
Safe Reinforcement Learning Using Advantage-Based Intervention

A. Missing Proofs
A.1. Useful Lemmas

Lemma 2. For any γ-discounted MDP with reward function r, the identity V π(d0) = (1 − γ)
∑∞
h=0 γ

hUπh (d0) holds,
where Uπh (d0) = Eρπ [

∑h
t=0 r(st, at)]] is the undiscounted h-step return.

Proof. The proof follows from exchanging the order of summations:

(1− γ)

∞∑
h=0

γhUπh (d0) = (1− γ)

∞∑
h=0

γhEρπ
[

h∑
t=0

r(st, at)

]

= (1− γ)Eρπ
[ ∞∑
t=0

r(st, at)

∞∑
h=t

γh

]

= Eρπ
[ ∞∑
t=0

γtr(st, at)

]
= V π(d0)

Lemma 3 (Performance Difference Lemma (Kakade & Langford, 2002; Cheng et al., 2020)). LetM be an MDP and π be
a policy. For any function f : S → R and any initial state distribution d0, it holds that

V π(d0)− f(d0) =
1

1− γ
E(s,a)∼dπ [r(s, a) + γEs′|s,a[f(s′)]− f(s)]

Corollary 1. LetM and M̂ be MDPs with common state and action spaces. For any policy π, the difference in value
functions inM and M̂ satisfies

V π(d0)− V̂ π(d0) =
1

1− γ
E(s,a)∼dπ [(DπQ̂π)(s, a)]

where Dπ is the temporal-difference operator ofM:

(DπQ)(s, a) := (BπQ)(s, a)−Q(s, a),

and Bπ is the Bellman operator ofM:

(BπQ)(s, a) := r(s, a) + γEs′|s,a[Q(s′, π)].

Proof. Set f = V̂ π and observe that V̂ π(s) = Q̂π(s, π).

A.2. Proof of Equivalent CMDP Formulation in Section 2

Here we show that (1) and (2) are the same by proving the equivalence

(1− γ)

∞∑
h=0

γhProb(ξh ⊂ Ssafe|π) ≥ 1− δ ⇐⇒ V
π
(d0) ≤ δ (10)

By the definition of the cost function c(s, a) = 1{s = s.} and absorbing property of Sunsafe = {s., s◦}, we can write

1− Prob(ξh ⊂ Ssafe|π) = Prob(s. ∈ ξh|π) = Eρπ
[

h∑
t=0

c(st, at)

]
(11)



Safe Reinforcement Learning Using Advantage-Based Intervention

since s. can only appear at most once within ξh. Substituting this equality into the negation of the chance constraint,

1− (1− γ)

∞∑
h=0

γhProb(ξh ⊂ Ssafe|π) = (1− γ)

∞∑
h=0

γhEρπ
[

h∑
t=0

c(st, at)

]

= Eρπ
[ ∞∑
t=0

γtc(st, at)

]
= V

π
(d0)

where the second equality follows from Lemma 2. Therefore, (10) holds.

A.3. Proof for Intervention Rules in Section 3

A.3.1. ADMISSIBLE RULES AND PESSIMISM

Proposition 2. If G = (Q,µ, η) is σ-admissible, then Q
µ
(s, a) ≤ Q(s, a) + σ

1−γ for all s ∈ Ssafe and a ∈ A.

Proof of Proposition 2. The proof follows by repeating the inequality of Q.

Q(s, a) ≥ c(s, a) + γEs′|s,a[Q(s′, µ)]− σ

≥ c(s, a) + γEs′|s,a
[
c(s′, µ),+γEs′′|s′,µ[Q

µ
(s′′, µ)]

]
− (1 + γ)σ

...

≥ Qµ(s′, µ)− σ

1− γ
.

A.3.2. EXAMPLE INTERVENTION RULES

Proposition 3 (Intervention Rules). The following are true.

1.Baseline policy: Given a baseline policy µ ofM, G = (Q
µ
, µ, η) or G = (Q

µ
, µ+, η) is admissible, where µ+ is the

greedy policy that treats Q
µ

as a cost.

2.Composite intervention: Given K intervention rules {Gk}Kk=1, where each Gk = (Qk, µk, η) is σk-admissible. Define
Qmin(s, a) = minkQk(s, a) and let µmin be the greedy policy w.r.t. Qmin, and σmax = maxk σk. Then, G =
(Qmin, µmin, η) is σmax-admissible.

3.Value iteration: Define T as T Q(s, a) := c(s, a) + γEs′∼P |s,a[mina′ Q(s′, a′)]. If G = (Q,µ, η) is σ-admissible, then

Gk = (T kQ,µk, η) is γkσ-admissible, where µk is the greedy policy that treats T kQ as a cost.

4.Optimal intervention: Let π∗ be an optimal policy forM, and let Q
∗

be the corresponding state-action value function.
Then G∗ = (Q

∗
, π∗, η) is admissible.

5.Approximation: For σ-admissible G = (Q,µ, η), consider Q̂ such that Q̂(s, a) ∈ [0, γ] for all s ∈ Ssafe and a ∈ A. If
‖Q̂−Q‖∞ ≤ δ, then Ĝ = (Q̂, µ, η) is (σ + (1 + γ)δ)-admissible.

Proof of Proposition 3. We show each intervention rule G = (Q,µ, η) below satisfies the admissibility condition

Q(s, a) + σ ≥ c(s, a) + γEs′∼P |s,a[Q(s′, µ)].

For convenience, we define the Bellman operator Bµ as BµQ(s, a) := c(s, a) + γEs′|s,a[Q(s, µ)]. Then the admissibility
condition can be written as Q(s, a) + σ ≥ (BµQ)(s, a) for any s ∈ Ssafe and a ∈ A. Also, we write Q ∈ [0, γ] on Ssafe if
Q(s, a) ∈ [0, γ] for all s ∈ Ssafe and a ∈ A.
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1. Baseline policy: We know G = (Q
µ
, µ, η) is admissible since Q

µ
= BµQµ. For G = (Q

µ
, µ+, η), we have

Q
µ ≥ Bµ

+

Q
µ

since µ+ is greedy with respect to Q
µ

. Also, by the definition of the cost c and transition dynamics P ,
we know that Q

µ
(s, a) ∈ [0, 1] for all s ∈ S and a ∈ A. Furthermore, when s ∈ Ssafe, we have c(s, a) and therefore

Q
µ
(s, a) = γEs′|s,a[Q

µ
(s′, µ)] ∈ [0, γ].

2. Composite intervention: For any k ∈ {1, . . . ,K}, the following bound holds:

(Bµmin
Qmin)(s, a) = c(s, a) + γEs′|s,a[Qmin(s′, µmin)]

≤ c(s, a) + γEs′|s,a[Qmin(s′, µk)]

≤ c(s, a) + γEs′|s,a[Qk(s′, µk)]

≤ Qk(s, a) + σk

≤ Qk(s, a) + σmax,

where the first inequality comes from µmin being a minimizer of Qmin, and the second inequality from Qmin being a
pointwise minimum of {Qk}Kk=1. Since this holds for every k, we conclude:

(Bµmin
Qmin)(s, a) ≤ min

k

[
Qk(s, a) + σmax

]
= min

k
Qk(s, a) + σmax

= Qmin(s, a) + σmax,

which establishes the Bellman bound holds. Finally, since each Qk satisfies Qk ∈ [0, γ] on Ssafe, we conclude that
Qmin has the same range. Therefore, G is σmax-admissible.

3. Value iteration: Define shortcuts Qk := T kQ, where Q0 = Q.

We first show that, by policy improvement, we have Qk(s, a) ≤ Qk−1(s, a) + γk−1σ on Ssafe × A. We do this by
induction. First, we see that:

Q1(s, a) = T Q0(s, a)

= c(s, a) + γEs′|s,a
[
min
a′

Q0(s′, a′)
]

= c(s, a) + γEs′|s,a
[
min
a′

Q(s′, a′)
]

≤ c(s, a) + γEs′|s,a
[
Q(s′, µ)

]
≤ Q(s, a) + σ

= Q0(s, a) + σ.

Now suppose Qκ(s, a) ≤ Qκ−1(s, a) + γκ−1σ holds on Ssafe ×A for some κ. Therefore,

Qκ+1(s, a) = T Qκ(s, a)

= c(s, a) + γEs′|s,a
[
min
a′

Qκ(s′, a′)
]

≤ c(s, a) + γEs′|s,a
[
min
a′

Qκ−1(s′, a′)
]

+ γκσ

= T Qκ−1(s, a) + γκσ

= Qκ(s, a) + γκσ.
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Using this inequality, we now show that Gk = (Qk, µ
k, η) is indeed γkσ-admissible:

Qk(s, a) = T Qk−1(s, a)

= c(s, a) + γEs′|s,a
[
min
a′

Qk−1(s′, a′)
]

≥ c(s, a) + γEs′|s,a
[
min
a′

Qk(s′, a′)
]
− γkσ

= T Qk(s, a)− γkσ

= Bµ
k

Qk(s, a)− γkσ,

where the inequality was used in the third line. This establishes the Bellman bound holds.

We prove that Qk ∈ [0, γ] on Ssafe by induction. Clearly, Q0 = Q ∈ [0, γ] on Ssafe since G is σ-admissible.
Now suppose Qκ ∈ [0, γ] on Ssafe for some κ. Then, for any s ∈ Ssafe and a ∈ A, we have Qκ+1(s, a) =

γEs′|s,a[mina′ Qκ(s, a)] ∈ [0, γ]. Therefore, Gk is γkσ-admissible.

4. Optimal intervention: This is a special case of case 1.

5. Approximation: The following holds on Ssafe ×A:

Q̂(s, a) = Q̂(s, a)−Q(s, a) +Q(s, a)

≥ −δ + (BµQ)(s, a)− σ
= −δ − σ + c(s, a) + γEs′|s,a[Q(s′, µ)]

≥ −δ − σ + c(s, a) + γEs′|s,a[Q̂(s′, µ)− δ]
= −δ − σ − γδ + BµQ̂(s, a).

That is, BµQ̂(s, a) ≤ Q̂(s, a) + σ + (1 + γ)δ. Therefore, Ĝ = (Q̂, µ, η) is (σ + (1 + γ)δ)-admissible.

A.3.3. SAFETY GUARANTEE OF SHIELDED POLICY

Before proving Theorem 2, we prove two lemmas, one showing that the average advantage of a shielded policy satisfies the
intervention threshold (Lemma 4) and the other stating that the cost-value function is equal to the expected occupancy of the
unsafe set (Lemma 5).

Lemma 4. For some policy π and intervention rule G = (Q,µ, η), let π′ := G(π) and A(s, a) := Q(s, a)−Q(s, µ). Then,
A(s, π′) ≤ η for any s ∈ Ssafe.

Proof. We use the definition of π′ (in (4)), the facts that A(s, µ) = 0, and that (s, a) /∈ I if and only if A(s, a) ≤ η. The
following then holds:

A(s, π′) =
∑
a∈A

π′(a|s)A(s, a)

=
∑

a:(s,a)/∈I

π(a|s)A(s, a) + w(s)
∑
a∈A

µ(a|s)A(s, a)

≤ η
∑

a:(s,a)/∈I

π(a|s) + w(s)A(s, µ)

≤ η · 1 + w(s) · 0
= η.
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Lemma 5. For any policy π,
Es∼dπ [1{s ∈ {s., s◦}}] = V

π
(d0).

Proof. We know from the definition of the cost function that V
π
(d0) = 1

1−γEs∼dπ [1{s = s.}]. From the absorbing
property of Sunsafe, we have Es∼dπ [1{s = s◦}] = γ

1−γEs∼dπ [1{s = s.}]. We can then derive

Es∼dπ [1{s ∈ {s., s◦}}] = Es∼dπ [1{s = s.}] + Es∼dπ [1{s = s◦}]

=
1

1− γ
Es∼dπ [1{s = s.}]

= V
π
(d0).

We now prove the safety guarantee of the shieled policy π′.

Theorem 2 (Safety of Shielded Policy). Let G = (Q,µ, η) be σ-admissible as per Definition 1. For any policy π, let
π′ = G(π). Then,

V
π′

(d0) ≤ Q(d0, µ) +
min{σ + η, 2γ}

1− γ
. (9)

Proof. To prove the upper bounds, we first extend the definition of Q onto Sunsafe, where we define

Q(s., a) = 1 and Q(s◦, a) = 0 for all a ∈ A.

Define V (s) := Q(s, µ). Since c(s, a) +γEs′|s,a[V (s′)] = V (s) when s ∈ {s., s◦}, we can use the performance difference
lemma (Lemma 3) to derive

V
π′

(d0)−Q(d0, µ) =
1

1− γ
E(s,a)∼dπ′ [c(s, a) + γEs′|s,a[V (s′)]− V (s)]

=
1

1− γ
E(s,a)∼dπ′ [

(
c(s, a) + γEs′|s,a[V (s′)]− V (s)

)
1{s 6∈ {s., s◦}}]

≤ 1

1− γ
E(s,a)∼dπ′ [

(
min{σ, γ}+Q(s, a)− V (s)

)
1{s 6∈ {s., s◦}}]

≤ min{σ, γ}+ min{η, γ}
1− γ

Es∼dπ′ [1{s 6∈ {s., s◦}}]

=
min{σ, γ}+ min{η, γ}

1− γ
V
π′

(d0),

where the first inequality comes from Q being σ-admissible and γ-admissible, the second inequality from A(s, π′) ≤
η (Lemma 4) and A(s, π′) ≤ γ (Definition 1) for s /∈ {s., s◦}, and the last equality from Lemma 5.

Therefore, after some algebraic rearrangement,

V
π′

(d0) ≤ (1− γ)Q(d0, µ) + min{σ, γ}+ min{η, γ}
1− γ + min{σ, γ}+ min{η, γ}

≤ Q(d0, µ) +
min{σ, γ}+ min{η, γ}

1− γ

≤ Q(d0, µ) +
min{σ + η, 2γ}

1− γ
.



Safe Reinforcement Learning Using Advantage-Based Intervention

A.3.4. AN OPTIMAL INTERVENTION RULE

First, we show that every state-action pair visited by π′ will not have an advantage function lower than that of the optimal
policy forM.

Lemma 6. Let π∗ be an optimal policy forM, Q
∗

be its state-action value function, and V
∗

be its state value function.
Let G0 = {(Q,µ, 0) : (Q,µ, 0) is admissible, Q(d0, µ) = V

∗
(d0)} be a subset of admissible intervention rules with a

threshold of zero and average Q that matches V
∗
. Define A

∗
(s, a) = Q

∗
(s, a)−Q∗(s, π∗) as the advantage function of

the optimal policy. For some intervention rule G ∈ G0 and policy π, let π′ = G(π).

Then, the inequality A(s, a) ≥ A∗(s, a) holds for all a ∈ A almost surely over the distribution dπ
′
(s).

Proof. First, we show by induction that running π′ starting from d0 results in the agent staying in the subset SG = {s ∈ S :

Q(s, µ) = V
∗
(s)}.

For t = 0, consider some s0 ∼ d0. We observe from admissibility of G and Proposition 2 that Q(s, a) ≥ Qµ(s, a) ≥ V ∗(s)
on S ×A. Since Q(d0, µ) = V

∗
(d0), we conclude that Q(s0, µ) = V

∗
(s0). Therefore, s0 ∈ SG almost surely over d0.

Now suppose the agent is in SG with probability one at some time step t. Consider some st ∼ dπ
′

t (observing that st ∈ SG).
We assume that st ∈ Ssafe (otherwise, the below is trivially true as there is no intervention outside Ssafe). By Lemma 4 and
admissibility, we can derive:

0 = η ≥ A(st, π
′)

= Q(st, π
′)−Q(st, µ)

≥ c(st, π′) + γEst+1∼P|st,π′ [Q(st+1, µ)]−Q(st, µ)

= γEst+1|st,π′ [Q(st+1, µ)]−Q(st, µ)

= γEst+1|st,π′ [Q(st+1, µ)]− V ∗(st)

= γEst+1|st,π′ [Q(st+1, µ)]− γEst+1|st,π∗ [V
∗
(st+1)],

where the second and fourth equalities are due to st ∈ Ssafe, and the third equality is due to st ∈ SG . Notice also, since
st ∈ Ssafe, we have

γEst+1|st,π′ [V
∗
(st+1)] = Q

∗
(st, π

′) ≥ Q∗(st, π∗) = γEst+1|st,π∗ [V
∗
(st+1)].

Therefore, combining the two inequalities above, we have

Est+1|st,π′ [V
∗
(st+1)] ≥ Est+1|st,π′ [Q(st+1, µ)].

Since Q(s, a) ≥ V
∗
(s) on S × A, by the same argument we made for s0, we conclude Q(st+1, µ) = V

∗
(st+1) with

probability one. Therefore, the agent stays in the subset SG .

With this property in mind, let s ∼ dπ′ . Then the following holds for all a ∈ A:

A(s, a) = Q(s, a)−Q(s, µ)

= Q(s, a)−Q∗(s, π∗)

≥ Q∗(s, a)−Q∗(s, π∗) = A
∗
(s, a),

where the second equality is due to Q(s, µ) = V
∗
(s) = Q

∗
(s, π∗) on SG .

Proposition 4. Let π∗ be an optimal policy forM, Q
∗

be its state-action value function, and V
∗

be its state value function.
Let G0 = {(Q,µ, 0) : (Q,µ, 0) is admissible, Q(d0, µ) = V

∗
(d0)}. Let G∗ = (Q

∗
, π∗, 0) ∈ G0. Consider arbitrary

G ∈ G0 and policy π. Let M̃ and M̃∗ be the absorbing MDPs induced by G and G∗, respectively, and let d̃π and d̃∗,π be
their state-action distributions of π. Then,

SuppS×A(d̃π) ⊆ SuppS×A(d̃∗,π),

where SuppS×A(d) denotes the support of a distribution d when restricted on S ×A.
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Proof. Let ξ = (s0, a0, s1, a1, . . . ) be any trajectory that has non-zero probabilty in the trajectory distribution ρ̃π of π
on M̃. Let I and I∗ be the intervention sets of G and G∗, respectively. Suppose for some t that (st, at) ∈ I. We know
for τ ≥ t + 1 that sτ = s†. In addition, by Lemma 6, we have A

∗
(sτ , aτ ) ≤ A(sτ , aτ ) ≤ 0 for any τ ∈ [0, t − 1], so

(sτ , aτ ) /∈ I∗. Therefore, the sub-trajectory (sτ , aτ ) with τ ∈ {0, 1, . . . , t} also has a non-zero probability in M̃∗. By this
argument, every sub-trajectory in S ×A with non-zero probability in M̃ also has non-zero probability in M̃∗. The final
thesis follows from defining the state-action distributions through averaging the trajectory distributions.

A.4. Proof for Absorbing MDP in Section 3.3.2

We derive some properties of the Bellman operator of the absorbing MDP.

Lemma 7. For a policy π, let (BπQ)(s, a) := r(s, a)+γEs′|s,a[Q(s′, π)] denote the Bellman operator of π inM; similarly
define B̃π for M̃. Let Q : S̃ × A → R be some function satisfying Q(s†, a) = 0 for all a ∈ A.

1. The Bellman operator in M̃ can be written as

(B̃πQ)(s, a) =

{
(BπQ)(s, a) · 1{(s, a) /∈ I}+ R̃ · 1{(s, a) ∈ I}, (s, a) ∈ S ×A
0, s = s†.

(12)

2. The following holds when the temporal-difference operator D̃π for M̃ is applied to the policy’s state-action value
function Qπ forM:(

R̃− 1

1− γ

)
1{(s, a) ∈ I} ≤ (D̃πQπ)(s, a) ≤ R̃1{(s, a) ∈ I} for all (s, a) ∈ S ×A (13)

(D̃πQπ)(s†, a) = 0, (14)

where the definition of Qπ is extended to s† as Qπ(s†, a) = 0.

Proof. For brevity, let Ω(s, a) = 1{(s, a) ∈ I}.

1. Since Q(s†, π) = 0, the following holds for any (s, a) ∈ S ×A:

(B̃πQ)(s, a) = r̃(s, a) + γEs′∼P̃ |s,a[Q(s′, π)]

= (1− Ω(s, a))
(
r(s, a) + γEs′∼P |s,a[Q(s′, π)]

)
+ Ω(s, a) · R̃

= (1− Ω(s, a)) · (BπQ)(s, a) + Ω(s, a) · R̃

and

(B̃πQ)(s†, a) = 0 + γQ(s†, π) = 0.

2. For (13), using the fact that (BπQ)π = Qπ , the following applies on S ×A:

(D̃πQπ)(s, a) = (B̃πQπ)(s, a)−Qπ(s, a) = Ω(s, a) ·
(
R̃−Qπ(s, a)

)
.

Since 0 ≤ Qπ(s, a) ≤ 1
1−γ , we have(

R̃− 1

1− γ

)
Ω(s, a) ≤ (D̃πQπ)(s, a) ≤ R̃Ω(s, a).

For the absorbing state in (14), by the extended definition and the equality (B̃πQ)(s†, a) = 0, we have

(D̃πQπ)(s†, a) = (B̃πQπ)(s†, a)−Qπ(s†, a) = 0.
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Lemma 8. For any policy π, PG(π) = 1
1−γE(s,a)∼d̃π [1{(s, a) ∈ I}] .

Proof. Notice that for any h,

Prob(ξh ∩ I 6= ∅ | π,M) = Prob(ξh ∩ I 6= ∅ | π,M̃) = Eρ̃π
[
h−1∑
t=0

1{(st, at) ∈ I}

]
.

By Lemma 2,

1

1− γ
E(s,a)∼d̃π [1{(s, a) ∈ I}] = Eρ̃π

[ ∞∑
t=0

γt1{(st, at) ∈ I}

]

= (1− γ)

∞∑
h=0

γhEρ̃π
[
h−1∑
t=0

1{(st, at) ∈ I}

]

= (1− γ)

∞∑
h=0

γhProb(ξh ∩ I 6= ∅ | π,M)

= PG(π).

Using the above results, we can bound the difference between the values of the original and the absorbing MDPs.
Lemma 1. For every policy π, it holds that

|R̃| PG(π) ≤ V π(d0)− Ṽ π(d0) ≤
(
|R̃|+ 1

1− γ

)
PG(π).

Proof of Lemma 1. First, extend the definition of Qπ to s† as Qπ(s†, a) = 0 for any a ∈ A. By Corollary 1, we have

Ṽ π(d0)− V π(d0) =
1

1− γ
E(s,a)∼d̃π [(D̃πQπ)(s, a)]

By Lemma 7, we can derive(
R̃− 1

1− γ

) E(s,a)∼d̃π [1{(s, a) ∈ I}]
1− γ

≤ Ṽ π(d0)− V π(d0) ≤ R̃
E(s,a)∼d̃π [1{(s, a) ∈ I}]

1− γ
.

Finally, substituting the equality from Lemma 8 and negating the inequality concludes the proof.

Next we derive some lemmas, which will be later to used to show that when the intervention set is partial, the unconstrained
reduction is effective.
Lemma 9. Let I ⊂ Ssafe ×A be partial, and let F = (Ssafe ×A) \ I be the state-action pairs that are not intervened. For
an arbitrary policy π, define

πf (a|s) := π(a|s)1{(s, a) ∈ F}+ f(s, a), (15)

where f(s, a) is some arbitrary non-negative function which is zero on I and that ensures
∑
a∈A πf (a|s) = 1 for all s ∈ S .

Define

J̃π+ :=
1

1− γ
E(s,a)∼d̃π [r(s, a) · 1{(s, a) ∈ F}]

J̃π− :=
1

1− γ
E(s,a)∼d̃π [R̃ · 1{(s, a) ∈ I}]

as the expected returns in F and I, respectively.

The following are true:
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1. Ṽ π(d0) = J̃π+ + J̃π−.

2. d̃πf (s, a) ≥ d̃π(s, a) for all (s, a) ∈ F .

3. J̃πf+ ≥ J̃π+.

4. E(s,a)∼d̃πf [1{(s, a) ∈ I}] = 0, implying J̃πf− = 0.

5. Ṽ πf (d0) ≥ Ṽ π(d0) whenever R̃ ≤ 0. Furthermore, if R̃ < 0 and π(a|s) > 0 for some (s, a) ∈ I, then
Ṽ πf (d0) > Ṽ π(d0).

Proof. 1. This follows from the definition of r̃ in (7).

2. Recall d̃π(s, a) = (1−γ)
∑∞
t=0 γ

td̃πt (s, a). To show the desired result, we show by induction that d̃πft (s, a) ≥ d̃πt (s, a)
for all (s, a) ∈ F and t ≥ 0. For t = 0, by construction of πf , we have πf (a|s) ≥ π(a|s) for all (s, a) ∈ F and
therefore d̃πf0 (s, a) ≥ d̃π0 (s, a) for all (s, a) ∈ F .

Now suppose that for some t ≥ 0 the inequality d̃πft (s, a) ≥ d̃πt (s, a) holds for all (s, a) ∈ F . Then, for some
(s, a) ∈ F , we can derive

d̃
πf
t+1(s, a) = πf (a|s)

∑
(st,at)∈S×A

P̃ (s|st, at)d̃
πf
t (st, at)

= πf (a|s)
∑

(st,at)∈F

P (s|st, at)d̃
πf
t (st, at)

≥ π(a|s)
∑

(st,at)∈F

P (s|st, at)d̃πt (st, at)

= d̃πt+1(s, a),

where we use the inductive hypothesis in the inequality. Thus, we have d̃πf (s, a) ≥ d̃π(s, a) by summing over each
time step.

3. By statement 2, definition of J̃π+, and non-negativity of the reward r, it follows that J̃πf+ ≥ J̃π+.

4. This statement from the construction of πf and induction. First, we have d̃πf0 (s, a) = 0 for all (s, a) ∈ I . Now suppose
for some t ≥ 0 that d̃πft (s, a) = 0 for all (s, a) ∈ I. We can see that d̃πft+1(s, a) = 0 for all (s, a) ∈ I since πf never
chooses actions such that (s, a) ∈ I.

Therefore, d̃πf (s, a) = 0 for all (s, a) ∈ I. By definition of J̃π−, this allows us to conclude that J̃π− = 0.

5. Using statements 3 and 4, we conclude that

Ṽ πf (d0) = J̃
πf
+ + J̃

πf
− ≥ J̃π+ + J̃π− = Ṽ π(d0).

The special case follows from observing that J̃π− < 0 whenever π(a|s) > 0 for some (s, a) ∈ I.

Lemma 10. Let R̃ be non-positive and Ṽ ∗ denote the optimal value function for M̃.

1. For any policy π,
Ṽ ∗(d0) ≥ J̃π+.

2. There is an optimal policy π̃∗ of M̃ satisfying

E(s,a)∼d̃π̃∗ [1{(s, a) ∈ I}] = 0. (16)
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3. If R̃ is negative, every optimal policy of M̃ satisfies (16).

Proof of Lemma 10. 1. Let the policy π be arbitrary, and define πf using (15). The following then holds by Lemma 9:

Ṽ ∗(d0) ≥ Ṽ πf (d0) = J̃
πf
+ ≥ J̃π+.

2. Suppose that π is an optimal policy of M̃, and define πf using (15). Because R̃ is non-positive, we know by Lemma 9
and optimality of π that Ṽ πf (d0) = Ṽ π(d0). Therefore, we can define an optimal policy as π̃∗ = πf and conclude by
Lemma 9 that E(s,a)∼d̃π̃∗ [1{(s, a) ∈ I}] = 0.

3. Suppose for the sake of contradiction there is an optimal policy π̃∗ of M̃ such that (16) does not hold (i.e., it may take
some (s, a) ∈ I). By Lemma 9, we can construct some policy πf such that Ṽ πf (d0) > Ṽ π̃

∗
(d0). This contradicts π̃∗

being optimal, so every optimal policy of M̃ must satisfy (16).

These results show that if the intervention set is partial and the penalty of being intervened is strict, then the optimal policy
of the absorbing MDP would not be intervened.

Proposition 6. If R̃ is negative and G induces a partial I, then every optimal policy π̃∗ of M̃ satisfies PG(π̃∗) = 0.

Proof of Proposition 6. This directly follows from Lemmas 8 and 10.

Below we derive some lemmas to show a near optimal policy of the absorbing MDP is safe. (We already proved above that
the optimal policy of the absorbing MDP is safe).

Lemma 11. Let I ⊂ S × A be partial (Definition 2). Given some policy π, let π′ be the corresponding shielded policy
defined in (4). Then, the following holds for any h ≥ 0 inM:

Prob(s. ∈ ξh | π,M) ≤ Prob(s. ∈ ξh | π′,M) + Prob(ξh ∩ I 6= ∅ | π,M), (17)

where ξh = (s0, a0, . . . , sh−1, ah−1) is an h-step trajectory segment.

Proof. First, we notice that π′(a|s) ≥ π(a|s) when (s, a) /∈ I, because π′(a|s) = π(a|s) + w(s)µ(a|s) ≥ π(a|s).

We bound the probability of π violating a constraint inM by introducing whether π visits the intervention set:

Prob(s. ∈ ξh | π,M) = Prob(s. ∈ ξh, ξh ∩ I = ∅ | π,M) + Prob(s. ∈ ξh, ξh ∩ I 6= ∅ | π,M)

≤ Prob(s. ∈ ξh, ξh ∩ I = ∅ | π,M) + Prob(ξh ∩ I 6= ∅ | π,M).

We now bound the first term. Let ξh satisfy the event “s. ∈ ξh, ξh ∩I = ∅”, and let T be the time index such that sT = s.
in ξh. Then, the probability of this trajectory under π andM is

d0(s0)π(a0|s0)P (s1|s0, a0) · · ·π(aT−1|sT−1)P (sT |sT−1, aT−1).

Since each (st, at) is not in I, we have π(at|st) ≤ π′(at|st) for each (st, at) in ξh. Thus, the probability of this trajectory
under π andM is upper bounded by its probability under π′ andM. Summing over each trajectory ξh satisfying the event
then yields:

Prob(s. ∈ ξh, ξh ∩ I = ∅ | π,M) ≤ Prob(s. ∈ ξh, ξh ∩ I = ∅ | π′,M).

We now complete the original bound:

Prob(s. ∈ ξh | π,M) ≤ Prob(s. ∈ ξh, ξh ∩ I = ∅ | π,M) + Prob(ξh ∩ I 6= ∅ | π,M)

≤ Prob(s. ∈ ξh, ξh ∩ I = ∅ | π′,M) + Prob(ξh ∩ I 6= ∅ | π,M)

≤ Prob(s. ∈ ξh | π′,M) + Prob(ξh ∩ I 6= ∅ | π,M).
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Lemma 12. For any policy π and I ⊂ S×A that is partial, let π′ be the corresponding shielded policy. Then, the following
safety bound holds:

V
π
(d0) ≤ V π

′

(d0) +
1

1− γ
E(s,a)∼d̃π [1{(s, a) ∈ I}].

Proof of Lemma 12. Using (17) from Lemma 11 and the fact that the probabilities can be expressed as expected sums of
indicators:

Prob(s. ∈ ξh | π,M) = Eρπ
[
h−1∑
t=0

1{st = s.}

]

Prob(s. ∈ ξh | π′,M) = Eρπ′
[
h−1∑
t=0

1{st = s.}

]

Prob(ξh ∩ I 6= ∅ | π,M) = Eρ̃π
[
h−1∑
t=0

1{(st, at) ∈ I}

]

Then, applying Lemma 2 results in the desired inequality.

Proposition 7 (Suboptimality in M̃ to Suboptimality and Safety inM). Let R̃ be negative. For any policy π, let π′ be the
shielded policy defined in (4). Let π∗ be an optimal policy forM. Suppose π is ε-suboptimal for M̃. Then the following
performance and safety guarantees hold inM:

V π
∗
(d0)− V π(d0) ≤

(
|R̃|+ 1

1− γ

)
PG(π∗) + ε

V
π
(d0) ≤ V π

′

(d0) +
ε

|R̃|
.

Proof of Proposition 7. The performance bound follows from Lemma 1.

V π
∗
(d0)− V π(d0) = V π

∗
(d0)− Ṽ π

∗
(d0) + Ṽ π

∗
(d0)− Ṽ π(d0) + Ṽ π(d0)− V π(d0)

≤
(
|R̃|+ 1

1− γ

)
PG(π∗) + Ṽ π

∗
(d0)− Ṽ π(d0)− |R̃|PG(π)

≤
(
|R̃|+ 1

1− γ

)
PG(π∗) + Ṽ ∗(d0)− Ṽ π(d0)

≤
(
|R̃|+ 1

1− γ

)
PG(π∗) + ε.

For the safety bound, we start with Lemma 12:

V
π
(d0) ≤ V π

′

(d0) +
1

1− γ
E(s,a)∼d̃π [1{(s, a) ∈ I}]

We provide an upper bound on the second term on the right hand side above. Using the definition of J̃π− in Lemma 9, we
derive that

Ed̃π [1{(s, a) ∈ I}]
1− γ

= −
J̃π−

|R̃|

=
1

|R̃|

(
−Ṽ π(d0) + Ṽ ∗(d0) + J̃π+ − Ṽ ∗(d0)

)
≤ 1

|R̃|

(
Ṽ ∗(d0)− Ṽ π(d0)

)
=

ε

|R̃|
,

where the inequality is due to Lemma 10.
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Combine everything altogether:

V
π
(d0) ≤ V π

′

(d0) +
Ed̃π [1{(s, a) ∈ I}]

1− γ

= V
π′

(d0) +
ε

|R̃|
.

We now prove the main result of the paper.

Theorem 1 (Performance and Safety Guarantee at Deployment). Let R̃ = −1, G be σ-admissible, and π∗ be an optimal
policy forM. If π̂ is an ε-suboptimal policy for M̃, then the following performance and safety guarantees hold for π̂ inM:

V ∗(d0)− V π̂(d0) ≤ 2

1− γ
PG(π∗) + ε

V
π̂
(d0) ≤ Q(d0, µ) +

min{σ + η, 2γ}
1− γ

+ ε.

where PG(π∗) := (1− γ)
∑∞
h=0 γ

hProb(ξh ∩ I 6= ∅ | π∗,M) is the probability that π∗ visits I inM.

Proof. This is a direct result of Proposition 7.

The performance suboptimality results from:

V π
∗
(d0)− V π̂(d0) ≤

(
|R̃|+ 1

1− γ

)
PG(π∗) + ε

≤
(

1 +
1

1− γ

)
PG(π∗) + ε

=
2− γ
1− γ

PG(π∗) + ε

≤ 2

1− γ
PG(π∗) + ε.

For the safety bound,

V
π̂
(d0) ≤ V G(π̂)(d0) + ε

≤ Q(d0, µ) +
min{σ + η, 2γ}

1− γ
+ ε,

where the second inequality follows from Theorem 2 and ε-suboptimality of π̂ in M̃.

B. Additional Discussion of SAILR
B.1. Necessity of the partial property

We highlight that the subset I being partial (Definition 1) is crucial for the unconstrained MDP reduction behind SAILR. If
we were to construct an absorbing MDP M̃′ described in Section 3.2 using an arbitrary non-partial subset I ′ ⊆ S ×A, then
the optimal policy of M̃′ can still enter I ′ when R̃ > −∞, because the optimal policy of M̃′ can use earlier rewards to
make up for the penalty incurred in I ′.

To see this, consider the toy MDPM shown in Fig. 4. Since there is no alternative action available at state 2, the intervention
illustrated in M̃′ is not partial. Suppose R̃ > −1/γ. Then, in M̃′, a policy choosing to transition from 1 to 3 has a value of
0, and a policy choosing to transition from 1 to 2 has a value of 1 + γR̃ > 0. Therefore, the optimal policy will transition
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1 2
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s. s◦
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0

0

R̃

0

Figure 4. A simple example illustrating a non-partial intervention. Edge weights correspond to rewards. If R̃ > −1/γ, the optimal policy
in M̃′ will always go into the intervention set.

from 1 to 2 and go into the non-partial intervention set I ′. Once applied to the original MDPM, this policy will always go
into the unsafe set.

One might think generally it is possible to set R̃ to be negative enough to ensure the optimal policy will never go into
the intervention set, which is indeed true for the counterexample above. But we remark that we need to set R̃ to be
arbitrarily large (in the negative direction) for general problems, which can cause high variance issues in return or gradient
estimation (Shalev-Shwartz et al., 2016). Because of the discount factor γ < 1, the negative reward steming from the
absorbing state will be at most γT R̃, where T is the time step that the system enters I ′. For a fixed and finite R̃, we can then
extend the above MDP construction to let the agent go through a long enough chain after transitioning from 1 to 2 so that
the resultant value satisfies 1 + γT R̃ > 0. Like the example above, this path would be the only path with positive reward,
despite intersecting the intervention set. Therefore, the optimal policy of M̃′ will enter I ′.

B.2. Bias of SAILR

In Theorem 1, we give a performance guarantee of SAILR

V ∗(d0)− V π̂(d0) ≤ 2

1− γ
PG(π∗) + ε.

It shows that SAILR has a bias PG(π∗) ∈ [0, 1], which is the probability that the optimal policy π∗ would be intervened by
the advantage-based intervention rule. Here we discuss special cases where this bias vanishes.

The first special case is when the original problem is unconstrained (i.e., (2) has a trivial constraint with δ = 1). In this case,
we can set the threshold η ≥ γ in SAILR to turn off the intervention, and SAILR returns the optimal policy of the MDPM
when the base RL algorithm can find one.

Another case is when π∗ is a perfect safe policy, i.e., V
π∗

(d0) = 0 and we run SAILR with the intervention rule
G∗ = (Q

∗
, π∗, 0) (Proposition 4). Similar to the proof of Lemma 6, one can show that running π∗ would not trigger the

intervention rule G∗ and therefore the bias PG∗(π∗) is zero.

However, we note that generally the bias PG(π∗) can be non-zero.

C. Experimental Details
C.1. Point Robot

This environment (Fig. 5) is a simplification of the point environment from (Achiam et al., 2017). The state is s = (x, y, ẋ, ẏ),
where (x, y) is the x-y position and (ẋ, ẏ) is the corresponding velocity. The action a = (ax, ay) is the force applied to the
robot (each component has maximum magnitude amax). The agent has some mass m and can achieve maximum speed
vmax. The dynamics update (with time increment ∆t) is:

(xt+1, yt+1) = (xt, yt) + (ẋt, ẏt)∆t+
1

2m
at∆t

2

(ẋt+1, ẏt+1) = clip-norm

(
((ẋt, ẏt) +

1

m
at∆t, vmax

)
,
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Figure 5. The point environment. The black dot corresponds to the agent, the green circle to the desired path, and the red lines to the
constraints on the horizontal position. The vertical constraints are outside of the visualized environment.

where clip-norm(u, c) scales u so that its norm matches c if ‖u‖ > c. The reward corresponds to following a circular path
of radius R∗ at a high speed and the safe set to staying within desired positional bounds xmax and ymax:

r(s, a) =
(ẋ, ẏ) · (−y, x)

1 + |‖(x, y)‖ −R∗|
Ssafe = {s ∈ S : |x| ≤ xmax and |y| ≤ ymax}

For our experiments, we set these parameters to m = 1, vmax = 2, amax = 1, ∆t = 0.1, R∗ = 5, xmax = 2.5, and
ymax = 15.

For this environment, we also consider a shaped cost function ĉ(s, a) which is a function of the distance of the state s to the
boundary of the unsafe set, denoted by dist(s,Sunsafe). Here, Sunsafe denotes the 2D unsafe region in this environment (i.e.,
those outside the vertical lines in Fig. 5). Note that in the theoretical analysis Sunsafe is abstracted into {s., s†}.

For the point environment, the distance function is dist(s, Sunsafe) = max{0,min{xmax−x, xmax+x, ymax−y, ymax+y}}.
For some constant α ≥ 0, the cost function is defined as a hinge function of the distance:

ĉ(s, a) =

{
1{dist(s,Sunsafe) = 0}, α = 0

max
{

0, 1− 1
αdist(s,Sunsafe)

}
, otherwise.

(18)

We note that ĉ is an upper bound for c if α > 0 and ĉ = c if α = 0. We shape the cost here to make it continuous, so that the
effects of approximation bias is smaller than that resulting from a discontinuous cost (i.e., the original indicator function).

Intervention Rule: The backup policy µ applies a decelerating force (with component-wise magnitude up to amax) until
the agent has zero velocity. Our experiments consider the following approaches to construct Q:

• Neural network approximation: We construct a dataset of points mapping states and actions to state-action values
Q
µ

by picking some state and action in the MDP, executing the action from that state, and then continuing the rollout
with the backup policy µ to find the empirical state-action value with respect to the shaped cost function ĉ. Our dataset
consists of 107 points resulting from a uniform discretization of the state-action space. We apply a similar method to
form a dataset for the state values V

µ
.

We then train four networks (two to independently approximate Q
µ

, and two for V
µ

), where each network
has three hidden layers each with 256 neurons and a ReLU activation. The predicted advantage is A(s, a) =
max{Q1(s, a), Q2(s, a)} −min{V 1(s), V 2(s)}, where we apply the pessimistic approach from (Thananjeyan et al.,
2020) to prevent overestimation bias.

• Model-based evaluation: Here, we have access to a model of the robot where all parameters match the real environment
except possibly the mass m̂. We refer to the modeled transition dynamics as P̂ and the resulting trajectory distribution
under µ as ρ̂µ. The function Q is then set to be the model-based estimate of Q

µ
using the shaped cost function ĉ and
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dynamics P̂:

Q(s, a) = Eρ̂µ|s0=s,a0=a

[ ∞∑
t=0

γtĉ(st, at)

]
.

For our experiments, the modeled mass m̂ is either 1 (unbiased case) or 0.5 (biased case).

For our experiments, we set the advantage threshold η = 0.08 when using the neural network approximator and η = 0 when
using the model-based rollouts.

Hyperparameters: All point experiments were run on a 32-core Threadripper machine. The given hyperparameters were
found by hand-tuning until good performance was found on all algorithms.

Hyperparameter Value
Epochs 500
Neural Network Architecture 2 hidden layers, 64 neurons per hidden layer, tanh act.
Batch size 4000
Discount γ 0.99
Entropy bonus 0.001
CMDP threshold δ 0.01
Penalty value R̃ −2
Lagrange multiplier step size (for constrained approaches) 0.05
Cost shaping constant α 0.5
Number of seeds 10

C.2. Half-Cheetah

Figure 6. The half-cheetah environment. The green circle is centered on the link of interest, and the white double-headed arrow denotes
the allowed height range of the link.

This environment (Fig. 6) comes from OpenAI Gym and has reward equal to the agent’s forward velocity. One of the agent’s
links (denoted by the green circle in Fig. 6) is constrained to lie in a given height range, outside of which the robot is deemed
to have fallen over. In other words, if h is the height of the link of interest, hmin is the minimum height, and hmax is the
maximum height, the safe set is defined as Ssafe = {s ∈ S : hmin ≤ h ≤ hmax}. For our experiments, we set hmin = 0.4
and hmax = 1.

Heuristic Intervention Rule: This intervention rule G = (Q,µ, η) relies on a dynamics model (here, unbiased) to greedily
predict whether the safety constraint would be violated at the next time step. In particular, if s is the current state and
â ∼ π(·|s) is the proposed action, the agent will be intervened if the height ĥ′ in the next state ŝ′ ∼ P(·|s, â) lies outside
the range [ĥmin, ĥmax], where ĥmin and ĥmax can be set to a smaller range than [hmin, hmax] to induce a more conservative
intervention. Once intervened, the episode terminates. The reason for using a smaller range [ĥmin, ĥmax] is an attempt to
make the intervention rule possess the partial property (see the discussion in Section 3.1.2). If we were to set the range to be
the ordinary range [hmin, hmax] that defines the safe subset, the penalty R̃ would need to be very negative, which would
destabilize learning. Furthermore, there is no guarantee that the intervention set for the original range is partial since there
may be no available action to keep the agent from being intervened.

MPC-Based Intervention Rule: Similarly with the model-based intervention rule for the point environment, the MPC
intervention rule G = (Q,µ, η) uses a model of the half-cheetah. The backup policy µ is a sampling-based model predictive
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control (MPC) algorithm based on (Williams et al., 2017). The MPC algorithm has an optimization horizon of H = 16
time steps and minimizes the cost function corresponding to an indicator function of the link height being in the range
[0.45, 0.95].3 The function Q is defined as:

Q(s, a) = Eρ̂

[
H∑
t=0

γtĉ(ŝt, ât)

∣∣∣∣∣ ŝ0 = s, â0 = a, â1:H = MPC(ŝ1)

]
,

where ĉ(s, a) is the hinge-shaped cost function (in (18)) corresponding to the distance function dist(s, Sunsafe) =
max{0,min{h− hmin, hmax − h}}.

For our experiments, we set the advantage threshold η = 0.2. We also use a modeled mass of 16 (unbiased) and 12 (biased)
in our experiments.

Hyperparameters: Except for the MPC-based intervention, all half-cheetah experiments were run on a 32-core Threadripper
machine. The MPC-based intervention experiments were run on 64-core Azure servers with each run taking 24 hours. The
given hyperparameters were found by hand-tuning until good performance was found on all algorithms.

Hyperparameter Value
Epochs 1250
Neural Network Architecture 2 hidden layers, 64 neurons per hidden layer, tanh act.
Batch size 4000
Discount γ 0.99
Entropy bonus 0.01
CMDP threshold δ 0.01
Penalty value R̃ −0.1
Lagrange multiplier step size (for constrained approaches) 0.05
Heuristic intervention range [ĥmin, ĥmax] [0.4, 0.9]
Cost shaping constant α 0.05
Number of seeds 8

D. Ablations for Point Robot
We run the following two ablations for the point environment, with results shown in Fig. 7:

1. We additionally run all the algorithms with the original sparse cost (Fig. 7a). Here, the baseline algorithms as expected
yield high deployment returns while violating many constraints during training. For SAILR, however, only the
model-based instance with an unbiased model is able to satisfy the desiderata of high deployment returns while being
safe during training. In this case, the sparse cost along with the approximation errors from the other two instances
result in the slack σ being large for admissibilty, meaning the safety bounds in Theorems 1 and 2 are loose.

2. We run the model-based instance of SAILR with a biased model and either the sparse cost or the shaped cost (Fig. 7b).
Using the sparse cost with the biased model for intervention has deleterious effects in safety and performance. The
model mismatch causes a compounding number of safety violations in training (bottom plot) and destabilizes the policy
optimization, as observed in the deteriorated returns (top plot) and safety (middle plot), respectively. Shaping the cost
function for intervention results in far fewer safety violations and stabilizes the policy optimization.

3Observe that this is slightly smaller than the [0.4, 1] height range of the original safety constraint.
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Episode return without the intervention

Episode length without the intervention

Total number of safety violations during training

(a) Sparse cost (b) Biased model, either a sparse cost or
shaped cost

Figure 7. Ablations for point experiment


