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Abstract
Unrolled computation graphs arise in many sce-
narios, including training RNNs, tuning hyperpa-
rameters through unrolled optimization, and train-
ing learned optimizers. Current approaches to op-
timizing parameters in such computation graphs
suffer from high variance gradients, bias, slow
updates, or large memory usage. We introduce
a method called Persistent Evolution Strategies
(PES), which divides the computation graph into a
series of truncated unrolls, and performs an evolu-
tion strategies-based update step after each unroll.
PES eliminates bias from these truncations by
accumulating correction terms over the entire se-
quence of unrolls. PES allows for rapid parameter
updates, has low memory usage, is unbiased, and
has reasonable variance characteristics. We ex-
perimentally demonstrate the advantages of PES
compared to several other methods for gradient
estimation on synthetic tasks, and show its appli-
cability to training learned optimizers and tuning
hyperparameters.

1. Introduction
Unrolled computation graphs arise in many scenarios in ma-
chine learning, including when training RNNs (Williams &
Peng, 1990), tuning hyperparameters through unrolled com-
putation graphs (Baydin et al., 2017; Domke, 2012; Maclau-
rin et al., 2015; Wu et al., 2018; Franceschi et al., 2017;
Donini et al., 2019; Franceschi et al., 2018; Liu et al., 2018;
Shaban et al., 2019), and training learned optimizers (Li &
Malik, 2016; 2017; Andrychowicz et al., 2016; Wichrowska
et al., 2017; Metz et al., 2018; 2019; 2020; met). Many
methods exist for computing gradients in such computation
graphs, including those based on reverse-mode (Williams &
Peng, 1990; Tallec & Ollivier, 2017b; Aicher et al., 2019;
Grefenstette et al., 2019) and forward-mode (Williams &
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Zipser, 1989; Tallec & Ollivier, 2017a; Mujika et al., 2018;
Benzing et al., 2019; Marschall et al., 2019; Menick et al.,
2020) gradient accumulation. These methods have different
tradeoffs with respect to compute, memory, and gradient
variance.

Backpropagation through time involves backpropagating
through a full unrolled sequence (e.g. of length T ) for each
parameter update. Unrolling a model over full sequences
faces several difficulties: 1) the memory cost scales linearly
with the unroll length, because we need to store intermediate
activations for backprop (though this can be reduced at the
cost of additional compute (Dauvergne & Hascoët, 2006;
Chen et al., 2016)); 2) we only perform a single parame-
ter update after each full unroll, which is computationally
expensive and introduces large latency between parameter
updates; 3) long unrolls can lead to exploding or vanishing
gradients (Pascanu et al., 2013), and chaotic and poorly
conditioned loss landscapes (Pearlmutter, 1996; Maclaurin
et al., 2015; Parmas et al., 2018; Metz et al., 2019). This is
especially true in meta-learning (Metz et al., 2019).

The most commonly-used technique to alleviate these issues
is truncated backprop through time (TBPTT) (Werbos, 1990;
Tallec & Ollivier, 2017b), which splits the full sequence into
shorter sub-sequences and performs a backprop update after
processing each sub-sequence. However, a critical drawback
of TBPTT is that it yields biased gradients, that can severely
impact training (e.g. only taking into account short-term
dependencies). To address the poorly conditioned loss sur-
faces that often result from sequential computation, it can
additionally be useful to minimize a smoothed version of
the loss. Evolution strategies (ES) is a family of algorithms
that estimate gradients using stochastic finite-differences,
and which provide an unbiased estimate of the gradient of
the objective smoothed with a Gaussian. ES works well on
pathological meta-optimization loss surfaces (Metz et al.,
2019); however, due to the computational expense of run-
ning full unrolls, ES can only practically be applied in a
truncated fashion, introducing bias.

An alternative to BPTT is real-time recurrent learn-
ing (RTRL), which performs forward gradient accumula-
tion (Williams & Zipser, 1989). RTRL enables online pa-
rameter updates (after each partial unroll) and does not suf-
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fer from truncation bias; however, its memory and compute
requirements render it intractable for large-scale problems.
Many approximations to RTRL have been proposed (Tallec
& Ollivier, 2017a; Mujika et al., 2018; Benzing et al., 2019),
but most have high variance, are complicated to implement,
or are only applicable to a restricted class of models.

We introduce an approach to unbiased gradient estimation
using short, truncated unrolls, called Persistent Evolution
Strategies (PES). In PES, we accumulate the perturbations
experienced by the outer parameters in each partial unroll—
rather than starting perturbations from scratch as in vanilla
ES—which yields an unbiased estimate of the gradient even
when using truncated sequences. PES is simple to imple-
ment, and because it is an evolution strategies-based ap-
proach, it retains desirable characteristics such as being
trivially parallelizable, memory efficient, and broadly ap-
plicable to many different types of problems, including to
non-differentiable target functions.

Contributions

• We introduce a method called Persistent Evolution
Strategies (PES) to obtain unbiased gradient estimates
for the parameters of an unrolled system from partial
unrolls of the system.

• We prove that PES is an unbiased gradient estimate
for a smoothed version of the loss, and an unbiased
estimate of the true gradient for quadratic losses. We
provide theoretical and empirical analyses of its vari-
ance.

• We demonstrate the applicability of PES in several
illustrative scenarios: 1) we apply PES to tune hyper-
parameters including learning rates and momentums,
by estimating hypergradients through partial unrolls of
optimization algorithms; 2) we use PES to meta-train
a learned optimizer; 3) we use PES to learn policy
parameters for a continuous control task.

2. Background
Problem Setup. We consider unrolled computation
graphs with state st updated based on parameters θ via
the recurrence:

st = f(st−1,xt;θ) (1)

where xt is an optional input at step t. At each step t
we define a loss Lt(st;θ), and we consider the objective
function (for optimizing the parameters θ) to be the sum of
per-timestep losses:

L(θ) =

T∑
t=1

Lt(st;θ) (2)

This setup is quite general, even encompassing situations
where we want to consider only a final loss at step T , which
can be expressed using a telescoping sum of loss differ-
ences (Beatson & Adams, 2019). 1 Instances of this problem
setup include training RNNs, training learned optimizers,
learning policies for control tasks and unrolled optimiza-
tion, as illustrated in Figure 1. An overview of notation is
presented in Appendix A.

Unrolled Optimization. Optimization algorithms can be
unrolled to yield computation graphs, in which the nodes
are the model parameters at successive optimization steps.
Estimating gradients through unrolled optimization has
been used to tune hyperparameters (Domke, 2012; Maclau-
rin et al., 2015; Baydin et al., 2017; Donini et al., 2019;
Franceschi et al., 2017) and train learned optimizers (Li &
Malik, 2016; 2017; Andrychowicz et al., 2016; Wichrowska
et al., 2017; Metz et al., 2019; 2020; met; Metz et al., 2018).

Truncation Bias. Truncation, or short horizon, bias poses
a major challenge when unrolled optimization is decom-
posed into a sequence of short sequential unrolls of length
K � T . These challenges have been demonstrated in
gradient-based hyperparameter optimization (Wu et al.,
2018) and in the training of learned optimizers (Metz et al.,
2019). Approaches to mitigating short horizon bias are an
area of active research (Micaelli & Storkey, 2020).

Smoothing. Unrolling optimization for many steps can
lead to pathological meta-loss surfaces that exhibit near-
discontinuities and chaotic structure (Parmas et al., 2018;
Metz et al., 2019). Optimization on such non-smooth land-
scapes fails due to exploding gradients or gets stuck in
poor local minima. One effective method to address these
pathologies is to smooth the meta-loss surface, e.g. descend
the Gaussian-blurred objective L(θ) = Eθ̃∼N (θ,σ2I)[L(θ̃)]
(Staines & Barber, 2012; Metz et al., 2019). Conveniently,
ES provides an unbiased estimate of the gradient of this
smoothed objective. However, the ES estimate remains
biased when computed on truncations.

Evolution Strategies. Evolution Strategies (ES) (Rechen-
berg, 1973; Nesterov & Spokoiny, 2017) refers to a fam-
ily of methods for estimating a descent direction for arbi-
trary black-box functions using stochastic finite differences.
Since ES only requires function evaluations and not gradi-
ents, it is a zeroth-order optimization method. The vanilla
ES estimator is defined as:

ĝES =
1

Nσ2

N∑
i=1

ε(i)L(θ + ε(i)) (3)

1For more details on telescoping sums, see Appendix D.
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Figure 1. An unrolled computation graph, illustrating how both RNNs and unrolled optimization can be described using Equations 1
and 2. In RNN training, st is the hidden state of the RNN, Lt(·) is the prediction cross entropy at each timestep, θ refers to the RNN
parameters, and f corresponds to the forward pass of the RNN, that takes an input and the previous hidden state (st) and returns a new
hidden state (st+1). In unrolled optimization, st contains the parameters of the base model and optimizer accumulators (e.g. momentum),
Lt(·) is a meta-objective such as validation performance, θ contains hyperparameters (e.g. the learning rate, weight decay, etc.) that
govern the optimization, and f corresponds to the update step of an optimization algorithm such as SGD, RMSprop (Tieleman & Hinton,
2012), or Adam (Kingma & Ba, 2015).

where ε(i) ∼ N (0, σ2I). ES is trivially parallelizable, and
thus highly scalable—it has seen renewed interest in re-
cent years as a viable optimization algorithm for reinforce-
ment learning among other black-box problems (Salimans
et al., 2017; Mania et al., 2018; Ha & Schmidhuber, 2018;
Houthooft et al., 2018; Cui et al., 2018; Ha, 2020). The esti-
mator in Eq. 3 has high variance, and thus many variance
reduction techniques have been proposed, including control
variates (Tang et al., 2020) and antithetic sampling (Owen,
2013). Antithetic sampling involves using pairs of func-
tion evaluations θ + ε and θ − ε, yielding the following
estimator:

ĝES-A =
1

Nσ2

N/2∑
i=1

ε(i)(L(θ + ε(i))− L(θ − ε(i)))

where N is even, and ε(i) ∼ N (0, σ2I). Several meth-
ods have been proposed to improve the search space for
ES, including covariance matrix adaptation ES (CMA-
ES) (Hansen, 2016) and Guided ES (Maheswaranathan et al.,
2018). A limitation of ES is that applying it to full unrolls is
often computationally costly (as we only make one update
to the system parameters every full unroll), while applying
ES to partial unrolls suffers from truncation bias similarly
to TBPTT. In contrast, PES allows computation of gradients
from partial updates without incurring truncation bias.

Hysteresis. Any approach that performs online parameter
updates, including Real Time Recurrent Learning (RTRL)
and its approximations, will suffer from hysteresis, which
refers to the dependence of the state of a system on its his-
tory. This is due to the fact that if we update θ, then any ac-
cumulated state (e.g. in the case of RTRL, the accumulated
Jacobian dst

dθ ) will be incorrect because it is computed from
previous values of θ. To eliminate hysteresis completely,
one would need to run the full sequence for a given prob-
lem for each parameter update, which is often prohibitively
expensive. In practice, hysteresis can be mitigated by using
sufficiently small learning rates; this introduces a tradeoff

between training stability and training speed.

3. Related Work
In this section, we discuss additional related work on online
learning algorithms, and on one special class of unrolled
optimization problems: hyperparameter optimization (HO).
Table 1 compares several approaches to gradient estimation
in unrolled computation graphs, with respect to compute,
memory, parallelization, unbiasedness, and smoothing. In
addition, Table 3 in Appendix B provides a comparison of
many of the HO algorithms mentioned in this section.

RTRL. Real-time recurrent learning (RTRL) performs
forward-mode gradient accumulation: it does not require
storage of past states, but requires matrix-matrix products
and storage of a matrix Gt of size dim(st)×dim(θ). When
dim(θ) is large, as in RNN training, the cost of storing
Gt and the cost of computing the required matrix-matrix
products is prohibitive. Several approaches propose effi-
cient variants of RTRL based on cheaper, noisy approxi-
mations of Gt. Unbiased Online Recurrent Optimization
(UORO) (Tallec & Ollivier, 2017a) uses an unbiased rank-1
approximation to the full matrix; Kronecker-Factored RTRL
(KF-RTRL) (Mujika et al., 2018) uses a Kronecker prod-
uct decomposition to approximate the RTRL update for a
class of RNNs; and Optimal Kronecker Sum Approximation
(OK) (Benzing et al., 2019) uses a similar approximation
but with the lowest possible variance among methods within
an approximation family. Cooijmans & Martens (2019) also
draw a connection between UORO and REINFORCE ap-
plied to estimate the gradient of an RNN by injecting noise
into the hidden states. In contrast, PES injects noise into the
parameters.

Hyperparameter Optimization (HO) There are three
main approaches that can be categorized based on the types
of problem-specific information used: 1) black-box ap-
proaches that do not consider the internal structure of the
objective L; 2) gray-box approaches that make use of the
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Table 1. Comparison of approaches for learning parameters in unrolled computation graphs. S is the size of the system state (e.g.
the RNN hidden state dimension, or in the case of hyperparameter optimization the inner-problem’s weight dimensionality and potentially
the optimizer state; P is the dimensionality of θ; T is the total number of steps in a sequence/unroll; K is the truncation length; and N is
the number of samples (also called particles) used for the reparameterization gradient and in ES-based algorithms; F and B are the costs
of a forward and backward pass, respectively; terms in purple denote computation/memory that can be split across parallel workers. See
Appendix J for details.

Method Compute Memory Parallel Unbiased Optimize
Non-Diff. Smoothed

BPTT (Rumelhart et al., 1985) T (F +B) TS 7 3 7 7
TBPTT (Williams & Peng, 1990) K(F +B) KS 7 7 7 7
ARTBP (Tallec & Ollivier, 2017b) K(F +B) KS 7 3 7 7
RTRL (Williams & Zipser, 1989) PS2 + S(F +B) SP + S2 7 3 7 7
UORO (Tallec & Ollivier, 2017a) F +B + S2 + P S + P 7 3 7 7

Reparam. (Metz et al., 2019) NT (F +B) NTS 3 3 7 3
ES (Rechenberg, 1973) NTF NS 3 3 3 3

Trunc. ES (Metz et al., 2019) NKF NS 3 7 3 3

PES (Ours) NKF N(S + P ) 3 3 3 3
PES + Analytic (Ours) NKF +K(F +B) N(S + P ) + (K + 1)S 3 3 7 3

fact that the objective is the result of an iterative optimiza-
tion procedure (e.g. by using the validation performance
of a model); and 3) gradient-based approaches that require
access to the exact functional form of the objective L, and
that require the objective to be differentiable in the hyper-
parameters. Black-box approaches include grid search, ran-
dom search (Bergstra & Bengio, 2012), Bayesian optimiza-
tion (BO) (Snoek et al., 2012), and ES (Salimans et al.,
2017; Metz et al., 2019). Gray-box approaches include
Freeze-Thaw BO (Swersky et al., 2014), successive halv-
ing (Jamieson & Talwalkar, 2016), Hyperband (Li et al.,
2017), Population-Based Training (Jaderberg et al., 2017),
and hypernetwork-based approaches to HO (Lorraine &
Duvenaud, 2018; MacKay et al., 2019).

A key advantage of gradient-based approaches is that they
scale to high-dimensional hyperparameters (e.g. millions of
hyperparameters) (Lorraine et al., 2020). Maclaurin et al.
(2015) differentiate through unrolled optimization to tune
many hyperparameters including learning rates and weight
decay coefficients. These methods can perform poorly, how-
ever, when the underlying meta-loss is not smooth. Addi-
tionally they cannot optimize non-differentiable objectives,
for example accuracy rather than loss.

PES can be considered a gray-box approach as it does not
require the objective to be differentiable like gradient-based
approaches, but it does take into account the iterative opti-
mization of the inner problem.

4. Persistent Evolution Strategies
In this section, we introduce a method to obtain unbiased
gradient estimates from partial unrolls of a computation
graph, called Persistent Evolution Strategies (PES). First,
we derive the PES gradient estimator, prove that it is unbi-

ased, and present a practical algorithm (Algorithm 2). Then
we discuss the variance characteristics of PES, both theoret-
ically and empirically.

Derivation.2 Unrolled computation graphs (as illustrated
in Figure 1) depend on shared parameters θ at every
timestep; in order to account for how these contribute to
the overall gradient ∇θL(θ), we use subscripts θt to dis-
tinguish between applications of θ at different steps, where
θt = θ,∀t. We further define Θ = (θ1, . . . ,θT )>, which
is a matrix with the per-timestep θt as its rows. For nota-
tional simplicity in the following derivation, we drop the
dependence on st and explicitly include the dependence
on each θt, writing Lt(st;θ) as either Lt(θ1, . . . ,θt) or
simply Lt(Θ).

We wish to compute the gradient∇θL(θ) of the total loss
over all unrolls. We begin by writing this gradient in terms
of the full gradient ∂L(Θ)

∂ vec(Θ) ∈ RPT×1, and then using ES

to approximate ∂L(Θ)
∂ vec(Θ) ,

dL(θ)

dθ
=

T∑
τ=1

∂L (Θ)

∂θτ
=
(
I⊗ 1>

) ∂L(Θ)

∂ vec (Θ)
,

gPES =
(
I⊗ 1>

)
Eε
[

1

σ2
vec (ε)L (Θ + ε)

]
=

1

σ2
Eε

[(
T∑
τ=1

ετ

)
L (Θ + ε)

]
,

where⊗ denotes the Kronecker product, ε = (ε1, . . . , εT )
>

is a matrix of perturbations εt to be added to the θt at each

2See Appendix E for an expanded derivation, and Ap-
pendix I for an alternate derivation using stochastic computation
graphs (Schulman et al., 2015).
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Figure 2. Empirical variance measurements. Variance of the
PES gradient estimate for different numbers of particles (N ) as a
function of number of unrolls for a language modeling task.

timestep, and the expectation is over entries in ε drawn from
an i.i.d. Gaussian with variance σ2. This ES approximation
is an unbiased estimator of the gradient of the Gaussian-
smoothed objective Eε[L(Θ + ε)]. We next show that gPES

decomposes into a sum of sequential gradient estimates,

gPES =
1

σ2
Eε

[(
T∑
τ=1

ετ

)
T∑
t=1

Lt (Θ + ε)

]

=
1

σ2
Eε

[
T∑
t=1

(
t∑

τ=1

ετ

)
Lt (Θ + ε)

]
(4)

= Eε

[
T∑
t=1

ĝPES
t,ε

]
, (5)

ĝPES
t,ε =

1

σ2
ξtLt (θ1 + ε1, . . . ,θt + εt) . (6)

where ξt =
∑t
τ=1 ετ , Equation 4 relies on Lt (·) being

independent of ετ for τ > t, and Equation 6 similarly relies
on Lt (·) only being a function of θτ for τ ≤ t. The PES
estimator consists of Monte Carlo estimates of Equation 5,

ĝPES =
1

N

N∑
i=1

T∑
t=1

ĝPES
t,ε(i) (7)

where ε(i) are samples of ε, and N is the number of Monte
Carlo samples. Gradient estimates at each time step can be
evaluated sequentially, and used to perform SGD.

PES is Unbiased for Quadratic Losses. See Appendix F
for a proof of the following Statement 4.1.

Statement 4.1 (PES is unbiased). Let θ ∈ RP
and L(θ) =

∑T
t=1 Lt(θ). Suppose that ∇θL(θ)

exists, and assume that L is quadratic, so that it
is equivalent to its second-order Taylor series expan-
sion: L(Θ + ε) = L(Θ) + vec(ε)>∇vec(Θ)L(Θ) +
1
2 vec(ε)>∇2

vec(Θ)L(Θ) vec(ε). Consider the PES estima-

tor (using antithetic sampling) below:

ĝPES-A = (I⊗1>)Eε
[

1

2σ2
vec(ε)(L(Θ + ε)− L(Θ− ε))

]
Then, bias(ĝPES-A) = Eε[ĝPES-A]−∇θL(θ) = 0.

Algorithm. Based on Eq. 7, we see that we can obtain
unbiased gradient estimates from partial unrolls by: 1) not
resetting the particles between unrolls, and 2) accumulat-
ing the perturbations ξt each particle has experienced over
multiple unrolls. The resulting algorithm is simple to imple-
ment, requiring only minor modifications from vanilla ES.
Algorithm 1 describes truncated ES applied to partial un-
rolls, where it suffers from short horizon bias. Algorithm 2
shows PES applied to the same problem, where it provides
unbiased gradient estimates. Both algorithms (Fig. 3) are
shown with antithetic sampling (perturbations are paired
with their negations), which drastically reduces variance.

Variance Analysis.3 We use the total variance,
tr(Var(ĝPES)), to quantify the variance of the estima-
tor. We provide a full derivation of the variance in
Appendix G, and here we present some takeaways. The
variance of the antithetic form of the PES estimator from
Eq. 7 is:

tr(Var(ĝPES)) =

T∑
t=1

||gt||2 (Pt+ 1) (8)

where gt = ∇Lt(θ) is the true gradient at step t, and P
is the dimensionality of θ. To understand the properties of
the variance, consider two potential scenarios. For the first
scenario, if we assume that the gradients for each unroll are
i.i.d., then E[||gt||

2
] = 1

T E[||g||2], and we have:

tr(Var(ĝPES)) = ||g||2
(

1

2
PT +

1

2
P + 1

)
(9)

For the second scenario, if we assume that the gradients
for each unroll are identical to each other, then ||gt||

2
=

1
T 2 ||g||2, and we have:

tr(Var(ĝPES)) = ||g||2
(

1

2
P +

P

2T
+

1

T

)
(10)

It is possible (though atypical) for the gt to have variance
larger than predicted by either of these two reasonable sce-
narios. For instance, if ||gt|| remains roughly constant even
as the number of unrolls is increased, then variance grows

3While submitting the camera ready of this paper, we discov-
ered a mistake in our variance derivation. We do not believe it will
have a qualitative effect (especially given the experimental support
for the current scaling behavior), but please see the arXiv version
of the paper for an updated discussion of variance.
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Algorithm 1 Truncated Evolution Strategies (ES) applied
to partial unrolls of a computation graph.

Input: s0, initial state
K, truncation length for partial unrolls
N , number of particles
σ, standard deviation of perturbations
α, learning rate for ES optimization

Initialize s = s0 s
(i) = s0

Initialize ξ(i) ← 0 for i ∈ {1, . . . , N}
repeat
ĝES ← 0
for i = 1, . . . , N do

ε(i) =

{
draw from N (0, σ2I) i odd
−ε(i−1) i even

L̂
(i)
K ← unroll(s,θ + ε(i),K)

ξ(i) ← ξ(i) + ε(i)

ĝES ← ĝES + ε(i)L̂
(i)
K

end for
ĝES ← 1

Nσ2 ĝ
ES

s← unroll(s,θ,K)
θ ← θ − αĝES

Algorithm 2 Persistent evolution strategies (PES). Differ-
ences from ES are highlighted in purple.

Input: s0, initial state
K, truncation length for partial unrolls
N , number of particles
σ, standard deviation of perturbations
α, learning rate for PES optimization

Initialize s(i) = s0 for i ∈ {1, . . . , N}
Initialize ξ(i) ← 0 for i ∈ {1, . . . , N}
repeat
ĝPES ← 0
for i = 1, . . . , N do

ε(i) =

{
draw from N (0, σ2I) i odd
−ε(i−1) i even

s(i), L̂(i)
K ← unroll(s(i),θ + ε(i),K)

ξ(i) ← ξ(i) + ε(i)

ĝPES ← ĝPES + ξ(i)L̂
(i)
K

end for
ĝPES ← 1

Nσ2 ĝ
PES

s← unroll(s, θ,K)
θ ← θ − αĝPES

Figure 3. A comparison of vanilla ES and PES gradient estimators, applied to partial unrolls of a computation graph. The conditional
statement for ε(i) is used to implement antithetic sampling. For clarity, we describe the meta-optimization updates to θ using SGD, but
we typically use Adam in practice. See Appendix K for diagrammatic representations of these algorithms.

like O(T 2).

To investigate the variance characteristics of PES empiri-
cally, we computed the variance in a toy setting. We used
an LSTM with 5 hidden units and 5-dimensional embed-
dings, for character-level language modeling on the Penn
Treebank corpus (Marcus et al., 1993) (with 50 tokens). We
measured the variance of the gradient of a fixed sequence
of 104 characters. The ground-truth gradient was computed
using vanilla ES with 500k particles over the full sequence
(without truncation). Figure 2 shows the variance of the
PES gradient estimate using different numbers of unrolls,
ranging from 1 (a single unroll for the full sequence) to 104

(one unroll per input token). We plot the variance normal-
ized by the squared norm of the ground-truth gradient. We
observe an initial drop in variance predicted by Equation 10,
and then a linear growth as predicted by Equation 9. Em-
pirical variance measurements for other plausible scenarios
are presented in Figure 16 (Appendix G).

Reducing Variance by Incorporating the Analytic Gra-
dient. For functions L that are differentiable, we can use
the analytic gradient from the most recent partial unroll (e.g.,
backpropagating through the last K-step unroll) to reduce
the variance of the PES gradient estimates. In Appendix H,
we show how we can incorporate the analytic gradient in the

ES estimate for ∂Lt(Θ)
∂θ , deriving the following estimator:

∂Lt(Θ)

∂θ
≈ 1

σ2
Eε

[(∑
τ<t

ετ

)
(Lt(Θ + ε)− ε>t pt)

]
+ pt

(11)

where pt = ∂Lt(Θ)
∂θt

. We call the resulting estimator
PES+Analytic. In Appendix H we describe the implementa-
tion of this estimator (Algorithm 4), which requires a few
simple changes from the standard PES estimator. We also
provide empirical variance measurements for PES+Analytic,
using the same setup as was used for Figure 2; we found that
it can reduce variance by 1-2 orders of magnitude, given the
same number of particles as PES.

5. Experiments
First, we demonstrate via a toy experiment that PES does
not suffer from truncation bias, allowing it to converge to
correct solutions that are not found by TBPTT or truncated
ES. Then, we apply PES to several illustrative scenarios:
we use PES to meta-train a learned optimizer, learn a policy
for continuous control, and optimize hyperparameters. All
experiments used JAX (Bradbury et al., 2018). A simplified
code snippet implementing PES is provided in Appendix M.
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Figure 4. The meta-objective surface (left), and meta-objective vs inner problem timesteps (right), for the 2D regression problem
in Section 5.4. We plot meta-optimization trajectories for TBPTT, UORO, RTRL, ES, and PES starting from the same initialization,
(−4.5,−4.5). All techniques except PES either suffer from truncation bias, or become stuck due to high-frequency structure in the
meta-objective surface. PES is both unbiased, and smooths the outer-objective removing high-frequency structure. Ablations over the
truncation length and number of particles for this task are provided in Appendix L.

5.1. Influence Balancing
To demonstrate the lack of truncation bias of PES in a toy set-
ting, we use the influence balancing task introduced by Tal-
lec & Ollivier (2017a). This simple task is particularly
sensitive to short-horizon bias, as the gradient for the single
parameter θ ∈ R has the wrong sign when estimated from
short unrolls. See Appendix C.2 for more details.

Figure 5. Loss curves for the influence balancing task. TBPTT
with short truncations diverges, while PES performs nearly identi-
cally to exact RTRL. See Section 5.1 for experiment details.

We use vanilla SGD to update θ, with gradient estimates de-
rived from TBPTT with different truncation horizons, exact
RTRL, UORO, and PES. TBPTT does not converge with
short truncations K ∈ {1, 10}; it requires much longer trun-
cations K = 100 to move in the right direction. In Figure 5,
we show that PES achieves nearly identical performance to
exact RTRL. UORO reaches the same performance as RTRL
after approximately 30k iterations. Note that the purpose
of this experiment is to demonstrate that PES is unbiased,
and is able to match the performance of exact RTRL given
sufficiently many particles (N = 103) to reduce variance; it
is not intended as a comparison of total compute.

5.2. Learned Optimizer Meta-Optimization
In this section we demonstrate PES’s applicability for
learned optimizer training. We meta-train an MLP-based
learned optimizer as described in Metz et al. (2019). This
optimizer is used to train a two hidden-layer, 128 unit, MLP
on CIFAR-10 with a batch size of 128. Our meta-objective
is the average training loss. We train with a total number of
inner-steps of T = 1000 and a truncation length of K = 4,
using both PES and truncated ES.

Figure 6. Training learned optimizers. We find that PES
achieves better performance compared to truncated ES. Curves
of the same color denote different initializations of the learned
optimizer. See Section 5.2 for details.

We outer-train with Adam, using a learning rate of 10−4

selected via grid search over half-orders of magnitude for
each method independently. We use gradient clipping of
3 applied to each gradient coordinate. We outer-train on 8
TPUv2 cores with asynchronous, batched updates of size
16. To evaluate, we compute the meta-loss averaged over 20
inner initializations over the course of meta-training. Results
can be found in Figure 6. Due to PES’s unbiased nature, PES
achieves both lower losses, and is more consistent across
random initializations of the learned optimizer.
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(a) (b)

Figure 7. Meta-optimization of a learning rate schedule for an MLP on MNIST. Here we show the meta-loss landscape, and the
optimization trajectories taken by both ES and PES, for unroll lengths K of 10 and 100, for a meta-objective (shown in color) of (a)
training loss (darker color is better) and (b) validation accuracy (lighter color is better). Note that most gradient-based approaches are
unable to target accuracy.

5.3. Learning a Continuous Control Policy
Recent work (Salimans et al., 2017; Mania et al., 2018) has
shown that ES-based algorithms can be a viable alternative
to more complex RL algorithms. ES optimizes the param-
eters of a policy directly, by sampling parameters from a
distribution, running an episode, and estimating the gradi-
ent; this is in contrast to standard RL algorithms that sample
actions from a distribution output by a policy. Here, we

Figure 8. Learning a policy for continuous control. We find that
PES is more efficient than ES applied to full episodes, while trun-
cated ES fails due to bias. We plot the ARS V1 result from Mania
et al. (2018) (dashed curve) to show that our full-unroll baseline is
comparable to theirs. The dotted line shows the maximum reward
reported for the ES approach in Salimans et al. (2017), which does
not solve the Swimmer task. See Section 5.3 for details.

demonstrate that PES can be used to train a policy for a
continuous control problem using partial unrolls, improving
on the efficiency of vanilla ES typically applied to full un-
rolls. We train a linear policy on the Swimmer-v2 MuJoCo
environment, following Mania et al. (2018). For PES, the
objective for each partial unroll is the sum of rewards over
that unroll. We also applied vanilla ES to the partial un-
rolls to demonstrate that this naı̈ve strategy does not work—
truncation bias occurs for these control problems as well.
Figure 8 compares vanilla ES applied to full episodes, ES
applied to partial episodes, PES applied to partial episodes,

and variants of ES from Mania et al. (2018) and Salimans
et al. (2017). We see that PES reaches the same performance
as full-unroll ES in fewer total environment steps.

5.4. Hyperparameter Optimization
In this section we provide evidence that PES can be used for
hyperparameter optimization across four different problems.
We show that PES performs well when the meta-loss has
many local minima, does not suffer from truncation bias,
can be applied to non-differentiable objectives, and can be
used to optimize many hyperparameters simultaneously.

Toy 2D Regression. First, we used PES to meta-optimize
a learning rate schedule for a toy 2D regression prob-
lem that has one global minimum, but many local min-
ima to which truncated gradient methods could converge.
The inner optimization trajectories for different values of
the outer-parameters are shown in Appendix C. We used
a linear learning rate schedule parameterized by the ini-
tial and final log-learning rates, θ0 and θ1, respectively:
αt =

(
1− t

T

)
eθ0 + t

T e
θ1 . In Figure 4 we compare

TBPTT, UORO, RTRL, ES, and PES applied to this meta-
optimization task.

MNIST MLP. Next, we used PES to meta-learn a learn-
ing rate schedule for an MLP classifier on MNIST. Follow-
ing Wu et al. (2018), we used a two-layer MLP with 100
hidden units per layer and ReLU activations and the learning
rate schedule parameterization αt = θ0

(1+ t
Q )

θ1
, where αt

is the learning rate at step t, θ0 is the initial learning rate,
θ1 is the decay factor, and Q is a constant fixed to 5000.
This schedule is used for SGD with fixed momentum 0.9.
The full unrolled inner problem consists of T = 5000 opti-
mization steps, and we consider using vanilla ES and PES
with truncation lengths K ∈ {10, 100}, yielding 500 and
50 unrolls per inner problem. The meta-objective is the sum
of training losses over the inner optimization trajectory. In
Figure 7(a) we see that ES converges to a suboptimal region
of the hyperparameter space due to truncation bias, while
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PES finds the correct solution.

Targeting Validation Accuracy. Because PES only re-
quires function evaluations and not gradients, it can opti-
mize non-differentiable objectives such as accuracy rather
than loss. We demonstrate this by tuning the same parame-
terization of learning rate schedule as in the previous section,
but using the accuracy on the MNIST validation set as the
meta-objective. Figure 7(b) compares the meta-optimization
trajectories of ES and PES on the validation accuracy meta-
objective; again ES is biased and fails to converge to the
right solution, while PES works well.

Tuning Many Hyperparameters. Here, we show that
PES can tune several hyperparameters simultaneously, and
achieves better performance than random search with an
uninformative search space, using less compute. We tuned
separate learning rates and momentum coefficients for each
weight matrix and bias term of a four-layer MLP with 100
hidden units per layer, yielding 20 hyperparameters. Fig-
ure 9 compares the best objective values achieved with a
given compute budget by random search, ES, and PES, each
evaluated using four random seeds.

Figure 9. Meta-optimization of per-parameter-block learning
rates and momentum coefficients (20 hyperparameters total).

We measured the compute as the number of inner optimiza-
tion iterations performed across all parallel runs in random
search, and across all particles in ES and PES. PES substan-
tially outperforms ES and random search, achieving lower
loss with a fraction of the compute.

6. Conclusion
We introduced a method for unbiased gradient estimation
in unrolled computation graphs, called Persistent Evolu-
tion Strategies (PES). PES obtains gradients from truncated
unrolls—which speeds up optimization by allowing for fre-
quent parameter updates—while not suffering from trunca-
tion bias that affects many competing approaches. We show
that PES is broadly applicable, with experiments demon-
strating its application to an RNN-like task, hyperparameter
optimization, reinforcement learning, and meta-training of
learned optimizers.
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Dauvergne, B. and Hascoët, L. The data-flow equations
of checkpointing in reverse automatic differentiation. In
International Conference on Computational Science, pp.
566–573, 2006.

Domke, J. Generic methods for optimization-based model-
ing. In Artificial Intelligence and Statistics, pp. 318–326,
2012.

Donini, M., Franceschi, L., Pontil, M., Majumder, O., and
Frasconi, P. Scheduling the learning rate via hypergradi-
ents: New insights and a new algorithm. arXiv preprint
arXiv:1910.08525, 2019.

Franceschi, L., Donini, M., Frasconi, P., and Pontil, M.
Forward and reverse gradient-based hyperparameter opti-
mization. In International Conference on Machine Learn-
ing, pp. 1165–1173, 2017.

Franceschi, L., Frasconi, P., Salzo, S., Grazzi, R., and Pontil,
M. Bilevel programming for hyperparameter optimization
and meta-learning. arXiv preprint arXiv:1806.04910,
2018.

Grefenstette, E., Amos, B., Yarats, D., Htut, P. M.,
Molchanov, A., Meier, F., Kiela, D., Cho, K., and Chin-
tala, S. Generalized inner loop meta-learning. arXiv
preprint arXiv:1910.01727, 2019.

Ha, D. Neuroevolution for deep reinforcement learning
problems. In Genetic and Evolutionary Computation
Conference Companion, pp. 404–427, 2020.

Ha, D. and Schmidhuber, J. World models. arXiv preprint
arXiv:1803.10122, 2018.

Hansen, N. The CMA evolution strategy: A tutorial. arXiv
preprint arXiv:1604.00772, 2016.

Houthooft, R., Chen, Y., Isola, P., Stadie, B., Wolski, F.,
Ho, O. J., and Abbeel, P. Evolved policy gradients. In
Advances in Neural Information Processing Systems, pp.
5400–5409, 2018.

Jaderberg, M., Dalibard, V., Osindero, S., Czarnecki, W. M.,
Donahue, J., Razavi, A., Vinyals, O., Green, T., Dun-
ning, I., Simonyan, K., Fernando, C., and Kavukcuoglu,
K. Population based training of neural networks. arXiv
preprint arXiv:1711.09846, 2017.

Jamieson, K. and Talwalkar, A. Non-stochastic best arm
identification and hyperparameter optimization. In Inter-
national Conference on Artificial Intelligence and Statis-
tics, pp. 240–248, 2016.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In International Conference on Learning
Representations, 2015.

Kumar, M., Dahl, G. E., Vasudevan, V., and Norouzi,
M. Parallel architecture and hyperparameter search via
successive halving and classification. arXiv preprint
arXiv:1805.10255, 2018.

Li, K. and Malik, J. Learning to optimize. arXiv preprint
arXiv:1606.01885, 2016.

Li, K. and Malik, J. Learning to optimize neural nets. arXiv
preprint arXiv:1703.00441, 2017.

Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., and
Talwalkar, A. Hyperband: A novel bandit-based approach
to hyperparameter optimization. The Journal of Machine
Learning Research, 18(1):6765–6816, 2017.

Liu, H., Simonyan, K., and Yang, Y. DARTS: Differentiable
architecture search. arXiv preprint arXiv:1806.09055,
2018.

Lorraine, J. and Duvenaud, D. Stochastic hyperparame-
ter optimization through hypernetworks. arXiv preprint
arXiv:1802.09419, 2018.

Lorraine, J., Vicol, P., and Duvenaud, D. Optimizing mil-
lions of hyperparameters by implicit differentiation. In
International Conference on Artificial Intelligence and
Statistics, pp. 1540–1552, 2020.

MacKay, M., Vicol, P., Lorraine, J., Duvenaud, D., and
Grosse, R. Self-tuning networks: Bilevel optimization of
hyperparameters using structured best-response functions.
arXiv preprint arXiv:1903.03088, 2019.

Maclaurin, D., Duvenaud, D., and Adams, R. Gradient-
based hyperparameter optimization through reversible
learning. In International Conference on Machine Learn-
ing, pp. 2113–2122, 2015.

Maheswaranathan, N., Metz, L., Tucker, G., Choi, D., and
Sohl-Dickstein, J. Guided evolutionary strategies: Aug-
menting random search with surrogate gradients. arXiv
preprint arXiv:1806.10230, 2018.

Mania, H., Guy, A., and Recht, B. Simple random search
provides a competitive approach to reinforcement learn-
ing. arXiv preprint arXiv:1803.07055, 2018.

Marcus, M., Santorini, B., and Marcinkiewicz, M. A. Build-
ing a large annotated corpus of English: The Penn Tree-
bank. Computational Linguistics, 19(2):313–330, 1993.

Marschall, O., Cho, K., and Savin, C. A unified framework
of online learning algorithms for training recurrent neural
networks. arXiv preprint arXiv:1907.02649, 2019.

Menick, J., Elsen, E., Evci, U., Osindero, S., Simonyan, K.,
and Graves, A. A practical sparse approximation for real
time recurrent learning. arXiv preprint arXiv:2006.07232,
2020.



Unbiased Gradient Estimation in Unrolled Computation Graphs with Persistent Evolution Strategies

Metz, L., Maheswaranathan, N., Cheung, B., and Sohl-
Dickstein, J. Meta-learning update rules for unsupervised
representation learning. arXiv preprint arXiv:1804.00222,
2018.

Metz, L., Maheswaranathan, N., Nixon, J., Freeman, D., and
Sohl-Dickstein, J. Understanding and correcting patholo-
gies in the training of learned optimizers. In International
Conference on Machine Learning, pp. 4556–4565, 2019.

Metz, L., Maheswaranathan, N., Sun, R., Freeman, C. D.,
Poole, B., and Sohl-Dickstein, J. Using a thousand opti-
mization tasks to learn hyperparameter search strategies.
arXiv preprint arXiv:2002.11887, 2020.

Micaelli, P. and Storkey, A. Non-greedy gradient-based
hyperparameter optimization over long horizons. arXiv
preprint arXiv:2007.07869, 2020.

Mujika, A., Meier, F., and Steger, A. Approximating real-
time recurrent learning with random Kronecker factors.
In Advances in Neural Information Processing Systems,
pp. 6594–6603, 2018.

Nesterov, Y. and Spokoiny, V. Random gradient-free mini-
mization of convex functions. Foundations of Computa-
tional Mathematics, 17(2):527–566, 2017.

Owen, A. B. Monte Carlo Theory, Methods and Examples.
2013.

Parmas, P., Rasmussen, C. E., Peters, J., and Doya, K.
PIPPS: Flexible model-based policy search robust to the
curse of chaos. In International Conference on Machine
Learning, pp. 4062–4071, 2018.

Pascanu, R., Mikolov, T., and Bengio, Y. On the difficulty
of training recurrent neural networks. In International
Conference on Machine Learning, pp. 1310–1318, 2013.

Pearlmutter, B. An investigation of the gradient descent
process in neural networks. PhD thesis, Carnegie Mellon
University Pittsburgh, PA, 1996.

Rechenberg, I. Evolutionsstrategie: Optimierung technis-
cher Systeme nach Prinzipien der biologischen Evolution.
Stuttgart: Frommann-Holzboog, 1973.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. Learn-
ing internal representations by error propagation. Tech-
nical report, California University San Diego, La Jolla
Institute for Cognitive Science, 1985.

Salimans, T., Ho, J., Chen, X., Sidor, S., and Sutskever,
I. Evolution strategies as a scalable alternative to rein-
forcement learning. arXiv preprint arXiv:1703.03864,
2017.

Schulman, J., Heess, N., Weber, T., and Abbeel, P. Gradi-
ent estimation using stochastic computation graphs. In
Advances in Neural Information Processing Systems, pp.
3528–3536, 2015.

Shaban, A., Cheng, C.-A., Hatch, N., and Boots, B. Trun-
cated back-propagation for bilevel optimization. In Inter-
national Conference on Artificial Intelligence and Statis-
tics, pp. 1723–1732, 2019.

Snoek, J., Larochelle, H., and Adams, R. P. Practical
Bayesian optimization of machine learning algorithms.
In Advances in Neural Information Processing Systems,
pp. 2951–2959, 2012.

Staines, J. and Barber, D. Variational optimization. arXiv
preprint arXiv:1212.4507, 2012.

Swersky, K., Snoek, J., and Adams, R. P. Freeze-thaw
Bayesian optimization. arXiv preprint arXiv:1406.3896,
2014.

Tallec, C. and Ollivier, Y. Unbiased online recurrent opti-
mization. arXiv preprint arXiv:1702.05043, 2017a.

Tallec, C. and Ollivier, Y. Unbiasing truncated backpropa-
gation through time. arXiv preprint arXiv:1705.08209,
2017b.

Tang, Y., Choromanski, K., and Kucukelbir, A. Variance
reduction for evolution strategies via structured control
variates. In International Conference on Artificial Intelli-
gence and Statistics, pp. 646–656, 2020.

Tieleman, T. and Hinton, G. Lecture 6.5—RMSprop: Divide
the gradient by a running average of its recent magnitude.
COURSERA: Neural Networks for Machine Learning,
2012.

Werbos, P. J. Backpropagation through time: What it does
and how to do it. Proceedings of the IEEE, 78(10):1550–
1560, 1990.

Wichrowska, O., Maheswaranathan, N., Hoffman, M. W.,
Colmenarejo, S. G., Denil, M., de Freitas, N., and Sohl-
Dickstein, J. Learned optimizers that scale and generalize.
arXiv preprint arXiv:1703.04813, 2017.

Williams, R. J. and Peng, J. An efficient gradient-based
algorithm for on-line training of recurrent network trajec-
tories. Neural Computation, 2(4):490–501, 1990.

Williams, R. J. and Zipser, D. A learning algorithm for con-
tinually running fully recurrent neural networks. Neural
Computation, 1(2):270–280, 1989.

Wu, Y., Ren, M., Liao, R., and Grosse, R. Understanding
short-horizon bias in stochastic meta-optimization. arXiv
preprint arXiv:1803.02021, 2018.


