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Abstract
Reinforcement learning studies how an agent
should interact with an environment to maximize
its cumulative reward. A standard way to study
this question abstractly is to ask how many sam-
ples an agent needs from the environment to learn
an optimal policy for a γ-discounted Markov deci-
sion process (MDP). For such an MDP, we design
quantum algorithms that approximate an optimal
policy (π∗), the optimal value function (v∗), and
the optimal Q-function (q∗), assuming the algo-
rithms can access samples from the environment
in quantum superposition. This assumption is jus-
tified whenever there exists a simulator for the
environment; for example, if the environment is a
video game or some other program. Our quantum
algorithms, inspired by value iteration, achieve
quadratic speedups over the best-possible clas-
sical sample complexities in the approximation
accuracy (ε) and two main parameters of the MDP:
the effective time horizon ( 1

1−γ ) and the size of
the action space (A). Moreover, we show that our
quantum algorithm for computing q∗ is optimal
by proving a matching quantum lower bound.

1. Introduction
Markov Decision Processes (MDPs) are a fundamental
mathematical abstraction in reinforcement learning, used
to model problems where an agent should take actions in
an environment to maximize its cumulative reward (Bert-
sekas, 2000; 2013; Szepesvári, 2010; Sutton & Barto, 2018;
Agarwal et al., 2021). The framework has been successfully
applied to problems in healthcare, robotics, engineering,
gaming, natural language processing, finance, and so on.

Quantum computers are a model of computation based on
the laws of quantum mechanics that promise substantially
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faster algorithms for certain tasks like search and factor-
ing (Grover, 1996; Shor, 1997). Recent experiments have
achieved key milestones (Arute et al., 2019), bringing for-
ward the tantalizing prospect of using quantum computers
for real-world impact in the not-so-distant future.

In this paper, we construct quantum algorithms that more
efficiently solve the main problems associated with MDPs:
approximating an optimal policy, the optimal value function,
and the optimal Q-value function. We assume that we have
quantum access to the environment, which we will justify.

1.1. Problem Setup

We study infinite-horizon discounted MDPs M with a finite
set S of states where at each state an agent can choose to
take an action from a finite set A of actions. Upon tak-
ing an action a ∈ A at state s ∈ S, the agent receives
reward1 r[s, a] ∈ [0, 1] and transitions to a state s′ ∈ S
with some probability p(s′|s, a). The last parameter needed
to specify M is a number γ ∈ [0, 1) which discounts the
reward the agent receives at later time steps t by a factor
of γt. Hence, M is conveniently summarized by a 5-tuple,
M = (S,A, p, r, γ). For convenience, we define S = |S|
and A = |A|, the cardinalities of S and A respectively, and
Γ := (1− γ)−1 for the effective time horizon of the MDP.

Given such an MDP, the agent’s goal is to choose actions
to maximize its expected sum of γ-discounted rewards over
infinitely many time steps. Following standard practice, we
assume the agent has full knowledge of S, A, r, and γ but
not p at the outset. A primary objective is to compute a
policy π : S → A for the agent that specifies the action
a = π(s) it should take at s ∈ S to best achieve its goal
with high probability.

For a given policy π : S → A, the value-function (or
value) of π, vπ : S → [0,Γ], and the Q-function of π,
qπ : S ×A → [0,Γ], are defined by

vπ[s] = E
[∑∞

t=0 γ
tr[st, at] |

s0=s
∀i≥ 0 : ai=π[si]

]
,

qπ[s, a] = E
[∑∞

t=0 γ
tr[st, at] |

s0=s, a0=a
∀i≥ 1 : ai=π[si]

]
,

(1)

where the expectations are over the probabilistic state tran-
sitions, i.e., for all i ≥ 0, si+1 is sampled from the distri-
bution p(·|si, ai). Note that the maximum value that the

1We use square brackets to index into vectors and functions.
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Table 1. Quantum computing allows for speedups in terms of the parameters ε, Γ := (1− γ)−1, and A, but not S. All bounds are for
maximum failure probability δ being constant. All upper bounds are Õ(·), with unrestricted ε except when [Theorem 5] appears, in which
case we assume ε ∈ O(1/

√
Γ). All lower bounds are Ω(·) and stated for ε ∈ O(Γ). The classical upper bounds are shown in (Li et al.,

2020) for all ε; the classical lower bounds are shown in (Azar et al., 2012) for q∗, v∗ and (Sidford et al., 2018a) for π∗.

Goal:
output an
ε-accurate
estimate of

Classical sample complexity Quantum sample complexity

Upper and lower bound Upper bound Lower bound

q∗ SAΓ3

ε2
SAΓ1.5

ε [Theorem 5] SAΓ1.5

ε [Theorem 8]

v∗, π∗ SAΓ3

ε2

SAΓ1.5

ε [Theorem 5]
S
√
AΓ1.5

ε [Theorem 8]
S
√
AΓ
ε [Theorem 7]

sums in Eq. (1) can take is Γ, and hence vπ[s] and qπ[s, a]
are in [0,Γ]. It is known that any discounted MDP admits
an optimal policy π∗ : S → A, in the strong sense that
vπ
∗
[s] ≥ vπ[s] for all π ∈ Π, s ∈ S, a ∈ A, where Π is the

space of all policies (which could even contain random and
non-stationary policies). It is common to denote v∗ := vπ

∗

and q∗ := qπ
∗
.

We can now state our main computational goals precisely.
Using ‖ · ‖ for the infinity norm, for a given MDP M ,
ε ∈ (0,Γ], and δ ∈ (0, 1), our goal is to compute a policy
π̂ for M such that ‖v∗ − vπ̂‖ ≤ ε with probability at least
1− δ. In addition, we are interested in the related tasks of
computing approximations v̂ (resp. q̂) to v∗ (resp. q∗) such
that ‖v∗ − v̂‖ ≤ ε (resp. ‖q∗ − q̂‖ ≤ ε) with probability at
least 1− δ.

The goal of this paper is to design algorithms that perform
the above computational tasks using as few resources as
possible. The resource use of an algorithm is normally quan-
tified by its time complexity or the number of samples it
draws from the unknown distribution p(s′|s, a). Our pa-
per is concerned with the latter and assumes the generative
model of sampling, as studied by Kearns & Singh (1999),
Kearns et al. (2002), and Kakade (2003), meaning that we
can choose arbitrary (s, a) ∈ S × A and ask a simulator
to draw samples s′ ∼ p(·|s, a). Our goal then translates to
minimizing the number of uses of the simulator. The gener-
ative model makes particular sense when the environment is
a computer program, whence the simulator is that program.

We now let quantum computing enter the picture. If the sim-
ulator is itself a computer program and we have its source
code, then we can produce a Boolean circuit G that acts
as the simulator, i.e., draws samples from the distribution
p(·|s, a). We can use the following basic fact in quantum
computation to efficiently convert G to a quantum circuit G.

Fact 1 (Nielsen and Chuang (Sec. 1.5.1), 2000 ; Bennett,
1973; 1989). Any classical circuit G with N logic gates can
be converted to a quantum circuit consisting of O(N) logic
gates that can compute on any quantum superposition of
inputs; moreover, the conversion is efficient and based on
simple conversion rules at the logic gate level.

We refer to G as the (quantum) oracle or simulator and the
ability to query it as the (quantum) generative model. G is
formally defined in Section 2.3.

Under this setup, our goal is to design quantum algorithms
approximating q∗, π∗, and v∗ that use the quantum simulator
G as few times as possible. We refer to the number of calls
a quantum algorithm makes to G as its (quantum) query or
sample complexity. It is fair to compare the quantum sample
complexity with the classical sample complexity because,
as we have discussed above, G and G have similar costs at
the elementary gate-level.

Our paper constructs quantum algorithms having signifi-
cantly less sample complexity than the best-possible clas-
sical algorithms. Moreover, we show that our quantum
algorithms are either optimal, or optimal assuming T or A
is constant, for certain ranges of ε.

1.2. Main Results

Table 1 summarizes our main results. The classical sample
complexities have only recently been completely character-
ized for all three quantities (Li et al., 2020) for the full range
of ε ∈ (0,Γ]. As the table shows, for computing q∗, we con-
struct a quantum algorithm that offers a quadratic speedup
in terms of Γ and ε if ε = O(1/

√
Γ). For computing v∗

and π∗, we construct a second quantum algorithm that of-
fers an additional quadratic speedup in terms of A at the
expense of Γ. Moreover, we prove quantum lower bounds
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Algorithm 1 SolveMdp1(M, ε, δ)

1: Input: MDP M = (S,A, p, r, γ), maximum error ε ∈ (0,
√

Γ], and maximum failure probability δ ∈ (0, 1).
2: Output: v̂ := vK,L ∈ RS , π̂ := πK,L ∈ AS , and q̂ := qK,L ∈ RSA.
3: Initialize: K ← dlog2(Γ/ε)e, L← Γdln(4Γ/ε)e+ 1, f ← δ/4KLSA, b← 1, c← 0.01
4: Initialize: v1,0 ← 0, π1,0 ← arbitrary, q1,0 ← 0
5: for k ∈ [K] do
6: εk ← Γ/2k

7: ∀(s, a) ∈ S ×A : yk[s, a]← max{qEst1f((Pv2
k,0)[s, a], b)− (qEst1f((Pvk,0)[s, a], (1− γ)b))2, 0}

8: ∀(s, a) ∈ S ×A : xk[s, a]← qEst2f((Pvk,0)[s, a], c(1− γ)1.5ε
√
yk[s, a] + b)− c(1− γ)1.5ε

√
yk[s, a] + b

9: for l ∈ [L] do
10: ∀s ∈ S: if v(qk,l−1)[s] ≥ vk,l−1[s] then vk,l[s]← v(qk,l−1)[s], πk,l[s]← π(qk,l−1)[s]
11: else vk,l[s]← vk,l−1[s], πk,l[s]← πk,l−1[s] end if
12: ∀(s, a) ∈ S ×A : ∆k,l[s, a]← qEst1f((P (vk,l − vk,0))[s, a], c(1− γ)εk)− c(1− γ)εk
13: qk,l ← max{r + γ(xk + ∆k,l), 0}
14: end for
15: vk+1,0 ← vk,L, πk+1,0 ← πk,L, qk+1,0 ← qk,L
16: end for

for computing all three quantities. Our lower bounds show
that our q∗ algorithm can be optimal, that we have optimal
algorithms for v∗ and π∗ provided one of Γ or A is constant,
but that there may still be a faster quantum algorithm for
v∗ and π∗. We remark that we also re-prove a version of
the classical lower bounds that is qualitatively stronger than
those existing as explained at the end of the next section.

We remark that the time complexities of our algorithms
are the same as their sample complexities up to log factors
assuming that the classical generative model can be called
in constant time and that we have access to quantum random
access memory (QRAM) (Giovannetti et al., 2008). This
is because the classical algorithm of Sidford et al. (2018a)
that we quantize satisfies this property and the quantum
subroutines we use to quantize it also satisfies this property.

1.3. Technical Overview

We now give an overview of the techniques we used in
our two quantum algorithms, SolveMdp1 and SolveMdp2.
SolveMdp1 and SolveMdp2 correspond to the complex-
ities next to [Theorem 5] and [Theorem 7] in Table 1 re-
spectively. Our two quantum algorithms are essentially
the product of infusing quantum subroutines into a modern
variant of (approximate) value iteration by (Sidford et al.,
2018a). We first discuss the quantum subroutines: quantum
mean estimation (Brassard et al., 2000; Montanaro, 2015)
and quantum maximum finding (Dürr & Høyer, 1996).

Quantum subroutines. Quantum mean estimation consists
of two similar quantum algorithms qEst1 and qEst2 that
we also refer to collectively as qEst. Here, qEst can com-
pute the mean E[X] of a random variable X , suitably en-
coded quantumly, quadratically more efficiently than what
is possible classically. qEst1 roughly corresponds to a

quadratically more sample-efficient Hoeffding’s inequality
while qEst2 roughly corresponds to a quadratically more
sample-efficient Chebyshev’s (or Bernstein’s) inequality.
That is, getting additive error ε using these quantum algo-
rithms takes quadratically fewer samples than what those
classical inequalities imply. For example, Chebyshev’s
inequality states that O(Var[X]/ε2) samples is required;
qEst2 roughly states that only O(

√
Var[X]/ε) quantum

samples is required. Using quantum mean estimation in
both SolveMdp1 and SolveMdp2 yields the speedups in Γ
and ε.

Quantum maximum finding, denoted qArgmax, is an al-
gorithm that can find the maximum of a list of n num-
bers, again suitably encoded quantumly, using only O(

√
n)

queries to that list. qArgmax is used in SolveMdp2 and is
the source of its speedup in A.

Quantum version of standard value iteration. We will
be discussing how the above subroutines can be used in the
modern variant of value iteration by Sidford et al. (2018a).
To warm up, consider how they can be applied to standard
value iteration (Kearns & Singh, 1999) to compute π∗. In
standard value iteration, we start with v0 set to the zero vec-
tor in RS and repeatedly update it by the Bellman recursion
vi ← T (vi−1) where the Bellman operator T : RS → RS
is defined by

T (vi+1)[s] := max
a
{r[s, a] + γE[vi[s

′] | s′ ∼ p(·|s, a)]},
(2)

for all s ∈ S. For convenience, we abbreviate the mean
E[vi[s

′] | s′ ∼ p(·|s, a)] as µi. If this mean is computed
exactly at each iteration, then the recursion takes O(Γ) it-
erations to converge to π∗, which follows from basic con-
tractive properties of T . In reality, we cannot compute
µi exactly. But if we only require our final answer to be
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Algorithm 2 SolveMdp2(M, ε, δ)

1: Input: MDP M = (S,A, p, r, γ), maximum error ε ∈ (0,Γ], and maximum failure probability δ ∈ (0, 1).
2: Output: v̂ := vL ∈ RS and π̂ := πL ∈ AS .
3: Initialize: L← Γdlog(4Γ/ε)e+ 1, f ← δ/4cmaxLSA

1.5 log(1/δ)
4: Initialize: v0 ← 0, π0 ← arbitrary, ∀s ∈ S : q0,s ← 0 ∈ RA
5: for l ∈ [L] do
6: ∀s ∈ S : a∗[s]← qArgmaxf{ql−1,s[a] : a ∈ A}
7: ∀s ∈ S : π̃l[s]← a∗[s], ṽl[s]← ql−1,s[a

∗[s]]
8: ∀s ∈ S: if ṽl[s] ≥ vl−1[s] then vl[s]← ṽl[s], πl[s]← π̃l[s]
9: else vl[s]← vl−1[s], πl[s]← πl−1[s] end if

10: ∀s ∈ S : create quantum oracle encoding, Uzl,s , of zl,s ∈ RA defined by
zl,s[a]← qEst1f((Pvl)[s, a], (1− γ)ε/4)− (1− γ)ε/4

11: ∀s ∈ S : create quantum oracle encoding, Uql,s , of ql,s ∈ RA defined by
ql,s[a]← max{r[s, a] + γzl,s[a], 0}

12: end for

correct to error ε, then it is reasonable to assume that esti-
mating µi for each i to error ε/Γ suffices. If we make the
reasonable assumption ‖vi‖ ≤ ‖v∗‖ ≤ Γ (vi is converg-
ing to v∗ after all) then classically doing this estimation
at each iteration uses O(SAΓ2/(ε/Γ)2) = O(SAΓ4/ε2)
samples classically by the Hoeffding bound. The factor
SA comes from the fact that an estimation is done for each
(s, a) ∈ S × A. Therefore, the overall classical sample
complexity is of order O(SAΓ5/ε2). Though the preced-
ing argument is non-rigorous, it does in fact give the right
answer (up to log-factors) (Sidford et al., 2018b).

How would our quantum subroutines speed up standard
value iteration? By using quantum mean estimation, we
can quadratically suppress the sample complexity at each
iteration and for each (s, a) ∈ S × A, meaning that the
quantum sample complexity at each iteration becomes
O(SA

√
Γ2/(ε/Γ)2) = O(SAΓ2/ε). Accounting for the Γ

iterations, gives an overall quantum sample complexity of
O(SAΓ3/ε2). In fact, observing that the Bellman recursion
involves taking the maximum over the set of actions, we can
use quantum maximum finding to reduce the complexity
down further, to O(S

√
AΓ3/ε2), which matches the per-

formance of SolveMdp2 for v∗. However, an ε-optimal
value function leads only to an (2γΓε)-optimal greedy pol-
icy (Singh & Yee, 1994; Bertsekas, 2013).

Quantum version of modern value iteration. To obtain
an ε-optimal policy, SolveMdp1 and SolveMdp2 directly
employ the so-called monotonicity technique of (Sidford
et al., 2018a) which we observe does not interfere with
our use of the two quantum subroutines. The monotonic-
ity technique comprises the if-then-else statement and the
subtractions in the lines involving qEst. Note that the sub-
tracted terms always equal the preceding estimation error
which enforces one-sided error. The overall effect of the
monotonicity technique is to ensure the value function at
each iteration is at most the value function of the policy at

that iteration (which is in turn at most v∗). Hence, we avoid
the problem of an ε-optimal v̂ not giving an ε-optimal π̂.

We can get better dependence in Γ by leveraging two other
techniques introduced in (Sidford et al., 2018a;b; Wain-
wright, 2019): “variance reduction” and “total variance”.
We incorporate these techniques in SolveMdp1 at the cost
of re-inflating the A dependence back to linear. The rea-
son we no longer get

√
A is because applying qArgmax is

incompatible with the variance reduction technique.

Variance reduction essentially splits standard value iteration
into K := dlog2(Γ/ε)e epochs where in each epoch we
halve the error. Epochs in SolveMdp1 are indexed by k. At
the l-th iteration of epoch k, we need to estimate E[vk,l[s

′]],
where vk,l is the current value function. The mean can be
rewritten as

E[vk,l[s
′]] = E[(vk,l − vk,0)[s′]] + E[vk,0], (3)

where vk,0 is the value function at the start of the epoch.
There are SA of these equations, one corresponding to
each (s, a) ∈ S × A such that s′ ∼ p(·|s, a). We esti-
mate the mean on the left-hand-side (LHS) by the sum of
estimates of means on the right-hand-side (RHS). Since
‖vk,l − vk,0‖ decreases rapidly with k, because vk,l and
vk,0 rapidly approach v∗, we ignore the first term on the
RHS in our overview. We remark that its estimation cost af-
fects the ε range for which SolveMdp1 is optimal. Consider
the second term, E[vk,0]. This again needs to be estimated
to error ε/Γ which classically costs O(SAΓ2/(ε/Γ)2) =
O(SAΓ4/ε2) by the same argument before. Quantumly,
this costs O(SAΓ2/ε), again as before. Now, the key point
is that we only need to estimate E[vk,0] once per epoch and
reuse its value throughout the epoch. But there are only
logarithmically many epochs, so the overall cost becomes
Õ(SAΓ4/ε2) classically and Õ(SAΓ2/ε) quantumly.

The total variance technique is more subtle. It is based on
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the observation that the actual error accumulation from iter-
ation to iteration is much less than what is implicit above.
To be clear, in the above, we set the error in mean estimation
at each iteration to be ε/Γ so that over Γ iterations, the accu-
mulated error is ε. However, the error at each iteration i can
actually be set larger, to ε

√
Var[vi[s′]]/Γ

1.5 (which could
be as large as ε/

√
Γ), and it can still be shown that the over-

all accumulated error is ε using properties of the standard
deviation. More specifically, let us write σi =

√
Var[vi[s′]].

Then, the cumulative standard deviation,
∑Γ
i=1 σi, is closely

related to an expression for which we can non-trivially upper
bound by

√
2 Γ1.5 (Theorem 1). Classically, it is straight-

forward to estimate µi (:= E[vi[s
′]]) to an error of εσi/Γ1.5,

without needing to know the σis. This can be done using
about O((ε/Γ1.5)−2) = O(Γ3/ε2) samples for each state–
action pair as guaranteed by Chebyshev’s (or Bernstein’s)
inequality. Combined with variance reduction, that is, apply-
ing the above technique to estimate the E[vk,0] from before,
we see that this yields an overall classical sample complexity
of Õ(SAΓ3/ε2). This is one main result of (Sidford et al.,
2018a). Due to the first term on the RHS of Eq. (3), which
we glossed over, this result only holds for ε = O(1).

Trying to do a quantum version of the total variance tech-
nique poses a significant technical challenge for the follow-
ing reason. The version of quantum mean estimation that
should have corresponded to a more efficient Chebyshev’s
inequality, namely qEst2, is deficient compared to its clas-
sical counterpart in two ways. The first is that qEst2 cannot
estimate µi to an error proportional to σi without knowing
σi a priori. To remedy this, we first estimate σi using qEst1
to some additive error b > 0. Denote the estimate by σ̂i.
Then we can use qEst2 to estimate µi to error proportional
to σlow := σ̂i − b (≤ σi) which maintains correctness. Un-
fortunately, this approach does not work due to the second
deficiency of qEst2. In fact, qEst2 also requires an upper
bound C on σi to function and uses O(C/ε) samples to
guarantee additive error ε. For large C, the sample com-
plexity can be highly redundant with respect to the error
guaranteed. This problem is directly relevant for us if we
try to use σhigh := σ̂i + b as C. Then, the complexity be-
comes proportional to C/σlow = (σ̂i + b)/(σ̂i − b), which
can be arbitrarily large depending on the value of σ̂i that
we cannot control. To remedy this second problem, we
in fact estimate µi to error proportional to σhigh, so that
C/σhigh = 1 becomes constant. Of course, this no longer
maintains correctness as σhigh is larger than σi. However,
we can bound σhigh ≤ σi + 2b. We then find, by performing
a full correctness analysis, that the extra error of 2b can be
sufficiently suppressed if we set b and the parameter c on
Line 3 of SolveMdp1 to be small enough constants. Doing
so only increases the overall complexity by a constant fac-
tor. Setting b constant also ensures that the complexity of
estimating σi to error b by qEst1 is within our budget. With

the technical challenges resolved, we see that the complex-
ity of SolveMdp1 is Õ(SA(ε/Γ1.5)−1) = Õ(SAΓ1.5/ε).
Again, due to the first term on the RHS of Eq. (3), this
only holds for ε = O(1/

√
Γ). The ε range is smaller than

before, which was ε = O(1), because there is relatively less
quantum speedup for estimating that first term.

In summary, we have described SolveMdp1, which uses
qEst to “quantize” all three techniques in (Sidford et al.,
2018a): monotonicity, variance reduction, and total vari-
ance. Quantizing the first two is not difficult but quantizing
the last one offers a technical challenge. We believe that
our approach to resolving that challenge could find uses in
quantizing other classical algorithms as well. We have also
described SolveMdp2, which offers a quadratic speedup
in A using qArgmax. But because qArgmax conflicts
with the variance reduction and total variance techniques,
SolveMdp2 no longer has optimal Γ dependence.

Lower bound techniques. Lastly, we discuss how we
prove our lower bounds. Standard techniques for proving
lower bounds on the number of uses of a quantum oracle
generally work with Boolean oracles. In our case, we in-
stead have an oracle G that outputs a particular quantum
state for a given state–action pair which can also be invoked
in superposition over state–action pairs. To enable the use
of standard lower bound techniques from quantum query
complexity, we reduce the problems of computing certain
Boolean functions f to our problems of computing q∗, v∗,
and π∗ by instantiating our oracle G using standard Boolean
oracles. For example, consider a quantum oracle Gcoin that
produces a state which represents a quantum sample of a
coin toss with probability p of getting heads. Gcoin can be
instantiated by a Boolean oracle encoding a n-bit string (for
large n) which has p fraction of its bits equal to 1. The
reduction then allows us to translate known lower bounds
on computing f using a Boolean oracle to lower bounds on
computing q∗, v∗, and π∗ using oracle G.

This approach has some unexpected benefits. Because we
reduce to standard problems in query complexity, our proof
is very modular. Without extra effort, it allows us to show
optimal classical lower bounds by simply invoking the best
classical lower bounds for the Boolean functions f men-
tioned above. Moreover, we qualitatively improve on known
classical lower bounds. The known lower bound of (Azar
et al., 2012) shows that for any S, A, there exists a hard
MDP which has a number of state–action pairs equal to SA.
However, it is not the case that their constructed MDP has
S states and A actions, just that the total number of state–
action pairs is SA. Their constructed MDP actually has
O(SA) states, but most states only have O(1) actions, so
the total number of state–action pairs is SA. In contrast, our
hard MDP instance genuinely has S states and A actions.
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1.4. Related Work

As we have discussed, our quantum algorithms can be
viewed as “quantizations” of the classical algorithms and
techniques in (Sidford et al., 2018a;b; Wainwright, 2019)
which represent the latest development of classical model-
free MDP solvers, which also recently include (Wang, 2017;
2020; Jin & Sidford, 2020) among others, that started with
(Kearns & Singh, 1999). Sidford et al. (2018a) give algo-
rithms with complexity Õ(SAΓ3/ε2) when ε = O(1) for
approximating all three of q∗, v∗, and π∗. On the model-free
side, there has been even more recent progress culminating
in the work of Li et al. (2020) which achieves Õ(SAΓ3/ε2)
for the full range of ε ∈ (0,Γ]. That this bound is tight (up
to log-factors) is established by (Azar et al., 2012) which
is closely related to our work. Indeed, to prove our lower
bounds, we use an instance inspired by (Azar et al., 2012).
However, our proof by reduction and composition theorems
is technically quite different from theirs and extends their
lower bound to apply to arbitrary S andA. Arguably, model-
based MDP solvers (Azar et al., 2012; Agarwal et al., 2020;
Li et al., 2020) have seen more successes than their model-
based counterparts that we quantized. However, quantizing
these techniques appears more difficult. As a first step, one
might ask if the quantum sample complexity of learning
a probability distribution supported on n points to error ε
in `1-norm can be O(n/ε), which represents a quadratic
speedup over classical in terms of ε. Even for this simple
question, the answer is currently unknown, cf. (Chakraborty
et al., 2010) for lower bounds.

On the quantum side, the broader subject of reinforcement
learning “remains relatively unaddressed by the quantum
community” (Jerbi et al., 2021). The relatively few works
on the subject include (Dong et al., 2008; Dunjko et al.,
2016; Paparo et al., 2014; Dunjko et al., 2017; Jerbi et al.,
2021). However, these works are incomparable to ours as
they focus either on problem formulation or lack rigorous
results. None give rigorous complexity bounds on comput-
ing π∗, v∗, and q∗. Some of these works do mention the
possibility of quadratic speedups by using quantum maxi-
mum finding (Dunjko et al., 2016). However, they do not
consider how this technique could be used as part of a larger
algorithm. As we have mentioned, our work shows that
to achieve optimal T -dependence overall, we may have to
forgo the use of quantum maximum finding. We note that
in the multi-armed bandits setting, where S = 1, an optimal
quadratic quantum speedup is shown in (Wang et al., 2021).
In synergy with our work, Dunjko et al. (2017) proposes
methods to instantiate the quantum generative model in real
physical environments as opposed to being given a classical
simulator. If their methods can be realized, our work will
have wider applicability.

2. Preliminaries
2.1. Notation

For a positive integer n, we write [n] for the set {1, . . . , n}.
We use upper case letters for matrices and lower case letters
for vectors. For vectors only, we use square bracket nota-
tion v[i] to mean entry i of vector v. Vectors v appearing
in this work often have indices i = (i1, i2) described by
two coordinates in which case we write v[i1, i2] to mean
v[(i1, i2)]. As a function v : X → Y can be identified
with the corresponding vector v ∈ Y X , we also use square
bracket notation to index into functions. For any two real
vectors u, v of the same dimension, we write max{u, v} to
mean the element-wise max of u and v and u ≤ v to mean
the inequality holds element-wise. We write bold 1 (resp. 0)
for a vector of all 1s (resp 0s) with dimension determined
by context. A scalar x ∈ R appearing alone in an equation
involving vectors is to be interpreted as x · 1. For a function
f : A → B and vector v with entries in A, we write f(v)
for the vector with entries in B resulting from applying f
to v element-wise. For a set X , we often identify XS with
XS , XA with XA, XS×A with XS×A, and so on.

2.2. MDP Preliminaries

For a policy π, we define Pπ ∈ RSA×SA to be the matrix
with entries

Pπ(s,a),(s′,a′) =

{
p(s′|s, a) if a′ = π(s′),

0 otherwise.
(4)

We define P ∈ RSA×S to be the matrix with entries
P(s,a),s′ = p(s′|s, a) and, for fixed (s, a) ∈ S × A, we
define ps,a ∈ RS to be the vector with entries ps,a[s′] =
p(s′|s, a). The preceding definitions mean that, for any
u ∈ RS , we have (Pu)[s, a] = pT

s,au.

For u ∈ RS , we define σ2(u) ∈ RSA to be a vector with
entries σ2(u)[s, a] := Var[u[s′] | s′ ∼ p(· | s, a)]. Note that
this means σ2(u) = Pu2 − (Pu)2. Naturally, we write
σ(u) :=

√
σ2(u).

We define the value operator of policy π, T π : RS → RS ,
by its mapping of u ∈ RS , defined entry-wise by

T π(u)[s] := r(s, π[s]) + γ pT
s,π[s]u. (5)

It can be readily verified that T π (for any π) is monotoni-
cally increasing with respect to the element-wise order (≤)
on RS , is a γ-contraction with respect to the l∞-norm on
RS , and has unique fixed point vπ .

For a vector q ∈ RSA, we also define v(q) ∈ RS and
π(q) ∈ AS by v(q)[s] = maxa{q[s, a]} and π(q)[s] =
argmaxa{q[s, a]} respectively. Note that this means
v(q)[s] = q[s, π(q)[s]].

Finally, for the total-variance technique, we will also need:
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Theorem 1. (Agarwal et al., 2021; Azar et al., 2012) For
any policy π, we have

‖(I − γPπ)−1σ(vπ)‖ ≤
√

2/Γ1.5. (6)

2.3. Quantum Preliminaries

We now describe quantum oracles in more detail using stan-
dard quantum computing notation (Dirac notation). We
briefly review Dirac notation so that the following defini-
tions make formal sense. We refer readers to (Nielsen &
Chuang, 2000) for more information.

In Dirac notation, vectors v in a complex vector space Cn
are written as as |v〉, and called “ket v”. The notation |i〉,
with i ∈ [n], is reserved for the i-th standard basis vector.
|0〉 is also reserved for the 1st standard basis vector when
there is no conflict. A ket |i1, . . . , iM 〉 with ij ∈ {0, 1} is
interpreted as the vector |i〉 ∈ C2M

, where i is the integer
that is represented by i1 . . . iM in binary.
Definition 1 (Quantum oracle encoding of functions and
vectors). Let Ω be a finite set of size n and u ∈ RΩ (equiv-
alently u : Ω → R) where each entry of u is represented
to M bits of precision. A quantum oracle encoding u is a
unitary matrix Uu : Cn ⊗ C2M → Cn ⊗ C2M

such that
Uu : |i〉 ⊗ |0〉 7→ |i〉 ⊗ |ūi〉 for all i ∈ [n], where ūi is the
binary representation of ui.

Like in the classical setting, we may always assume that M
is sufficiently large for our purposes.
Definition 2 (Quantum oracle encoding of probability distri-
butions). Let Ω be a finite set of size n and p = (px)x∈Ω a
discrete probability distribution on Ω. The quantum oracle
encoding of p is a unitary matrix Up : Cn⊗CJ → Cn⊗CJ
such that Up : |0〉 ⊗ |0〉 =

∑
x∈Ω

√
px |x〉 ⊗ |vs′〉, where

0 ≤ J ∈ Z is arbitrary and |vs′〉 ∈ CJ are arbitrary.
Definition 3 (Quantum generative model of an MDP). The
quantum generative model of an MDP, with transition prob-
abilities p(s′|s, a), is a unitary matrix G : CS⊗CA⊗CS⊗
CJ → CS ⊗ CA ⊗ CS ⊗ CJ such that

G : |s〉 ⊗ |a〉 ⊗ |0〉 ⊗ |0〉)

7→ |s〉 ⊗ |a〉 ⊗
( ∑
s′∈S

√
p(s′|s, a) |s′〉 ⊗ |vs′〉

)
, (7)

where 0 ≤ J ∈ Z is arbitrary and |vs′〉 ∈ CJ are arbitrary.

We stress that the quantum state output by G in Eq. (7) is
analogous to a sample drawn from the classical probability
distribution {p(s′|s, a)}s′∈S as opposed to that distribution
fully written out on a piece of paper.

3. Analysis of Quantum Algorithms
In this section, we formally analyze our two algorithms
SolveMdp1 and SolveMdp2. These algorithms make es-

sential use of two quantum subroutines: quantum mean
estimation and quantum maximum finding. We begin by
specifying the performance guarantees of these subroutines.

3.1. Quantum Mean Estimation and Maximum
Finding

Theorem 2 (Quantum mean estimation (Brassard et al.,
2000; Montanaro, 2015)). There are two quantum algo-
rithms qEst1 and qEst2 with the following specifications.
Let Ω be a finite set, p = (px)x∈Ω a discrete probability
distribution on Ω, and function v : Ω→ R. Given quantum
oracles Up and Uv encoding p and v respectively. Then,

1. qEst1 requires u, ε > 0 as additional inputs and a
promise 0 ≤ v ≤ u, in which case qEst1 usesO(u/ε+√
u/ε) queries to Up, alternatively

2. qEst2 requires σ > 0 and ε ∈ (0, 4σ) as additional
inputs and a promise Var[v(x) |x ∼ p] ≤ σ2, in which
case qEst2 uses O((σ/ε) log2(σ/ε)) queries to Up

to output an estimate µ̂′ of µ := E[v[x] |x ∼ p] = pTv
satisfying Pr(|µ̂′ − µ| > ε) < 1/3. Moreover, by repeating
one of qEst1 or qEst2 O(log(1/δ)) times and taking the
median output yields another estimate µ̂ of µ satisfying
Pr(|µ̂− µ| < ε) > 1− δ.

For i ∈ {1, 2}, we write qEst{i}δ(pTv, ε) for an estimate
of the mean of v[x], with x distributed as p, to error < ε
with probability > 1− δ, using qEst{i}.

The median-of-means part of Theorem 2 is sometimes re-
ferred to as the “powering lemma” (Jerrum et al., 1986).

Theorem 3 (Quantum maximum finding (Dürr & Høyer,
1996)). There exists a universal constant cmax > 0 such
that the following holds. There is a quantum algorithm
qArgmax such that, given a quantum oracle Uu encoding a
vector u ∈ Rn, Amax at most cmax

√
n log(1/δ) queries to

Uu and finds argmaxi(ui) with probability > 1− δ.

We write qArgmaxδ{u[i] : i ∈ [n]} for an estimate of the
maximum of u, with probability > 1− δ, using qArgmax.

3.2. Analysis of SolveMdp1

We will use the following Lemma which clearly follows
from the if-then-else statement appearing in SolveMdp1.

Lemma 1. For all k ∈ [K] and l ∈ {0} ∪ [L], the vk,ls are
monotone increasing with respect to (k−1)L+ l. Moreover,
for all k ∈ [K] and l ∈ [L], we have vk,l ≥ v(qk,l−1).

Using Lemma 1 and the fact that our mean estimates are
always shifted down to have one-sided error, we can prove:



Quantum Algorithms for Reinforcement Learning with a Generative Model

Proposition 1. For all k ∈ [K] and l ∈ [L], we have

vk,l ≤ vπk,l ≤ v∗, (8)
qk,l ≤ qπk,l ≤ q∗, (9)

with probability at least 1− δ.

The proof is similar to that found in Section E of (Sid-
ford et al., 2018b); the key point is to show that vk,l ≤
T vk,l(vk,l). We present it in Appendix A for completeness.

Next, we prove the following in Appendix A:

Proposition 2. For all k ∈ [K], we have

v∗ − εk ≤ vk,L, (10)
q∗ − εk ≤ qk,L, (11)

with probability at least 1− δ.

If there were no mean estimation errors, Proposition 2 fol-
lows from the contractive properties of the Bellman operator.
The challenge for us is to analyze those errors carefully. As
we mentioned in our Introduction, the errors involved here
go beyond those analyzed in (Sidford et al., 2018a).

The correctness of Algorithm 1 then follows from combin-
ing Proposition 1 and Proposition 2 with k = K and l = L
and recalling the definitions of (v̂, π̂, q̂) and K. Formally:

Theorem 4 (Correctness of SolveMdp1). The outputs v̂, π̂,
and q̂ of SolveMdp1 satisfy

v∗ − ε ≤ v̂ ≤ vπ̂ ≤ v∗, (12)

q∗ − ε ≤ q̂ ≤ qπ̂ ≤ q∗, (13)

with probability at least 1− δ.

Having shown correctness, we turn to complexity:

Theorem 5 (Complexity of SolveMdp1). The quantum
query complexity of SolveMdp1 is

O(SA(Γ1.5 ε−1 + Γ2) log4(Γ/ε) log(SAΓ/δ)). (14)

The proof of Theorem 5 is also in Appendix A and involves
showing Theorem 2 is applicable and applying it.

3.3. Analysis of SolveMdp2

If we only require v∗ and π∗ but not q∗, then we present an
alternative quantum algorithm we call SolveMdp2 that is
quadratically faster than SolveMdp1 in terms of A. The
source of the speedup in A is our use of quantum max-
imum finding to find the maximum at each iteration l,
qArgmaxf{ql−1,s[a] : a ∈ A} on Line 6 which uses
the quantum oracle encoding Uql−1,s created in the previous
iteration l − 1.

SolveMdp2 is similar to SolveMdp1 but with k fixed to
1 so that there is no outer loop over k. As a result, the
correctness and complexity of SolveMdp2 follow similarly
to that of SolveMdp1. Therefore, we defer the proofs of
the following to Appendix B.

Theorem 6 (Correctness of SolveMdp2.). The outputs v̂
and π̂ of SolveMdp2 satisfy

v∗ − ε ≤ v̂ ≤ vπ̂ ≤ v∗, (15)

with probability at least 1− δ.

Theorem 7 (Complexity of SolveMdp2). The quantum
query complexity of SolveMdp2 is

O(S
√
AΓ3 ε−1 log2(Γ/ε) log(SAΓ/δ)). (16)

4. Lower Bounds
We now state our lower bounds on the number of samples
needed to compute q∗, v∗, π∗. Since our proof technique is
very modular, we can prove lower bounds for both classical
and quantum algorithms with only minor changes.

Our classical lower bounds match known results (Azar et al.,
2012; Sidford et al., 2018a) and use a similar hard MDP
instance, but they are qualitatively stronger as explained in
the Introduction (end of Section 1.3).

These lower bounds are interesting when the parameters S,
A, and T are large since the algorithms scale polynomially
in these parameters. To avoid edge cases that make the
analysis tedious, we only prove the lower bound for S,A ≥
2, and T ≥ 10 (equivalently γ ∈ [0.9, 1)).

Theorem 8 (Classical and quantum lower bounds). Fix any
integers S,A ≥ 2 and γ ∈ [0.9, 1). Let Γ := (1− γ)−1 ≥
10 and fix any ε ∈ (0,Γ/4). There exists an MDP with S
states, A actions, and discount parameter γ such that the
following lower bounds hold:

1. Given access to a classical generative oracle, any al-
gorithm that computes an ε-approximation to q∗, v∗,
or π∗ must make Ω(SAΓ3/ε2) queries.

2. Given access to a quantum generative oracle, any al-
gorithm that computes an ε-approximation to q∗ must
make Ω(SAΓ1.5/ε) queries and any algorithm that
computes an ε-approximation to v∗ or π∗ must make
Ω(S
√
AΓ1.5/ε) queries.

5. Conclusion
To the best of our knowledge, ours is the first work to rig-
orously study quantum algorithms for solving MDPs. We
show that quantum computers can offer quadratic speedups
in terms of Γ, ε, and A in calculating q∗, v∗, and π∗. We
show our algorithms are either optimal, or optimal assuming
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T or A is constant, for certain ranges of ε. We conclude by
discussing the open questions left from our work:

1. Can we give optimal algorithms in all parameters (S, A,
T , ε) for an unrestricted range of ε? A first step towards
answering this question may be to try to interpolate be-
tween SolveMdp1 and SolveMdp2 by adjusting the
number of epochs and the length of each epoch. This
question partly reduces to the purely classical question
of finding a sample-optimal algorithm for v∗ and π∗ that
has space complexity Θ(S) instead of Θ(SA).

2. Can we circumvent our quantum lower bounds? In our
work, we made few assumptions on the MDP. By assum-
ing the MDP has more structure, there may be greater
quantum speedups beyond our current quantum lower
bounds. Such speedups may also be available in the func-
tion approximation setting or if we only ask for a few
entries of vectors q∗, v∗, and π∗.

3. Can we quantize model-based classical algorithms? Our
quantum algorithms are all model-free. But classically,
the current best MDP solver is model-based (Li et al.,
2020). Therefore it is natural to try to construct a quan-
tum model-based algorithm. As mentioned in the Intro-
duction, a first step would be to get a tight bound for
distribution learning in `1-norm.
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