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Abstract

This paper investigates how to weight imperfect
expert demonstrations for generative adversarial
imitation learning (GAIL). The agent is expected
to perform behaviors demonstrated by experts.
But in many applications, experts could also make
mistakes and their demonstrations would mislead
or slow the learning process of the agent. Re-
cently, existing methods for imitation learning
from imperfect demonstrations mostly focus on
using the preference or confidence scores to distin-
guish imperfect demonstrations. However, these
auxiliary information needs to be collected with
the help of an oracle, which is usually hard and
expensive to afford in practice. In contrast, this
paper proposes a method of learning to weight im-
perfect demonstrations in GAIL without imposing
extensive prior information. We provide a rigor-
ous mathematical analysis, presenting that the
weights of demonstrations can be exactly deter-
mined by combining the discriminator and agent
policy in GAIL. Theoretical analysis suggests that
with the estimated weights the agent can learn a
better policy beyond those plain expert demon-
strations. Experiments in the Mujoco and Atari
environments demonstrate that the proposed algo-
rithm outperforms baseline methods in handling
imperfect expert demonstrations.

1. Introduction
Imitation learning (IL) (Abbeel & Ng, 2004; Argall et al.,
2009; Hussein et al., 2017), which aims to let the agent
imitate the behavior of the human demonstrations without
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any access to reward signal, has achieved great success in
many sequential decision making problems (Stadie et al.,
2017; Ermon et al., 2015; Finn et al., 2016). Compared
to complex reward engineering (Ng et al., 1999; Amodei
et al., 2016) in reinforcement learning (RL) (Sutton & Barto,
2018), IL provides a much easier way to infer a reward
function from the collected demonstrations directly, so that
the agent can effectively improve the demonstrated behavior.

Generative adversarial imitation learning (GAIL) (Ho & Er-
mon, 2016) is one of the state-of-the-art imitation learning
methods. Within the framework of generative adversarial
network (GAN) (Goodfellow et al., 2014), GAIL regards
imitation learning as a distribution matching problem be-
tween the state-action distribution of expert policy and that
of agent’s policy. After GAIL, a few variants have been de-
veloped to further improve the performance of plain GAIL
from different aspects. InfoGAIL (Li et al., 2017) learns
a policy with a latent variable, and the latent variable is
believed to have interpretable representations of complex
demonstrations. This allows InfoGAIL to reproduce a vari-
ety of behaviors within demonstrations. Since it is hard to
recover the reward function with GAIL, Adversarial IRL (Fu
et al., 2017) separates a reward function from the discrimi-
nator, and thus the reward function can be directly learned
during training. AIRL is also proven to be effective and
robust in large and high-dimension dynamics. WAIL (Xiao
et al., 2019) follows the idea of WGAN (Gulrajani et al.,
2017) by replacing the Jensen-Shannon (JS) divergence ob-
jective function with a Wasserstein distance GAN-based
objective function, so that WAIL can directly learn a reward
function in a more stable way.

Though GAIL and its variants have achieved impressive
experimental results, their underlying assumption that the
expert demonstrations are sampled from an optimal policy
cannot always hold in practice. In real-world tasks, it is
usually difficult to collect plenty of expert demonstrations
from the optimal policy. Even a human expert cannot al-
ways make optimal choices due to limited energy and the
presence of distractions. For example, an agent learns how
to play football through imitation learning, where profes-
sional football players can be qualified experts. However,
since professional football players may still make mistakes
during the match, the resulting imperfect expert demonstra-
tions could thus mislead the procedure of imitation learning
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(Ratliff et al., 2006).

There are some attempts to address the imperfect demonstra-
tions issue. In 2IWIL (Wu et al., 2019) and IC-GAIL (Wu
et al., 2019), a fraction of demonstrations labeled with confi-
dence score need to be provided first in training. Preference-
based inverse reinforcement learning methods such as T-
REX (Brown et al., 2019) need ranked trajectories to learn a
relevant reward function and then conduct RL with the new
learned reward. Multi-modal imitation learning method In-
foGAIL can be used to recover all the demonstrators within
demonstrations, however a prior about the number of demon-
strators is needed first and we also cannot find the best
demonstrator before we evaluate all the modes. Overall,
most of these existing solutions to address the imperfect ex-
pert demonstrations problem heavily rely on the availability
of all kinds of prior information (e.g., labeled data by an
oracle or preference rankings of demonstrations) or some
strong assumptions on expert demonstrations, which cannot
be naturally satisfied in practice.

In this paper, we propose a new approach based on gen-
erative adversarial imitation learning framework to handle
imperfect expert demonstrations without any prior. More
specifically, our method can automatically predict weight
for each expert demonstration to assess its quality and impor-
tance for agent learning. We conduct mathematical analysis
to show that the weight can be well estimated by the discrim-
inator and agent policy in GAIL. In the training procedure,
weight estimation and agent policy learning interact and are
thus optimized as a whole, which improves the performance
of imitation learning. Compared to existing solutions, our
method finds the connection between weight estimation and
plain GAIL, thus we can predict weight without prior in-
formation. Theoretical analysis suggests that an improved
expert policy can be produced to benefit the learning of the
agent. Experiment results on Mujoco (Todorov et al., 2012)
and Atari demonstrate that the proposed method can better
exploit imperfect demonstrations than comparison methods.

2. Related Work
Imitation learning can be roughly divided into three cate-
gories. Behavioral Cloning (BC) (Bain & Sammut, 1995)
regards state and action of each expert demonstration as
input and output, then learns a policy model in a supervised
learning fashion. BC is easy to perform but it ignores the
association between states (Ross et al., 2011) and often
requires vast amounts of data for training a good policy.
The idea of inverse reinforcement learning (IRL) (Abbeel
& Ng, 2004; Ziebart et al., 2008) is to reconstruct the re-
ward function by assuming the given expert demonstrations
are sampled from the optimal policy. General RL methods
can then be applied to update the agent’s policy after the
reconstructions of the reward function. GAIL is one of the

state-of-the-art methods, which connects IRL methods to
GAN framework.

Imitation learning is an interdisciplinary field of research
that can be widely applied to a variety of tasks in the real
world such as robot control (Englert et al., 2013) and au-
tonomous driving (Giusti et al., 2015; Codevilla et al., 2018)
with good performance. However, good performance of
the agent in imitation learning often requires demonstra-
tions which are of high quality, while collecting high-quality
demonstrations can be a difficult task. So imitation learning
from imperfect demonstrations becomes an important issue
in IL. Several relevant researches to address this issue are
discussed below, however most of these methods require
auxiliary information, which constrains them to be applied
to more universal settings.

2.1. Imperfect Demonstrations issue

IRL methods based on preference learning (Sugiyama et al.,
2012; Wirth et al., 2016; Christiano et al., 2017) can be
used to deal with imperfect demonstrations. Suppose a set
of ranked trajectories is given for training, T-REX (Brown
et al., 2019) aims to recover a reward function that can well
fit the ranking of trajectories. That is to say, a better trajec-
tory should relate to a higher estimated cumulative reward.
Considering this rank as auxiliary information that may not
be provided in ordinary IL tasks, D-REX (Brown et al.,
2020) is proposed to automatically get this rank. D-REX
needs a base policy trained by BC first and then derives
noisy policy to generate ranked trajectories. The base pol-
icy is learned over imperfect demonstrations thus directly
influences the performance of D-REX.

Suppose a fraction of demonstrations are labeled with confi-
dence to indicate whether they belong to the optimal demon-
strations, 2IWIL (Wu et al., 2019) trains a semi-supervised
classifier to predict confidence score for unlabeled demon-
strations and then a weighted GAIL framework is used to
train the agent. To avoid accumulated error in two steps,
IC-GAIL (Wu et al., 2019) is proposed to train in an end-
to-end fashion compared to 2IWIL. With a fraction of la-
beled demonstrations, SSIRL (Valko et al., 2013) uses semi-
supervised support vector machines to separate good or bad
demonstrations when learning a policy, thus improving the
performance of the agent. Consider weighting trajectories,
RBIRL (Zheng et al., 2014) seeks to infer weights on trajec-
tories level to perform better imitation learning.

If we consider demonstrations are from multiple demonstra-
tors, we may have multi-modal imitation learning problems.
VILD (Tangkaratt et al., 2019) models the distribution of
multi-modal demonstrations with a rigorous assumption
that each demonstrator is shaped by adding different Gaus-
sian noise to the optimal policy. Thus it may not work
well under more universal settings. InfoGAIL (Li et al.,
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2017) has shown to be able to recover all the modals in-
side demonstrations, however we need to go through all
the modals before we find the best one. Compared with
mode-covering in GAIL, AIRL (Fu et al., 2017) could lead
to a mode-seeking behavior by minimizing reverse KL di-
vergence, which might be helpful to seek the best mode.
However, the sought mode is arbitrary, which depends on
the initialization and mode mixture (Ke et al., 2019). It is
unlikely to guarantee the sought mode is the good one.

3. Preliminaries
In this section, we briefly introduce the framework of rein-
forcement learning and the generative adversarial imitation
learning method.

3.1. Reinforcement Learning

Reinforcement learning aims to learn an optimal policy for
the agent while the agent explores the environment and gets
feedback to adjust its policy. The framework of reinforce-
ment learning is generally based on the Markov Decision
Process (MDP) (Puterman, 2014). An MDP consists of five
elements 〈S,A,P, R, γ〉, where S is a set of states, A is a
set of actions, P : S ×A× S → R is the transition proba-
bility distribution, R : S × A → R is the reward function,
and γ ∈ [0, 1] is the discounting factor for future rewards.
The return in the MDP is calculated as the discounted sum
of rewards obtained by the agent over all episodes,

η(π) = Eπ
[ T∑
t=0

γtr(st, at)
]

(1)

where st ∈ S denotes a state vector, at ∈ A is an action
vector and r(st, at) stands for the one-step reward when the
agent is at the state st and takes the action at. We define
τ = {(s0, a0), (s1, a1), · · · , (sT , aT )} as a trajectory of the
states and actions. The goal of RL is thus to learn a policy
π : S → A that can maximize the expected return over
all episodes. For any policy π, there is a one-to-one corre-
spondence between the policy and its occupancy measure
ρπ : S × A → R. We also define state-value function as
Vπ(st) = Eπ|st

[∑T
l=0 γ

lr(st+l, at+l)
]
, action-value func-

tion as Qπ(st, at) = Eπ|st,at
[∑T

l=0 γ
lr(st+l, at+l)

]
and

advantage function as Aπ(st, at) = Qπ(st, at)− Vπ(st).

3.2. Generative Adversarial Imitation Learning

Imitation learning aims to learn an optimal policy πθ for the
agent based on the trajectories {(si, ai)}Ti=1 sampled from
the expert policy πE . The general framework of Genera-
tive Adversarial Networks (GANs) had been applied in the
imitation learning problem, which results in the Generative
Adversarial Imitation Learning (GAIL) algorithm.

In GAIL, the classical imitation learning problem is treated

as an occupancy measure matching between the expert pol-
icy and the agent policy via Jensen-Shannon Divergence. A
discriminator Dψ is introduced to distinguish expert transi-
tions from agent transitions, while the agent is to “fool” the
discriminator into taking agent transitions as those expert
transitions. Formally, the objective function of GAIL is
written as

min
θ

max
ψ

E(s,a)∼ρπθ [logDψ(s, a)]

+ E(s,a)∼ρπE [log(1−Dψ(s, a))], (2)

where ρπθ and ρπE denote the distributions of the agent
policy πθ and the expert policy pE respectively. The agent
is trained to minimize E(s,a)∼ρπθ [logDψ(s, a)], and the
output of the discriminator − logDψ(s, a) can be taken
as the reward. Trust Region Policy Optimization (TRPO)
(Schulman et al., 2015) or other policy gradient RL methods
(Lillicrap et al., 2015; Schulman et al., 2017) can be used to
update agent policy πθ.

4. Methodology
GAIL encourages the agent to imitate expert demonstra-
tions. But if the collected expert demonstrations are imper-
fect, the resulting learned agent policy could be seriously
influenced. We suppose an imperfect demonstration is a
mixture sampled from an optimal policy and a non-optimal
policy, with different proportions of “optimal”, imperfect
demonstrations should have different quality. Also, these
demonstrations with different qualities may have different
contributions and impacts on agent learning. To solve this, a
common way is to assign a weight w to each demonstration
to address its importance and contribution to learn an agent.

Inspired by (Wu et al., 2019), which presents a weighted
framework for GAIL with confidence scores labeled by an
oracle, we write a more general weighted GAIL objective
function as follows

min
θ

max
ψ

E(s,a)∼ρπθ [logDψ(s, a)]

+ E(s,a)∼ρπ [w(s, a) log(1−Dψ(s, a))], (3)

where w(s, a) denotes the weight of state-action pair (s, a),
πθ is the agent policy and π can be regarded as a mixture of
policies with different qualities. It is easy to collect state-
action pairs from π, however, there is no access to get the
weight for each state-action pair directly. Before we study
how to approximate the weight, we first proceed to give an
in-depth discussion on the advantages of imitation learning
with weights and what an ideal weight would look like.

4.1. Learning from A New Policy

In weighted GAIL (Eq. (3)), we assign a weight w(s, a) to
the output log(1−Dψ(s, a)) of each state-action pair sam-
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pled from the expert. But how the weighted GAIL enables
us to learn from the imperfect expert demonstration? We
begin with the introduction of f -divergence, which is widely
used to measure similarity between probability distributions.
A general form of f -divergence can be written as,

Df (p, q) =
∑
x

q(x)f(
p(x)

q(x)
) (4)

where p and q are the distributions of the variable x.
Different f functions can recover different divergences,
i.e. Jensen-Shannon (JS) divergence fJS(u) = −(u +
1) log u+1

2 +u log u and Kullback–Leibler (KL) divergence
fKL(u) = u log u. The convex conjugate of f(x) is defined
as f∗(y) = supx∈domf (〈y, x〉 − f(x)).

By defining T (s, a) = log(Dψ(s, a)), we can apply the con-
vex conjugate of JS divergence f∗JS , and rewrite weighted
GAIL in Eq. (3) as

min
θ

sup
T∈T

(
E(s,a)∼ρπθ [T (s, a)]

− E(s,a)∼ρπ [w(s, a)f
∗
JS(T (s, a))]

)
. (5)

By absorbing the weight w(s, a) into ρπ , we can define the
objective of weighted GAIL as J

(
T (s, a)

)
J
(
T (s, a)

)
= sup
T∈T

(
E(s,a)∼ρπθ [T (s, a)]

− E(s,a)∼ρπ̃ [f
∗
JS(T (s, a))]

)
, (6)

where ρπ̃(s, a) = w(s, a)ρπ(s, a) stands for a new policy
based on π. Due to the Jensen’s inequality and the restriction
of class function T ∈ T , we obtain the upper bound of
J
(
T (s, a)

)
as∑

s,a

ρπ̃(s, a) sup
T (s,a)∈domf∗

(
T (s, a)

ρπθ (s, a)

ρπ̃(s, a)
− f∗JS(T (s, a))

)
.

(7)

According to the definition of the convex conju-
gate of JS divergence, we have the definition of
fJS
(
(ρπθ (s, a))/(ρπ̃(s, a))

)
as

sup
T (s,a)∈domf∗

(
T (s, a)

ρπθ (s, a)

ρπ̃(s, a)
− f∗JS(T (s, a))

)
, (8)

based on which, Eq. (7) can be rewritten as

J
(
T (s, a)

)
≤
∑
s,a

ρπ̃(s, a)fJS(
ρπθ (s, a)

ρπ̃(s, a)
)

= DJS(ρπθ , ρπ̃). (9)

Imitation learning can be also considered as an occupancy
measure matching problem (Ke et al., 2019). JS divergence
here provides an effective approach to measure the similarity
between expert policy and the learned agent policy. Mini-
mizing JS divergence DJS(ρπθ , ρπ̃) can thus be regarded
as a process to imitate a new policy ρπ̃ for the agent.

4.2. Analysis on The Weight

We have known that learning from expert policy π with
weighted GAIL is equivalent to imitate a new policy π̃, with
ρπ̃(s, a) = w(s, a)ρπ(s, a) satisfied. In practice, the expert
policy π could generate an imperfect demonstration that
impacts the agent policy learning. How to formulate the
new policy π̃ to guarantee its advantage over the plain expert
policy is therefore important.

Recall that in Eq. (1), η(π) has been defined as the expected
reward over all episodes of policy π. η(π̃) − η(π) can be
naturally used to measure the performance gap between
two policies π̃ and π. Since it is hard to sample from state
visiting distribution of π̃, we can sample from π approxi-
mately (Schulman et al., 2015). Formally, we approximate
η(π̃)− η(π) by Ldπ (π̃), and have

Ldπ (π̃) =
∑
s

dπ(s)
∑
a

π̃(a|s)Aπ(s, a), (10)

where dπ(s) = Eπ
[∑T

t=0 γ
t1(st = s)

]
is the state visiting

distribution of policy π and 1(· ) is an indicator function.

To derive a new policy π̃ that performs better than π, we
need to maximize Ldπ (π̃). Meanwhile, as the new policy π̃
stems from the original policy π, their probability distribu-
tion shall not be too far from each other. We therefore obtain
an f -divergence constraint policy improvement problem in
the following theorem to derive a new policy π̃.

Theorem 1. Consider an f -divergence constrained policy
optimization problem as,

max
π̃

Ldπ (π̃)− βDf (ρπ̃||ρπ) (11)

s.t.
∑

a
π̃(a|s) = 1, π̃(a|s) ∈ [0, 1]

where β is a hyper-parameter to balance the influence of
these two terms. We have,

π̃(a|s) = π(a|s)f ′∗
(
(1/β)(Aπ(s, a) + C(s))

)
(12)

Theorem 1 provides a solution of f -divergence constraint
policy optimization problem in general form, the proof is
provided in supplementary material. Since the general f
is not intuitive, we consider a special case of f -divergence
instead. When using KL-divergence, f ′∗(u) = eu, Eq. (12)
can be rewritten as follows

π̃(a|s) = π(a|s) exp((1/β)(Aπ(s, a) + C(s))). (13)

So far we have a new policy π̃ derived from Theorem 1.
Intuitively, Eq. (13) shows that the state-action pair which
has higher advantage in π is more likely to occur in π̃. In the
following theorem we will further discuss the new policy π̃
is indeed better than π.
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Theorem 2. Given two policies π̃ and π which satisfies

π̃(a|s) = π(a|s) exp((1/β)(Aπ(s, a) + C(s))) (14)

where β is a hyper-parmeter and C(s) is a function of state
s. We can conclude that π̃ is generally better than π, that is,

Vπ̃(s) ≥ Vπ(s),∀s ∈ S. (15)

Theorem 2 suggests that π̃ is indeed better than π, and
the proof is provided in supplementary material. To re-
cover the occupancy measure, Eq. (13) can be rewrit-
ten as ρπ̃(s, a) = ρπ(s, a) exp((1/β)Aπ(s, a)), where
dπ̃(s) ∝ dπ(s) exp(C(s)). Recall that we have proved that
weighted GAIL is equivalent to imitating policy π̃ which sat-
isfies ρπ̃(s, a) = w(s, a)ρπ(s, a). Thus, we can conclude
that π̃ is indeed better than π if w = exp((1/β)Aπ(s, a))
is satisfied. Also, we can easily find w ∝ Aπ , which means
the state-action pairs which have a higher advantage in MDP
should also have higher weight w. In other words, a better
state-action pair should have a higher weight.

4.3. Learning to Weight

Given the connection between weight w and advantage
Aπ(s, a), we next proceed to estimate the advantage within
GAIL framework and suggest that the weight can be well
approximated with discriminator Dψ and agent policy πθ.

The optimization of Eq. (3) is a minimax optimization prob-
lem and we define the solution of the inner maximization
problem as the optimal discriminator D∗ψ during the inter-
mediate stage of the whole optimization. Therefore, D∗ψ
should be able to well distinguish the demonstrations be-
tween πθ and π̃. Instead of using occupancy measure, we
consider demonstrations sampled from action distribution in
the implementation. The algorithm involves a warm-up step
(the weight is set to 1 for each demonstration), after which
dπ(s) and dπ̃(s) could have part of match. Given π(a|s) =
ρπ(s, a)/dπ(s), we approximate D∗ψ as,

D∗ψ(s, a) =
πθ(a|s)

πθ(a|s) + w(s, a)π(a|s)
(16)

=
πθ(a|s)

πθ(a|s) + w(s, a) exp(Aπ(s, a))
. (17)

The second equation can be satisfied since the advan-
tage function Aπ(s, a) has been suggested to be recov-
ered by log[π(a|s)] (Fu et al., 2017). Recall that w =
exp((1/β)Aπ(s, a)) is satisfied, so the advantage can be
also written as Aπ(s, a) = logw(s, a)β . Combined with
Eq. (16), we can further write D∗ψ as,

D∗ψ(s, a) =
πθ(a|s)

πθ(a|s) + w(s, a)(β+1)
(18)

Thus the weight w can be finally written as

w(s, a) = [(1/D∗ψ(s, a)− 1)πθ(a|s)]
1

β+1 , (19)

where πθ(a|s) denotes the probability of agent policy to
take action a at state s. To calculate w, the optimal discrim-
inator D∗ψ and the agent policy πθ are needed. However the
GAIL training should carefully balance the policy and the
discriminator, we may not have access to D∗ψ. As (Peng
et al., 2018) suggested, the discriminator has shown to easily
overwhelm the policy during the GAIL training procedure,
especially in the early training stage. This suggests Dψ

under this condition is discriminative, and it can therefore
act as an approximation of D∗ψ. Thus, we conduct early
stop to weight estimation during the training to satisfy this
approximation of D∗ψ .

While replacing advantage fucntion with log π(a|s) in Eq.
(13), the new formed policy π̃ can be actually regarded
as a lower-temperature version of π. This suggests that
importance weighting in weighted GAIL could lead agent to
imitate a more discriminative distribution beyond ρπ. The
resulting ‘less randomness’ implies that one state-action pair
of a lower probability will be even more unlikely.

According to Eq. (19), the larger πθ(a|s) and a lower
Dψ(s, a) will lead to a higher weight w(s, a). It is natural
to see that w ∝ (1/Dψ) is satisfied since expert demon-
strations should be always assigned to a lower Dψ. As for
πθ, it would be larger for those pairs of smaller Dψ(s, a)
to minimize Eρπθ [Dψ(s, a)], as they look more like the
expert demonstrations. That is to say, the agent tends to
learn more from its past good experience (justified by the
smaller Dψ(s, a)), which is consistent with the findings of
self-imitation learning (Oh et al., 2018). In practice, optimal
demonstrations could have regular patterns and strong clus-
tering effects, while mistakes in sub-optimal demonstrations
often differ from one another. If most demonstrations are
optimal, we can easily learn Dψ and assign smaller weights
to those few sub-optimal demonstrations, which then leads
to a curriculum learning (Bengio et al., 2009) or self-paced
learning (Kumar et al., 2010). If we are overwhelmed with
sub-optimal demonstrations, their non-significant patterns
might not always win them a smaller Dψ(s, a) or larger
w(s, a) than those few optimal demonstrations.

Dynamic Importance Weighting. By now we have found
the connection between weight estimation and plain GAIL
problem, then we put weight estimation for imperfect
demonstrations and the agent policy training into an in-
teraction framework and optimize them as a whole. More
specifically, in each iteration, the weight estimation is con-
ducted first to predict weight for each demonstration with
Eq. (19). Then weighted GAIL (Eq. (3)) proceeds to train
the agent policy with weighted demonstrations. These two
procedures interact alternately, the agent policy gradually
improves its performance while the weight also fixes itself
dynamically and both of them will reach convergence within
this alternating optimization problem.
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This dynamic importance weighting procedure is highly
related to some previous meta-learning works, which alter-
nates between weight estimation and weighted classification.
As discussed in (Fang et al., 2020) and (Ren et al., 2018), im-
portance weighting is an effective way to handle distribution
shift problem within training and validation set. Similarly,
matching a new policy π̃ beyond π with weight w can be
also viewed as a procedure of solving the distribution shift
problem in imitation learning by importance weighting. The
difference is that the access to validation set in (Ren et al.,
2018) and (Fang et al., 2020) makes it easier to estimate
weight, however in weighted GAIL the target policy is not
available and we need to design its form first.

Connection with 2IWIL. Our method shares some simi-
larities with 2IWIL (Wu et al., 2019), which also conducts a
weighted GAIL framework. We address the key difference
between 2IWIL and our method from the following two
aspects. First, a fraction of demonstrations labeled with
confidence should be given first in 2IWIL, which means
2IWIL needs auxiliary information to perform imitation
learning tasks. By contrast, our weighted GAIL finds the
connection between weight estimation and plain GAIL, thus
we can predict weight for demonstration in an unsuper-
vised way. Second, the weight definitions are different.
Based on importance sampling, 2IWIL defines the weight
as w(s, a) = c(s, a)/α, where c(s, a) denotes the probabil-
ity of the demonstration (s, a) to be optimal and α denotes
the mean of confidence score. By contrast, the weight in
Eq. (19) is designed by the motivation of learning a better
policy beyond plain expert policy with theoretical supports.

5. Experiment
In this section, we conduct experiments on both Mujoco
and Atari to evaluate the performance of weighted GAIL
(WGAIL). We are going to figure out two questions: (1) Can
WGAIL show significant improvement compared to original
GAIL from different aspects? (2) What is the learned weight
like? We provide detailed results and discussions below.

5.1. Experiment with Mujoco

We first conduct experiments on four continuous control
tasks in the Mujoco simulator (Todorov et al., 2012): Ant-
v2, Hopper-v2, Walker2d-v2, and HalfCheetah-v2. The
training agent in Mujoco aims to run as far as possible,
so we use this indicator to show the performance of the
learned agent. To reduce uncertainty, we evaluate the new-
learned agent’s policy three times in the evaluation. Also,
we conduct our experiment with five different random seeds.

Data Collection. Our setting is to handle imperfect demon-
strations, which can be regarded as a mixture sampled from
different sub-optimal policies. So first we use TRPO to

train an optimal policy and save 3 checkpoints during train-
ing, then the “Stage 1” demonstrations are formed by equal
demonstrations from checkpoint 1 and checkpoint 2 while
the “Stage 2” demonstrations are equal sampled from check-
point 1 and checkpoint 3. Notice that checkpoint 3 is the
optimal policy. Therefore, “Stage 1” and “Stage 2” demon-
strations can represent different levels of demonstrations
and the latter is obviously better.

Compared Methods. GAIL, BC, D-REX, 2IWIL and T-
REX are compared in our experiment. The formal three
methods can be conducted in standard IL setting while the
latter two methods need auxiliary information. GAIL, BC,
and D-REX share the same setting as weighted GAIL. For
T-REX, it needs the cumulative MDP reward of trajectories
to rank the trajectories normally, however, the reward is not
available in our setting. Thus we give a time prior to T-REX
and the trajectories are ranked by time-index checkpoints.
For example, trajectories sampled from checkpoint 3 are
regarded to be better than trajectories sampled from check-
point 2. Semi-supervised method 2IWIL needs confidence
score of demonstrations. To satisfy this need, we use the
quality (normalized reward) of a checkpoint as a coarse esti-
mation of the confidence score for demonstrations sampled
from this checkpoint.

5.1.1. PERFORMANCE

The result in Table 1 shows the great performance of
WGAIL. In most cases, WGAIL can outperform other com-
pared methods. In each task, the result of WGAIL in “Stage
2” is always better than “Stage 1”, which suggests that the
performance of WGAIL may improve with the increasing
quality of demonstrations. We also provide an intuitive
model optimization trajectories map via a 2D weight-space

Figure 1. The optimization trajectories of policy models and re-
ward surface in WGAIL and GAIL. The dots denote the location
of the policy checkpoints every 500 epochs.
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Method Ant-v2 HalfCheetah-v2 Walker2d-v2 Hopper-v2

Stage 1 Stage 2 Stage 1 Stage 2 Stage 1 Stage 2 Stage 1 Stage 2

WGAIL 111.81 182.00 120.66 190.17 5.29 18.11 12.08 14.54
GAIL (Ho & Ermon, 2016) 84.50 113.58 102.21 85.33 6.66∗ 10.80 10.06 11.81
BC (Bain & Sammut, 1995) 91.49 135.75 99.2 118.15 7.61∗ 12.22 0.53 0.95
D-REX (Brown et al., 2020) 48.63 63.43 28.73 84.57 3.10 9.61 2.59 2.17

T-REX (Brown et al., 2019) 65.08 9.25 95.57 32.70 -0.12 -0.46 5.70 1.14
2IWIL (Wu et al., 2019) 89.03 130.14 101.43 85.94 7.63∗ 11.66 11.02 17.54∗

Expert (TRPO) 177.93 195.79 24.71 18.63

Table 1. Performance of the learned agent, measured by the final x-position of the agent’s body. The final x-position of WGAIL, GAIL
and 2IWIL is calculated by the average of the last 50 evaluations.

slice in Figure 1, from which we can observe that WGAIL’s
final model is always located at high reward zone while the
model of GAIL is not. The optimization trajectories are
plotted along the contours of the average reward surface for
this slice. To plot this figure, we follow the instruction of
(Li et al., 2018).

We use fewer demonstrations to train the agent in a simple
task, which might be the reason why BC does not perform
well in Hopper-v2. It shows BC will need more demonstra-
tions to reach a great performance compared to GAIL. We
also notice that D-REX and T-REX, two preference-based
IRL methods do not perform well as expected. D-REX
needs a base policy trained by BC first to generate ranked
trajectories. If given demonstrations are imperfect, the per-
formance of base policy can be influenced, which might
make it hard to generate the precise ranking. As for T-REX,
we think the time-based preference is quite coarse-grain
and two demonstrators are not enough for inferring a good
reward function, sometimes it may overfit. 2IWIL performs
generally better than plain GAIL. The added confidence
score gives more information and has a positive impact on
agent learning. However, 2IWIL does not show quite an
advantage in some cases. The semi-supervised learning part
may result in errors, thus introduces noise to the confidence
prediction step. Also, if demonstrations are labeled with an
inaccurate confidence score, the agent can only learn a non-
optimal policy. Second, the objective function of 2IWIL is
an estimation based on importance sampling, thus the error
may inevitably occur.

To further investigate how the weight w works, we use
w = 1/Dψ for comparison and we have 82.54 (Stage 1)
and 155.85 (Stage 2) in Ant-v2 task. The result shows
that simply taking 1/Dψ as the weight achieves a decent
performance. By contrast, our proposed weight not only
investigates discriminator (i.e., Dψ) but also the generator
(i.e., πθ), which enables a comprehensive examination of
demonstrations.

Ratio of Optimal Demonstrations. Both “Stage 1” and

“Stage 2” demonstrations are equally sampled from an opti-
mal policy and a non-optimal policy. We consider “Stage
2” demonstrations in Ant-v2 and further study the perfor-
mance of GAIL and WGAIL under different ratios of opti-
mal demonstrations in Figure 2, where α denotes the ratio
of optimal demonstrations. If the demonstrations are highly
sub-optimal (e.g., α = {0, 0.125}), both methods would be
broken down. In robust ML, more than 50% contamination
of data usually implies that we cannot distinguish the signal
from the noise or outlier. In the simulation experiments,
since the sub-optimal demonstrations are not absolute noise,
we can still observe an increasingly large improvement over
GAIL by exploiting the limited useful information when
α = {0.25, 0.5}. The advantage of WGAIL continues until
α = 0.75 and then WGAIL will become comparable with
GAIL in the scenario of full-optimal demonstrations.

Figure 2. Performance of the learned agent with different ratios of
optimal demonstrations.

Multiple Demonstrators. Consider “Stage 3” demonstra-
tions are equally sampled from both 3 checkpoints and
we conduct the experiment in Ant-v2 and HalfCheetah-
v2 with “Stage 3” demonstrations to compare the perfor-
mance of WGAIL and GAIL when dealing with demon-
strations from multiple demonstrators. We have 172.62
(WGAIL) v.s. 122.96 (GAIL) on Ant-v2, 187.58 (WGAIL)
v.s. 111.63 (GAIL) on HalfCheetah-v2, 14.43 (WGAIL) v.s.
7.16 (GAIL) on Walker2d-v2 and 15.56 (WGAIL) v.s. 14.29
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0.08 0.01 0.06 0.02 0.02 0.000.000.00

1.48 0.89 2.18 3.13 0.690.700.992.17

Ckpt 1

Ckpt 3

Figure 3. Visualized next state s′ sampled from HalfCheetah-v2 task and weight w for (s, a).

(GAIL) on Hopper-v2. The result shows that WGAIL still
works well when expert demonstrations are from multiple
demonstrators.

5.1.2. WEIGHT VISUALIZATION

In this subsection, we are going to examine the learned
weight of each demonstration in the experiment. First, we
report the final calculated average weight in the multiple
demonstrators’ experiment, as shown in Table 2.

ckpt 1 ckpt 2 ckpt 3
Ant-v2 0.007 0.141 0.587
HalfCheetah-v2 0.092 0.296 1.163

Table 2. The average weight for demonstrations sampled from
checkpoint 1-3.

As shown in Table 2, the weight can roughly refelct the
sources of these demonstrations, e.g. demonstrations from
checkpoint 3 usually have the largest weight. Then, we
also visualize the Mujoco agent’s body to show what the
learned weight is like for each demonstration. The weight
w(s, a) is a function of state and action, however, the action
of the agent can not be visualized intuitively. Consider a
good state-action pair (s, a) can transform to a good next
state s′, we thus assign the next state s′ to weight w to show
the connection between the weight and the state-action pair,
which means we suppose the agent will reach a good next
state s′ if the state-action pair (s, a) has a good weight w.

We calculate the weight in HalfCheetah-v2 task with “Stage
2” demonstrations. We sample two trajectories from check-
point 1 and checkpoint 3 in HalfCheetah-v2 and then choose
8 triplets (s, a, s′) to calculate the weight w and visualize
s′, as shown in Figure 3. Recall that checkpoint 3 is a better
policy than checkpoint 1, thus we infer the weight of state-
action pairs sampled from checkpoint 3 should be higher
than that of checkpoint 1. Since the bad shape of the agent’s
body denotes the bad state of the agent, we can easily find
that the lower weight is always connected to the worse state
in checkpoint 1 and the better-visualized state in checkpoint
3 always has a higher weight in Figure 3.

WGAIL GAIL BC 2IWIL Expert
BeamRider 1834.8 1541.2 1034.5 1634.8 2637.45
Pong -6.0 -6.7 -7.2 9.9 21.0
Q*bert 15140.0 -7.2 2720.0 4515.0 598.0
Seaquest 649.0 590.9 598.0 632.0 1840.0
Hero 20042.0 20260.0 7670.0 16990.0 27814.1

Table 3. The final result of the learned policy in five Atari tasks.
The result is the final scores of average ten evaluations.

5.2. Experiment with Atari

Since the adversarial IRL method is generally hard to
achieve good and stable performance on all Atari tasks
(Tucker et al., 2018), we only evaluate WGAIL on five Atari
games Beamrider, Pong, Qbert, Seaquest and Hero with
one kind of imperfect demonstrations. To collect data, we
use Proximal Policy Optimization (PPO) (Schulman et al.,
2017) instead of TRPO to train an optimal Atari agent and
the imperfect demonstrations are formed by two equivalent
trajectories from two checkpoints during training. We use
the Kostrikov’s implementation of PPO (Kostrikov, 2018)
and train with its default hyperparameter. Also, in the im-
plementation of GAIL, we use PPO as the RL step instead
of TRPO since it can outperform TRPO on Atari tasks and
is faster in training.

The final result is summarized in Table 3 . The result shows
that our new method WGAIL only has minor improvement
than original GAIL in four out of five Atari games. Overall,
both GAIL and WGAIL do not perform well. This illustrates
that the weight estimation can partly help to the Atari agent
training, however, there is an upper limit to reach expert-
level performance for the GAN-based IRL methods in Atari
games.

6. Conclusion
In this paper, we propose a new method for weighting im-
perfect expert demonstrations in imitation learning without
auxiliary information. The weight of the demonstration
acts as a measure to address the importance of each demon-
stration for agent training. Compared to existing related
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algorithms, which generally require prior information of
demonstrations, our method finds the connection between
the weight estimation and plain GAIL problem, thus the
weight can be calculated by the discriminator and agent
policy during the training. We also give a detailed theo-
retical analysis to show an improved expert policy can be
produced for agent learning. Experiment results in Mujoco
and Atari domains show that the proposed method performs
better than other baseline methods when handling imperfect
demonstrations.
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