
Deep Generative Learning via Schrödinger Bridge
Supplementary Material

A. Proofs
A.1. Proof of Theorem 1

Theorem 1 (Léonard, 2014) If µ, ν � L , then SBP
admits a unique solution Q∗ = f∗(X0)g∗(X1)Pτ ,
where f∗, g∗ are L -measurable nonnegative func-
tions on Rd satisfying the Schrödinger system{
f∗(x)EPτ [g∗ (X1) | X0 = x] = dµ

dL (x), L − a.e.
g∗(y)EPτ [f∗ (X0) | X1 = y] = dν

dL (y), L − a.e.

Proof: Theorem 1 follows from (Léonard, 2014). �

A.2. Proof of Theorem 2

Theorem 2 (Dai Pra, 1991) Let

u∗t = τv∗t = τ∇x log gt(x)

=τ∇x log

∫
hτ (t,x, 1,y)g1(y)dy.

(1)

Then,

u∗t (x) ∈ arg min
u∈U

E
[∫ 1

0

1

2
‖ut‖2dt

]
s.t. {

dxt = utdt+
√
τdwt,

x0 ∼ q(x), x1 ∼ p(x).
(2)

Proof: Theorem 2 follows from (Dai Pra, 1991). �

A.3. Proof of Theorem 3

Theorem 3 Define the density ratio f(x) = qσ(x)
Φ√τ (x) . Then

for the SDE

dxt = τ∇ logEz∼Φ√τ [f(xt+
√

1− tz)]dt+
√
τdwt (3)

with initial condition x0 = 0, we have x1 ∼ qσ(x).

And, for the SDE

dxt = σ2∇ log q√1−tσ(xt)dt+ σdwt (4)

with initial condition x0 ∼ qσ(x), we have x1 ∼ pdata(x).

Proof: Denote

f0(x) = f∗(x), g1(y) = g∗(y),

f1(y) = EPτ [f∗ (X0) | X1 = y]

=

∫
hτ (0,x, 1,y)f0(x)dx,

g0(x) = EPτ [g∗ (X1) | X0 = x]

=

∫
hτ (0,x, 1,y)g1(y)dy.

Then, the Schrödinger system in Theorem 1 can also be
characterized by

q(x) = f0(x)g0(x), p(y) = f1(y)g1(y) (5)

For Eq. (3), let f0(x) = δ0(x) be the Dirac delta function,
f1(y) =

∫
hτ (0,x, 1,y)f0(x)dx = Φ√τ (y), g1(x) =

qσ(x)
Φ√τ (x) = f(x), g0(0) =

∫
hτ (0,0, 1,y)g1(y)dy = 1.

Then fi, gi, i = 0, 1 solve Schrödinger system (5) with
q = δ0, p = qσ . Define

gt(x) =

∫
hτ (t,x, 1,y)g1(y)dy = Ey∼Φ√

(1−t)τ
[f(y)]

=
√

1− tEz∼Φ√τ [f(x +
√

1− tz)].

By Theorem 2, u∗(x) = τ∇x log gt(x) solves the optimal
control problem minu∈U E

[∫ 1

0
1
2‖ut‖

2dt
]

such that{
dxt = utdt+

√
τdwt

x0 ∼ δ0, x1 ∼ qσ(x)

i.e., the dynamic of Eq. (3) will push δ0 onto qσ from t = 0
to t = 1.

For Eq. (4), let f0(x) = 1,

f1(y) =

∫
hσ2(0,x, 1,y)f0(x)dx = 1,

g1(x) = pdata(x), g0(x) =
∫
hσ2(0,x, 1,y)g1(y)dy =

qσ(x). Then, fi, gi, i = 0, 1 solve Schrödinger system (5)
with q = qσ , p = pdata and τ = σ2. Define

gt(x) =

∫
hσ2(t,x, 1,y)g1(y)dy = q√1−tσ(x).

By Theorem 2, u∗(x) = σ2∇x log gt(x) solves the optimal
control problem minu∈U E

[∫ 1

0
1
2‖ut‖

2dt
]

such that{
dxt = utdt+ σdwt

x0 ∼ qσ(x), x1 ∼ pdata(x)

i.e., the dynamic of Eq. (4) will push qσ onto pdata from
t = 0 to t = 1. �

Deep Generative Learning via Schrödinger Bridge

A.4. Proof of Theorem 4

Theorem 4 Assume that the support of pdata(x) is con-
tained in a compact set, and f(x) is Lipschitz continuous
and bounded. Set the depth D, width W , and size S of
NN φ as

D = O(log(n)),W = O(n
d

2(2+d) / log(n)),

S = O(n
d−2
d+2 log(n)−3).

Then E[‖f̂(x)− f(x)‖L2(pdata)]→ 0 as n→∞.

Proof: Recall that

f̂(x) = exp(r̂φ(x)), (6)

where r̂φ ∈ NN φ is the neural network that minimizes the
empirical loss:

r̂φ ∈ arg minrφ∈NNφL̂(rφ), where L̂(rφ) =

1

n

n∑
i=1

[log(1 + exp(−rφ(x̃i))) + log(1 + exp(rφ(zi)))],

(7)

x̃1, ..., x̃n are i.i.d. samples from qσ(x), and z1, ..., zn are
i.i.d. samples from Φ√τ (x). Note that f(x) = exp (r∗(x))
with

r∗ ∈ arg minrL(r),

where L(r) = Eqσ(x) log(1 + exp(−r(x))) +
EΦ√τ (x) log(1 + exp(r(x))).

Theorem 4 follows by showing ‖r̂φ − r∗‖L2(pdata) → 0
as n → ∞. By the assumption that r∗(x) is Lips-
chitz continuous on a compact set and bounded, we use
L1 and B1 to denote its Lipschitz constant and the up-
per bound. Without loss of generality, we use E =
[−C,C]d to denote its domain. By Lemma 1 (given in
A.6) with L = log n, N = n

d
2(2+d) / log n, there exists a

r̄φ ∈ NN φ with depth D = 12 log n + 14 + 2d, width
W = 3d+3 max{d(n

d
2(2+d) / log n)

1
d , n

d
2(2+d) / log n + 1},

and size S = n
d−2
d+2 /(log4 n), B = 2B1, such that

‖r̄φ − r∗‖L2(pdata) ≤ 38L1C
√
dn−

1
d+2 . (8)

Using Taylor expansion and the boundness of rφ ∈ NN φ

and r∗, it is easy to show that L(rφ)−L(r∗) is sandwiched
by ‖r̄φ − r∗‖2L2(pdata), i.e., ∀rφ ∈ NN φ

C1,B‖rφ − r∗‖2L2(pdata) ≤ L(rφ)− L(r∗)

≤ C2,B‖rφ − r∗‖2L2(pdata).
(9)

Then,

C1,B‖r̂φ − r∗‖2L2 ≤ L(r̂φ)− L(r∗)

=L(r̂φ)− L̂(r̂φ) + L̂(r̂φ)− L̂(r̄φ)

+ L̂(r̄φ)− L(r̄φ) + L(r̄φ)− L(r∗)

≤2 sup
r∈NNφ

|L(r)− L̂(r)|+ C2,B‖r̄φ − r∗‖2L2(ν)

≤2 sup
r∈NNφ

|L(r)− L̂(r)|+ 38C2,BL1C
√
dn−

1
d+2 , (10)

where we use the definition of r̂φ, r∗, and r̄φ, as well as (8)
and (9). Next, we finish the proof by bounding the empirical
process term in (10). Let O = (x̃, z) be the random variable
pair, with x ∼ pdata, z ∼ Φ√τ , and {Oi}ni=1 be n i.i.d.
copies of O. Let o = (x̃, z) ∈ Rd × Rd be a realization of
O, and define

b(r,o) = log(1 + exp−r(x̃)) + log(1 + expr(z)).

It is easy to check that b(r,o) is 1-Lipschitz on r, i.e.,

|b(r,o)− b(r̃,o)| ≤ |r(x̃)− r̃(x̃)|+ |r(z)− r̃(z)|. (11)

Let Õi be a ghost i.i.d. copy of Oi, and σi(εi) be the
i.i.d. Rademacher random (standard normal) variables that
are independent with Õi and Oi, i = 1, ...n. We need the
following results (12)-(13) to upper bound the expected
value of the right hand side term in (10).

E{Oi}ni=1
[sup
r
|L(r)− L̂(r)|] ≤ O(G(NN)), (12)

where G(NN) is the Gaussian complexity (Bartlett &
Mendelson, 2002) of NN φ defined as

G(NN) = E{Oi,εi}ni [sup
r∈NNφ

| 1
n

n∑
i=1

εib(r,Oi)|].

Proof of (12).
Obviously,

L(r) = EO[b(r,O)] =
1

n
EÕi

[b(r, Õi)],

and

L̂(r) =
1

n

n∑
i=1

b(r,Oi).

Let

R(NN) =
1

n
E{Oi,σi}ni [sup

r∈NNφ
|
n∑
i=1

σib(r,Oi)|]

be the Rademacher complexity ofNN φ (Bartlett & Mendel-

Deep Generative Learning via Schrödinger Bridge

son, 2002). Then,

E{Oi}ni=1
[sup
r
|L(r)− L̂(r)|]

=
1

n
E{Oi}ni [sup

r
|
n∑
i=1

(EÕi
[b(r, Õi)]− b(r,Oi))|]

≤ 1

n
E{Oi,Õi}ni

[sup
r
|b(r, Õi)− b(r,Oi)|]

=
1

n
E{Oi,Õi,σi}ni

[sup
r
|
n∑
i=1

σi(b(r, Õi)− b(r,Oi))|]

≤ 1

n
E{Oi,σi}ni [sup

r
|
n∑
i=1

σib(r,Oi)|]

+
1

n
E{Õi,σi}ni

[sup
r
|
n∑
i=1

σib(r, Õi)|]

=2R(b ◦ NN)

≤4R(NN)

≤O(G(NN)),

where the first inequality follows from Jensen’s inequal-
ity, and the second equality holds since both σi(b(r, Õi)−
b(r,Oi)) and b(r, Õi)−b(D,Oi) are governed by the same
law, and the last equality holds since the distribution of the
two terms are the same. In the third inequality, we use the
Lipschitz contraction property of Rademacher complexity,
see Theorem 12 in (Bartlett & Mendelson, 2002) and (11).
The last inequality holds since the relationship between the
Gaussian complexity and the Rademacher complexity, see
for Lemma 4 in (Bartlett & Mendelson, 2002).

Next, we bound the Gaussian complexity.

G(NN) ≤

O(B
√

n

DS logS
log

n

DS logS
exp(− log2 n

DS logS
)).

(13)
Proof of (13).
Since NN φ is closed under negation,

G(NN) = E{Oi,εi}ni [sup
r∈NNφ

1

n

n∑
i=1

εib(r,Oi)]

= EOi
[Eεi [sup

r∈NNφ

1

n

n∑
i=1

εib(r,Oi)]|{Oi}ni=1].

Conditioning on {Oi}ni=1, ∀r, r̃ ∈ NN φ, it easy to check

Vεi [
1

n

n∑
i=1

εi(b(r,Oi)− b(r̃,Oi))] =
dNN (r, r̃)√

n
,

where

dNN (r, r̃) =
1√
n

√√√√ n∑
i=1

(b(r,Oi)− b(r̃,Oi))2.

Denote C(NN , dNN , δ) as the covering number of NN φ

under the metric dNN with radius δ, and let PdimNN be the
Pseudo-dimension of NN φ. Since the diameter of NN φ

under dNN is at most B, we have

G(NN)

≤ c√
n
E{Oi}ni=1

[

∫ B

0

√
logC(NN , dNN , δ)dδ]

≤ c√
n
E{Oi}ni=1

[

∫ B
0

√
logC(NN , dNN ,∞, δ)dδ]

≤ c√
n

∫ B
0

√
PdimNN log

2eBn
δPdimNN

dδ

≤cB
√

n

PdimNN
log(

n

PdimNN
) exp(− log2(

n

PdimNN
))

≤cB
√

n

DS logS
log

n

DS logS
exp(− log2 n

DS logS
),

where c is a constant which may vary on different places,
the first inequality follows from the chaining Theorem
8.1.3 in (Vershynin, 2018), the second inequality holds
due to C(NN , dNN , δ) ≤ C(NN , dNN ,∞, δ), we use the
relationship between the metric entropy and the Pseudo-
dimension of the ReLU networks NN φ (Anthony &
Bartlett, 2009) in the third inequality, i.e.,

logC(NN , dNN ,∞, δ)) ≤ PdimNN log
2eBn

δPdimNN
,

the fourth inequality follows by some calculation, and the
last inequality holds due to the upper bound of Pseudo-
dimension for the ReLU network NNψ satisfying

PdimNN = O(DS logS),

see (Bartlett et al., 2019).

Finally, by (10)-(13) and the choice of D,W and S , we get
E[‖r̂φ − r∗‖2L2] ≤ O(n−

2
2+d)→ 0 as n→∞. �

A.5. Proof of Theorem 5

Theorem 5 Assume that pdata(x) is differentiable with
bounded support, and ∇ log qσ̃(x) is Lipschitz continuous
and bounded for (σ̃,x) ∈ [0, σ] × Rd. Set the depth D,
widthW , and size S of NN θ as

D = O(log(n)),W = O(max{n
d

2(2+d) / log(n), d}),

S = O(dn
d−2
d+2 log(n)−3).

Then E[‖‖∇̂ log qσ̃(x) − ∇ log qσ̃(x)‖2‖L2(qσ̃)] → 0 as
m,n→∞.

Deep Generative Learning via Schrödinger Bridge

Proof: We give the proof for the fixed σ̃ case. The case
that σ̃ vary in a interval can be treated similarly. Recall that

s∗ ∈ arg mins

1

2
Ex∼qσ̃(x)‖s(x)−∇x log qσ̃(x)‖2

is equivalent to s∗ ∈ arg minsL(s),

whereL(s) =
1

2
Ex∼pdata(x),z∼N (0,σ̃2I)

∥∥∥s(x + z) +
z

σ̃2

∥∥∥2

.

Since ∇̂ log qσ̃(x) = ŝθ(x; σ̃) (we use ŝθ(x) to denote
ŝθ(x; σ̃) for short), where

ŝθ ∈ arg minsθ∈NN θ L̂(sθ),

L̂(sθ) =
∑n
i=1

∥∥∥sθ(xi + zi) + zi
σ̃2
j

∥∥∥2

/(2n), xi are i.i.d.
samples from pdata, and zi are i.i.d. samples from Φσ̃,
i = 1, ..., n. What we need to prove is

Exi,zi [‖‖s∗ − ŝθ‖2‖2L2(qσ̃)]

=Exi,zi [Ex∼qσ̃ [‖s∗(x)− ŝθ(x)‖2]]→ 0

as n→∞. Since the functional L and L̂ are both quadratic,
it is easy to conclude that

Ex∼qσ̃ [‖s∗(x)− ŝθ(x)‖2]

=Ex∼pdata,z∼Φσ̃ [‖s∗(x + z)− ŝθ(x + z)‖2]

=L(ŝθ)− L(s∗)

=L(ŝθ)− L̂(ŝθ) + L̂(ŝθ)− L̂(s̄θ)

+ L̂(s̄θ)− L(s̄θ) + L(s̄θ)− L(s∗)

≤2 sup
s∈NN θ

|L(s)− L̂(s)|+ Ex∼qσ [‖s̄θ(x)− s∗‖22]

≤2 sup
s∈NN θ

|L(s)− L̂(s)|+ inf
s̄∈NN θ

Ex∼qσ [‖s̄θ(x)− s∗‖22],

(14)

where we use ŝ as a minimizer and s̄ as an arbitrary element
of NN θ in the first inequality, and we take infimum over
s̄ ∈ NN θ in the second inequality. We need to bound
the two terms on the right hand side of (14). The terms
inf s̄∈NN θ Ex∼qσ [‖s̄θ(x) − s∗‖22] and sups∈NN θ |L(s) −
L̂(s)| are the so called approximation error and statistical
error. They can be bounded by using the similar technique
when we prove (8) and (10), respectively. Here we directly
give the bounds and omit the details. By setting,

D = O(log(n)),W = O(n
d

2(2+d) / log(n)),

S = O(n
d−2
d+2 log(n)−3).

Then

inf
s̄∈NN θ

Ex∼qσ [‖s̄θ(x)− s∗‖22] ≤ O(dn−
2
d+2),

sup
s∈NN θ

|L(s)− L̂(s)| ≤ O(n−
2
d+2).

Thus, Theorem 5 follows by plugging these above two dis-
plays into (14) and setting n→∞. �

Theorem 6 Under Assumptions 1-4,

E[W2(Law(xN2), pdata)]→ 0, as n,N1, N2, N3 →∞,

whereW2 is the 2-Wasserstein distance between two distri-
butions.

Proof: Recall that

D1(t,x) = ∇ logEz∼Φ√τ [f(x +
√

1− tz)],

D2(t,x) = ∇ log q√1−tσ(x),

and

hσ,τ (x1,x2) = exp

(
‖x1‖2

2τ

)
pdata(x1 + σx2).

We recall the assumptions

Assumption 1 supp(pdata) is contained in a ball with ra-
dius R, and pdata > c > 0 on its support.

Assumption 2 ‖Di(t,x)‖2 ≤ C1(1 + ‖x‖2), ∀x ∈
supp(pdata), t ∈ [0, 1], where C1 ∈ R is a constant.

Assumption 3 ‖Di(t1,x1) − Di(t2,x2)‖ ≤ C2(‖x1 −
x2‖+ |t1 − t2|1/2), ∀x1,x2 ∈ supp(pdata), t1, t2 ∈ [0, 1].
C2 ∈ R is another constant.

Assumption 4 hσ,τ (x1,x2), ∇x1hσ,τ (x1,x2), pdata and
∇pdata are L-Lipschitz functions.

Some calculation shows

D1(t,x) = ∇ logEz∼Φ√τ [f(x +
√

1− tz)]

=
Ez∼Φ√τ

[
f(x +

√
1− tz)∇ log f(x +

√
1− tz)

]
Ez∼Φ√τ [f(x +

√
1− tz)]

,

(15)

and
∇ log f(x) = ∇ log qσ(x) + x/τ. (16)

Let D̂1(t,x) be an estimated version of D1(t,x) by replac-
ing f(x) and ∇ log f(x) = ∇ log qσ(x) + x/τ with f̂(x)
and ŝθ(x;σ) + x/τ , respectively. By Theorem 4 and 5, we
know that

D̂1(t,x)→ D1(t,x) as n→∞.

Similarly, we know that

D̂2(t,x) = ŝθ(x;
√

1− tσ)→ D2(t,x), as n→∞.

Deep Generative Learning via Schrödinger Bridge

Recall that the iteration of state 1 in our Schrödinger Bridge
algorithm reads

xk+1 = xk +
τ

N1
b(tk,xk) +

√
τ

N1
εk,

x0 = 0, k = 0, ...N1 − 1,

(17)

where

b(tk,xk) =

∑N3

i=1 f̂(x̃i)[ŝθ(x̃i, σ) +
√

(1− tk) /τzi]∑2N3

i=N3+1 f̂(x̃i)
+
xk
τ
,

x̃i = xk +
√
τ (1− tk)zi, i = 1, ..., 2N3, tk = k

N1
,

{zi}2N3
i=1 , and εk ∼ N (0, I). Note that b(t,x) is a Monte

Carlo version of D̂1(t,x) and converges to it as the number
of samples N3 →∞. Then, ∀(t,x)

b(t,x)→ D1(t,x) as n,N3 →∞. (18)

By Assumption 1 and Assumption 4, we can show that
the above consistency results hold uniformly for (t,x) ∈
[0, 1]× supp(pdata). The Euler-Maruyama method for solv-
ing for SDE (3) with step size s = 1/N1, tk = k/N1 reads

Xk+1 = Xk +
τ

N1
D1(tk, Xk) +

√
τ

N1
εk,

X0 = 0, k = 0, ..., N1 − 1.

(19)

Under our Assumptions 2 and 3, SDE (3) admits a strong
solution and (22)-(23) in Lemma 2 hold (see A.6). By the
classical theory of Euler-Maruyama methods for solving
SDEs (Higham, 2001),

W2(Law(XN1
), qσ) = O(1/

√
N1)→ 0 as N1 →∞.

Using the triangle inequality, we prove

W2(Law(xN1
), qσ)→ 0 as n,N3, N1 →∞, (20)

by showing

W2(Law(xN1),Law(XN1))→ 0 as n,N3 →∞.

Recall the definition of xk in (17) and Xk in (19). We have

‖xk −Xk‖22
≤‖xk−1 −Xk−1‖22

+

(
τ

N1
‖D1(tk−1, Xk−1)− b(tk−1,xk−1)‖2d`

)2

+ 2
τ

N1
‖xk−1 −Xk−1‖2

· ‖D1(tk−1, Xk−1)− b(tk−1,xk−1)‖2
≤(1 + τ/N1)‖Xk−1 − xk−1‖22

+ (τ/N1 + τ2/N2
1)

· ‖D1(tk−1, Xk−1)− b(tk−1,xk−1)‖22
≤(1 + τ/N1)‖Xk−1 − xk−1‖22

+ 2(τ/N1 + τ2/N2
1)

· ‖D1(tk−1, Xk−1)−D1(tk−1,xk−1)‖22
+ 2(τ/N1 + τ2/N2

1)

· ‖D1(tk−1,xk−1)− b(tk−1,xk−1)‖22
≤(1 + τ/N1)‖Xk−1 − xk−1‖22

+ 2C2(τ/N1 + τ2/N2
1)‖Xk−1 − xk−1‖22

+ 2(τ/N1 + τ2/N2
1)o(1)

=(1 + τ/N1 + 2C2(τ/N1 + τ2/N2
1))‖Xk−1 − xk−1‖22

+ 2(τ/N1 + τ2/N2
1)o(1).

where the third inequality holds by Assumption 3 and (18).
Taking expectation on the above display, we get

E[‖xk −Xk‖22]

≤(1 + τ/N1 + 2C2(τ/N1 + τ2/N2
1))E[‖Xk−1 − xk−1‖22]

+ 2(τ/N1 + τ2/N2
1)o(1).

From the above display and the fact that x0 = X0 = 0, we
can conclude that

E[‖xk −Xk‖22]

≤2(k − 1)(τ/N1 + τ2/N2
1)o(1) ≤ 2(τ + τ2/N1)o(1),

∀ 1 ≤ k ≤ N1.

Thus, we have

W2(Law(XN1
),Law(xN1

))→ 0, as n,N3 →∞. (21)

The consistency results (20) for the first stage in Schrödinger
Bridge algorithm has been established. For the second stage,
the iteration reads

xk+1 = xk +
σ2

N2
b(xk) +

σ√
N2

εk,

k = 0, ..., N2 − 1,x0 = xN1
,

Deep Generative Learning via Schrödinger Bridge

where b(xk) = ŝθ(xk,
√

1− k
N2
σ) and εk ∼ N (0, I).

The Euler-Maruyama method for solving for SDE (4) with
step size s = 1/N2, tk = k/N2 reads

Xk+1 = Xk +
σ2

N2
D2(tk, Xk) +

√
σ

N2
εk,

X0 ∼ qσ, k = 0, ..., N2 − 1.

Then, the consistency results of the second stage can be
proved similarly by repeating the part between Equation
(19) and Equation (21) and using the consistency results of
the first stage, we omit the details here. �

A.6. Additional Lemmas

Lemma 1 Let f be a uniformly continuous function de-
fined on E ⊆ [−R,R]d. For arbitrary L ∈ N+ and N ∈
N+, there exists a function ReLU network fφ with width
3d+3 max

{
d
⌊
N1/d

⌋
, N + 1

}
and depth 12L + 14 + 2d

such that

‖f − fφ‖L∞(E) ≤ 19
√
dωEf

(
2RN−2/dL−2/d

)
,

where, ωEf (t) is the modulus of continuity of f satisfying
ωEf (t)→ 0 as t→ 0+.

Proof: This is Theorem 4.3 in (Shen et al., 2019). �

Lemma 2 Let xt be the solution of SDE (3). Under As-
sumption 2, we have

E[‖xt‖22] ≤ C1,τ,d exp(τ2t), ∀t ∈ [0, 1], (22)

E
[
‖xt2 − xt1‖22

]
≤ C2,τ,d((t2 − t1)2 + (t2 − t1)),

∀t1, t2 ∈ [0, 1].
(23)

Proof: By the definition of xt in (3), we have ‖xt‖2 ≤∫ t
0
τ‖D1(`,x`)‖2d`+

√
τ‖wt‖2. Then,

‖xt‖22 ≤ 2τ2

(∫ t

0

‖D1(`,x`)‖2d`

)2

+ 2τ‖wt‖22

≤ 2τ2t

∫ t

0

‖D1(`,x`)‖22d`+ 2τ‖wt‖22

≤ 2τ2t

∫ t

0

C1[‖x`‖22 + 1]d`+ 2τ‖wt‖22,

where the first inequality holds due to the inequality (a +
b)2 ≤ 2a2 + 2b2, the last inequality holds by Assumption 2.
Thus,

E[‖xt‖22] ≤ 2τ2t

∫ t

0

C1(E[‖x`‖22] + 1)d`+ 2τE[‖wt‖22]

≤ 2τ2C1

∫ t

0

E[‖x`‖22]d`+ (2τ2C1 + 2τd).

Then, (22) follows from the above display and the Bellman-
Gronwall inequality.

Again, by the definition of xt in (3), we have

‖xt2 − xt1‖2 ≤
∫ t2

t1

τ‖D1(x`, `)‖2d`+
√
τ‖wt2 −wt1‖2,

Then,

‖xt2 − xt1‖22

≤2τ2

(∫ t2

t1

‖D1(x`, `)‖2d`

)2

+ 2τ‖wt2 −wt1‖22

≤2τ2(t2 − t1)

∫ t2

t1

‖D1(x`, `)‖22d`+ 2τ‖wt2 −wt1‖22

≤2τ2(t2 − t1)

∫ t2

t1

C1[‖x`‖22 + 1]d`+ 2τ‖wt2 −wt1‖22,

where the last inequality holds by by Assumption 2. Taking
expectations on both sides and using (22), we get (23). �

B. Hyperparameter Settings
For the two-dimensional toy example, we set batch size to
be 1000, and use the Adam optimizer (Kingma & Ba, 2015)
for both the score estimator and the density ratio estimator.
We use learning rate lr = 0.0001 and exponential decay
rates betas = (0.5, 0.999) for the moment estimates when
training the score estimator, and use lr = 0.001, betas =
(0.5, 0.999) and L2 penalty weight decay = 0.1 for the
density ratio estimator. For the image datasets, the batch
size is 128 for both networks. We use lr = 0.0001, betas =
(0.9, 0.999) and eps = 10−8 for the score estimator, and
lr = 10−5, betas = (0.5, 0.999) and weight decay = 1.0
for the density ratio estimator.

C. Network Architectures
The score estimator ŝθ(·, ·) and the density ratio estimator
f̂(·) = exp(r̂φ(·)) are parameterized with fully connected
networks for the 2D example. The details are listed in Tables
1 and 2.

Table 1. ŝθ for 2D example. T represents the sinusoidal embed-
dings (Vaswani et al., 2017) of time t.

LAYER DETAIL OUTPUT SIZE

FULLY CONNECTED LINEAR 256
ADD LINEAR1(T) 256

RELU 256

FULLY CONNECTED LINEAR 512
ADD LINEAR2(T) 512

RELU 512

FULLY CONNECTED LINEAR 2

Deep Generative Learning via Schrödinger Bridge

Table 2. r̂φ for 2D example.

LAYER DETAIL OUTPUT SIZE

FULLY CONNECTED LINEAR 256
RELU 256

FULLY CONNECTED LINEAR 512
RELU 512

FULLY CONNECTED LINEAR 1

For image datasets, we parameterize the density ratio esti-
mator with a residual network. The structure of r̂φ is list in
Table 3. Our choice of network architecture for ŝθ follows
the implementation of the noise predictor εθ in (Song et al.,
2021) which is a U-Net (Ronneberger et al., 2015) based on
a Wide ResNet (Zagoruyko & Komodakis, 2016).

Table 3. r̂φ with 32× 32× 3 resolution.

LAYER DETAIL OUTPUT SIZE

CONV BLOCK CONV 5× 5 32× 32× 128
RELU 32× 32× 128

RESIDUAL BLOCK CONV 5× 5 32× 32× 128
RELU 32× 32× 128

RESIDUAL BLOCK CONV 3× 3 32× 32× 128
RELU 32× 32× 128

RESIDUAL BLOCK CONV 3× 3 32× 32× 128
RELU 32× 32× 128

CONV BLOCK CONV 3× 3 32× 32× 128
RELU 32× 32× 128

FULLY CONNECTED LINEAR 1

D. More Implementation Details

When training f̂(x), we substract an estimated image mean
x̄ from samples in pdata to center the data distributions at the
origin. The data pre-processing is slightly different when
training ŝθ(x), where the samples x from pdata are only
rescaled to [−0.5, 0.5]. We match the output ŝθ(x + z, σ)
with z

σ̃2 instead of − z
σ̃2 in the denoising score matching

objective. To make our algorithm be correctly implemented,
we shift the input by adding x̄− 0.5 when using ŝθ(x), and
adjust the sign of the output accordingly.

For image generation, there exist very small noises in the
generated samples. To eliminate the negative effects induced
by noises, we run one additional denoising step after stage
2, by repeating the last step without injecting any noise:

xN2
= xN2

+
σ2

0

N2
b(xN2

), b(·) = ŝθ(·,
√

1

N2
σ0).

We use one Tesla V100 GPU to run the experiments on

CIFAR-10, and one RTX 6000 GPU to run the experiments
on CelebA.

E. Additional Experiment Results
Here we first list the quantitive results with σ2 ∈
{0.5, 2.0, 5.0}, where results with σ2 = 1.0 are already
presented in the paper. We compare the results with differ-
ent τ values starting τmin = σ2. The results are presented
in Tables 4, 5 and 6.

Table 4. FID and Inception Score on CIFAR-10 with σ2 = 0.5.

τ 0.5 1.0 1.5 2.0

FID 46.59 19.57 18.73 20.86
IS 5.92 7.83 8.13 8.09

τ 2.5 3.0 3.5

FID 21.28 21.03 20.40
IS 8.05 7.98 8.00

Table 5. FID and Inception Score on CIFAR-10 with σ2 = 2.0.

τ 2.0 2.5 3.0 3.5

FID 28.92 22.37 14.52 12.45
IS 7.06 7.50 7.97 7.98

τ 4.0 4.5 5.0

FID 12.27 12.58 12.87
IS 7.91 7.86 7.81

Table 6. FID and Inception Score on CIFAR-10 with σ2 = 5.0.

τ 5.0 5.5 6.0 6.5

FID 17.80 17.52 18.24 16.46
IS 7.67 7.68 7.66 7.68

τ 7.0 7.5 8.0

FID 15.71 15.45 15.41
IS 7.64 7.62 7.59

Next we demonstrate that our algorithm is still effective
with less discretization steps. The additional results show
that our algorithm can be largely accelerated, maintaining
almost the same performance, as shown in Table 7.

Deep Generative Learning via Schrödinger Bridge

Table 7. Quantitative evaluation with different discretization steps.
We let the numbers of discretization steps of two stages be the
same as N1 = N2 = N .

N 100 200 500 1000

FID 14.87 13.59 12.85 12.32
IS 7.94 8.02 8.02 8.14

References
Anthony, M. and Bartlett, P. L. Neural network learn-

ing: Theoretical foundations. cambridge university press,
2009.

Bartlett, P. L. and Mendelson, S. Rademacher and gaussian
complexities: Risk bounds and structural results. Journal
of Machine Learning Research, 3:463–482, 2002.

Bartlett, P. L., Harvey, N., Liaw, C., and Mehrabian, A.
Nearly-tight vc-dimension and pseudodimension bounds
for piecewise linear neural networks. Journal of Machine
Learning Research, 20:1–17, 2019.

Dai Pra, P. A stochastic control approach to reciprocal dif-
fusion processes. Applied mathematics and Optimization,
23(1):313–329, 1991.

Higham, D. J. An algorithmic introduction to numerical
simulation of stochastic differential equations. SIAM
review, 43(3):525–546, 2001.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In International Conference on Learning
Representations, 2015.

Léonard, C. A survey of the schrodinger problem and some
of its connections with optimal transport. DYNAMICAL
SYSTEMS, 34(4):1533–1574, 2014.

Ronneberger, O., Fischer, P., and Brox, T. U-net: Convolu-
tional networks for biomedical image segmentation. In
International Conference on Medical Image Computing
and Computer-Assisted Intervention, pp. 234–241, 2015.

Shen, Z., Yang, H., and Zhang, S. Deep network approxima-
tion characterized by number of neurons. arXiv preprint
arXiv:1906.05497, 2019.

Song, J., Meng, C., and Ermon, S. Denoising diffusion
implicit models. In International Conference on Learning
Representations, 2021.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Atten-
tion is all you need. In Advances in Neural Information
Processing Systems, pp. 6000–6010, 2017.

Vershynin, R. High-dimensional probability: An introduc-
tion with applications in data science, volume 47. Cam-
bridge university press, 2018.

Zagoruyko, S. and Komodakis, N. Wide residual networks.
arXiv preprint arXiv:1605.07146, 2016.

