In the following section, we show how an upper bound on the separation rank is implied by the rank of embedding.

1.1. Preliminaries

We will use the notation of
((
n
k

))
– the multiset coefficient, given in the binomial form by

(
n+k−1

k

)
. We will use the identity

|{a1 . . . an ∈ Z ≥ 0 :
∑n
r=1 ar = k}| =

((
n
k

))
. In addition, we will use the following two lemmas from (Levine et al., 2020)

regarding the composition of L self-attention layers, and inequality of arithmetic and geometric multiset coefficient means.

Lemma 1. Defining C (L) := 3L−1
2 , any depth L composition of self-attention layers defined in eq. 5 of the main text can

be written as:

yi,L,dx,H
(
y0,1, ..., y0,N

)
=

N∑
j1,...,jC(L)=1

∑
h∈[H][C(L)]

da∑
r1,...,rC(L)+1=1

B(0,h)
r1,p

C(L)+1∏
c=1

〈
A(c,h)
rc ,y0,jc

〉C(L)∏
c=1

〈
B(c,h)
rc+1

,y0,jc
〉

(1)

Where ∀h ∈ [H]
[C(L)]

1 ≤ c ≤ C (L) + 1 A(c,h), B(c,h) ∈ Rda×dx and for convenient jC(L)+1 := i.

Lemma 2. Let n, k ∈ N and φ : Nk → N := r1, . . . rk `
∏k
j=1

((
n
rj

))
then:

∀rz, . . . rk ∈ N φ (r1, . . . rk) ≤

(∏n−1
t=1

(
M
k + t

))k
((n− 1)!)

k

where M :=
∑k
j=1 rj

Finally, we will use the following lemma to upper bound the multiset coefficient:

Lemma 3.
((
n
k

))
≤
(

2e(n+k)
n

)n
Proof. : by using the inequality

(
n
k

)
≤
(
en
k

)k
we have((

n

k

))
=

(
n+ k − 1

n− 1

)
≤
(

2e (n+ k)

n

)n

1.2. Vocabulary based embedding

In the following theorem, we show how an upper bound on the separation rank is implied by the rank of vocabulary matrix.

Theorem 1. Let yi,L,dx,H,rp be the scalar function computing the pth entry of an output vector at position i ∈ [N] of the
H-headed depth-L width-dx Transformer network defined in eqs. 1 and 5 of the main text, where the embedding rank r is
defined by eq. 3 of the main text. Let re denote the rank of the positional embedding matrix and sep

(
yi,L,dx,H,rp

)
denote its

separation rank w.r.t. any partition P ·∪Q = [N]. Then the following holds:

sep(yi,L,dx,H,rp) ≤
((
r + re
·3L

))((
4

3L

))(
3L + 1

)r+re (2)

Proof. By the embedding low-rank assumptions, there exists M vocab ∈ Rr×V ,M pos ∈ Rre×N and M low-rank ∈
Rdx×r, P low-rank ∈ Rdx×re such that

y0,i = M low-rankM vocab ŵi + P low-rankM pos
i (3)

Which transformer architecture fits my data? A vocabulary bottleneck in self-attention: Supplementary Material

So we begin by substituting y0,i in eq 1 (for convenience, we denote jC(L)+1 := i):

yi,L,dx,H,r
(
w0, ..., wN

)
=

N∑
j1,...,jC(L)=1

∑
h∈[H][C(L)]

da∑
r1,...,rC(L)+1=1

B(0,h)
r1,p

C(L)+1∏
c=1

〈
A(c,h)
rc ,M low-rankM vocab ŵjc + P low-rankM pos

jc

〉
 C(L)∏

c=1

〈
B(c,h)
rc+1

,M low-rankM vocab ŵjc + P low-rankM pos
jc

〉
And separating between the tokens and the positional embeddings:

=
∑

IA⊆[C(L)+1]
IB⊆[C(L)]︸ ︷︷ ︸

the indices of tokens

N∑
j1,...,jC(L)=1

∑
h∈[H][C(L)]

da∑
r1,...,rC(L)+1=1

 ∏
c∈[C(L)+1]\IA

〈
A(c,h)
rc , P low-rankM pos

jc

〉 ∏
c∈[C(L)]\IB

〈
B(c,h)
rc+1

, P low-rankM pos
jc

〉
︸ ︷︷ ︸

The positional embeddings

B(0,h)
r1,p

(∏
c∈IA

〈
A(c,h)
rc ,M low-rankM vocab ŵjc

〉)(∏
c∈IB

〈
B(c,h)
rc+1

,M low-rankM vocab ŵjc
〉)

︸ ︷︷ ︸
The tokens

Now we can open the inner products, explicitly writing the indices:

=
∑

IA⊆[C(L)+1]
IB⊆[C(L)]

r∑
α1,...,αC(L)+1

β1,...,βC(L)
=1

re∑
σ1,...,σC(L)+1
µ1,...,µC(L)

=1

N∑
j1,...,jC(L)=1

∑
h∈[H][C(L)]

da∑
r1,...,rC(L)+1=1

B(0,h)
r1,p

 dx∑
γ1,...,γC(L)+1

δ1,...,δC(L)
=1

 ∏
c∈[C(L)+1]\IA

A(c,h)
rc,γcP

low-rank
γc,σc M pos

σc,jc

 ∏
c∈[C(L)]\IB

B
(c,h)
rc+1,δc

P low-rank
δc,µc M pos

µc,jc

 dx∑
γ1,...,γC(L)+1

δ1,...,δC(L)
=1

(∏
c∈IA

A(c,h)
rc,γcM

low-rank
γc,αc M vocab

αc,wjc

)(∏
c∈IB

B
(c,h)
rc+1,δc

M low-rank
δc,βc M vocab

βc,wjc

)
And separating between coefficients and w’s:

=
∑

IA⊆[C(L)+1]
IB⊆[C(L)]

r∑
α1,...,αC(L)+1

β1,...,βC(L)
=1

re∑
σ1,...,σC(L)+1
µ1,...,µC(L)

=1

N∑
j1,...,jC(L)=1

τIA,IB ,α1,...,µC(L)

 ∏
c∈[C(L)+1]\IA

M pos
σc,jc

 ∏
c∈[C(L)]\IB

M pos
µc,jc

(∏
c∈IA

M vocab
αc,wjc

)(∏
c∈IB

M vocab
βc,wjc

)

Where the coefficients are equals to:

τIA,IB ,α1,...,µC(L)
:=

∑
h∈[H][C(L)]

da∑
r1,...,rC(L)+1=1

B(0,h)
r1,p

 dx∑
γ1,...,γC(L)+1

δ1,...,δC(L)
=1

(∏
c∈IA

A(c,h)
rc,γcM

low-rank
γc,αc

)(∏
c∈IB

B
(c,h)
rc+1,δc

M low-rank
δc,βc

)
 dx∑
γ1,...,γC(L)+1

δ1,...,δC(L)
=1

 ∏
c∈[C(L)+1]\IA

A(c,h)
rc,γcP

low-rank
γc,σc

 ∏
c∈[C(L)]\IB

B
(c,h)
rc+1,δc

P low-rank
δc,µc

Which transformer architecture fits my data? A vocabulary bottleneck in self-attention: Supplementary Material

Now we can group monomials by the powers n1, . . . , nr, p1, . . . , pre of each coordinate:

=

C(L)+1∑
NA

a
B=0

C(L)∑
NA∩B=0︸ ︷︷ ︸

How many jc indices
are token indices

∑
n1+···+nr=NA

a
B+2NA∩B

p1+···+pre=2C(L)+1−NAa
B−2NA∩B︸ ︷︷ ︸

The powers

∑
m1+···+mN=NA

a
B+2NA∩B

z1+···+zN=2C(L)+1−NAa
B−2NA∩B

∀j∈[N]mj+zj≡

1 mod 2 j = i

0 mod 2 j 6= i︸ ︷︷ ︸
How many indices

are equal to each j∈[N]

∑
0≤n1,1,...,nr,N≤NAa

B+2NA∩B

∀α∈[r]
∑N
j=1 nα,j=nα

∀j∈[N]
∑r
α=1 nα,j=mj︸ ︷︷ ︸

How to distribute the token powers between [N]

∑
0≤p1,1,...,pre,N≤2C(L)+1−NAa

B−2NA∩B

∀σ∈[re]
∑N
j=1 pσ,j=pσ

∀j∈[N]
∑re
σ=1 pσ,j=zj︸ ︷︷ ︸

How to distribute the pos powers between [N]

λNAa
BNA∩B ,n1,...,nr,p1,...,pre

 N∏
j=1

re∏
σ=1

(
M pos
σ,j

)pσ,j N∏
j=1

r∏
α=1

(
M vocab
α,wj

)nα,j

Where

λNAa
BNA∩B ,n1,...,nr,p1,...,pre

:=
∑

IA⊆[C(L)+1]
IB⊆[C(L)]

|IA
a
IB |=NAa

B

|IA∩IB |=NA∩B

r∑
α1,...,αC(L)+1

β1,...,βC(L)
=1

∀δ∈[r] |{c∈IA|αc=δ }|+|{c∈IB |βc=δ }|=nδ

re∑
σ1,...,σC(L)+1
µ1,...,µC(L)

=1

∀δ∈[re] |{c∈[C(L)+1]\IA|σc=δ }|+|{c∈[C(L)]\IB |µc=δ }|=pδ

τIA,IB ,α1,...,µC(L)

Now we can divide the powers between P,Q in the following way:

=

C(L)+1∑
NA

a
B=0

C(L)∑
NA∩B=0

∑
n1+···+nr=NA

a
B+2NA∩B

p1+···+pre=2C(L)+1−NAa
B−2NA∩B

∑
mP+mQ=NA

a
B+2NA∩B

zP+zQ=2C(L)+1−NAa
B−2NA∩B

∀j∈{P,Q} mj+zj≡

1 mod 2 i ∈ j
0 mod 2 i /∈ j︸ ︷︷ ︸

How many indices
are in P and inQ

∑
0≤n1,P ,...,nr,Q,p1,P ,...,pr,Q≤2C(L)+1

∀α∈[r]nα,P+nα,Q=nα
∀j∈{P,Q}

∑r
α=1 nα,j=mj∧

∑re
σ=1 pσ,j=zj

∀σ∈[re] pσ,P+pσ,Q=pσ︸ ︷︷ ︸
How to distribute the powers between P and inQ

λNAa
BNA∩B ,n1,...,nr,p1,...,pre

χPχQ

Where χP , χQ are functions of P,Q that defined as:

χT :=
∑

(mj)j∈T∈[mT]∪{0}
(zj)j∈T∈[zT]∪{0}∑

j∈T mj=mT∧
∑
j∈T zj=zT

∀j∈T mj+zj≡

1 mod 2 i = j

0 mod 2 i 6= j

∑
(nα,j)α,j∈T×[r],(pα,j)α,j∈T×[re]

∈[2C(L)+1]∪{0}
∀α∈[r]

∑
j∈T nα,j=nα,T

∀α∈[re]
∑
j∈T pα,j=pα,T

∀j∈T
∑r
α=1 nα,j=mj,T∧

∑re
α=1 pα,j=zj,T

∏
j∈T

(
r∏

α=1

(
M vocab
α,wj

)nm,j)(re∏
σ=1

(
M pos
σ,j

)pσ,j)

Which transformer architecture fits my data? A vocabulary bottleneck in self-attention: Supplementary Material

Thus, since each summand is of separation rank 1 , the separation rank of yi,L,dx,H,rp is bounded by the number of summands:

C(L)+1∑
NA

a
B=0

C(L)∑
NA∩B=0

∑
n1+···+nr=NA

a
B+2NA∩B

p1+···+pre=2C(L)+1−NAa
B−2NA∩B

∑
mP+mQ=NA

a
B+2NA∩B

zP+zQ=2C(L)+1−NAa
B−2NA∩B

∀j∈{P,Q} mj+zj≡

1 mod 2 i ∈ j
0 mod 2 i /∈ j︸ ︷︷ ︸

How many indices
are in P and inQ

(
r∏

α=1

((
2

nα

)))(re∏
σ=1

((
2

pσ

)))
︸ ︷︷ ︸
How to distribute the powers between P and inQ

≤
((

r + re
2C (L) + 1

))
︸ ︷︷ ︸
ways to divide the powers
between the coordinates

((
4

2C (L) + 1

))
︸ ︷︷ ︸
ways to divide the indices

between P and inQ

(
2C (L) + 1

r
+ 1

)r (
2C (L) + 1

re
+ 1

)re
︸ ︷︷ ︸

How to distribute the powers between P and inQ

where the inequality followed from lemma 2.

From here, the upper bound in theorem 1 of the main text for vocabulary based embedding follows by lemma 3 with an
additional assumption that re = 1. This assumption is reasonable since successful models such as T5 (Raffel et al., 2020)
use rank 1 positional embeddings. Moreover, in order to verify the validly of this assumption for our setting in practice, in
subsection 3.4 we show that the degradation in performance of models with a low rank positional embedding matrix is much
smaller than the degradation caused by the analyzed bottleneck effects.

1.3. Convolution based embedding

In the following theorem, we show how an upper bound on the separation rank is implied by the rank of convolution based
embedding. The proof uses similar techniques to the ones used in the previous subsection with some modifications due to
the first convolutional layer.

Theorem 2. Let yi,L,dx,H,rp be the scalar function computing the pth entry of an output vector at position i ∈ [N] of the
H-headed depth-L width-dx Transformer network defined in eq. 2 and 5 of the main text, where the embedding rank r is
defined by eq. 4 of the main text. Let re denote the rank of the positional embedding matrix and sep

(
yi,L,dx,H,rp

)
denote its

separation rank w.r.t. any partition P ·∪Q = [M] that does not split any patch. Then the following holds:

sep(yi,L,dx,H,rp) ≤
((
r + re
·3L

))((
4

3L

))(
3L + 1

)r+re (4)

Proof. By the embedding low-rank assumptions, there exists M conv ∈ RM
N ×r×dinput ,M low-rank ∈ Rdx×r,M pos ∈ RN×re

and P low-rank ∈ Rdx×re such that:

y0,i =

M
N∑
k=1

M low-rank M conv
k x

M
N ·(i−1)+k + P low-rankM pos

i (5)

We can begin by substituting y0,i in eq 1 (for convenience, we denote jC(L)+1 := i):

yi,L,dx,H,Θp =

N∑
j1,...,jC(L)=1

∑
h∈[H][C(L)]

da∑
r1,...,rC(L)+1=1

B(0,h)
r1,p

C(L)+1∏
c=1

〈
A(c,h)
rc ,

M
N∑
k=1

M low-rank M conv
k x

M
N ·(jc−1)+k + P low-rankM pos

jc

〉
C(L)∏

c=1

〈
B(c,h)
rc+1

,

M
N∑
k=1

M low-rank M conv
k x

M
N ·(jc−1)+k + P low-rankM pos

jc

〉

Which transformer architecture fits my data? A vocabulary bottleneck in self-attention: Supplementary Material

And separating between the tokens and the positional embeddings:

=
∑

IA⊆[C(L)+1]
IB⊆[C(L)]︸ ︷︷ ︸

the indices of tokens

N∑
j1,...,jC(L)=1

∑
h∈[H][C(L)]

da∑
r1,...,rC(L)+1=1

 ∏
c∈[C(L)+1]\IA

〈
A(c,h)
rc , P low-rankM pos

jc

〉 ∏
c∈[C(L)]\IB

〈
B(c,h)
rc+1

, P low-rankM pos
jc

〉
︸ ︷︷ ︸

The positional embeddings

B(0,h)
r1,p

∏
c∈IA

〈
A(c,h)
rc ,

M
N∑
k=1

M low-rank M conv
k x

M
N ·(jc−1)+k

〉∏
c∈IB

〈
B(c,h)
rc+1

,

M
N∑
k=1

M low-rank M conv
k x

M
N ·(jc−1)+k

〉
︸ ︷︷ ︸

The tokens

Now we can open the inner products, explicitly writing the indices:

=
∑

IA⊆[C(L)+1]
IB⊆[C(L)]

r∑
α1,...,αC(L)+1

β1,...,βC(L)
=1

M
N∑

κ1,...,κC(L)+1
η1,...,ηC(L)

=1

re∑
σ1,...,σC(L)+1
µ1,...,µC(L)

=1

N∑
j1,...,jC(L)=1

∑
h∈[H][C(L)]

da∑
r1,...,rC(L)+1=1

B(0,h)
r1,p

 dx∑
γ1,...,γC(L)+1

δ1,...,δC(L)
=1

 ∏
c∈[C(L)+1]\IA

A(c,h)
rc,γcP

low-rank
γc,σc M pos

σc,jc

 ∏
c∈[C(L)]\IB

B
(c,h)
rc+1,δc

P low-rank
δc,µc M pos

µc,jc

 dx∑
γ1,...,γC(L)+1

δ1,...,δC(L)
=1

(∏
c∈IA

A(c,h)
rc,γcM

low-rank
γc,αc

(
M conv
κc x

M
N ·(jc−1)+κc

)
αc

)(∏
c∈IB

B
(c,h)
rc+1,δc

M low-rank
δc,βc

(
M conv
ηc x

M
N ·(jc−1)+ηc

)
βc

)

And separating between coefficients and embeddings:

=
∑

IA⊆[C(L)+1]
IB⊆[C(L)]

r∑
α1,...,αC(L)+1

β1,...,βC(L)
=1

M
N∑

κ1,...,κC(L)+1
η1,...,ηC(L)

=1

re∑
σ1,...,σC(L)+1
µ1,...,µC(L)

=1

N∑
j1,...,jC(L)=1

τIA,IB ,α1,...,µC(L)

 ∏
c∈[C(L)+1]\IA

M pos
σc,jc

 ∏
c∈[C(L)]\IB

M pos
µc,jc

(∏
c∈IA

(
M conv
κc x

M
N ·(jc−1)+κc

)
αc

)(∏
c∈IB

(
M conv
ηc x

M
N ·(jc−1)+ηc

)
βc

)

Where the coefficients are equal to:

τIA,IB ,α1,...,µC(L)
:=

∑
h∈[H][C(L)]

da∑
r1,...,rC(L)+1=1

B(0,h)
r1,p

 dx∑
γ1,...,γC(L)+1

δ1,...,δC(L)
=1

(∏
c∈IA

A(c,h)
rc,γcM

low-rank
γc,αc

)(∏
c∈IB

B
(c,h)
rc+1,δc

M low-rank
δc,βc

)
 dx∑
γ1,...,γC(L+1)

δ1,...,δC(L)
=1

 ∏
c∈[C(L)+1]\IA

A(c,h)
rc,γcP

low-rank
γc,σc

 ∏
c∈[C(L)]\IB

B
(c,h)
rc+1,δc

P low-rank
δc,µc

Which transformer architecture fits my data? A vocabulary bottleneck in self-attention: Supplementary Material

Now we can group monomials by the powers n1, . . . , nr, p1, . . . , pre of each coordinate:

=

C(L)+1∑
NA

a
B=0

C(L)∑
NA∩B=0︸ ︷︷ ︸

How many jc indices
are token indices

∑
n1+···+nr=NA

a
B+2NA∩B

p1+···+pre=2C(L)+1−NAa
B−2NA∩B︸ ︷︷ ︸

The powers

∑
m1,1+···+m

N,M
N

=NA
a
B+2NA∩B

z1,1+···+z
N,M

N
=2C(L)+1−NAa

B−2NA∩B

∀j∈[N]
∑M

N
k=1(mj,k+zj,k)≡

1 mod 2 i = j

0 mod 2 i 6= j︸ ︷︷ ︸
How many indices

are equal to each (j,k)∈[N]×[MN]∑
0≤n1,1,1,...,nr,N,M

N
≤NAa

B+2NA∩B

∀α∈[r]
∑N
j=1

∑M
N
k=1 nα,j,k=nα

∀(j,k)∈[N]×[MN]
∑r
α=1 nα,j,k=mj,k︸ ︷︷ ︸

How to distribute the pixel powers between [N]×[MN]

∑
0≤p1,1,1,...,pre,N,MN

≤2C(L)+1−NAa
B−2NA∩B

∀σ∈[re]
∑N
j=1

∑M
N
k=1 pσ,j,k=pσ

∀(j,k)∈[N]×[MN]
∑re
σ=1 pσ,j,k=zj,k︸ ︷︷ ︸

How to distribute the pos powers between [N]×[MN]

Γz1,1,...,zN,M
N
,p1,1,1,...,pr,N,M

N

λNAa
BNA∩B ,n1,...,nr,p1,...,pre

 N∏
j=1

M
N∏
k=1

re∏
σ=1

(
M pos
σ,j

)pσ,j,k N∏
j=1

M
N∏
k=1

r∏
α=1

((
M conv
k x

M
N ·(j−1)+k

)
α

)nα,j,k

where

λNAa
BNA∩B ,n1,...,nr,p1,...,pre

:=
∑

IA⊆[C(L)+1]
IB⊆[C(L)]

|IA
a
IB |=NAa

B

|IA∩IB |=NA∩B

r∑
α1,...,αC(L)+1

β1,...,βC(L)
=1

∀δ∈[r] |{c∈IA|αc=δ }|+|{c∈IB |βc=δ }|=nδ

M
N∑

κ1,...,κC(L)+1
η1,...,ηC(L)

=1

∀δ∈[MN] |{c∈IA|κc=δ }|+|{c∈IB |ηc=δ }|=nδ

re∑
σ1,...,σC(L)+1
µ1,...,µC(L)

=1

∀δ∈[re] |{c∈[C(L)+1]\IA|σc=δ }|+|{c∈[C(L)]\IB |µc=δ }|=pδ

τIA,IB ,α1,...,µC(L)

and

Γz1,1,...,zN,M
N
,p1,1,1,...,pr,N,M

N

:=

 N∏
j=1

[((
M
N

zj,1 + . . .+ zj,MN

))
·
re∏
σ=1

((
M
N

pσ,j,1 + . . .+ pσ,j,MN

))]−1

Note that the positional powers are actually independent of the indices in
[
M
N

]
, so Γz1,1,...,zN,M

N
,p1,1,1,...,pr,N,M

N

is a
multiplicative factor that is used in order to cancel out double counting.

For convenience, we will treat (P,Q) as a partition of the Cartesian product [N]×
[
M
N

]
(as there is a one-to-one correspon-

Which transformer architecture fits my data? A vocabulary bottleneck in self-attention: Supplementary Material

dence between [N]×
[
M
N

]
and [M]). Now we can divide the powers between P,Q in the following way:

=

C(L)+1∑
NA

a
B=0

C(L)∑
NA∩B=0

∑
n1+···+nr=NA

a
B+2NA∩B

p1+···+pre=2C(L)+1−NAa
B−2NA∩B

∑
mP+mQ=NA

a
B+2NA∩B

zP+zQ=2C(L)+1−NAa
B−2NA∩B

∀j∈{P,Q}mj+zj=

1 mod 2 ∃k ∈
[
M
n

]
(i, k) ∈ j

0 mod 2 else︸ ︷︷ ︸
How many indices
are in P and inQ∑

0≤n1,P ,...,nr,Q,p1,P ,...,pr,Q≤2C(L)+1
∀α∈[r]nα,P+nα,Q=nα

∀T∈{P,Q}
∑r
α=1 nα,T=mT∧

∑re
σ=1 pσ,T=zT

∀σ∈[re] pσ,P+pσ,Q=pσ︸ ︷︷ ︸
How to distribute the powers between P and inQ

Γz1,1,...,zN,M
N
,p1,1,1,...,pr,N,M

N

λNAa
BNA∩B ,n1,...,nr,p1,...,pre

χPχQ

Where χP , χQ are functions of P,Q that defined as:

χT :=
∑

(mj,k)
(j,k)∈T∈[mT]∪{0}

(zj,k)
(j,k)∈T∈[zT]∪{0}∑

(j,k)∈T mj,k=mT∧
∑

(j,k)∈T zj,k=zT

∀j∈{j∈[N]:∃k∈[Mn] (j,k)∈T} ∑M
N
k=1(mj,k+zj,k)≡

1 mod 2 i = j

0 mod 2 i 6= j

∑
(nα,j,k)

(j,k),α∈T×[r]
,(pα,j,k)

(j,k),α∈T×[re]
∈[2C(L)+1]∪{0}

∀α∈[r]
∑

(j,k)∈T nα,j,k=nα,T

∀α∈[re]
∑

(j,k)∈T pα,j,k=pα,T

∀(j,k)∈T
∑r
α=1 nα,j,k=mj,k∧

∑re
α=1 pα,j,k=zj,k

∏
(j,k)∈T

(
r∏

α=1

((
M conv
k x

M
N ·(j−1)+k

)
α

)nα,j,k)(re∏
σ=1

(
M pos
σ,j

)pσ,j,k)

Thus, since each summand is of separation rank 1 , the separation rank of yi,L,dx,H,rp is bounded by the number of summands:

C(L)+1∑
NA

a
B=0

C(L)∑
NA∩B=0

∑
n1+···+nr=NA

a
B+2NA∩B

p1+···+pre=2C(L)+1−NAa
B−2NA∩B

∑
mP+mQ=NA

a
B+2NA∩B

zP+zQ=2C(L)+1−NAa
B−2NA∩B

∀j∈{P,Q}mj+zj=

1 mod 2 ∃k ∈
[
M
n

]
(i, k) ∈ j

0 mod 2 else︸ ︷︷ ︸
How many indices
are in P and inQ

(
r∏

α=1

((
2

nα

)))(re∏
σ=1

((
2

pσ

)))
︸ ︷︷ ︸
How to distribute the powers between P and inQ

≤
((

r + re
2C (L) + 1

))
︸ ︷︷ ︸
ways to divide the powers
between the coordinates

((
4

2C (L) + 1

))
︸ ︷︷ ︸
ways to divide the indices

between P and inQ

(
2C (L) + 1

r
+ 1

)r (
2C (L) + 1

re
+ 1

)re
︸ ︷︷ ︸

How to distribute the powers between P and inQ

Similarly to the vocabulary embedding case from here, the upper bound in theorem 1 of the main text for convolution based
embedding follows by lemma 3 with an additional assumption that re = 1.

2. Lower bounds on the separation rank
2.1. Preliminaries

2.1.1. TENSORS AND THEIR MATRICIZATION

We begin by laying out basic concepts in tensor theory required for the upcoming analysis. The core concept of a tensor
may be thought of as a multi-dimensional array. The order of a tensor is defined to be the number of indexing entries in the

Which transformer architecture fits my data? A vocabulary bottleneck in self-attention: Supplementary Material

array, referred to as modes. The dimension of a tensor in a particular mode is defined as the number of values taken by the
index in that mode. If A is a tensor of order N and dimension Mi in each mode i ∈ [N], its entries are denoted Ad1...dN ,
where the index in each mode takes values di ∈ [Mi].

We will make use of the concept of the matricization of A w.r.t. the balanced partition (P,Q), denoted JAKP,Q ∈
RM

N/2×MN/2

, which is essentially the arrangement of the tensor elements as a matrix whose rows correspond to P and
columns toQ. SupposeA ∈ RM×···×M is a tensor of orderN , and let (P,Q) be a balanced partition of [N], i.e. P andQ are
disjoint size N/2 subsets of [N] whose union gives [N]. The matricization of A w.r.t. the partition (P,Q), denoted JAKP,Q,
is the MN/2-by-MN/2 matrix holding the entries of A such that Ad1...dN is placed in row index 1 +

∑N/2
t=1(dpt − 1)MN/2−t

and column index 1 +
∑N/2
t=1(dqt − 1)MN/2−t.

2.1.2. GRID TENSORS PROVIDE LOWER BOUNDS FOR THE SEPARATION RANK

We now present the concept of grid tensors, which are a form of function discretization (Hackbusch, 2012). Essentially, the
function is evaluated for a set of points on an exponentially large grid in the input space and the outcomes are stored in a
tensor. Formally, fixing a set of template vectors x(1), . . . ,x(Z), either in Rdinput for the convolutional embedding method
or in [V] for the vocabulary embedding method, the points on the grid are the set {(x(d1), . . . ,x(dN))}Zd1,...,dN=1. Given a
function y(x1, . . . ,xN), the set of its values on the grid arranged in the form of a tensor are called the grid tensor induced
by y, denoted A(y)d1,...,dN ≡ y(x1 = x(d1), . . . ,xN = x(dN)).

Let T denote the number of raw inputs to the network. In the notation of section 2.1 of the main text, T is either equal to N
in the case of the vocabulary input embedding or M in the case of the convolution input embedding. The following claim
from (Levine et al., 2020) establishes a fundamental relation between a function’s separation rank (see section 3 of the main
text) and the rank of the matrix obtained by the corresponding grid tensor matricization. This relation, which holds for all
functions, is formulated below for functions realized by the analyzed Transformer network:

Claim 1. Let yi,L,dx,H,rp be the scalar function computing the pth entry of an output vector at position i ∈ [N] of the H-
headed depth-L width-dx Transformer network defined in eq. 5 and either eq 1 or eq 2 of the main text. Let sep

(
yi,L,dx,H,rp

)
denote its separation rank w.r.t. any partition P ·∪ Q = [T]. Then, for any integer Z and any set of template vectors
x(1), . . . ,x(Z) ∈ Rdx it holds that:

sep(P,Q)

(
yi,L,dx,H,rp

)
≥ rank

(
JA(yi,L,dx,H,rp)KP,Q

)
, (6)

where A(yi,L,dx,H,rp) is the grid tensor of yi,L,dx,H,rp with respect to the above template vectors.

In the next subsection we will show a corollary from (Levine et al., 2020) that uses this claim to prove the lower bound in
theorem 2 of the main text.

2.2. Proof of the lower bounds

In this subsection we prove the lower bound in theorem 2 of the main text. We will use a direct corollary of the proof in
Levine et al. (2020) regarding composition of the self-attention separation rank. Essentially, though the required form of
y0,j in corollary below looks complex, Levine et al. (2020) prove that for this form of inputs to the self-attention block, the
rank of the grid tensor is with probability 1 lower bounded by the multiset term in eq 7 below. The corollary below simply
states that if the input embedding is able to produce vectors that do not change the analysis in (Levine et al., 2020), their
bound on the grid tensor rank can be used, and together with claim 1 this implies a lower bound on the separation rank.

Denote by yi,L,dx,H,rp the scalar function computing the pth entry of an output vector at position i ∈ [N] of the H-headed
depth-L width-dx Transformer network defined in eq. 5 and either eq 1 or eq 2 of the main text, then:

Corollary 1. Assume that for any matrix A ∈ R

((
(r−H)/2

3L−2

))
×(r−H)/2

with rows that are l2 normalized, there exists a choice
of template vectors x(1), . . . ,x(Z), as well as an assignment to the embedding layer weights, such that for any sequence

Which transformer architecture fits my data? A vocabulary bottleneck in self-attention: Supplementary Material

(ij)
N
j=1 ∈

[
2 ·
((

(r−H)/2
3L−2

))
+ 1
]

there exists a sequence of T x’s for which the output of the embedding layer is:

∀j ∈ [N] y(0,j)
α =

Aij ,φ(α) ij ≤ V/2 ∧ (α− 1) mod da <

da−1
2 ∧ φ(α) ≤ (r−H)/2

Aij−V/2,φ(α− da−1
2)

V/2 < ij ≤ V ∧ da−1
2 ≤ (α− 1) mod da < da − 1 ∧ φ(α− da−1

2) ≤ (r−H)/2

1 (α− 1) mod da = da − 1

0 Otherwise

where φ(j) ≡ bj−1/dac · (da − 1) + (j − 1 mod da) + 1 and V := 2
(((r−H)/2

3L−2

))
.

Further in the convolutional embedding case assume the partition P ·∪Q = [T] does not split any patch. Then for all values
of the network weights but a set of Lebesgue measure zero, the following holds:

sep(yi,L,dx,H,rp) ≥
((

(r−H)/2

3L−2

))
(7)

Now we will prove that both for the convolutional embedding method and the vocabulary embedding method the assump-
tion of corollary 1 holds. We will thus prove the lower bound in theorem 2, since the following lemma 4 shows that
log
((

(r−H)/2
3L−2

))
= Ω̃ (L · (min{r, dx} −H)).

Lemma 4.
((
n
k

))
≥
(

2e(n+k)
n

)n

Proof. : by using the inequality
(
n
k

)
≥
(
n
k

)k
we have

((
n
k

))
=
(
n+k−1
n−1

)
≥
(

(n+k−1)
n−1

)n−1

2.2.1. CONVOLUTION BASED EMBEDDING

We start with the convolutional embedding method. The lemma below shows that the assumption of corollary 1 holds, by
dividing the desired vector coordinates into chunks of size dinput, and using a convolutional kernel to unify these chunks.

Lemma 5. Let A ∈ R

((
(r−H)/2

3L−2

))
×(r−H)/2

be a matrix with rows that are l2 normalized, then there exists a choice of
template vectors x(1), . . . ,x(Z), as well as an assignment to the convolutional embedding layer weights, such that for any
sequence (ij)

N
j=1 ∈

[
2 ·
((

(r−H)/2
3L−2

))
+ 1
]

there exists a sequence of M x’s for which the output of the embedding layer is:

∀j ∈ [N] y(0,j)
α =

Aij ,φ(α) ij ≤ V/2 ∧ (α− 1) mod da <

da−1
2 ∧ φ(α) ≤ (r−H)/2

Aij−V/2,φ(α− da−1
2)

V/2 < ij ≤ V ∧ da−1
2 ≤ (α− 1) mod da < da − 1 ∧ φ(α− da−1

2) ≤ (r−H)/2

1 (α− 1) mod da = da − 1

0 Otherwise
(8)

where φ(j) ≡ bj−1/dac · (da − 1) + (j − 1 mod da) + 1 and V := 2
(((r−H)/2

3L−2

))
.

Proof. Denote the convolutional kernel’s width by k := M
N . We will define a convolutional kernel, W conv ∈ Rk×dx×dinput , a

positional embedding matrix P ∈ RN×dx , and a set k template vectors, x(j,1), . . . ,x(j,k) for each j ∈ [N], such that:

y(0,j) =

(
k∑
l=1

W conv
l x(j,l) + Pi

)
α

We will assign weights for the convolutional kernel that will ”read” only the non zeros coordinates of eq 8:

Which transformer architecture fits my data? A vocabulary bottleneck in self-attention: Supplementary Material

W conv
l,α,λ =

1 k · (λ− 1) + l = α ∧ (α− 1) mod da <

da−1
2 ∧ φ (α) ≤ (r−H)/2

1 k · (λ− 1) + l = α ∧ da−1
2 ≤ (α− 1) mod da < da − 1 ∧ φ

(
α− da−1

2

)
≤ (r−H)/2

1 k · (λ− 1) + l = α ∧ (α− 1) mod da = da − 1

0 Otherwise

where ψ (l, λ) ≡ φ (k · (λ− 1) + l). Clearly, the rank of the chosen convolutional kernel is (at most) r and thus satisfy the
assumption regarding the embedding rank in theorem 2 of the main text. We will set the positional embedding matrix to be:
P ≡ 0, and the template vectors will be defined as follows:

∀j ∈ [N] , l ∈ [k] x
(j,l)
λ =

Aij ,ψ(l,λ) ij ≤ V/2 ∧ (k · (λ− 1) + l − 1) mod da <

da−1
2 ∧ ψ (l, λ) ≤ (r−H)/2

Aij−V/2,ψ(l−b da−1
2 c,λ) V/2<ij≤V ∧ da−1

2 ≤(k·(λ−1)+l−1) mod da<da−1 ∧ ψ
(
l −
⌊
da−1

2

⌋
, λ
)
≤ (r−H)/2

1 (k · (λ− 1) + l − 1) mod da = da − 1

0 Otherwise

Now, for each j ∈ [N] , α ∈ [dx] we have:

y(0,j)
α =

(
k∑
l=1

W conv
l x(j,l)

)
α

=

k∑
l=1

dinput∑
λ=1

W conv
l,α,λx

(j,l)
λ

(1)

=

x
(j,(α−1 mod k)+1)

bα−1
k c+1

((α−1) mod da<
da−1

2 ∧φ(α)≤(r−H)/2)∨
(da−1

2 ≤(α−1) mod da<da−1∧φ(α− da−1
2)≤(r−H)/2)∨

((α−1) mod da=da−1)

0 Otherwise

(2)

=

Aij ,φ(α) α ≤ r ∧ ij ≤ V/2 ∧ (α− 1) mod da <

da−1
2 ∧ φ (α) ≤ (r−H)/2

Aij−M/2,φ(α) α ≤ r ∧ V/2 < ij ≤ V ∧ da−1
2 ≤ (α− 1) mod da < da − 1 ∧ φ

(
α− da−1

2

)
≤ (r−H)/2

1 α ≤ r ∧ (α− 1) mod da = da − 1

0 Otherwise

Where (1) due to the fact that there there’s a single combination of l ∈ [k] , λ ∈ [dinput] that satisfies α = k · (λ− 1) + l (for
all other value of l and λ, W conv

l,α,λ = 0), and (2) is since:

α = k ·
⌊
α− 1

k

⌋
+ (α− 1 mod k) + 1

2.2.2. VOCABULARY BASED EMBEDDING

Now we move to the vocabulary embedding method, in this case we will use A to create an assignment for MV ∈ Rdx×V ,
since the input is no longer continuous the number of unique inputs is limited to only V N . To overcome this issue we
will add an additional assumption that either V ≥ 2 ·

((
(r−H)/2
3L−2

))
+ 1 or N is very large. Importantly, the upper bound for

the small vocabulary size holds with small V and N , so the bottleneck phenomenon is theoretically established for the
vocabulary embedding method also in cases that neither of the additional assumptions hold.

We start with the V ≥ 2 ·
((

(r−H)/2
3L−2

))
+ 1 assumption that overcomes the unique inputs issue by enlarging the number of

unique tokens (while keeping the rank r constraint of MV).

Lemma 6. Assume V ≥ 2 ·
((

(r−H)/2
3L−2

))
+ 1 and let A ∈ R

((
(r−H)/2

3L−2

))
×(r−H)/2

be a matrix with rows that are l2 normalized,

then there exists a choice of template vectors ŵ(1), . . . , ŵ(Z), as well as an assignment to the vocabulary embedding layer
weights, such that for any sequence (ij)

N
j=1 ∈

[
2 ·
((

(r−H)/2
3L−2

))
+ 1
]

there exists a sequence of T ŵ’s for which the output

Which transformer architecture fits my data? A vocabulary bottleneck in self-attention: Supplementary Material

of the embedding layer is:

∀j ∈ [N] y(0,j)
α =

Aij ,φ(α) ij ≤ E/2 ∧ (α− 1) mod da <

da−1
2 ∧ φ(α) ≤ (r−H)/2

Aij−E/2,φ(α− da−1
2)

E/2 < ij ≤ E ∧ da−1
2 ≤ (α− 1) mod da < da − 1 ∧ φ(α− da−1

2) ≤ (r−H)/2

1 (α− 1) mod da = da − 1

0 Otherwise

where φ(j) ≡ bj−1/dac · (da − 1) + (j − 1 mod da) + 1 and E := 2
(((r−H)/2

3L−2

))
.

Proof. Our templates vectors will be: ∀i ∈ [E + 1] wi := i. We will ignore the positional embedding by choosing
pi := 0 (by the terms of corollary 1 it suffices to find any assignment of the learned weights). Now we can use A to create
an assignment for MV ∈ Rdx×V :

(MV)α,i :=

Aij ,φ(α) ij ≤
((

(r−H)/2
3L−2

))
∧ (α− 1) mod da <

da−1
2

A
ij−

((
(r−H)/2

3L−2

))
,φ(α− da−1

2)

((
(r−H)/2
3L−2

))
< ij ≤ 2

((
(r−H)/2
3L−2

))
∧ da−1

2 ≤ (α− 1) mod da < da − 1

1 (α− 1) mod da = da − 1

0 Otherwise

Clearly, the rank of MV ∈ Rdx×V is (at most) r, since it has at most r non zero rows, and thus satisfy the assumption
regarding the embedding rank in theorem 2 of the main text. Now by eq 1 of the main text, for any given sequence
(ij)

N
j=1 ∈

[
2 ·
((

(r−H)/2
3L−2

))
+ 1
]

we get:

y(0,j)
α =

(
MV ŵij

)
α

+ pijα = (MV)α,ij

Now, we prove a lower bound with V = r for the infinite N limit. Note that while our proof technique requires unpractical
N values, its usage of N is clearly wasteful, and we conjecture (and empirically demonstrate in section 5) that the upper
bound in theorem 1 of the main text is tight for N = Ω (r·L/log3 r)

1.

In this case, the input embedding is unable to produce vectors that do not change the analysis in (Levine et al., 2020), and
therefore the assumption of corollary 1 does not holds. Instead we will use the first self-attention layer of the network to take
advantage of the larger N , and apply corollary 2 below to prove a lower bound on the separation rank. This corollary which
is direct results of the proof in (Levine et al., 2020) and lemma 8, simply states that if the output of the first self-attention
layer is able to produce vectors that do not change the analysis in (Levine et al., 2020), their bound on the grid tensor rank
can be used, and together with claim 1 this implies a lower bound on the separation rank.

Corollary 2. Let d > 0, assume that for any balanced partition of [T], denoted (P,Q), for any matrix A ∈ N((d
3L−2))×d

with rows that have equal l2 norm, there exists a choice of template vectors x(1), . . . ,x(Z), an assignment to the embedding
layer and the first self-attention layer key and query weights, as well as a mapping πJ :

[((
d

3L−2

))]
→ (ij)j∈J , such that

for any j1, j2 ∈
[((

d
3L−2

))]
the output of the first self-attention layer on the sequence defined by πP (j1) , πQ (j2) is:

y(1,j) =

(
H∑
h=1

WO,1,hWV,1,h

)
u

for

∀α ∈ [dx] uα =

Aj1,φ(α) (α− 1) mod da <

da−1
2 ∧ φ(α) ≤ d

Aj2,φ(α− da−1
2)

da−1
2 ≤ (α− 1) mod da < da − 1 ∧ φ(α− da−1

2) ≤ d
N (α− 1) mod da = da − 1

0 Otherwise

1Since for N that is larger than this bound, the limitation of V N unique vectors does not constitutes a bottleneck anymore.

Which transformer architecture fits my data? A vocabulary bottleneck in self-attention: Supplementary Material

where φ(j) ≡ bj−1/dac · (da − 1) + (j − 1 mod da) + 1.

Then for all values of the network weights but a set of Lebesgue measure zero, the following holds:

sep(yi,L,dx,H,rp) ≥
((

d

3L−2

))
(9)

The lemma below shows that the assumption of corollary 2 holds for d := (r−1−H)/22, by choosing an assignment to the
first self-attention layer that utilize the large N for summing it’s inputs embedding, and use π to construct sequences that
repeat the one-hot embedding vectors amount of times that depends on A.

Lemma 7. Assume V ≥ r and let A ∈ N

((
(r−1−H)/2

3L−2

))
×(r−1−H)/2

be a matrix with rows that have equal l2 norm, then there
exists a choice of template vectors ŵ(1), . . . , ŵ(Z), large enough N , an assignment to the vocabulary embedding layer and
the first self-attention layer key and query weights, as well as a mapping πJ :

[((
(r−1−H)/2

3L−2

))]
→ (ij)j∈J , such that for any

j1, j2 ∈
[((

(r−1−H)/2
3L−2

))]
the output of the first self-attention layer on the sequence defined by πP (j1) , πQ (j2) is:

y(1,j) =

(
H∑
h=1

WO,1,hWV,1,h

)
u

for

∀α ∈ [dx] uα =

Aj1,φ(α) (α− 1) mod da <

da−1
2 ∧ φ(α) ≤ (r−1−H)/2

Aj2,φ(α− da−1
2)

da−1
2 ≤ (α− 1) mod da < da − 1 ∧ φ(α− da−1

2) ≤ (r−1−H)/2

N (α− 1) mod da = da − 1

0 Otherwise

where φ(j) ≡ bj−1/dac · (da − 1) + (j − 1 mod da) + 1.

Proof. Our templates vectors will be: ∀i ∈ [r] wi := i. We will ignore the positional embedding by choosing pi := 0 (by
the terms of corollary 2 it suffices to find any assignment of the learned weights).

To implement summation of the inputs embedding in the first self-attention layer we will follow (Levine et al., 2020) and set
the inputs embedding matrix and the first layer self-attention key and query weights to:

(MV)α,i =

1 (α− 1) mod da = da − 1

1 1 < i ≤ r −H ∧ φ(α) = i− 1

0 Otherwise

WK,1,h
i,j = WQ,1,h

i,j = 1i=1∧j=da

Clearly, the rank of MV ∈ Rdx×V is (at most) r, since it has less than r non zero rows, and thus satisfy the assumption
regarding the embedding rank in theorem 2 of the main text. This assignment implements summation of the inputs
embedding in the first self-attention layer since:

y(1,i)(ŵ(d1), . . . , ŵ(dN))α =

N∑
j=1

H∑
h=1

〈
WQ,1,hMVŵ

(di),WK,1,hMVŵ
(dj)
〉
WO,1,hWV,1,hMVŵ

(dj) (10)

1
=

N∑
j=1

H∑
h=1

=1︷ ︸︸ ︷
(MV)da,di ·

=1︷ ︸︸ ︷
(MV)da,dj W

O,1,hWV,1,hMVŵ
(dj) (11)

2
=

(
H∑
h=1

WO,1,hWV,1,h

) N∑
j=1

MVŵ
(dj)

 (12)

2For simplicity we assume that r −H is odd i.e. d ∈ N, otherwise we can use bdc.

Which transformer architecture fits my data? A vocabulary bottleneck in self-attention: Supplementary Material

where (1) is because WQ,1,h = WK,1,h are matrices that are zero everywhere except for entry (1, da), and (2) because of
linearity. Therefore, for any j1, j2 ∈

[((
(r−1−H)/2

3L−2

))]
the output of the first self-attention layer on the sequence defined by

πP (j1) , πQ (j2) is:

y(1,j) =

(
H∑
h=1

WO,1,hWV,1,h

) N/2∑
t=1

(
MVŵ

(πP (j1)t) +MVŵ
(πQ(j2)t)

)
︸ ︷︷ ︸

=:u

(13)

where (pt)
N/2
t=1 ∈ P ,(qt)

N/2
t=1 ∈ Q is some ordering of P and Q.

Denote by E := maxj,α (Aj,α) the maximum entry of A and let N ≥ E · (r − 1−H). Conceptually the mappings πP , πQ
will divide P,Q into (r−1−H)/2 length E non-overlapping segments, where the α‘th segment will repeat ŵ(α+1) Aj,α
times and fill the rest with the ”zero” template vector ŵ(1). Thus after the first self-attention layer summation we will get
the relevant A’s rows.

Formally, we define the mappings πP , πQ as:

∀j ∈
[((

(r−1−H)/2

3L−2

))]
, t ∈ [N/2] (πP (j))pt =

{
bt/Ec+ 2 (t− 1) mod E < Aj,bt/Ec+1

1 Otherwise
(14)

∀j ∈
[((

(r−1−H)/2

3L−2

))]
, t ∈ [N/2] (πQ (j))qt =

{
bt/Ec+ 2 + (r−1−H)/2 (t− 1) mod E < Aj,bt/Ec+1

1 Otherwise
(15)

Finally, substituting πP , πQ and MV in eq 13 give the desired u:

∀α ∈ [dx] uα =

Aj1,φ(α) (α− 1) mod da <

da−1
2 ∧ φ(α) ≤ (r−1−H)/2

Aj2,φ(α− da−1
2)

da−1
2 ≤ (α− 1) mod da < da − 1 ∧ φ(α− da−1

2) ≤ (r−1−H)/2

N (α− 1) mod da = da − 1

0 Otherwise

2.3. Technical lemmas

The lemma below prove the existence of matrix A ∈ N((dλ))×d with constant l2 row norms, such that the operation of taking
the rank d matrix AA> to the Hadamard power of λ would result in a fully ranked matrix. Together with corollary 2, this
lemma is used in lemma 7 to prove theorem 2 of the main text for the vocabulary based embedding when assuming large N .
Note that above lemma is an extension of a direct corollary of the proof in Levine et al. (2020) regarding composition of the
self-attention separation rank.

Lemma 8. For any d, λ ∈ N there exist A ∈ N((dλ))×d with constant l2 rows norm c ∈ N such that:

rank
((
AA>

)�λ)
=

((
d

λ

))
(16)

Proof. We will use the fact that

(
AA>

)�λ
=

((dλ))∑
k=1

a(k) ⊗ b(k) (17)

is of full rank for {a(k)}((
d
λ))

k=1 and {b(k)}((
d
λ))

k=1 which are two sets of linearly independent vectors.

Which transformer architecture fits my data? A vocabulary bottleneck in self-attention: Supplementary Material

For α, β ∈ [
((
d
λ

))
], observing an entry of

(
AA>

)�λ
:

((
AA>

)�λ)
αβ

=
(
AA>

)λ
αβ

=

(
d∑
r=1

v(α)
r v(β)

r

)λ
= (18)

∑
k1+···+kd=λ

(
λ

k1, . . . , kd

)[d∏
r=1

(
v(α)
r

)kr][d∏
r=1

(
v(β)
r

)kr]
(19)

where the first equality follows from the definition of the Hadamard power, in the section we denoted v(α)
r , v

(β)
r as the rth

entries in rows α and β of A, and in the second line we expanded the power with the multinomial identity.

Identifying the form of eq. (19) with the schematic form of eq. (17), it remains to find a specific matrix A ∈ N((dλ))×d

with constant l2 row norms c ∈ N for which the size
((
d
λ

))
set
{
a(k1,...,kd)

}
k1+···+kd=λ

is linearly independent, where

a
(k1,...,kd)
α =

∏d
r=1

(
v

(α)
r

)kr
.

Levine et al. (2020) proved there exists such B ∈ R((dλ))×d with ∀α, β [B]α,β > 0. Therefore, it is enough to prove that we
can approximateB with non-negative rational3 matrix with normalized rows, while keeping the set

{
a(k1,...,kd)

}
k1+···+kd=λ

linearly independent.

To prove this we will arrange the set as the columns of the matrix C, than
{
a(k1,...,kd)

}
k1+···+kd=λ

is linearly independent
if and only if C’s determinant is not zero. Now, C’s determinant is polynomial in B entries and therefore from continuity
arguments non-zero at neighborhood of B. Finally, this neighborhood contains row normalized rational matrix, since the
unit sphere has a dense set of points with rational coordinates (Schmutz, 2008).

3. Experimental details
We conducted the network training described in section 5 of the main text with AdamW optimizer with β1 = 0.9, β2 = 0.999
and weight decay of 0.01 for 1M steps and a batch size of 512 sequences of 128 tokens. All experiments used a learning
rate schedule with a 12000 step linear warm-up into 1.6 · 10−3 followed by a cosine decay to zero and dropout rate of 0.1.
In order to increase width without changing other architectural parameters, for all the experiments except of section 5.3 of
the main text we kept the number of heads per layer constant at 2 (experimental evidence indicates that many heads per
layer are not crucial (Michel et al., 2019; Kaplan et al., 2020), as does (Levine et al., 2020) theoretical analysis which shows
that the number of heads per layer affects the separation rank logarithmically).

To verify that our training recipe works, and the model differences are mainly due to expressiveness rather than optimization
issues, we constructed a held out test-set of 100 documents from OpenWebText and compare ourselves to GPT-2 (Radford
et al., 2019) published models. Table 1 shows our models are on par with the GPT-2 models. Note that our models use
shorter context of 128 and that GPT-2 might have trained on our test set, which might explain it’s superior perplexity.
Nevertheless, this results shows that our training recipe is competitive, and that the model comparisons in the paper are
indeed meaningful.

MODEL SIZE GPT-2 PERPLEXITY OUR PERPLEXITY

117M 21.11 22.78
345M 16.03 -
378M - 17.95

Table 1. OpenWebText test set perplexity where total number of tokens (98538 tokens) is according to gpt-2 standard vocabulary, and
evaluation done with stride 1 i.e.for each token predication, the model use full context of the previous N tokens.

3Given such non-negative rational matrix with normalized rows, we can multiply it by the common denominator and get the required
A ∈ N((

d
λ))×d with constant l2 rows norm.

Which transformer architecture fits my data? A vocabulary bottleneck in self-attention: Supplementary Material

3.1. Rank bottleneck degrades performance

We conducted the network training described in subsection 5.1 of the main text width depth L = 12 models. The baselines
widths are: 576, 592, 640, 668, 670, 672, 674, 676, 678, 680, 688. For the low-rank models we factorize the tokens and
positional embedding into two matrices of dimensions dx × r, r × V , as described in the main text. The width in all of this
model was set to 680 and the r’s were: 16, 32, 64, 96, 128, 256, 344, 400, 456, 512, 600, 680, 880, 1080. Table 2 show the
estimated the standard deviation of the test loss of this experiment by repeating the training 5 times. For r ∈ {16, 32, 64} we
also trained variant with full-rank positional embedding and achieve losses that are within 2-std of the factorized positional
embedding ones.

Table 2. The standard deviation of the test loss for several experiments of subsection 5.1 in the main text, when repeating the training and
evaluation experiment 5 times per point.

dx r STD

680 680 8 · 10−4

576 576 1.5 · 10−3

680 128 2.1 · 10−3

3.2. Vocabulary affects the depth-to-width interplay

We tokenized the training and test corpus the with the GPT-2 (Radford et al., 2019) vocabulary, and additional 3 BPE
vocabularies of sizes V = 257, 500, 2000 trained on our training corpus using to huggingface tokenizers4 library.

We conducted the network training described in section 5.2 of the main text width depth L ∈ {24, 48} models with width
detailed in table 3.

Table 3. The widths dx of the different trained networks.

V L r WIDTHS

257 24 144, 160, 168, 184, 192, 200, 224, 248, 264, 280, 336, 408, 480
257 48 104, 112, 120, 128, 136, 142, 144, 160, 176, 184, 200, 240, 288, 336
500 24 280, 336, 360, 384, 408, 424, 440, 480, 504, 528, 544, 576, 600
500 48 200, 240, 272, 288, 296, 312, 336, 352, 376, 384, 408, 424
2000 24 500 280, 336, 408, 448, 480, 504, 528, 544, 576, 600, 628
2000 48 500 200, 240, 288, 320, 336, 352, 376, 384, 408, 424, 440
2000 24 200, 224, 248, 280, 336, 408, 480, 544, 704, 744, 792, 848, 1064
2000 48 144, 160, 176, 200, 240, 288, 336, 384, 496, 528, 560, 600, 752
50257 24 408, 480, 544, 592, 656, 704, 744, 792, 848, 1064
50257 48 336, 384, 432, 480, 512, 544, 576, 616, 768

Table 4. The standard deviation of the test loss for several experiments of subsection 5.2 in the main text, when repeating the training and
evaluation experiment 5 times per point.

V L dx r STD

257 24 264 5.1 · 10−4

257 48 184 6.8 · 10−4

500 24 504 1.7 · 10−3

2000 24 528 500 1.5 · 10−3

50257 48 480 3.1 · 10−3

Beyond the experiments described in subsection 5.2 of the main text, we conduct additional experiment to verify that
when the vocabulary size exceed the network width and does not constitutes a bottleneck, it has negligible effect on the
“depth-efficiency” point.

4https://huggingface.co/docs/tokenizers/python/latest/

Which transformer architecture fits my data? A vocabulary bottleneck in self-attention: Supplementary Material

0 1 2 3 4
Network Size ×108

2.2

2.4

V
=

20
00

T
es

t
L

os
s Vocabulary Size = 2000

shallow width = 704

(a)

L = 24

L = 48

0 1 2 3 4
Network Size ×108

3.2

3.4

V
=

50
25

7
T

es
t

L
os

s

shallow width = 704

Vocabulary Size = 50257

(b)

L = 24

L = 48

Figure 1. Unlike figure 1 of the main text, when the vocabulary size exceed the network width and does not constitutes a bottleneck, the
vocabulary size has negligible effect on the “depth-efficiency” point . Note that the “depth-efficiency” point of V = 50257 occur at larger
network size since when V grows the embedding matrix size become non negligible and correspond to 20% of the network parameters.
Nevertheless, the shallow network width at the “depth-efficiency” point is very similar to the V = 2000 case.

Figure 1 shows that when repeating subsection 5.2 experiment with GPT-2 (Radford et al., 2019) vocabulary that is ∼ 25
times larger, the “depth-efficiency” point are very similar to the V = 2000 case. This is directly in line with the vocabulary
bottleneck prediction since the largest network width in this experiment is 1064, and clearly the V = 2000 vocabulary does
not constitutes a width bottleneck.

3.3. Width bottlenecks the attention dimension

Unlike the rest of the experiments in this paper, the experiments described in subsection 5.3 of the main text done with larger
amount of heads, mostly H = 12 to avoid low-rank Key, Query, Value and Output matrices when increasing the H·da/dx
ratio. Since the and the optimal depth per network might vary when changing H·da/dx ratio we choose for each ratio the best
depth in {12, 18, 24}. Table 5 give the exact details of the networks that appear in figure 4 of the main text. Figure 2 shows
that the performance difference between values of the bottleneck ratio is larger than the variation between different depths
per bottleneck ratio.

Table 5. Details of all architecture for each H·da/dx ratio in figure 2, the bold depth are the ones showed in figure 4 of the main text.

H·da/dx L H WIDTHS

1 18 12 360, 384, 420, 456
1 24 12 420, 456, 480
2 12 12 408, 480
2 18 18 396
2 24 24 336
4 12 12 288, 336
4 18 12 240, 276
4 24 12 204, 240
8 12 12 204, 240
8 18 12 168, 192
8 24 12 144, 168
16 12 24 144, 168

3.4. Low-rank positional embedding

In this subsection, we show that a low rank positional embedding matrix has a negligible effect on the model loss, when
compared with the effect of decreasing the vocabulary rank. This justifies both the practical use of rank-1 positional

Which transformer architecture fits my data? A vocabulary bottleneck in self-attention: Supplementary Material

40% 50% 60% 70% 80% 90% 100%
Network Size

2.35

2.40

2.45

2.50

2.55

T
es

t
L

os
s

T5-11B

T5-3B

±2 Std

H · da = dx
H · da = 2 · dx
H · da = 4 · dx
H · da = 8 · dx
H · da = 16 · dx

Figure 2. The performance difference between values of the bottleneck ratio is larger than the variation between different depths per
bottleneck ratio. The lines are the points of figure 4 in the main text, and the circles are another depths detailed in table 5.

embedding matrices in leading models such as T5 (Raffel et al., 2020), and the assumption in theorems 1 and 2.

We trained depth L = 12 width dx = 512 networks with vocabulary size V = 2000, sequences of 512 tokens and positional
embedding ranks of {1, 2, 4, 8, 16, 32, 64, 128, 256, 512}, In addition, we compared to baseline networks of vocabulary
ranks5 {2, 4, 8, 16, 32, 64, 128, 256, 512} with full-rank positional embedding.

100 101 102

Rank

2.32

2.34

2.36

2.38

2.40

2.42

T
es

t
L

os
s

Positional rank

Vocabulary rank

±2 Std

±2 Std

Figure 3. Low-rank positional embedding as assumed in theorem 1 when compared to low-rank due to vocabulary size has negligible
effect on the model. For example even positional rank of 16 perform on par with full positional embedding.

Figure 3 shows that when decreasing the positional embedding rank down to 16, performance is on par with full-rank
positional embedding (within 2 std). Moreover, even the extreme low-rank positional embedding of rank-1 reaches a loss
of much higher vocabulary rank (between 64 and 128), thus justifying the assumption in theorems 1 and 2. Note that we
have shown in section 5.1 of the main text that the practical effect of the predicted vocabulary bottlenecking phenomenon is
comparable to a substantial reduction in model size.

5We did not compare to rank 1 vocabulary network, since we observed dramatic performance degradation in this case that are probably
due to unrelated bottleneck.

Which transformer architecture fits my data? A vocabulary bottleneck in self-attention: Supplementary Material

References
Hackbusch, W. Tensor spaces and numerical tensor calculus, volume 42. Springer Science & Business Media, 2012.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., Gray, S., Radford, A., Wu, J., and Amodei, D.
Scaling laws for neural language models. arXiv preprint arXiv:2001.08361, 2020.

Levine, Y., Wies, N., Sharir, O., Bata, H., and Shashua, A. Limits to depth efficiencies of self-attention. In Larochelle, H.,
Ranzato, M., Hadsell, R., Balcan, M. F., and Lin, H. (eds.), Advances in Neural Information Processing Systems, volume 33,
pp. 22640–22651. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/
file/ff4dfdf5904e920ce52b48c1cef97829-Paper.pdf.

Michel, P., Levy, O., and Neubig, G. Are sixteen heads really better than one? In Advances in Neural Information Processing
Systems, pp. 14014–14024, 2019.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and Sutskever, I. Language models are unsupervised multitask
learners. 2019.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring the limits of
transfer learning with a unified text-to-text transformer. Journal of Machine Learning Research, 21(140):1–67, 2020.
URL http://jmlr.org/papers/v21/20-074.html.

Schmutz, E. Rational points on the unit sphere. Central European Journal of Mathematics, 6(3):482–487, 2008.

https://proceedings.neurips.cc/paper/2020/file/ff4dfdf5904e920ce52b48c1cef97829-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/ff4dfdf5904e920ce52b48c1cef97829-Paper.pdf
http://jmlr.org/papers/v21/20-074.html

	Upper bounds on the separation rank
	Preliminaries
	Vocabulary based embedding
	Convolution based embedding

	Lower bounds on the separation rank
	Preliminaries
	Tensors and their matricization
	Grid tensors provide lower bounds for the separation rank

	Proof of the lower bounds
	Convolution based embedding
	Vocabulary based embedding

	Technical lemmas

	Experimental details
	Rank bottleneck degrades performance
	Vocabulary affects the depth-to-width interplay
	Width bottlenecks the attention dimension
	Low-rank positional embedding

