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Abstract

We consider learning Ising tree models when the
observations from the nodes are corrupted by inde-
pendent but non-identically distributed noise with
unknown statistics. Katiyar et al. (2020) showed
that although the exact tree structure cannot be
recovered, one can recover a partial tree structure;
that is, a structure belonging to the equivalence
class containing the true tree. This paper presents
a systematic improvement of Katiyar et al. (2020).
First, we present a novel impossibility result by
deriving a bound on the necessary number of sam-
ples for partial recovery. Second, we derive a
significantly improved sample complexity result
in which the dependence on the minimum correla-
tion ρmin is ρ−8

min instead of ρ−24
min . Finally, we pro-

pose Symmetrized Geometric Averaging (SGA),
a more statistically robust algorithm for partial
tree recovery. We provide error exponent analy-
ses and extensive numerical results on a variety of
trees to show that the sample complexity of SGA
is significantly better than the algorithm of Kati-
yar et al. (2020). SGA can be readily extended
to Gaussian models and is shown via numerical
experiments to be similarly superior.

1. Introduction
Graphical models provide a succinct diagrammatic repre-
sentation of the dependencies among a set of random vari-
ables. The vertices of the graph are in one-to-one correspon-
dence with the random variables, while the edges encode
conditional independence relationships. Graphical models
have found applications in domains from biology (Friedman,
2004), to coding theory (Kschischang & Frey, 1998), social
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networks (Lauritzen, 1996) and computer vision (Besag,
1986). For a detailed description of graphical models, the
reader is referred to Wainwright & Jordan (2008).

This paper concerns the learning of the structure of a certain
class of graphical models from data (Johnson et al., 2007).
In particular, we consider undirected Ising graphical models
that are Markov on trees. While this is a classical prob-
lem that has been studied extensively (Chow & Liu, 1968;
Bresler & Karzand, 2020), here we focus on a relatively
unexplored problem in which the vector-valued samples
presented to the learner are corrupted by independent but
non-identically distributed noise. This scenario is motivated
by two different real-world scenarios. Firstly, suppose each
component is obtained at spatially distributed locations of a
large sensor network. The scalar-valued components need to
be transmitted to a fusion center for the reconstruction of the
graphical structure of the data. Due to the presence of distur-
bances (e.g., pollution, ambient noise), the components will
inevitably be corrupted and the corruption levels are differ-
ent as the distances of the spatially distributed devices to the
fusion center are different. Secondly, imagine that a drug
company would like to understand the inter-dependencies
between different chemicals to design an effective vaccine
given training samples obtained from human subjects. To
thwart the company’s attempts, a competitor corrupts certain
measurements or features of the human subjects (Wang &
Gu, 2017), where these corruptions may be non-identically
distributed. In these scenarios, we would like to design
robust algorithms to recover, as best as possible, a certain
structure that is “close” to the true one.

Motivated by these examples, we consider a tree learning
problem in which each component of the vector-valued
samples may be corrupted in a non-identical but indepen-
dent (across components) manner. Because the corruption
noises are non-identical, the ordering of the observed corre-
lations are distorted, and hence the tree, in general, cannot
be identified using the maximum likelihood Chow-Liu al-
groithm (Chow & Liu, 1968). More precisely Katiyar et al.
(2020) showed that in such a case, even in the infinite sample
limit, the structure can only be identified up to its equivalent
class, a notion that will be defined precisely in the sequel.
Building on their previous work for the robust learning of
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Gaussian graphical models (Katiyar et al., 2019), Katiyar
et al. (2020) proposed a certain algorithm for the learning
of Ising tree-structured models in which the samples are
observed in noise. They provided a sample complexity
result to recover the true tree up to its equivalence class.
They showed that in this adversarial scenario, the go-to al-
gorithm for learning tree-structure models – the Chow-Liu
algorithm (Chow & Liu, 1968) – fails miserably but their
algorithm is able to learn the model up to its equivalence
class if the number of samples is sufficiently large.

We significantly improve on theoretical and algorithmic
results in Katiyar et al. (2020) and Nikolakakis et al. (2019a).

• Firstly, we provide an information-theoretic impos-
sibility result for tree structure recovery under non-
identically distributed noise, that extends the result
by Nikolakakis et al. (2019a) which assumes i.i.d.
noise. Our impossibility result, which involves the
construction and analysis of sufficiently many “nearby”
trees, elucidates the effect of noise on the sample com-
plexity even as the number of samples and the number
of nodes grow without bound; this desirable feature
is not present in previous works on learning graphical
models with noisy samples Nikolakakis et al. (2019a).

• Secondly, by a careful analysis of the error events in
the algorithm proposed by Katiyar et al. (2020), we
significantly improve on the sample complexity result
contained therein. In particular, the dependence of the
sample complexity on the minimum correlation along
the tree edges, ρmin, is improved from ρ−24

min to ρ−8
min.

• Finally, and most importantly, we propose an improve-
ment to the IS NON STAR subroutine in Katiyar et al.
(2020); we call our subroutine Symmetrized Geometric
Averaging (SGA). This improvement is motivated by
symmetry considerations in the error events in distin-
guishing a star versus non-star structure and the folk-
lore theorem that “more averaging generally helps”.
Indeed, we show through error exponent analyses (Tan
et al., 2011) using Sanov’s theorem (Cover & Thomas,
2006) that the error exponents of SGA are higher (and
hence better) than that in Katiyar et al. (2020) for all
but a small fraction of trees. This is corroborated by ex-
tensive numerical experiments for a variety of trees of
different structures, correlations, and corruption noises.
SGA is also shown to be amenable to improving the
structure learning of Gaussian in addition to Ising trees.

1.1. Related Work

The learning of tree-structured graphical models dates back
to the seminal work of Chow & Liu (1968) who showed
that the maximum likelihood estimation of the tree structure
is equivalent to that of a maximum weight spanning tree
problem with edge weights given by the empirical mutual

information. Chow & Wagner (1973) showed that structure
learning is consistent and Tan et al. (2011) derived the error
exponent. The estimates of the error probability of learning
the tree structure was further refined by Tandon et al. (2020).
Bresler & Karzand (2020) considered a variant of the prob-
lem in which a tree was learned to make predictions instead
of the traditional objective of inferring the structure.

Tandon et al. (2020) showed that the Chow-Liu algorithm is
error exponent-optimal if the noises that corrupt the obser-
vations are independent and identically distributed. Niko-
lakakis et al. (2019b) considered the learning of tree struc-
tures when the noise is possibly non-identically distributed,
and derived conditions under which structure learning can
be achieved using the Chow-Liu algorithm. We note that
this setting is in contrast to recent work on robust tree learn-
ing under adversarial noise (Cheng et al., 2018); in our
work, random noise is added to clean samples.

Katiyar et al. (2019) showed that it is, in general, not possi-
ble to learn the exact tree structure for Gaussian graphical
models when one is given independent but non-identically
distributed noisy samples with unknown noise distribution.
This work was followed by Katiyar et al. (2020), who con-
sidered Ising tree models and derived an algorithm based
on so-called proximal sets to learn the equivalence class (or
clusters) of the true tree.

Finally, we remark that there is a large body of literature on
learning latent tree models (e.g., Choi et al. (2011); Parikh
et al. (2011)) in which one observes a subset of nodes from
a tree. The marginal distribution of those observed nodes
is, in general, not a tree. A formal connection between
learning latent tree models and learning noisy tree models
was recently established by Casanellas et al. (2021), and is
briefly discussed in Sec. 2.4.

2. Preliminaries and Problem Statement
An undirected graphical model is a multivariate probabil-
ity distribution that factorizes according to the structure
an undirected graph (Lauritzen, 1996). Specifically, a d-
dimensional random vector X , (X1, X2, . . . , Xd) is said
to be Markov on G = (V, E) with vertex (or node) set
V = {1, 2, . . . , d} and edge set E ⊂

(V
2

)
if its distribu-

tion satisfies the (local) Markov property P (xi|xV\i) =
P (xi|xnbd(i)) where nbd(i) := {j ∈ V : {i, j} ∈ E} is
the neighborhood of node i. In this work, we focus on tree-
structured graphical models P , where the underlying graph
of P is an acyclic and connected (tree) graph, denoted by
T = TP = (V, EP ) with |V| = d and |EP | = d − 1. For
an undirected tree, we may assume, without loss of gener-
ality, that node 1 is the root node and we arrange all the
other nodes at different levels on a plane, with node 1 at
level-0. Then, the tree-structured graphical model P can be
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alternatively factored as (Chow & Liu, 1968)

P (x) = P1(x1)

d∏
i=2

Pi|pa(i)(xi|xpa(i)), (1)

where pa(i) (with |pa(i)| = 1) is the parent node of node i.

We denote the KL-divergence between distributions Q and
P as D(Q‖P ) =

∑
xQ(x) log Q(x)

P (x) . The set of distribu-
tions supported on alphabet X is denoted as P(X ). Proofs
of the theorems and propositions are provided in the appen-
dices, as part of the supplementary material. For the sake
of brevity, the presentation in the main body of the paper is
focused on Ising tree models; the extension to the Gaussian
case with experiments is deferred to App. J.

2.1. System Model

We consider binary random variables Xi with alphabet
X = {+1,−1}, where 1 ≤ i ≤ d and the joint distri-
bution of (X1, . . . , Xd) is represented by a tree-structured
Ising model (Bresler & Karzand, 2020). The observa-
tion for the ith node is represented by random variable
Yi = XiNi, where Ni is multiplicative binary noise with
Pr(Ni = −1) = qi and Pr(Ni = +1) = 1− qi. Thus, the
observations are corrupted by independent but non-identical
noise; that is, qi may differ for different values of i. We
assume that our model satisfies the following properties:

P1: (Zero external field): The marginals for the hidden
variables are uniform, i.e., Pr(Xi = 1) = Pr(Xi =
−1) = 0.5, for 1 ≤ i ≤ d.

P2: (Bounded Correlation): If E denotes the edge set of
tree T, and {i, j} ∈ E , then the correlations ρi,j ,
E[XiXj ] are uniformly bounded as follows: ρmin ≤
|ρi,j | ≤ ρmax, where 0 < ρmin ≤ ρmax < 1.

P3: (Bounded Noise): The noise crossover probability qi,
for 1 ≤ i ≤ d, satisfies 0 ≤ qi ≤ qmax < 0.5.

Properties P1 and P2 are common assumptions in the litera-
ture on learning Ising models (Tandon et al., 2014; Scarlett &
Cevher, 2016; Nikolakakis et al., 2019a; Bresler & Karzand,
2020), while P3 ensures that no node is independent of any
other node due to noise (Katiyar et al., 2020). For an Ising
model with zero external field, the joint distribution given
by (1) can be expressed as (Bresler & Karzand, 2020)

P (x) =
1

Z
exp

( ∑
{i,j}∈E

θi,jxixj

)
, (2)

where E is the edge set of the graph T, and Z is the nor-
malization factor. For an Ising tree, if {i, j} ∈ E then
the interaction (exponential) parameter θi,j is related to the
correlation ρi,j = E[XiXj ] as (Nikolakakis et al., 2019c,
Lem. A.3)

θi,j = atanh(ρi,j). (3)

The bounded correlation property P2 then implies that
atanh(ρmin) ≤ |θi,j | ≤ atanh(ρmax). Note that although
property P1 is a common assumption that simplifies the
presentation (Tandon et al., 2014; Scarlett & Cevher, 2016;
Nikolakakis et al., 2019a; Bresler & Karzand, 2020), the ex-
tension of our results to the case where the marginals are not
necessarily uniform can be readily obtained by following
the approach outlined by Katiyar et al. (2020).

2.2. Definition of Equivalent Tree Structures

We now define an equivalence relation on d-node trees. Let
Td denote the set of all distinct trees on d nodes. For a given
tree graph, a leaf is a node whose degree is one, i.e. a leaf
node has only one neighbor. For T ∈ Td, let LT denote
set of leaf nodes in T, LT , {Xi : i is a leaf node in T}.
Let ST be the set of subsets of LT such that no two nodes
in a subset share a common neighbor, i.e., ST , {S ⊆
LT : no two nodes in S have the same neighbor}. For a
given S ∈ ST, let TS denote the tree obtained from T
by interchanging each node in S with its corresponding
neighbor in T.1 Define [T] to be the set of trees

[T] , {TS : S ∈ ST}. (4)

For T̂ ∈ Td, we say T̂ ∼ T if T̂ ∈ [T]. The relation ∼
on Td is reflexive, symmetric, and transitive, and is hence
an equivalence relation (Herstein, 1975). Therefore, with
respect to relation ∼, the set Td is partitioned into disjoint
equivalence classes, where [T] is the equivalence class of T.

2.3. Problem Statement

Let yn1 = {y1, . . . ,yn} denote n independently sampled
noisy observations, where the ith noisy sample is a d-
dimensional column vector given by yi = (yi,1, . . . , yi,d)

T

with yi,j denoting the ith observation corresponding to the
jth node. As discussed in Sec. 2.1, we assume a binary
multiplicative non-identical noise model at each node, with
yi,j ∈ Y , {+1,−1} and yi ∈ Yd. Given yn1 , a learning
algorithm (or estimator) Ψ : Yd×n → Td provides an esti-
mate of the underlying tree structure T. We are interested
in partial tree recovery (up to equivalence class [T]), and an
error is declared if the event

{
Ψ(Yn

1 ) /∈ [T]
}

occurs.2 For
this setup, the following questions are of interest. (a) Quan-
tify the number of samples necessary to achieve a target
error probability (with any possible estimator). (b) Quantify
the number of samples sufficient to achieve a given error
probability (using a particular estimator). We answer (a) in
Section 3 and (b) in Sections 4 and 5. The estimator only
knows qmax, but does not know the individual qi’s, the noise

1Note that when S is the empty set, then TS = T.
2Exact tree-structure identification cannot be guaranteed, in

general, when the noise distribution across nodes is unknown and
non-identical across nodes (Katiyar et al., 2020, Thm. 2).
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parameters corresponding to each node.

2.4. Relation with Latent Tree Recovery

The recovery of partial tree structure (up to equivalence
class [T]), when node samples are subjected to non-identical
noise, is also possible using latent tree recovery algorithms
by suppressing the degree two nodes in the extended tree
obtained by adding extra nodes representing the noisy vari-
ables (Casanellas et al., 2021). This approach outlined
in Casanellas et al. (2021) generalizes the identifiability re-
sult by Katiyar et al. (2020) to the setting where the random
variables corresponding to the nodes belong to an arbitrary
discrete alphabet. Comparison of the sample complexity for
our proposed SGA algorithm to that of latent tree learning
algorithms in discussed in Sec. 5.2.

3. Impossibility Result
For a given tree T = (V, E), and edge correlation bounds
0 < ρmin ≤ ρmax < 1, let PT(ρmin, ρmax) denote the set
of all tree-structured Ising models satisfying properties P1
and P2. Let the noise crossover probability at each node
satisfy property P3, and hence be upper bounded by qmax.
Now, given n independent noisy samples, the minimax error
probability for partial tree structure recovery up to equiva-
lence class [T], denotedMn(qmax, ρmin, ρmax), is

inf
Ψ:Yd×n→Td

sup
T∈Td,P∈PT(ρmin,ρmax),

0≤ qi≤qmax< 0.5

PP
(
Ψ(Yn

1 ) /∈ [T]
)
, (5)

where PP (·) denotes the probability measure of the samples
when the underlying tree distribution is P .
Theorem 1 (Necessary Samples for Partial Tree Recovery).
Let ρq , (1− 2qmax)ρmin. If d > 32, and n satisfies

n <
log d

4 (1− ρmax) ρq atanh(ρq)
, (6)

then the minimax error Mn(qmax, ρmin, ρmax) ≥ 1/2.
In other words, the optimal sample complexity satisfies
Ω
(
(log d)/[(1− ρmax)(1− 2qmax)2ρ2

min]
)
.

Theorem 1 is proved by combining two key ingredients.
The first is the choice of a sufficiently large number of
tree structures that are relatively close each other and their
respective equivalence classes are disjoint; see Fig. 6 in
App. A. The second key ingredient is the choice of noise
parameters for different nodes that have a high impact on the
error probability, while ensuring that the corresponding KL-
divergence is approximated by a closed-form expression; see
Fig. 7 in App. A. Theorem 1 also provides an impossibility
result for exact tree structure recovery under non-identically
distributed noise.

In a related work, a bound on the necessary number of
samples required for exact tree structure recovery for the

noiseless setting was presented in Bresler & Karzand (2020,
Thm. 3.1). Our result in Theorem 1, specialized to the case
where qmax = 0, gives the same bound on the number of
necessary samples as Bresler & Karzand (2020, Thm. 3.1).
Therefore, in the noiseless setting, the partial tree structure
recovery (up to equivalence class [T]) is not easier than
exact structure recovery, in the minimax sense.3

In another related work, Nikolakakis et al. (2019a) provided
a bound on the number of samples necessary for learning
the exact tree structure, under the assumption that the noise
distribution for all the nodes is identical. In particular, for a
tree-structured Ising model, it was shown (Nikolakakis et al.,
2019a, Thm. 2) that the impact of noise gets manifested as a
multiplicative factor [1− (4q(1− q))d]−1, where q denotes
the noise crossover probability. This result implies that for
any q ∈ (0, 0.5), the impact of noise becomes negligible, i.e.
the multiplicative factor tends to 1, as the number of nodes
d tends to infinity. In contrast, our result in Theorem 1 for
non-identical noise, with 0 ≤ qi ≤ qmax < 0.5 shows that
the necessary number of samples for qmax > 0 is strictly
and uniformly greater than the number of samples for the
noiseless setting by a multiplicative factor of at least (1−
2qmax)−2 irrespective of how large the value of d is.

For a given P ∈ PT(ρmin, ρmax), the error probability
PP
(
Ψ(Yn

1 ) /∈ [T]
)

will depend on the specific tree struc-
ture (Tan et al., 2011; Tandon et al., 2020), and the size
of the equivalence class [T]. The minimum and maximum
possible size of the equivalence class, for a given number of
nodes d, is quantified in App. B.

4. Algorithm by Katiyar et al. (2020) and our
Improved Sufficiency Result

Let T = (V, E) be a given tree, and let the underlying sam-
ple distribution and noise satisfy the properties in Sec. 2.1.
Then, even if the noise is potentially large, and the noise
statistics are unknown, the tree structure can be partially
recovered (up to equivalence class [T]) using the algorithm
by Katiyar et al. (2020). This algorithm for partial structure
recovery of Ising tree models extends a previous method for
partial recovery of Gaussian tree models using noisy sam-
ples (Katiyar et al., 2019). The cornerstone of the partial
tree structure learning algorithm for Ising tree models (Kati-
yar et al., 2020) is the classification of any set of 4 distinct
nodes in V as non-star or star.4

Definition 1 (Non-star and star (Katiyar et al., 2020)). Any
set of 4 distinct nodes in V forms a non-star if there exists

3A related observation was made by Scarlett & Cevher (2016)
in terms of comparison of the number of necessary samples for
partial recovery (to within a given edit distance), with the number
of necessary samples for exact recovery, in the minimax sense.

4An overview of the algorithm classifying a set of 4 nodes as
non-star or star is presented in App. C.
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at least one edge in E which, when removed, splits the tree
into two sub-trees such that exactly 2 of the 4 nodes lie in
one sub-tree and the other 2 nodes lie in the other sub-tree.
The nodes in the same sub-tree form a pair. If the set is not
a non-star, it is categorized as a star.

A salient feature of the partial tree structure learning algo-
rithm described by Katiyar et al. (2020) is that of “prox-
imal sets”. If we let t1 , (1 − 2qmax)2ρ4

min, and t2 ,

min
{
t1,

t1(1−2qmax)
ρmax

}
, then the proximal set of node i is

defined as the set of all nodes j that satisfy |ρ̂i,j | ≥ 0.5t2,
where ρ̂i,j denotes the empirical correlation between nodes
i and j. For making a star/non-star categorization, the algo-
rithm by Katiyar et al. (2020) only considers nodes that lie
within each others’ proximal sets, and they use this property
to prove the following theorem on the sufficient number of
noisy samples required to achieve a given error probability.
The result is stated in terms t2 and α , (1 + ρ2

max)/2.

Theorem 2 (Sufficient Sample Complexity Bound (Katiyar
et al., 2020)). The equivalence class [T] can be correctly
recovered with probability at least 1−τ using the algorithm
by Katiyar et al. (2020) if the number of noisy samples n
satisfy n ≥ 128

δ2 log
(

6d2

τ

)
, where δ , t32(1−α)

128 .

From the statement of the above theorem, we observe that
δ =

t32(1−α)
128 ∝ ρ12

min because t2 scales linearly with t1 while
t1 ∝ ρ4

min, thereby implying that n scales as ρ−24
min . We show

that Theorem 2 can be significantly improved. Indeed, n
only needs to scale as ρ−8

min.

Theorem 3 (Improved Sample Complexity Bound). The
equivalence class [T] can be correctly recovered with prob-
ability at least 1 − τ using the algorithm by Katiyar et al.
(2020) if the number of samples satisfies

n ≥ 2

δ̃2
log

(
d2

τ

)
where δ̃ ,

t2(1− α)

20
. (7)

Compared to Theorem 2, this significantly improved result
(because the right-hand-side is O(δ̃−2) instead of O(δ−2))
is obtained by refining probability bounds for events such
as ρ̂1,3 ρ̂2,4

ρ̂1,2 ρ̂3,4
< α and ρ̂1,3 ρ̂2,4

ρ̂1,4 ρ̂2,3
> α. In contrast to Theorem 3,

the impossibility result in Theorem 1 was derived assuming
the knowledge of the noise statistics {qi}di=1, and hence the
sample complexity differs in how it scales with different
parameters (ρmin, ρmax, qmax). The scenario in which the
estimator knows the noise statistics and further comparisons
of various sample complexities are discussed in App. D.1.

5. Symmetrized Geometric Averaging (SGA)
We now present a modified procedure for declaring a 4-
node sub-tree as a star or non-star. This algorithm is de-
noted SGA IS NON STAR (see Algorithm 1), and is a sym-

Algorithm 1 SGA IS NON STAR
Let the set of 4 nodes be {X1, X2, X3, X4}
Input: Empirical correlations ρ̂i,j , 1 ≤ i < j ≤ 4,
Threshold α = (1 + ρ2

max)/2.

Let v2 =

√
|ρ̂1,3 ρ̂2,4 ρ̂1,4 ρ̂2,3|
|ρ̂1,2 ρ̂3,4| , v3 =

√
|ρ̂1,2 ρ̂3,4 ρ̂1,4 ρ̂2,3|
|ρ̂1,3 ρ̂2,4| ,

v4 =

√
|ρ̂1,2 ρ̂3,4 ρ̂1,3 ρ̂2,4|
|ρ̂1,4 ρ̂2,3|

Let v = min2≤i≤4 vi and i∗ = arg min2≤i≤4 vi
if v < α then

Declare Non-star where {X1, Xi∗} forms a pair
else

Declare Star
end if

metrized variant of the corresponding algorithm by Kati-
yar et al. (2020) with additional geometric averaging. The
motivation behind SGA can be seen by considering an ex-
ample where {X1, X2, X3, X4} forms a non-star with pair
{X1, X2}. If the noisy correlations are denoted ρ̃i,j ,
E[YiYj ] = (1−2qi)(1−2qj)ρi,j , we have ρ̃1,3 ρ̃2,4

ρ̃1,2 ρ̃3,4
≤ ρ2

max

and ρ̃1,4 ρ̃2,3
ρ̃1,2 ρ̃3,4

≤ ρ2
max. Hence, we would expect the follow-

ing metrics, based on empirical correlations, to satisfy

(i)
ρ̂1,3 ρ̂2,4

ρ̂1,2 ρ̂3,4
< α and (ii)

ρ̂1,4 ρ̂2,3

ρ̂1,2 ρ̂3,4
< α. (8)

In contrast to Katiyar et al. (2020), who checks condition
(i) in (8) but ignores (ii), the SGA variant compares the
geometric average of the metrics in (i) and (ii) against the
threshold α for checking if nodes {X1, X2} form a pair.

Proposition 1 (Sufficient Sample Complexity Bound). The
equivalence class [T] can be correctly recovered with proba-
bility at least 1− τ using the SGA IS NON STAR procedure
in Algorithm 1 if the number of samples satisfies (7).

Intuitively, we expect that taking the geometric average of
the metrics (i) and (ii) in (8) reduces the effect of noise,
hence improving robustness. Although we obtain the same
sample complexity bound in Prop. 1 as Theorem 3 because
the Hoeffding’s inequality used is rather loose (and not
distribution dependent), the error exponent analysis in Sec. 6
highlights the advantage of SGA. Furthermore, Monte Carlo
simulations with a variety of tree structures and parameters
demonstrate SGA’s superior robustness in Sec. 7.

5.1. Extension to Gaussian Models

SGA and the algorithm by Katiyar et al. (2020) are applica-
ble to wider classes of models such as Gaussian graphical
models in which node observations are corrupted by in-
dependent but non-identically distributed Gaussian noise
(Katiyar et al., 2019). That is X = (X1, . . . , Xd) follows a
zero-mean Gaussian with covariance matrix Σ∗ and (Σ∗)−1
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has sparsity pattern that corresponds to a tree T. How-
ever, we observe Y = (Y1, . . . , Yd) with covariance matrix
Σ∗ + D∗ where D∗ is an unknown non-negative diagonal
matrix. If D∗ is non-zero, the structure of T cannot be
identified in general. However, by computing the empirical
correlations in an analogous fashion, we show in App. J that
SGA is similarly robust vis-à-vis algorithms proposed in
Katiyar et al. (2019) and Katiyar et al. (2020).

5.2. Comparing the sample complexity of SGA to that of
latent tree learning algorithms

As mentioned in Sec. 2.4, Casanellas et al. (2021) recently
showed that noisy tree models can be recovered up to equiv-
alence class using latent tree learning algorithms. In this
subsection, we briefly discuss the sample complexity of la-
tent tree learning algorithms and compare these results with
the sample complexity for the SGA algorithm.

Popular latent tree recovery algorithms include the recur-
sive grouping (RG) method by Choi et al. (2011), and the
neighbor joining (NJ) method by Saitou & Nei (1987). The
sample complexity for the vanilla RG method is known
to be O

(
log(d3/τ)

)
(Choi et al., 2011, Thm. 11), with d

and τ representing the number of nodes and the target error
probability, respectively. But this result does not capture
the sample complexity scaling as a function of the parame-
ters of the latent tree ρmin and ρmax. In contrast, our result
in Theorem 3 highlights the explicit dependence of the re-
quired number of samples on ρmin, ρmax, and qmax, and
significantly improves the dependence on ρmin from ρ−24

min

(Katiyar et al., 2020, Thm. 3) to ρ−8
min.

Anandkumar et al. (2011) proposed a spectral RG algorithm
to learn latent trees, and showed that the sample complexity
scales with ρmax as (1−ρmax)−2 (Anandkumar et al., 2011,
Thm. 1). This dependence on ρmax is same as that of the
SGA algorithm (see Prop. 1 and App. D.1). The explicit
dependence of the spectral RG algorithm on ρmin was not
derived by Anandkumar et al. (2011).

Recently, Jaffe et al. (2021) proposed a spectral NJ algo-
rithm for recovering latent trees, and derived the depen-
dence of its sample complexity on ρmin and ρmax (Jaffe
et al., 2021, Thm. 4.10). It is shown that number of samples
scale with ρmax as (1 − ρmax)−2, while the scaling with
respect to ρmin is given by ρ−(2+4 log2(d/2))

min , where d is the
number of nodes. Note that the scaling with respect to ρmax

matches that of our proposed SGA algorithm, while the
scaling with respect to ρmin is strictly better for SGA when
d ≥ 8 (see Prop. 1 and App. D.1). Moreover, for spectral
NJ, the sample complexity has a quadratic scaling Õ(d2)
(Jaffe et al., 2021, Thm. 4.10). In contrast, for the SGA
algorithm, the sample complexity only increases as log d.
This analytically superior sample complexity result using
SGA (over the spectral NJ algorithm) is promising, espe-

cially because numerical results demonstrate that spectral
NJ method outperforms the classical NJ and RG methods
(Jaffe et al., 2021, Sec. 7).

6. Error Exponent Analyses
The error exponent, also called the inaccuracy rate (Kester
& Kallenberg, 1986), captures the exponential decay of the
error probability with n as a function of the distribution.
For a given tree with d nodes T ∈ Td and graphical model
P ∈ PT(ρmin, ρmax), let P̃ denote the joint distribution of
a noisy sample vector Y, where the noise crossover proba-
bility at the ith node satisfies 0 ≤ qi ≤ qmax < 0.5. Then,
the error exponent of a given algorithm Ψ is5

E(Ψ, P̃ ) = E(Ψ, P̃ , qmax, ρmin, ρmax) (9)

, lim inf
n→∞

− 1

n
logPP̃

(
Ψ(Yn

1 ) /∈ [T]
)
. (10)

We label the estimator by Katiyar et al. (2020) as ΨKA

which uses Algorithm 2 in App. C for declaring a set of 4
nodes as star or non-star. We also label the estimator em-
ploying the SGA algorithm described in Algorithm 1 as
ΨSGA. In the following, we use Sanov’s theorem (Sanov,
1957) to quantify the error exponents of ΨKA and ΨSGA,
and demonstrate that, in general, ΨSGA provides a better
(i.e., higher) error exponent compared to ΨKA.

6.1. Error exponent using ΨKA

The performance of ΨKA depends on its ability to correctly
declare a set of 4 nodes as star or non-star (with the appro-
priate pairing of nodes). The following proposition charac-
terizes the error exponent for a 4-node tree.
Proposition 2. Let P be a tree-structured graphical model
for {X1, X2, X3, X4}, and let P̃ denote the joint distri-
bution of the noisy samples. Let ρ(Q)

j,k , EQ[YjYk] and
Y , {+1,−1}.

(a) If the tree distribution P corresponds to the Markov
chain X1 X2 X3 X4, and we define

e1 , min
Q∈P(Y4)

{
D(Q‖P̃ ) :

ρ
(Q)
1,3 ρ

(Q)
2,4

ρ
(Q)
1,2 ρ

(Q)
3,4

≥ α
}
, (11)

e2 , min
Q∈P(Y4)

{
D(Q‖P̃ ) :

ρ
(Q)
1,3 ρ

(Q)
2,4

ρ
(Q)
1,4 ρ

(Q)
2,3

≤ α
}
, (12)

then we have E(ΨKA, P̃ ) = min{e1, e2}.
(b) If P corresponds to a star tree structure, then
E(ΨKA, P̃ ) can be expressed as

min
Q∈P(Y4)

{
D(Q‖P̃ ) :

ρ
(Q)
1,3 ρ

(Q)
2,4

ρ
(Q)
1,2 ρ

(Q)
3,4

≤ α,
ρ
(Q)
1,3 ρ

(Q)
2,4

ρ
(Q)
1,4 ρ

(Q)
2,3

≥ α
}
. (13)

5For the estimators considered in this paper, it can be shown
that the limit of the expression on the right side of (10) exists.
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For a tree T with d ≥ 4 nodes, if {Xij}4j=1 are 4 nodes in T
that form a star structure (resp. non-star structure with pair
{Xi1 , Xi2}), and P̃ denotes the distribution of the noisy
variables {Yij}4j=1, then the exponent corresponding to an
incorrect decision on the structure of these nodes by the
procedure in Algorithm 2 is equal to expression on the right
side of (13) (resp. equal to min{e1, e2} with e1, e2 defined
in (11), (12)), where ρ(Q)

j,k = EQ[YijYik ].

6.2. Error exponent using ΨSGA

The following proposition characterizes the error exponent
using ΨSGA for a 4-node tree.

Proposition 3. Let P be a tree-structured graphical model
for {X1, X2, X3, X4}, and let P̃ denote the joint distri-
bution of the noisy variables. Let ρ(Q)

j,k , EQ[YjYk] and
Y , {+1,−1}.
(a) If the tree distribution P corresponds to the Markov
chain X1 X2 X3 X4, and we define

e3 , min
Q∈P(Y4)

{
D(Q‖P̃ ) :

√
|ρ(Q)

1,3 ρ
(Q)
2,4 ρ

(Q)
1,4 ρ

(Q)
2,3 |

|ρ(Q)
1,2 ρ

(Q)
3,4 |

≥α
}
, (14)

e4 , min
Q∈P(Y4)

{
D(Q‖P̃ ) : |ρ(Q)

1,3 ρ
(Q)
2,4 | ≥ |ρ

(Q)
1,2 ρ

(Q)
3,4 |

}
, (15)

e5 , min
Q∈P(Y4)

{
D(Q‖P̃ ) : |ρ(Q)

1,4 ρ
(Q)
2,3 | ≥ |ρ

(Q)
1,2 ρ

(Q)
3,4 |

}
, (16)

then we have E(ΨSGA, P̃ ) = min{e3, e4, e5}.

(b) If the tree distribution P corresponds to a star tree
structure, then E(ΨSGA, P̃ ) can be expressed as

min
Q∈P(Y4)

{
D(Q‖P̃ ) :

√
|ρ(Q)

1,3 ρ
(Q)
2,4 ρ

(Q)
1,4 ρ

(Q)
2,3 |

|ρ(Q)
1,2 ρ

(Q)
3,4 |

≤ α
}
. (17)

For a tree T with d ≥ 4 nodes, if {Xij}4j=1 are 4 nodes in
T that form a star (resp. non-star with pair {Xi1 , Xi2}), and
P̃ denotes the distribution of the noisy variables {Yij}4j=1,
then the exponent corresponding to an incorrect decision
on the structure of these nodes by the procedure in Algo-
rithm 1 is equal to expression on the right side of (17) (resp.
equal to min{e3, e4, e5} with e3, e4, e5 defined in (14),
(15), and (16)), where ρ(Q)

j,k = EQ[YijYik ].

6.3. Numerical comparison of the error exponents

Because the expressions for the error exponents in Props. 2
and 3 are not easily comparable (since E(ΨKA, P̃ )
and E(ΨSGA, P̃ ) are non-convex optimization problems),
we present numerical comparisons of E(ΨKA, P̃ ) and
E(ΨSGA, P̃ ) for 4-node homogeneous trees. Fig. 1 com-
pares the error exponents for a 4-node Markov chain
X1 X2 X3 X4 where all the edge correlations are
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Figure 1. Error exponents for a 4-node homogeneous chain where
all tree edges have correlation ρ. (a) Noiseless setting, qmax = 0,
(b) Error exponent versus qmax for fixed ρ = 0.74.

same, and are denoted as ρ. Fig. 1(a) considers a noiseless
scenario where qmax = 0, and it is observed that the error ex-
ponent for ΨSGA is significantly higher (hence better) than
that for ΨKA for small values of ρ; e.g., when ρ < 0.6. On
the other hand, ΨKA has only marginally higher exponent
for higher values of ρ (when ρ > 0.71). Fig. 1(b) compares
the error exponents for the scenario where ρ = 0.74 is fixed,
and where the noise crossover probabilities for the nodes
satisfy q1 = q2 = q3 = 0 and q4 = qmax. It is seen that
although ΨKA has better exponent than ΨSGA in the neigh-
borhood of qmax = 0, the performance of ΨSGA is slightly
better for relatively higher values of qmax.

Fig. 2 compares the error exponents with ΨKA and ΨSGA

for a 4-node star-structured tree where all edge correlations
are same and are denoted ρ. Fig. 2(a) considers a noiseless
scenario where qmax = 0, and it is observed that the error
exponent for ΨSGA is slightly higher than the error exponent
for ΨKA for all values of ρ. Fig. 2(b) compares the error
exponents for the scenario where ρ = 0.4 is fixed, and
where the noise crossover probabilities for the nodes satisfy
q1 = q2 = q3 = 0 and q4 = qmax. Again, we see that the
error exponent for ΨSGA is better than that for ΨKA.

Monte Carlo simulations for 4-node homogeneous trees
(i.e., trees with equal correlations on the edges) that cor-
roborate the theoretical results in this section, are presented
in App. H. Even though Figs. 1 and 2 suggest that ΨKA

sometimes outperforms ΨSGA, we show for larger trees that
the performance of ΨSGA is almost always better than ΨKA.
We explain why this is so in Sec. 7.1. Since Sanov’s the-
orem is also applicable to random variables with arbitrary
alphabets (Deuschel & Stroock, 2000, Ch. 3), we expect
similar error exponent performances for Gaussian models.
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Figure 2. Error exponents for a 4-node star-structured tree where
all edges have correlation ρ. (a) Noiseless setting, qmax = 0,
(b) Error exponent versus qmax for fixed ρ = 0.4.

7. Numerical Results
In this section, we present Monte Carlo simulation results
for 12-node trees with three different tree structures: (i)
Chain, (ii) Hybrid, (iii) Star (see Fig. 11 in App. I). The
chain and the star structures are known to be extremal in
terms of the error probability (Tan et al., 2010; Tandon et al.,
2020), while the hybrid tree is a combination of the chain
and star structures. For a given tree structure T, and n noisy
samples Yn

1 , the error probability P
(
Ψ(Yn

1 ) /∈ [T]
)

for a
given learning algorithm Ψ, is estimated using 105 iterations
in the Monte Carlo simulation framework, where an error is
declared if the estimated tree does not belong to the equiva-
lence class [T]. We obtain error probability results for three
different algorithms ΨKA, ΨSGA and ΨCL – the vanilla
Chow-Liu algorithm (Chow & Liu, 1968) applied directly to
noisy samples. For ΨKA and ΨSGA, the knowledge of ρmin

and ρmax is assumed. The source code to reproduce the ex-
periments can be found here: https://github.com/
AldricHan/SGA-Algorithm-Experiments.

7.1. Error Probabilities for 12-node chain

Fig. 3 compares the error probabilities for a 12-node Markov
chain, where all edge correlations are equal to ρ, using three
learning algorithms: ΨKA, ΨSGA, and ΨCL. Fig. 3(a) plots
the results for the noiseless setting, qmax = 0, with ρ = 0.8.
In this case, it is seen that the Chow-Liu algorithm ΨCL

provides the minimum error probability as it the maximum-
likelihood algorithm for the noiseless setting (Chow & Wag-
ner, 1973; Tan et al., 2011). The observation that ΨSGA has
lower error probability than ΨKA for ρ = 0.8, qmax = 0
can be intuitively explained as follows. An error event using
ΨKA or ΨSGA occurs when a set of 4 nodes in the tree is
incorrectly declared as star/non-star (see Sec. 4 and Sec. 5,
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Figure 3. Comparison of error probabilities for a 12-node Markov
chain where all edge correlations are equal to ρ.

respectively). Now, in the process of building a tree struc-
ture, these algorithms may pick a set of 4 non-neighboring
nodes (that belong to each others’ proximal sets) to charac-
terize them as star or non-star. For instance, consider the
set of 4 nodes X1, X3, X5, X7 that forms a sub-chain (of
the 12-node chain) where the effective edge correlation for
the sub-chain is 0.82 = 0.64. From Fig. 1(a), we note that
ΨSGA has a significantly higher exponent than ΨKA when
the edge correlation is 0.64, and therefore we would expect
ΨSGA to have a lower error probability compared to ΨKA

when characterizing these 4 nodes as star or non-star.

Fig. 3(b) compares the error probabilities when ρ = 0.8
for the noisy case, where noise is added to alternate nodes,
i.e., qi = qmax = 0.2 for i ∈ O12 , {1, 3, 5, 7, 9, 11},
while qj = 0 for j ∈ E12 , {2, 4, 6, 8, 10, 12}. In contrast
to the noiseless case, we observe from Fig. 3(b) that ΨCL

performs extremely poorly with error probability roughly
equal to 1. Such a poor performance is expected of ΨCL

because E[Y4Y6] = 0.64 > 0.48 = E[Y4Y5] = E[Y5Y6],
and hence the tree estimated using ΨCL is more likely to
pick the incorrect edge {X4, X6} over the correct edges
{X4, X5} and {X5, X6}. Similar to Fig. 3(a), the plots
in Fig. 3(b) highlight the clear superiority of ΨSGA over
ΨKA. A similar robust performance of ΨSGA is observed
in the plots in Figs. 3(c) and 3(d) that compare the error
probabilities for a 12-node Markov chain where ρ = 0.6.

7.2. Error Probabilities for 12-node hybrid tree

Fig. 4 compares the error probabilities for a 12-node hybrid
tree where all correlations are equal to ρ. Fig. 4(a) plots the
results for the noiseless setting with ρ = 0.8, while Fig. 4(b)
considers the noisy case where noise is only added to even

https://github.com/AldricHan/SGA-Algorithm-Experiments
https://github.com/AldricHan/SGA-Algorithm-Experiments
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Figure 4. Comparison of error probabilities for a 12-node hybrid
tree where all edge correlations are equal to ρ.

nodes, i.e. qi = 0 for i ∈ O12, and qj = qmax = 0.2 for
j ∈ E12. For the noiseless case, as expected, ΨCL provides
the minimum error probability. However, for the noisy case,
ΨCL performs poorly with error probability≈ 1. Again, this
is expected because E[Y3Y5] = 0.64 > 0.48 = E[Y3Y4] =
E[Y4Y5], and hence the tree estimated using ΨCL is more
likely to pick the incorrect edge {X3, X5} over the correct
edges {X3, X4} and {X4, X5} (see Fig. 11(ii) in App. I).

The plots in Fig. 4(c) and (d) compare the error probabilities
for a hybrid tree when the edge correlation is ρ = 0.6. For
the noiseless case in (c), the error probability using ΨCL is
not plotted because it results in zero errors over 105 Monte
Carlo simulation runs for the given values of n in Fig. 4(c).
On the other hand, Fig. 4(d) considers the noisy case where
noise is only added to even nodes, i.e. qi = 0 for i ∈ O12,
and qj = qmax = 0.2 for j ∈ E12. The error probability
using ΨCL is quite high for the noisy case (note, for instance,
that E[Y3Y5] = E[Y3Y4] = E[Y4Y5] = 0.36). Fig. 4 clearly
highlights the robustness of ΨSGA over ΨKA and ΨCL when
the underlying tree is a hybrid of the chain and the star.

7.3. Error Probabilities for 12-node star tree

Fig. 5 compares the error probabilities using ΨKA, ΨSGA,
and ΨCL, for a 12-node star where all correlations are equal
to ρ = 0.6. Fig. 5(a) plots the results for the noiseless setting
(qmax = 0), while Fig. 5(b) considers the noisy case where
noise is only added to odd nodes, i.e. qi = qmax = 0.2
for i ∈ O12, while qj = 0 for j ∈ E12. The Chow-Liu
algorithm ΨCL performs well in the noiseless setting, but
fails miserably in the noisy setting. For both the noisy and
noiseless settings, ΨSGA performs slightly better than ΨKA.
This is justified using the error exponent result in Fig. 2(a)
where it is observed thatE(ΨSGA, P̃ ) is slightly higher than
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Figure 5. Comparison of error probabilities for a 12-node star,
where all edge correlations are equal to ρ = 0.6.

that for E(ΨKA, P̃ ) when ρ = 0.6.

We notice that for a moderate sample size (n ≈ 1000), there
is a dichotomy in the performance of ΨCL—its error prob-
ability is either close to 0 or 1. Hence, if ΨCL and ΨSGA

output the same tree, this implies that the noise does not
cause us to learn the wrong tree via Chow-Liu. Conversely,
if ΨCL and ΨSGA output different trees, the one from ΨSGA

should be “trusted” since it is designed to robustly learn trees
with noise up to the equivalence class. Additional numerical
results for Gaussian trees are presented in App. J.3.

8. Discussion and Future Work
There are several promising avenues for future research.
First, SGA and the algorithm by Katiyar et al. (2020) depend
on the knowledge of ρmax through α. Designing algorithms
that do not depend on ρmax would be of practical interest.
Second, we may tighten the sample complexity bounds so
that the dependencies on (ρmin, ρmax, qmax) are optimized.
Finally, given noisy samples, we can endeavor to define
equivalence classes (analogous to [T] here) and propose
algorithms for the learning of various other graph structures
such as random graphs (Anandkumar et al., 2012), latent
trees (Choi et al., 2011), or forests (Tan et al., 2011).
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