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Abstract
Machine learning is predicated on the concept of
generalization: a model achieving low error on a
sufficiently large training set should also perform
well on novel samples from the same distribution.
We show that both data whitening and second or-
der optimization can harm or entirely prevent gen-
eralization. In general, model training harnesses
information contained in the sample-sample sec-
ond moment matrix of a dataset. For a general
class of models, namely models with a fully con-
nected first layer, we prove that the information
contained in this matrix is the only information
which can be used to generalize. Models trained
using whitened data, or with certain second or-
der optimization schemes, have less access to this
information, resulting in reduced or nonexistent
generalization ability. We experimentally verify
these predictions for several architectures, and
further demonstrate that generalization continues
to be harmed even when theoretical requirements
are relaxed. However, we also show experimen-
tally that regularized second order optimization
can provide a practical tradeoff, where training
is accelerated but less information is lost, and
generalization can in some circumstances even
improve.

1. Introduction
Whitening is a data preprocessing step that removes correla-
tions between input features (see Fig. 1). It is used across
many scientific disciplines, including geology (Gillespie
et al., 1986), physics (Jenet et al., 2005), machine learning
(Le Cun et al., 1998), linguistics (Abney, 2007), and chem-
istry (Bro & Smilde, 2014). It has a particularly rich history
in neuroscience, where it has been proposed as a mechanism
by which biological vision realizes Barlow’s redundancy
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reduction hypothesis (Attneave, 1954; Barlow, 1961; Atick
& Redlich, 1992; Dan et al., 1996; Simoncelli & Olshausen,
2001).

Whitening is often recommended since, by standardizing
the variances in each direction in feature space, it typically
speeds up the convergence of learning algorithms (Le Cun
et al., 1998; Wiesler & Ney, 2011), and causes models
to better capture contributions from low variance feature
directions. Whitening can also encourage models to fo-
cus on more fundamental higher-order statistics in data, by
removing second-order statistics (Hyvärinen et al., 2009).
Whitening has further been a direct inspiration for deep
learning techniques such as batch normalization (Ioffe &
Szegedy, 2015) and dynamical isometry (Pennington et al.,
2017; Xiao et al., 2018).

1.1. Whitening Destroys Information Useful for
Generalization

Our argument proceeds in two parts: First, we prove that
when a model with a fully connected first layer whose
weights are initialized isotropically is trained with either
gradient descent or stochastic gradient descent (SGD), infor-
mation in the data covariance matrix is the only information
that can be used to generalize. This result is agnostic to the
choice of loss function and to the architecture of the model
after the first layer. Second, we show that whitening always
destroys information in the data covariance matrix.

Whitening the data and then training with gradient descent
or SGD therefore results in either diminished or nonexis-
tent generalization properties compared to the same model
trained on unwhitened data. The seriousness of the effect
varies with the difference between the number of datapoints
n and the number of features d, worsening as n − d gets
smaller.

Empirically, we find that this effect holds even when the first
layer is not fully connected and when its weight initialization
is not isotropic - for example, in a convolutional network
trained from a Xavier initialization.
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(a) (b)

Figure 1. Whitening removes correlations between feature dimensions in a dataset. Whitening is a linear transformation of a dataset
that sets all non-zero eigenvalues of the covariance matrix to 1. ZCA whitening is a specific choice of the linear transformation that
rescales the data in the directions given by the eigenvectors of the covariance matrix, but without additional rotations or flips. (a) A toy 2d
dataset before and after ZCA whitening. Red arrows indicate the eigenvectors of the covariance matrix of the unwhitened data. (b) ZCA
whitening of CIFAR-10 images preserves spatial and chromatic structure, while equalizing the variance across all feature directions.

1.2. Second Order Optimization Harms Generalization
Similarly to Whitening

Second order optimization algorithms take advantage of
information about the curvature of the loss landscape to take
a more direct route to a minimum (Boyd & Vandenberghe,
2004; Bottou et al., 2018). There are many approaches to
second order or quasi-second order optimization (Broyden,
1970; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970; Dennis
Jr & Moré, 1977; Liu & Nocedal, 1989; Schraudolph et al.,
2007; Lin et al., 2008; Sunehag et al., 2009; Martens, 2010;
Byrd et al., 2011; Vinyals & Povey, 2011; Duchi et al., 2011;
Tieleman & Hinton, 2012; Zeiler, 2012; Hennig, 2013; Byrd
et al., 2014; Kingma & Ba, 2014; Sohl-Dickstein et al., 2014;
Desjardins et al., 2015; Martens & Grosse, 2015; Grosse
& Martens, 2016; Agarwal et al., 2016; Zhang et al., 2017;
Botev et al., 2017; Martens et al., 2018; George et al., 2018;
Lu et al., 2018; Bollapragada et al., 2018; Gupta et al., 2018;
Shazeer & Stern, 2018; Berahas et al., 2019; Anil et al.,
2019; Agarwal et al., 2019; Osawa et al., 2020), and there is
active debate over whether second order optimization harms
generalization (Wilson et al., 2017; Zhang et al., 2018; 2019;
Amari et al., 2020; Vaswani et al., 2020). The measure of
curvature used in these algorithms is often related to feature-
feature covariance matrices of the input or of intermediate
activations (Martens & Grosse, 2015). In some situations
second order optimization is equivalent to steepest descent
training on whitened data (Sohl-Dickstein, 2012; Martens
& Grosse, 2015).

The similarities between whitening and second order opti-
mization allow us to argue that pure second order optimiza-
tion also prevents information about the input distribution
from being leveraged during training, and can harm gen-
eralization (see Figs. 3, 4). Our results are strongest for
unregularized, exact second order optimizers and for the
large width limit of neural networks. We do find that when
strongly regularized and carefully tuned, second order meth-
ods can lead to superior performance (Fig. 5).

2. Data Dependence of Training Dynamics
and Test Predictions

Consider a dataset X ∈ Rd×n consisting of n independent
d-dimensional examples. X consists of samples from an
underlying data distribution to which we do not have access.
We write F for the feature-feature second moment matrix
and K for the sample-sample second moment matrix:

F = XX> ∈ Rd×d , K = X>X ∈ Rn×n . (1)

We assume that at least one of F or K is full rank. We
omit normalization factors of 1/n and 1/d in the definitions
of F and K, respectively, for notational simplicity in later
sections. As defined, K is also the Gram matrix of X .

We are interested in understanding the effect of whitening on
the performance of a trained model when evaluated on a test
set. In this section, we prove the general result that for any
model with a dense, isotropically initialized first layer, the
trained model depends on the training inputs only through
K. In Section 3, we will show that whitening, and often sec-
ond order optimization, reduce the information in K. These
two results together lead to a conclusion that whitening and
second order optimization limit generalization.

2.1. Training Dynamics Depend on the Training Data
Only Through Its Second Moments

Consider a model f with a dense first layer Z:

f(X) = gθ(Z) , Z = WX , (2)

where W denotes the first layer weights and θ denotes all
remaining parameters (see Fig. 2(a)). The structure of gθ (·)
is unrestricted. W is initialized from an isotropic distribu-
tion. We study a supervised learning problem, in which each
vector Xi corresponds to a label Yi.1 We adopt the notation

1Our results also apply to unsupervised learning, which can be
viewed as a special case of supervised learning where Yi contains
no information.



Whitening and Second Order Optimization Impair Generalization

(a) X

Z = WXW

f(X) = gθ(Z)θ

(b) Ktrain

Zttrain

θt

Ytrain

Zt+1
train

θt+1

f t+1

(c) Xtrain

Ktrain

Z0
train Z1

train Zttrain

θ0 θ1 θt

Ytrain f ttest

Ktrain×test

. . .

. . .

Figure 2. Activations and weights depend on the training data only through second moments. (a) Our model class consists of a
linear transformation Z = WX , followed by a nonlinear map gθ (Z) with parameters θ. Note that this model class includes fully
connected neural networks, among other common machine learning models. (b) Causal dependencies for a single gradient descent update.
The changes in weights, activations, and model output depend on the training data through the training sample second moment matrix,
Ktrain, and the targets, Ytrain. (c) Causal structure for the entire training trajectory. The final weights and training activations only depend
on the training data through the training sample second moment matrix Ktrain, and the targets Ytrain, while the test predictions (in purple)
also depend on the mixed second moment matrix, Ktrain×test.

Xtrain ∈ Rd×ntrain and Ytrain for the training inputs and labels,
and write the corresponding second moment matrices as
Ftrain and Ktrain. We consider models with loss L(f(X);Y )
trained by SGD. The update rules are

θt+1 = θt − η ∂L
t

∂θt
, (3a)

W t+1 = W t − η ∂L
t

∂W t
= W t − η ∂Lt

∂Zttrain
X>train , (3b)

where t denotes the current training step, η is the learning
rate, and Lt is the loss evaluated only on the minibatch used
at step t. As a result, the activations Ztrain = WXtrain evolve
as

Zt+1
train = Zttrain − η

∂Lt

∂Zttrain
Ktrain. (4)

Treating the weights, activations, and function predictions as
random variables, with distributions induced by the initial
distribution over W 0, the update rules (Eqs. 3-4) can be
represented by the causal diagram in Fig. 2(b). We can now
state one of our main results.

Theorem 2.1.1. Let f(X) be a function as in Eq. 2, with lin-
ear first layer Z = WX , and additional parameters θ. Let
W be initialized from an isotropic distribution. Further, let
f(X) be trained via gradient descent on a training dataset
Xtrain. The learned weights θt and first layer activations
Zttrain are independent of Xtrain conditioned on Ktrain and
Ytrain. In terms of mutual information I, we have

I(Zttrain, θ
t;Xtrain | Ktrain, Ytrain) = 0 ∀t. (5)

Proof. To establish this result, we note that the first layer
activation at initialization, Z0

train, is a random variable due
to random weight initialization, and only depends on Xtrain
through Ktrain:

I(Z0
train;Xtrain | Ktrain) = 0. (6)

This is a consequence of the isotropy of the initial weight
distribution, explained in detail in Appendix A. Note also
that the deeper layer weights at initialization are independent
of Xtrain:

I(θ0;Xtrain) = 0. (7)

Combining these with Eqs. 3-4, the causal diagram for all
of training is given by (the black part of) Fig. 2(c). The con-
ditional independence of Eq. 5 follows from this diagram.

An alternate proof, by induction rather than using the causal
diagram, is presented in Appendix B.

2.2. Test Set Predictions Depend on Train and Test
Inputs Only Through Their Second Moments

Let Xtest ∈ Rd×ntest and Ytest be the test data. The test pre-
dictions ftest = f(Xtest) are determined by Zttest = W tXtest
and θt. To identify sources of data dependence, we can
write the evolution of the test set predictions Ztest over the
course of training in a manner similar to Eq. 4:

Zt+1
test = Zttest − η

∂Lt

∂Zttrain
Ktrain×test, (8)
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where Ktrain×test = X>trainXtest ∈ Rntrain×ntest . The initial first
layer activations are independent of the training data, and
depend on Xtest only through Ktest:

I(Z0
test;X | Ktest) = 0, (9)

whereX is the combined training and test data. If we denote
the second moment matrix over this combined set by K,
then the evolution of the test predictions is described by the
(purple part of the) causal diagram in Fig. 2(c), from which
we conclude the following.

Theorem 2.2.1. For a function f(X) as in Eq. 2, with first-
layer weights initialized isotropically, trained with the up-
date rules Eqs. 3-4, test predictions depend on the training
data only through K and Ytrain. This is summarized in the
mutual information statement

I(ftest;X | K,Ytrain) = 0 . (10)

3. Whitening, Second Order Optimization,
and Generalization

In Section 2, we established that trained models with a
fully connected, isotropically initialized first layer depend
on the input data only through K. In this section we show
that by removing information from F , whitening removes
information in K that could otherwise be used to generalize.
In the extreme case n ≤ d, K is trivialized, and we show
that any generalization ability in a model trained in this
regime relies solely on linear interpolation between inputs.
We offer a detailed theoretical study of these effects in a
linear model, and we use this example to make a connection
with unregularized second order optimization.

We begin with the definition of whitening.

Definition 3.0.1 (Whitening). Any linear transformation
M s.t. X̂ = MX maps the eigenspectrum of F to ones and
zeros, with the multiplicity of ones given by rank(F ).

It is natural to consider the two cases n ≤ d and n ≥ d
(when n = d both cases apply).

n ≥ d : F̂ = Id×d , K̂ =

d∑
i=1

ûiû
>
i .

n ≤ d : F̂ =

n∑
j=1

v̂j v̂
>
j , K̂ = In×n.

(11)

Here, F̂ and K̂ denote the whitened second moment matri-
ces, and the vectors ûi and v̂j are orthogonal unit vectors of
dimension n and d respectively. Eq. 11 follows directly from
the fact that X>X and XX> share nonzero eigenvalues.

3.1. Whitening Harms Generalization

3.1.1. FULL DATA WHITENING OF A HIGH DIMENSIONAL
DATASET

We first consider a simplified setup: computing the whiten-
ing transform using the combined training and test data.
We refer to this as ‘full-whitening’. We consider the large
feature count (d ≥ n) regime.

Corollary 3.1.0.1. When d ≥ n, and when the whitening
transform is computed on the full input datasetX (including
both train and test points), then the whitened input data X̂
provides no information about the predictions ftest of the
model on test points. That is,

I(ftest; X̂ | Ytrain) = 0 . (12)

Proof. By Eq. 11 we have K̂ = I . Since K̂ is now a con-
stant rather than a random variable, Eq. 10 simplifies directly
to Eq. 12.

To further clarify this prediction, note that Eq. 12 implies
I(ftest;Ytest | Ytrain) = 0 for fully-whitened data because
the true test labels are solely determined by Xtest. Therefore
knowing the model prediction on a test point in this setting
gives no information about the true test label.

3.1.2. TRAINING DATA WHITENING OF A HIGH
DIMENSIONAL DATASET

In practice, we are more interested in the common setting of
computing a whitening transform based only on the training
data. We call data whitened in this way ‘train-whitened’.
As mentioned above, the test predictions of a model are
entirely determined by the first layer activations Zttest and
the deeper layer weights θt. From Theorem 2.1.1 we see
that the learned weights θt depend on the training data only
through Ktrain, and are thus independent of the training data
for whitened data:

I(θt; X̂train | Ytrain) = 0 . (13)

It is worth emphasizing this point because in most realistic
networks the majority of model parameters are contained in
these deeper weights θt.

Despite the deep layer weights, θt, being unable to extract
information from the training distribution, the model is not
entirely incapable of generalizing to test inputs. This is
because the test activations Ztest will interpolate between
training examples, using the information in K̂train×test. More
precisely,

Zttest = Z0
test +

(
Zttrain − Z0

train

)
K̂train×test. (14)

This interpolation in Z is the only way in which structure
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in the inputs Xtrain can drive generalization. This should
be contrasted with the case of full-whitening, discussed
above, where K̂train×test = 0. We therefore predict that when
whitening is performed only on the training data, there will
be some generalization, but it will be much more limited
than can be achieved without whitening.

3.1.3. FULL DATA WHITENING OF LOWER DIMENSIONAL
DATASETS

When the dataset size is larger than the data dimensionality,
whitening continues to remove information which could
otherwise be used for generalization, but it no longer re-
moves all of the information in the training inputs. In this
regime, by mapping the feature-feature second moment ma-
trix F to the identity matrix, whitening also reduces the
degrees of freedom in the sample-sample second moment
matrix K. Because information about the training dataset is
available to the model only through K (Fig. 2(c)), reducing
the degrees of freedom of K also reduces the information
available to the model about the training inputs.

Theorem 3.1.1. Consider a dataset X ∈ Rd×n, with n >
d, and where all submatrices formed from d columns of
X are full rank (this condition holds in the generic case).
Consider the same model class and training procedure as
in Theorem 2.1.1. Any dataset X can be compressed to
c ≤ nd scalar values without losing any of the information
that determines the distribution over the test set predictions
ftest of the trained model. When models are trained on
unwhitened data, then c = min

(
nd− (d2−d)/2, (n

2+n)/2
)
.

However, when models are trained on whitened data, then
the whitened dataset can be further compressed to ĉ ≤
(n− d)d scalars.

Data whitening therefore reduces the amount of information
about the input data that can be used to generate model
predictions. See Appendix C for a proof of Theorem 3.1.1.

3.1.4. SUMMARY OF PREDICTIONS

In a model with a fully connected first layer, with first layer
weights initialized from an isotropic distribution, whitening
the data before training with SGD is expected to result in
reduced generalization ability compared to the same model
trained on unwhitened data. The severity of the effect varies
with the relationship of n to d.

Full data whitening when n < d is a limiting case in
which generalization is expected to be completely destroyed.
When n ≤ d and the data is train-whitened, generalization
is forced to rely solely on interpolation and is expected
to be poor. When n > d and the data is either fully or
train-whitened, model predictions still depend on strictly
less information than would be available had the data not
been whitened, and once again generalization is expected to

suffer. For n� d, the effect of whitening on generalization
is expected to be minimal.

As we discuss in Section 3.3, these same predictions apply
to second order optimization of linear models and of over-
parameterized networks (with d corresponding the number
of parameters rather than the number of input dimensions).

3.2. Whitening in Linear Least Squares Models

Due to the fact that they are exactly solvable, linear models
f = WX provide intuition for why whitening can be harm-
ful as we proved in the last section. We discuss this intuition
briefly here. A detailed exposition is in Appendix D.

Consider the low dimensional case d < n, where the loss
has a unique global optimum W ?. The model predictions at
this optimum are invariant to whitening. However, whiten-
ing has an effect on the dynamics of model predictions over
the course of training. When, as is typical in real-world
problems, training is performed with early stopping based
on validation loss, predictions differ considerably for mod-
els trained on whitened and unwhitened data. These benefits
from early stopping can be related to benefits from weight
regularization (Yao et al., 2007).

We focus on the continuous-time picture because it is the
clearest, but similar statements can be made for gradient de-
scent. Recall that vi are the eigenvectors of Ftrain. Denoting
the corresponding eigenvalues by λi, the dynamics of W
under gradient flow for a mean squared loss are given by the
decomposition

W (t) =

d∑
i=1

viwi(t), where (15)

wi(t) = e−tλiwi(0) + (1− e−λit)w?i .

Eq. 15 shows that larger principal components of the data
are learned faster than smaller ones. Whitening destroys this
hierarchy by setting λi = 1∀i. If, for example, the data has
a simplicity bias (large principal components correspond to
signal and small ones correspond to noise), whitening forces
the learning algorithm to fit signal and noise directions
simultaneously, which results in poorer generalization at
finite times during training than would be observed without
whitening.

3.3. Newton’s Method is Equivalent to Training on
Whitened Data for Linear Least Squares Models
and for Overparameterized Neural Networks

Though in practice unregularized Newton’s method is rarely
used as an optimization algorithm due to computational
complexity, a poorly conditioned Hessian, or poor gener-
alization performance, it serves as the basis of and as a
limiting case for most second order methods. Furthermore,
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Figure 3. Whitening and second order optimization reduce or prevent generalization. (a)-(c) Models trained on both full-whitened
data (blue; panes a,b) and train-whitened data (green; panes a-c) consistently underperform models trained by gradient descent on
unwhitened data (purple; all panes). In (a), Newton’s method on unwhitened data (pink circles) behaves identically to gradient descent on
whitened data. (d) Second order optimization in a convolutional network results in poorer generalization properties than steepest descent.
Points plotted correspond to the learning rate and training step with the best validation loss for each method; data for this experiment was
unwhitened. CIFAR-10 is used for all experiments (see Appendix F for experiments on MNIST). In (c) and (d) we use a cross entropy
loss (see Appendix G for details).

in the case of linear least squares models or wide neural
networks, it is equivalent to Gauss-Newton descent. In this
context, by relating Newton’s method to whitening in linear
models and wide networks, we are able to give an explana-
tion for why unregularized second order methods have poor
generalization performance. We find that our conclusions
also hold empirically in a deep CNN (see Figs. 3, 4).

3.3.1. LINEAR LEAST SQUARES

We compare a pure Newton update step on unwhitened data
with a gradient descent update step on whitened data in a
linear least squares model. The Newton update step uses the
Hessian H of the model as a preconditioner for the gradient:

W t+1
Newton = W t

Newton − ηH−1
∂Lt

∂W t
. (16)

We allow for a general step size η, with η = 1 giving the
canonical Newton update. When H is rank deficient, we
take H−1 to be a pseudoinverse. For a linear model with
mean squared error (MSE) loss, the Hessian equals the
second moment matrix Ftrain, and the model output evolves

as

f t+1
Newton(X) = f tNewton(X)− η ∂Lt

∂f tNewton
X>trainF

−1
trainX .

(17)

We can compare this with the evolution of a linear model
f̂(X) = ŴMX trained via gradient descent on whitened
data X̂ = MX with a mean squared loss:

f̂ t+1(X) = f̂ t(X)− η ∂L
t

∂f̂ t
X>trainM

>MX. (18)

Noting that M>M = F−1train, Eqs. 17 and 18 give identical
update rules. Thus if both functions are initialized to have
the same output, Newton updates give the same predictions
as gradient descent on whitened data. While this correspon-
dence is known in the literature, we can now use it to say
something further, namely that by applying the argument in
Section 3.1, we expect Newton’s method to produce linear
models that generalize poorly. This result assumes a mean
squared loss, but we find experimentally that generalization
is also harmed with a cross entropy loss in Fig. 3(d).
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3.3.2. OVERPARAMETERIZED NEURAL NETWORKS

Many neural network architectures, including fully con-
nected and convolutional architectures, behave as linear
models in their parameters throughout training in the large
width limit (Lee et al., 2019). The large width limit occurs
when the number of units or channels in intermediate net-
work layers grows towards infinity. Because of this, second
order optimization harms wide neural networks in the same
way it harms linear models. See Appendix E for details.

In the wide network limit, d corresponds to the number of
features rather than the number of input dimensions, and
the number of features is equal to the number of parame-
ters. Second order optimization is therefore predicted to
be harmful for much larger dataset sizes when optimizing
overparameterized neural networks.

4. Experiments
4.1. Model and Task Descriptions

Detailed methods are given in Appendix G.

The kernel of all our experiments is as follows: From a
dataset, we draw a number of subsets, tiling a range of
dataset sizes. Each subset is divided into train, test, and val-
idation examples, and three copies of the subset are made,
two of which are whitened. In one case the whitening trans-
form is computed using only the training examples (train-
whitening), and in the other using the training, test, and
validation examples (full-whitening). Note that the test set
size must be reduced in order to run experiments on small
datasets, since the test set is considered part of the dataset
for full whitening. Models are trained from random initial-
ization on each of the three copies of the data using the same
training algorithm and stopping criterion. Test errors and
the number of training epochs are recorded.

We emphasize that in any single experiment in which whiten-
ing is performed, the same whitening transform is always
applied to train, test, and validation data. Experiments differ
in the specific subset of the data (train only or train + test +
validation) on which the whitening transform is computed.

Linear models and MLPs. To experimentally demon-
strate theoretical results, we study CIFAR-10 classification
in linear models and CIFAR-10 and MNIST classification in
three-layer, fully connected multilayer perceptrons (MLPs).
Linear models were trained by optimizing mean squared er-
ror loss, where the model outputs were a linear map between
the 512-dimensional outputs of a four layer convolutional
network at random initialization on CIFAR-10, and their 10-
dimensional one-hot labels. This setup is in part motivated
by analogy to training the last linear readout layer of a deep
neural network. We solved the gradient flow equation for

the time at which the MSE on the validation set is lowest,
and report the test error at that time. The experiment was
repeated using continuous-time Newton’s method, consist-
ing of continuous-time gradient descent using an inverse
Hessian preconditioner. MLPs were trained using SGD with
constant step size until the training accuracy reaches a fixed
cutoff threshold, at which point test accuracy was measured.

Convolutional networks. Since our theoretical results on
the effect of whitening apply only to models with a fully
connected and isotropically initialized first layer, we test
whether the same qualitative behavior is observed in CNNs
trained from a Xavier initialization. We chose the popu-
lar wide residual (WRN) architecture (Zagoruyko & Ko-
modakis, 2016), trained on CIFAR-10. Training was per-
formed using full batch gradient descent with a cosine learn-
ing rate schedule for a fixed number of epochs. Full batch
training was used to remove experimental confounds from
choosing minibatch sizes at different dataset sizes. A vali-
dation set was split from the CIFAR-10 training set. Test
error corresponding to the parameter values with the lowest
validation error was reported.

We also trained a smaller CNN (a ResNet-50 convolutional
block followed by an average pooling layer and a dense
linear layer) on unwhitened data with full batch gradient
descent and with the Gauss-Newton method (with and with-
out a scaled identity regularizer) to compare their respective
generalization performances. A grid search was performed
over learning rate, and step sizes were chosen using a back-
off line search initialized at that learning rate. Test and
training losses corresponding to the best achieved validation
loss were reported. Note that this experiment is relatively
large scale; because we perform full second order optimiza-
tion to avoid confounds due to choosing a quasi-Newton
approximation, iterations are cubic in the number of model
parameters.

4.2. Experimental Results

Whitening and second order optimization impair gen-
eralization. In agreement with theory, in Figs. 3(a) and
(b), linear models and MLPs trained on fully whitened data
generalize at chance levels when the size of the dataset is
smaller than the dimensionality of the data, and models
trained on train-whitened data perform strictly worse than
those trained on unwhitened data. Furthermore, the gen-
eralization ability of these models recovers only gradually
as the dataset grows. On CIFAR-10, a 20% gap in perfor-
mance between MLPs trained on whitened and unwhitened
data persists even at the largest dataset size, suggesting that
whitening can remain detrimental even when the number
of training examples exceeds the number of features by an
order of magnitude.
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Figure 4. Models trained on whitened data or with second order optimizers converge faster. (a) Linear models trained on whitened
data optimize faster, but their best test accuracy was always worse. Data plotted here is for a training set of size 2560. Similar results for
smaller training set sizes are given in Fig. App.1. (b) Whitening the data significantly lowers the number of epochs needed to train an MLP
to a fixed cutoff in training accuracy, when the learning rate and all other training parameters are kept constant. Discrete jumps in the plot
data correspond to points at which the (constant) learning rate was changed. The dashed vertical line indicates the input dimensionality of
the data. See Appendix G for details. (c) Second order optimization accelerates training on unwhitened data in a convolutional network,
compared to gradient descent. Data shown is for a training set of size 10240. Stars correspond to values of the validation loss at which
test and training losses are plotted in Fig. 3(d).

In Fig. 3(c) we see a generalization gap in the high dimen-
sional regime between WRNs trained on train-whitened
versus unwhitened data, which persists when the size of the
dataset grows beyond its dimensionality. This is despite the
fact that the convolutional input layer violates the theoreti-
cal requirement of a fully connected first layer, and that we
used a Xavier initialization scheme, therefore also violat-
ing the theoretical requirement for an isotropic first-layer
weight initialization. We note that these results are consis-
tent with the whitening experiments in the original WRN
paper (Zagoruyko & Komodakis, 2016). Generalization
ability begins to recover before the size of the training set
reaches its input dimensionality, suggesting that the effect
of whitening can be countered by engineering knowledge
of the data statistics into the model architecture.

In Fig. 3(a), we demonstrate experimentally the correspon-
dence we proved in Section 3.3. In Fig. 3(d), we observe
that pure second order optimization similarly harms gener-
alization even in a convolutional network. Despite training
to lower values of the training loss, a CNN trained with an
unregularized Gauss-Newton method exhibits higher test
loss (at the training step with best validation loss) than the
same model trained with gradient descent.

Whitening and second order optimization accelerate
training. In Figs. 4(a) and App.1, linear models trained
on whitened data or with a second order optimizer converge
to their final loss faster than models trained on unwhitened
data, but their best test performance is always worse. In
Fig. 4(b), MLPs trained on whitened CIFAR-10 data take
fewer epochs to reach the same training accuracy cutoff than

models trained on unwhitened data, except at very small
(< 50) dataset sizes. The effect is stark at large dataset sizes,
where the gap in the number of training epochs is two orders
of magnitude large. Second order optimization similarly
speeds up training in a convolutional network. In Fig. 4(c),
unregularized Gauss-Newton descent achieves its best vali-
dation loss two orders of magnitude faster (as measured in
the number of training steps) than gradient descent.

Regularized second order optimization can simultane-
ously accelerate training and improve generalization.
In Fig. 5 we perform full batch second order optimization
with preconditioner ((1− λ)B + λI)

−1, where λ ∈ [0, 1]
is a regularization coefficient, and B−1 is the unregularized
Gauss-Newton preconditioner. λ = 0 corresponds to unreg-
ularized Gauss-Newton descent, while λ = 1 corresponds
to full batch steepest descent. At all values of λ, regularized
Gauss-Newton achieves its lowest validation loss in fewer
training steps than steepest descent (Fig. 5(b)). For some
values of λ, the regularized Gauss-Newton method addition-
ally produces lower test loss values than steepest descent
(Fig. 5(a)).

Writing the preconditioner in terms of the eigenvectors, êi,
and eigenvalues, µi, of B,

((1− λ)B + λI)
−1

=
∑
i

1

(1− λ)µi + λ
êiê

T
i , (19)

we see that regularized Gauss-Newton optimization acts
similarly to unregularized Gauss-Newton in the subspace
spanned by eigenvectors with eigenvalues larger than λ/(1−
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Figure 5. Regularized second order methods can train faster than gradient descent, with minimal or even positive impact on
generalization. Models were trained on a size 10240 subset of CIFAR-10 by minimizing a cross entropy loss. Error bars indicate twice
the standard error in the mean. (a) Test loss as a function of regularizer strength. At intermediate values of λ, the second order optimizer
produces lower values of the test loss than gradient descent. Test loss is measured at the training step corresponding to the best validation
performance for both algorithms. See text for further discussion. (b) At all values of λ < 1, the second order optimizer requires fewer
training steps to achieve its best validation performance.

λ), and similarly to steepest descent in the subspace spanned
by eigenvectors with eigenvalues smaller than λ/(1 − λ).
We therefore suggest that regularized Gauss-Newton should
be viewed as discarding information in the large-eigenvector
subspace, though our theory does not formally address this
case. As λ increases from zero to one, the ratio λ/(1− λ)
increases from zero to infinity. Regularized Gauss-Newton
method therefore has access to information about the relative
magnitudes of more and more of the principal components
in the data as λ grows larger. We interpret the improved test
performance with regularized Gauss-Newton at about λ =
0.5 in Fig. 5(a) as suggesting that this loss of information
within the leading subspace is actually beneficial for the
model on this dataset, likely due to aspects of the model’s
inductive bias which are actively harmful on this task.

5. Discussion
Are whitening and second order optimization a good
idea? Our work suggests that whitening and second order
optimization come with costs – a likely reduction in the
best achievable generalization. However, both can drasti-
cally decrease training time – an effect we also see in our
experiments. As compute is often a limiting factor on per-
formance (Shallue et al., 2018), there are many scenarios
where faster training may be worth the reduction in gener-
alization. Additionally, the negative effects may be largely
resolved if the whitening transform or second order precon-
ditioner are regularized, as is often done in practice (Grosse
& Martens, 2016). We observe benefits from regularized
second order optimization in Fig. 5, and similar results have
been observed for whitening (Lee et al., 2020).

Directions for future work. The practice of whitening
has, in the machine learning community, largely been re-
placed by batch normalization, for which it served as in-

spiration (Ioffe & Szegedy, 2015). Studying connections
between whitening and batch normalization, and especially
understanding the degree to which batch normalization de-
stroys information about the data distribution, may be par-
ticularly fruitful. Indeed, some results already exist in this
direction (Huang et al., 2018).

Most second order optimization algorithms involve regular-
ization, structured approximations to the Hessian, and often
non-stationary online approximations to curvature. Under-
standing the implications of our theory results for practical
second order optimization algorithms should prove to be an
extremely fruitful direction for future work. It is our suspi-
cion that more mild loss of information about the training
inputs will occur for many of these algorithms. In addition,
it would be interesting to understand how to relax the large
width requirement in our theoretical analysis.

Recent work analyzes deep neural networks through the lens
of information theory (Banerjee, 2006; Tishby & Zaslavsky,
2015; Alemi et al., 2016; Bassily et al., 2017; Shwartz-Ziv
& Tishby, 2017; Achille & Soatto, 2017; Kolchinsky et al.,
2018; Amjad & Geiger, 2018; Achille & Soatto, 2019; Saxe
et al., 2019; Schwartz-Ziv & Alemi, 2019), often computing
measures of mutual information similar to those we discuss.
Our result that the only usable information in a dataset is
contained in its sample-sample second moment matrix K
may inform or constrain this type of analysis.
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