
Fast Sketching of Polynomial Kernels of Polynomial Degree

Zhao Song 1 David P. Woodruff 2 Zheng Yu 3 Lichen Zhang 4

Abstract
Kernel methods are fundamental in machine
learning, and faster algorithms for kernel approx-
imation provide direct speedups for many core
tasks in machine learning. The polynomial ker-
nel is especially important as other kernels can
often be approximated by the polynomial ker-
nel via a Taylor series expansion. Recent tech-
niques in oblivious sketching reduce the depen-
dence in the running time on the degree q of the
polynomial kernel from exponential to polyno-
mial, which is useful for the Gaussian kernel,
for which q can be chosen to be polylogarithmic.
However, for more slowly growing kernels, such
as the neural tangent and arc-cosine kernels, q
needs to be polynomial, and previous work in-
curs a polynomial factor slowdown in the run-
ning time. We give a new oblivious sketch which
greatly improves upon this running time, by re-
moving the dependence on q in the leading order
term. Combined with a novel sampling scheme,
we give the fastest algorithms for approximating
a large family of slow-growing kernels.

1. Introduction
Kernel methods are a powerful tool for solving non-
parametric learning problems, such as kernel regression,
support vector machines (SVM), principal component anal-
ysis (PCA), and many others. A typical burden for kernel
methods is that they suffer from scalability, since comput-
ing a kernel matrix requires computing a quadratic (in the
number of input points) number of entries in the matrix.
A direction that has received less attention but still of par-
ticular interest is the regime where the dimension d of the

1Princeton University and Institute for Advanced
Study 2Carnegie Mellon University 3Princeton Uni-
versity 4Carnegie Mellon University. Correspon-
dence to: Zhao Song <magic.linuxkde@gmail.com>,
David P. Woodruff <dwoodruf@andrew.cmu.edu>,
Zheng Yu <zhengyu@princeton.edu>, Lichen Zhang
<lichenz@andrew.cmu.edu>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

data points is large. Typically, applying the kernel func-
tion to each pair of data points takes O(d) time. This is
especially undesirable in applications for natural language
processing (Drikvandi & Lawal, 2020) and computational
biology (Teodoro et al., 2002), where d can be as large as
poly(n), with n being the number of data points. To com-
pute the kernel matrix, the algorithm does have to read the
d×n input matrix. Therefore, algorithms that have a nearly
linear dependence on nd are of particular interest.

To accelerate the computation of kernel matrices from the
naïve O(n2d) time algorithm, a lot of work has focused on
finding a good approximation to a kernel matrix efficiently
(Rahimi & Recht, 2007; Alaoui & Mahoney, 2015; Musco
& Musco, 2017; Ahle et al., 2020; Woodruff & Zandieh,
2020). All of these methods make use of randomized algo-
rithmic primitives such as sampling or sketching. Roughly
speaking, the idea is to randomly generate a “sketching ma-
trix" with a small number of rows, multiply the sketching
matrix with the input matrix, and show that the resulting
matrix approximately preserves the length of vectors in the
row or column space of the original matrix.

The polynomial kernel is of interest, since any kernel can
be written as a sum of polynomial kernels through a Tay-
lor expansion. If we can efficiently approximate the poly-
nomial kernel, then we will be able to efficiently approxi-
mate many types of kernels. In (Avron et al., 2014), Avron,
Nguyen and Woodruff approximate the polynomial kernel
with a sketching matrix in time that depends exponentially
on the degree p of the polynomial kernel. Recent works
of (Ahle et al., 2020; Woodruff & Zandieh, 2020) have im-
proved the dependence on p to polynomial. However, their
algorithms mainly focus on optimizing the dependence on
n and reducing the exponential dependence on p to poly-
nomial. If X ∈ Rd×n is the input matrix and is dense, then
these algorithms have runtime Õ(pnd+ε−2n3p2).1 Notice
this is unsatisfactory when both d and p are large.

Thus, a natural question to ask is:

Does there exist a sketch for polynomial kernels of degree
p, such that the runtime is nearly linear in nd, and with an

improved dependence on p?

1We use Õ(·), Ω̃(·), Θ̃(·) to suppress poly(log(nd/εδ)) fac-
tors.



Fast Sketching of Polynomial Kernels of Polynomial Degree

Notice this is especially desirable for kernels such as the
neural tangent kernel (NTK) (Jacot et al., 2018) and the
arc-cosine kernel (Cho & Saul, 2009), whose Taylor series
have a much slower decay rate (1/nc for some c) compared
to the Gaussian kernel (which is 1/n!).

We list our contributions as follows:

• We develop an efficient algorithm that computes a
sketch of the polynomial kernel of degree p in time
linear in p2 and nearly linear in nd.

• Our algorithm only uses two distinct sketches com-
pared to theO(p) independent sketches of (Ahle et al.,
2020). This enables us to use repeated powering to
compute our sketch very efficiently.

• We characterize kernel matrices by considering their
Taylor series, and provide different algorithmic
schemes to solve them. Our characterization includes
a family of interesting and popular kernels. We also
use this sketch as a preconditioner for solving linear
systems involving a kernel matrix, and we extend our
sketch to solve kernel ridge regression, by composing
it with another sketch that depends on the statistical
dimension.

1.1. Related Work

Kernel regression Classical regression has the form
minw ‖Y − Xw‖22, where X and Y are a given dataset
and corresponding labels, respectively. Kernel regression
(Bach, 2013; Zhang et al., 2015; Alaoui & Mahoney, 2015;
Avron et al., 2017b;c; Zandieh et al., 2020; Lee et al., 2020;
Alman et al., 2020) allows for X to be a kernel matrix
K ∈ Rn×n, where each entry is the application of a kernel
function to a pair of data points in X . Kernel regression
minw ‖Y −Kw‖22 enables fitting non-linear data into a hy-
perplane by transforming the data into a high-dimensional
space.

Sketching techniques for tensor-related problems
Sketching techniques have been used extensively in tensor-
related problems, e.g., for linear-algebraic problems in-
volving polynomial kernels (Avron et al., 2014; Ahle et al.,
2020; Woodruff & Zandieh, 2020), for tensor low-rank ap-
proximation (Song et al., 2019), and for tensor regression
(Haupt et al., 2017; Diao et al., 2018; 2019).

Subspace embeddings An (oblivious) subspace embed-
ding is a useful concept in randomized numerical linear al-
gebra introduced by Sárlos (Sarlos, 2006). Many applica-
tions rely on subspace embeddings or their variants, such
as linear regression, low-rank approximation (Clarkson &
Woodruff, 2013; Nelson & Nguyên, 2013; Meng & Ma-
honey, 2013; Boutsidis & Woodruff, 2014; Boutsidis et al.,

2016; Song et al., 2017; Andoni et al., 2018), tensor decom-
position (Song et al., 2019), cutting plane methods (Jiang
et al., 2020), and linear programming (Lee et al., 2019;
Jiang et al., 2021; Song & Yu, 2021)

Roadmap In Section 2, we introduce definitions, nota-
tions and some basic facts. In Section 3, we present a tech-
nical overview of our results. In Section 4, we propose an
efficient algorithm to generate a sketch and apply it to a
polynomial kernel of arbitrary positive integer degree p. In
Section 5, we analyze our algorithm with a specific sketch-
ing matrix. In Section 6, we present applications to the
Gaussian kernel and a more general class of kernels, which
can be characterized through the coefficients of their Tay-
lor expansion. We also discuss how to use our sketch as a
preconditioner for solving kernel linear systems, and solve
sketched kernel ridge regression.

2. Preliminaries
For an integer n, let [n] denote the set {1, 2, · · · , n}. For
two scalars a and b, we say a ≈ε b if (1 − ε)b ≤ a ≤
(1 + ε)b. We say a square symmetric matrix A is positive
semi-definite (PSD) if ∀x, x>Ax ≥ 0. For two PSD ma-
trices A and B, we define A ≈ε B if (1 − ε)B � A �
(1 + ε)B, where A � B means B − A is PSD. For a
matrix A, we use ‖A‖F = (

∑
i,j A

2
i,j)

1/2 to denote its
Frobenius norm and use ‖A‖op to denote its operator (spec-
tral) norm. For a square symmetric matrix A, we use tr[A]
to denote the trace of A. For a square matrix A, we use
λmin(A), λmax(A) to denote its smallest and largest eigen-
values, respectively. For a rectangular matrix A, we use
σmin(A), σmax(A) to denote its smallest and largest singu-
lar values, respectively, and we use κ = σmax(A)

σmin(A) to denote
its condition number.

2.1. Definitions
We define an oblivious subspace embedding ((Sarlos,
2006)) as follows:
Definition 2.1 (Oblivious Subspace Embedding(OSE)).
Let ε, δ ∈ (0, 1) and d, n ≥ 1 be integers. An (ε, δ, d, n)-
Oblivious Subspace Embedding (OSE) is a distribution
over m × d matrices with the guarantee that for any fixed
matrix A ∈ Rd×n, we have

Pr
Π∼D

[
((ΠA)>ΠA) ≈ε (A>A)

]
≥ 1− δ

We also introduce tensor products of vectors and Kronecker
products of matrices.
Definition 2.2 (Tensor product of vectors). Given a ∈ Rn
and b ∈ Rm, we define the tensor product of a and b, de-
noted by a × b, to be vec(ab>). We will use a⊗p to denote
the tensoring of the vector a with itself a total of p times.

The Kronecker product of matrices is a natural extension
of the tensor product of vectors:



Fast Sketching of Polynomial Kernels of Polynomial Degree

Definition 2.3. Given A1 ∈ Rm1×n1 , A2 ∈
Rm2×n2 , . . . , Ak ∈ Rmk×nk , we defineA1×A2×. . .×Ak
to be the matrix in Rm1m2...mk×n1n2...nk whose ele-
ment at row (i1, . . . , ik) and column (j1, . . . , jk) is
A1(i1, j1) . . . Ak(ik, jk).

An important property of the Kronecker product is the so-
called mixed product property:
Claim 2.4. For conforming matrices A,B,C,D, the fol-
lowing holds:

(A ·B)× (C ·D) = (A× C) · (B ×D).

One consequence is the following claim:
Claim 2.5. Let A1 ∈ Rm1×n1 , A2 ∈ Rm2×n2 , . . . , Ak ∈
Rmk×nk and v1 ∈ Rn1 , v2 ∈ Rn2 , . . . , vk ∈ Rnk . Then,

(A1 ×A2 × . . .×Ak) (v1 × v2 × . . .× vk)

= (A1v1)× (A2v2)× . . .× (Akvk).

We will extensively use the following notation:
Definition 2.6. Given A1 ∈ Rm1×n1 , A2 ∈
Rm2×n2 , . . . , Ak ∈ Rmk×nk , we defineA1⊗A2⊗. . .⊗Ak
to be the matrix in Rm1m2...mk×n whose jth column is
Aj1 ×Aj2 × . . .×Ajk for every j ∈ [n], where Ajl is the jth

column of Al for every l ∈ [k].

2.2. Sketching Matrices
We recall the Subsampled Randomized Hadamard Trans-
form (SRHT), which is a Fast Johnson-Lindenstrauss trans-
form (Ailon & Chazelle, 2006).
Definition 2.7 (Subsampled Randomized Hadamard Trans-
form (SRHT), see (Lu et al., 2013; Woodruff et al., 2014)).
The SRHT matrix S ∈ Rm×d is defined as S = 1√

m
PHD,

where P ∈ {0, 1}m×d is a sampling matrix where each row
contains exactly one 1 at a uniformly random coordinate,
H is the d×d Hadamard matrix, andD is a d×d diagonal
matrix with independent Rademacher random variables on
its diagonal.
Remark 2.8. Using the Fast Fourier Transform (FFT)
(Cooley & Tukey, 1965), S can be applied to a vector in
time O(d log d).

We also introduce a sketching matrix for degree-2 tensors,
which is a generalization of the SRHT.
Definition 2.9 (Tensor Subsampled Randomized
Hadamard Transform (TensorSRHT) (Ahle et al.,
2020)). We define the TensorSRHT S : Rd × Rd → Rm
as S = 1√

m
P · (HD1 ×HD2), where P ∈ {0, 1}m×d is

a sampling matrix where each row contains only one 1 at
a uniformly random coordinate. H is a d × d Hadamard
matrix, and D1, D2 are two d × d independent diagonal
matrices with diagonals that are each independently set to
be a Rademacher random variable (uniform in {−1, 1}).

Remark 2.10. By leveraging the FFT algorithm in the
sketch space, S(x⊗2) can be computed in time O(d log d+
m).

We will use the following properties of the SRHT and
TensorSRHT.
Lemma 2.11 (Theorem 2.4 in (Woodruff et al., 2014)). Let
T be an SRHT matrix defined in Definition 2.7. If m =
O(n log(nd/δ)ε−2), then T is an (ε, δ, d, n)-OSE.
Lemma 2.12 (Lemma 21 in (Ahle et al., 2020)). Let S
be a TensorSRHT matrix defined in Definition 2.9. If
m = O(n log3(nd/εδ)ε−2), then S is an (ε, δ, d, n)-OSE
for degree-2 tensors.

2.3. Kernels
We introduce several kernels that are widely-used in prac-
tice, e.g., see (Goldberg & Elhadad, 2008; Chang et al.,
2010) for the polynomial kernel, and see (Ng et al., 2001)
for the Gaussian kernel.
Definition 2.13 (Polynomial Kernel). Given two data
points x, y ∈ Rd, the degree-p polynomial kernel, P , be-
tween x and y is defined as2: P (x, y) = 〈x, y〉p. Let
X ∈ Rd×n. The degree-p polynomial kernel P , defined
on matrix X , is the matrix Pi,j = 〈xi, xj〉p , where xi, xj
are the ith and jth column of X , respectively.
Definition 2.14 (Gaussian Kernel). Given two data points
x, y ∈ Rd, the Gaussian kernel, G, between x and y is
defined as G(x, y) = exp(−‖x− y‖22/2). Let X ∈ Rd×n.
The Gaussian kernel G, defined on matrix X , is the matrix
Gi,j = exp(−‖xi − xj‖22/2), where xi, xj are the ith and
jth column of X , respectively.

3. Technical Overview
We first consider one way to compute the polynomial ker-
nel P via the identity P = (X⊗p)>X⊗p. Our algorithm
will try to compute X⊗p quickly.

Suppose we want to compute the p-fold tensoring of a vec-
tor x, and assume for simplicity that p is a power of 2. Our
algorithm is inspired by that of (Ahle et al., 2020), which
generates a complete binary tree with 2p − 1 nodes, and
thus p leaves. For the i-th leaf node, it picks a sketch T i

and applies it to x, obtaining T ix. Each internal node j
then does the following: it picks a sketch Sj , and applies
Sj to the tensor product of its two children. Sj is picked
as a map from Rm2 → Rm for each j, so at each level of
the binary tree, we reduce the number of vectors by half,
while remaining in the low-dimensional space Rm. One
drawback of this algorithm is the usage of an independent
sketch for each node of the tree, thus incurring a linear de-
pendence on p in the runtime.

2A more standard definition is P (x, y) = 〈x, y〉p + c; we can
simulate this by creating an extra dimension on all data points.



Fast Sketching of Polynomial Kernels of Polynomial Degree

Our algorithm instead uses a much smaller amount of ran-
domness. We pick only a single T and a single S, i.e.,
T 1 = T 2 = · · · = T p for all leaf nodes, and we have
Sj = S for all internal nodes j. The challenge with this ap-
proach is of course that we have much less independence
in our analysis, and consequently do not obtain the same
guarantees for preserving the length of the tensor product
of an arbitrary set of vectors as in previous work. We stress
that we compute a sketch that preserves the column span of
X⊗p, and this is weaker than the guarantee we would get
had we used full independence, which gives a sketch that is
an oblivious subspace embedding, meaning that it can pre-
serve the column span of any matrix in Rdp×n. However,
the key point is that we can preserve the tensor product of
a vector with itself p times, and this will suffice for our
applications.

This allows for a much faster way to compute x⊗p:
“square” a vector by computing the tensor product with it-
self, then apply a sketch, and repeat this process. By doing
so, we reduce the dependence on p in the first level of the
tree from linear to logarithmic. However, this will incur a
p2 factor in the dimension of the sketch, and so we will pay
more for p in levels other than the first level. Fortunately,
levels other than the first level apply sketches to lower di-
mensional vectors. By carefully balancing the complexity
of applying T and S, we achieve an improved running time,
which is useful when the degree p is large.

4. Fast Sketching Algorithm for the
Polynomial Kernel

We introduce our algorithm that sketches a single vector
x⊗p and extend it to each column of a matrix. In Sec-
tion 4.1 we give some definitions. In Section 4.2 we prove
several technical tools related to tensors. In Section 4.3 we
show our sketch preserves the column space of the polyno-
mial kernel. In Section 4.4 we prove our main result for
this section.

4.1. Definitions

We define the sketching matrix formed by Algorithm 1 as
follows:
Definition 4.1. Let q be a power of 2 and Πq : Rdq → Rm
be defined as the following matrix:

Πq = Qq · T q,
where T q = T × T × . . .× T︸ ︷︷ ︸

q times

and Qq = S1 ·S2 ·S4 · . . . ·

Sq/2, and Sl = S × S × . . .× S︸ ︷︷ ︸
l times

.

We will design an algorithm that achieves the following
goal:

Case 1 If p is a power of 2, then it computes ΠpX⊗p effi-
ciently.

Case 2 If p is not a power of 2, then let b be its binary rep-
resentation and let E = {i : bi = 1, i ∈ {0, . . . , log2 p}}.
We will iterate through all indices in E and continue ten-
soring two vectors where bi = 1, and apply S to them.

Definition 4.2. Let S ∈ Rm2 → Rm and T : Rd → Rm be
base sketches. LetX ∈ Rd×n be an input matrix. We define
Z(S, T,X) to be the matrix for which we apply Algorithm
1 on each column of X , with base sketches S and T .

4.2. Equivalence Results for Tensors

We provide two technical tools for handling tensors.

Lemma 4.3 (The output guarantee of Algorithm 1). Let p
be a power of 2 and Πp be defined as in Definition 4.1. Let
x ∈ Rd. Then the output vector z generated by Algorithm 1
satisfies z = Πp(x⊗p).

Proof. If p is a power of 2, then Algorithm 1 will output z
on line 8. We will exploit the fact that although Algorithm
1 only computes one vector at a time, we can view it as
computing p/2i identical vectors in the ith iteration. On
line 3, we can treat it as computing p copies of w0, and
therefore, by Claim 2.5, we have

w⊗p0 = (Tx)⊗p

= (T × T × . . .× T )(x× x× . . .× x)

= T px⊗p.

We can apply the same line of reasoning to line 4 of the
algorithm. In the ith iteration, we can treat it as

S(w⊗2
i−1)× S(w⊗2

i−1)× . . .× S(w⊗2
i−1)

a total of p/2i times. Again, using Claim 2.5, we have

w
⊗p/2i

i = S(w⊗2
i−1)× S(w⊗2

i−1)× . . .× S(w⊗2
i−1)

=
(
S(w⊗2

i−1)
)⊗p/2i

= (S × S × . . .× S)︸ ︷︷ ︸
p/2i times

(w⊗2
i−1)⊗p/2

i

= Sp/2
i

w
⊗p/2i−1

i−1 .

Recursively applying this identity, we will end up with

z = S1 · S2 · S4 · . . . · Sp/2 · T px⊗p = Πp(x⊗p).

Next, we wish to show that if p is a power of 2, then Πp pre-
serves the subspace spanned by the columns ofX⊗p within
a factor of 1 ± ε

2p . Notice this is weaker than Πp being an



Fast Sketching of Polynomial Kernels of Polynomial Degree

Algorithm 1 Our algorithm for sketching the vector x⊗p with limited randomness.

1: procedure TENSORSKETCHVIALIMRAND(x ∈ Rd, p ∈ (1,∞), S ∈ Rm×m2

, T ∈ Rm×d) . Theorem 4.8 and 5.1
2: Let q = 2blog2 pc

3: Let w0 = Tx . T can be SRHT (Definition 2.7)
4: for l = 1 to log2 q do
5: Compute wl = S(w⊗2

l−1) . S can be TensorSRHT (Definition 2.9)
6: end for
7: Let b be the binary representation of p, and let E = {i : bi = 1, i ∈ {0, . . . , log2 p}}
8: Let z = wj , where j is the lowest bit of b where bj = 1
9: for i in E \ {j} do

10: z = S(z × wi)
11: end for
12: return z . z ∈ Rm
13: end procedure

OSE, but sufficient for our application to polynomial ker-
nels. We will show that

(ΠpX⊗p)>ΠpX⊗p ≈ε (X⊗p)>X⊗p.

The following lemma outlines the main technique in our
proof of this property. It establishes a one-to-one mapping
between a vector in the column span of X⊗p and a matrix.
We then use this equivalence to inductively prove that Πp

preserves the target subspace.

Lemma 4.4 (From Vector Tensor to Matrix Tensor). Let
X ∈ Rd×n. Consider u = X⊗py for some y ∈ Rn and
positive integer p. Then,

‖u‖2 = ‖X⊗(p−1)Y X>‖F ,

where Y = diag(y) ∈ Rn×n is a diagonal matrix where
the i-th entry on the diagonal is yi, ∀i ∈ [n].

Proof. We will use Xi,j to denote the ith row and jth

column of X . We observe that a fixed column X⊗p∗,j is
equivalent to taking the outer product X⊗p−1

∗,j X>∗,j , then
flattening the matrix into a long vector. If we use a dou-
ble index to indicate an entry of X⊗p∗,j (a, b), then we have
X⊗p∗,j (a, b) = X⊗(p−1)(a)X(b), where a ranges from 1 to
dp−1 and b ranges from 1 to d. Consider the `2 norm u:

‖u‖22 = ‖X⊗py‖22

=
dp−1∑

a=1

d∑

b=1

(
n∑

i=1

yi(X
⊗p
∗,i )(a, b)

)2

.

On the other hand, we can write X⊗(p−1) in its column
form:




| | . . . |
X
⊗(p−1)
∗,1 X

⊗(p−1)
∗,2 . . . X

⊗(p−1)
∗,n

| | . . . |


 .

Recall that Y is a diagonal matrix and therefore, the prod-
uct X⊗(p−1)Y can be expressed as




| | . . . |
y1X

⊗(p−1)
∗,1 y2X

⊗(p−1)
∗,2 . . . ynX

⊗(p−1)
∗,n

| | . . . |


 .

Using the outer product definition of matrix product, we
have

X⊗(p−1)Y X> =
n∑

i=1

yiX
⊗(p−1)
∗,i X>∗,i.

This is a matrix of size dp−1 × d. Therefore, we can write
its Frobenius norm as

‖X⊗(p−1)Y X>‖2F = ‖
n∑

i=1

yiX
⊗(p−1)
∗,i X>∗,i‖2F

=

dp−1∑

a=1

d∑

b=1

(
n∑

i=1

yiX
⊗(p−1)
∗,i (a)X∗,i(b)

)2

=
dp−1∑

a=1

d∑

b=1

(
n∑

i=1

yi(X
⊗p
∗,i )(a, b)

)2

= ‖u‖22.

This completes the proof.

4.3. Preserving the Polynomial Kernel Subspace

We prove the sketch generated by Algorithm 1 preserves
the column space of the polynomial kernel.

Lemma 4.5 (T p Preserves Polynomial Kernel Subspace).
Let X ∈ Rd×n, y ∈ Rn and u = X⊗py, where p is a posi-
tive integer. If T is an (ε, δ, d, n) OSE, then with probability
at least 1− δ,

‖(TX)⊗py‖22 = (1± ε)p‖X⊗py‖22



Fast Sketching of Polynomial Kernels of Polynomial Degree

Proof. We proceed by induction on p. For p = 1, by Defi-
nition 2.1, we have

‖TXy‖22 = (1± ε)‖Xy‖22.

For the inductive step, we will prove this for a general posi-
tive integer p > 1. We break p into p−1 and 1. By Lemma
4.4, we have

‖(TX)⊗py‖22 = ‖(TX)⊗(p−1)Y (TX)>‖2F
= ‖(TX)⊗(p−1)Y X>T>‖2F .

Recall that T is an (ε, δ, d, n) OSE for X . This means right
multiplying by T> preserves the length of all columns of
(TX)⊗(p−1)Y X>, and therefore we have

‖(TX)⊗(p−1)Y X>T>‖2F = (1± ε)‖(TX)⊗(p−1)Y X>‖2F .

Using the inductive hypothesis, for any vector z ∈ Rn, we
have

‖(TX)⊗(p−1)z‖22 = (1± ε′)p−1‖X⊗(p−1)z‖22.

Applying this to each column of Y X>, we have

‖(TX)⊗(p−1)Y X>‖2F = (1± ε)p−1‖X⊗(p−1)Y X>‖2F
= (1± ε)p−1‖X⊗py‖22.

This enables us to conclude that

‖(TX)⊗py‖22 = (1± ε)p‖X⊗py‖22

Remark 4.6. As we motivated in Section 3, if we view Al-
gorithm 1 as a binary tree, Lemma 4.5 effectively proves
that the bottom layer of the tree preserves the column space
of X⊗p. We then pick S to be an OSE for degree-2 tensors,
and inductively establish our embedding.

Lemma 4.7 (Πp Preserves the Polynomial Kernel Sub-
space). Let S : Rm2 → Rm be an (ε, δ, d, n)-OSE for
degree-2 tensors, and let T : Rd → Rm be an (ε, δ, d, n)-
OSE (Definition 2.1). Let p be a power of 2. Let Πp be the
sketching matrix defined as in Definition 4.1. Then we have
for any y ∈ Rn, with probability at least 1− δ,

(1− ε)2p‖X⊗py‖2 ≤ ‖ΠpX⊗py‖2 ≤ (1 + ε)2p‖X⊗py‖2.

Proof. We will prove this by induction on the number of
iterations of Algorithm 1. Let k = log2 p; we will induct on
the parameter l from 1 to k. Let Υ2l

denote the sketching
matrix at level l: Υ2l

= Sp/2
l ·Sp/2l−1 · . . . Sp/2 ·T p,∀l ∈

[k] and Υ0 = T p. We will prove the following statement:
∀l ∈ {0, . . . , k}, we have

‖Υ2l

X⊗py‖2 ≤ (1± ε)
∑l

i=0
p

2i ‖X⊗py‖2.

Note that when l = k, we have Υ2k

= Πp, and therefore it
gives us the desired result.

For the base case, note that Lemma 4.5 automatically gives
our desired result. For the inductive step, we assume it
holds for some l − 1, so

‖Υ2l−1

X⊗py‖22 = (1± ε)
∑l−1

i=0 p/2
i‖X⊗py‖22.

Notice that Υ2l

= Sp/2
l · Υ2l−1

. Let Z be defined as the
matrix

Z =




| | . . . |
(x1
l−1)⊗2 (x2

l−1)⊗2 . . . (xnl−1)⊗2

| | . . . |


 ,

where we use xij to denote the ith column of X after the jth

iteration. From Algorithm 1, we have that Z = Υ2l

X⊗p,
and so the product Sp/2

l · Υ2l−1

X⊗p can be written as
(SZ)⊗p/2

l

.

If p/2l > 1, then similar to Lemma 4.5,

‖(SZ)⊗p/2
l

y‖22
= ‖(SZ)⊗(p/2l−1) diag(y)Z>S>‖2F
= (1± ε)‖(SZ)⊗(p/2l−1) diag(y)Z>‖2F
= (1± ε)p/2l‖Z⊗(p/2l−1) diag(y)Z>‖2F
= (1± ε)p/2l‖Z⊗p/2l

y‖22
= (1± ε)

∑l
i=0 p/2

i‖X⊗py‖22.

The third step uses the same reasoning as Lemma 4.5, i.e.,
we can pull out S by paying an extra (1 ± ε)p/2l−1 factor.
The last line uses the inductive hypothesis.

If p/2l = 1, then we will end up with SZy, and can simply
use the fact that S is an OSE to argue that SZy preserves
the length of Zy. We then use the inductive hypothesis on
Z to conclude the proof.

Below, we state and prove a theorem that establishes the
correctness of Algorithm 1 without instantiating the sketch-
ing matrix T and S. This enables us to use different
sketches with various trade-offs.

4.4. Main Result

We prove the main result of this section, which establishes
the correctness of Algorithm 1.
Theorem 4.8 (Main Result, Correctness Part). Let S :
Rm2 → Rm be an (ε, δ, 0, d, n)-OSE for degree-2 tensors
and T : Rd → Rm be an (ε, δ, d, n)-OSE. Let p be a pos-
itive integer. Let Z = Z(S, T,X) be the matrix as defined
in Def. 4.2. Then for any y ∈ Rn, we have

(1− ε)3p‖X⊗py‖2 ≤ ‖Zy‖2 ≤ (1 + ε)3p‖X⊗py‖2



Fast Sketching of Polynomial Kernels of Polynomial Degree

Proof. Let b be the binary representation of p, and let E =
{i : bi = 1, i ∈ {0, 1, . . . , log2 p}}. If p is a power of 2, by
Lemma 4.7, we are done. So suppose p is not a power of
2. Let q = 2blog2 pc. Algorithm 1 computes ΠqX⊗q and
combines intermediate results with indices inE to form the
final result. We will again prove this by induction on the
indices in E, from smallest to largest. For the base case, let
i1 be an index in E and let q1 = 2i1 . Since q1 is a power of
2, Lemma 4.7 establishes this case.

For the inductive step, suppose this holds for
i1, i2, . . . , ij−1 ∈ E, and let q1 = 2i1 , q2 =
2i2 , . . . , qj−1 = 2ij−1 . We will prove this holds for
qj = 2ij . Let Z denote the matrix after the (j − 1)th

application of this recursive process. We will show that

‖S
(
(ΠqjX⊗qj )⊗ Z

)
y‖22

= (1± ε)j+
∑j

i=1 2qi‖X⊗(
∑j

i=1 qi)y‖22. (1)

We first use the fact S is an OSE to obtain

‖S
(
(ΠqjX⊗qj )⊗ Z

)
y‖22

= (1± ε)‖
(
(ΠqjX⊗qj )⊗ Z

)
y‖22. (2)

By Lemma 4.4, we have

‖
(
(ΠqjX⊗qj )⊗ Z

)
y‖22

= ‖(ΠqjX⊗qj ) diag(y)Z>‖2F
= (1± ε)2qj‖X⊗qj diag(y)Z>‖2F
= (1± ε)2qj+j−1+

∑j−1
i=1 2qi

· ‖X⊗qj diag(y)(X⊗(
∑j−1

i=1 qi))>‖2F
= (1± ε)j−1+

∑j
i=1 2qi‖X⊗(

∑j
i=1 qi)y‖22. (3)

Combining Eq. (2) and Eq. (3), we obtain Eq. (1), which is
our desired result.

5. Analysis of Sketching Matrices: SRHT and
TensorSRHT

In this section, we analyze the runtime of Algorithm 1 with
T being an SRHT sketch (Definition 2.7) and S being a
TensorSRHT sketch (Definition 2.9).

5.1. Main Result
The goal of this section is to give a runtime analysis of
Algorithm 1 using SRHT as T and TensorSRHT as S.
Theorem 5.1 (Main Result, Running Time). Let p ∈ N+

and ε, δ ∈ (0, 1). Then for every X ∈ Rd×n, there exists a
distribution over oblivious linear sketches Π : Rdp → Rm
such that if m = Θ̃(ε−2np2), we have

(ΠX⊗p)>ΠX⊗p ≈ε (X⊗p)>X⊗p.

Moreover, using Algorithm 1, ΠX⊗p = Z(S, T,X) can be
computed in time Õ(nd+ ε−2n2p2).

Proof. We will use an SRHT for T and a TensorSRHT for
S. We pick both of these sketches to be (ε̂, δ, d, n)-OSEs
where ε̂ = ε

3p . Let Z = Z(S, T,X) be the matrix gener-
ated by Algorithm 1 with these parameters. By Theorem
4.8, we have

(1− ε̂)3p(X⊗p)>X⊗p � Z>Z � (1 + ε̂)3p(X⊗p)>X⊗p.

By Taylor expanding (1 + x/n)n around x = 0, we have

(1 +
ε

3p
)3p = 1 + ε+O(ε2).

Thus, by picking ε̂ = ε
3p , we have

Z>Z ≈ε (X⊗p)>X⊗p.

For both SRHT and TensorSRHT to be (ε/3p, δ, d, d, n)

OSEs, we need m = Θ̃
(
n/(ε/3p)2

)
= Θ̃(p2n/ε2).

We now analyze the runtime of Algorithm 1 under SRHT
and TensorSRHT. On line 2, we compute TX in time
Õ(nd) since T is an SRHT. We then enter a loop with
O(log p) iterations, where in each iteration we apply S to
the tensor product of a column with itself resulting from
the previous iteration. Since S is a TensorSRHT, this takes
O(m) = Õ(p2n/ε2) time per column, and there are n
columns, so Õ(p2n2/ε2) time in total for this step. We also
compute each bit in the binary representation, which in-
curs an O(log p) factor in the final runtime. So it takes Al-
gorithm 1 Õ(nd + p2n2/ε2) time to compute Z(S, T,X).
This completes the proof.

5.2. Discussion

We compare our result with the results obtained in (Ahle
et al., 2020; Woodruff & Zandieh, 2020). The setting we
are considering is 1) matrixX is dense, i.e., nnz(X) ≈ nd,
and 2) d � n. In such a scenario, (Ahle et al., 2020) ob-
tains a sketching dimension m = Ω(ε−2n2p) and the run-
time of applying the sketch to X is Õ(pnd + ε−2n3p2),
so our result improves the dependence on the nd term
and pays only n2 instead of n3 on the second term. An-
other result from (Woodruff & Zandieh, 2020) has m =
Θ̃(ε−2n) but the time to apply sketching is Õ(p2.5nd +
poly(ε−1, p)n3), which is much worse in the leading nd
term, compared to our result. However, we also point out
the results obtained in these two works are more general
than ours in the sense that their sketches have the OSE
property, while our sketch only preserves the column space
of X⊗p. Nevertheless, the latter suffices for our applica-
tions. We use Table 1 to summarize and compare the dif-
ferent results.

Also, the prior results mentioned are stated in terms of
the statistical dimension, while we do not directly obtain
bounds in terms of the statistical dimension, though our



Fast Sketching of Polynomial Kernels of Polynomial Degree

Reference Sketch Dimension Running Time
(Ahle et al., 2020) Θ(ε−2n2p) Õ(pnd+ ε−2n3p2)

(Woodruff & Zandieh, 2020) Θ̃(ε−2n) Õ(p2.5nd+ poly(ε−1, p)n3)

Theorem 5.1 Θ̃(ε−2np2) Õ(nd+ ε−2n2p2)

Table 1: Comparison of different algorithms. We assume nnz(X) ≈ nd and d � n. We also assume there is no
regularization, i.e., λ = 0.

sketches can be composed with sketches that do. There-
fore, we consider the case when there is no regularization
(λ = 0) and X⊗p is of full rank. In this case, the statistical
dimension reduces to n.

6. Applications
In this section, we introduce various applications using our
sketch. In Section 6.1, we study approximating the Gaus-
sian kernel using our algorithm. In Section 6.2 we extend
the analysis to a class of slow-decaying kernels. In Sec-
tion 6.3 we illustrate an efficient algorithm to solve kernel
linear systems. In Section 6.4 we show how to solve kernel
ridge regression using our sketch.

6.1. Gaussian Kernels

We provide the fastest algorithm to preserve the column
space of a Gaussian kernel when d is large.

Theorem 6.1 (Gaussian Kernel, informal version of The-
orem A.1). Let r ∈ R+ and let X ∈ Rd×n be the data
matrix such that ‖xi‖2 ≤ r for all i ∈ [n], where xi is
the ith column of X . Suppose G ∈ Rn×n is the Gaussian
kernel matrix given in Definition 2.14. Then there exists an
algorithm that computes a matrix Wg(X) ∈ Rm×n in time
Õ(ε−2n2q3 + nd), such that for every ε > 0,

Pr [Wg(X)>Wg(X) ≈ε G] ≥ 1− 1/ poly(n),

where m = Θ̃(q3n/ε2) and q = Θ(r2 + log(n/ε)).

We provide a sketch of the proof here, and further details
can be found in the supplementary material. The Taylor
expansion of the Gaussian kernel can be written as

G =
∞∑

l=0

(X⊗lD)>X⊗lD
l!

whereD is a diagonal matrix withDi,i = exp(−‖xi‖22/2).
Let

K =

∞∑

l=0

(X⊗l)>X⊗l

l!
.

If we set q = Ω(r2+log(n/ε)) and just use the first q terms

of K:

Q =

q∑

l=0

(X⊗l)>X⊗l

l!
,

then we have that ‖K −Q‖op ≤ ε
2 . Our algorithm applies

Algorithm 1 on each term of Q. This gives us the desired
runtime and dimension. The complete proof is in Appendix
A.

6.2. General p-convergent Kernels

A key advantage of Algorithm 1 is its moderate dependence
on the degree p, which gives it more leverage when p is
large. We introduce a characterization of kernels, based on
the series of the coefficients in the Taylor expansion of the
kernel. As we will later see in the proof of Theorem B.2,
the decay rate of coefficients has a direct relation with the
degree p we need for approximating a kernel.

Definition 6.2 (p-convergent kernel, informal version of
Definition B.1). We say the kernel matrix K for data ma-
trix X is p-convergent if its corresponding Taylor expan-
sion series can be written as follows: K =

∑∞
l=0 Cl ·

(X⊗l)>X⊗l, where the coefficients Cl = (l + 1)−Θ(p).

Theorem 6.3 (Sketch p-convergent Kernels, informal ver-
sion of Theorem B.2). Let r ∈ R+ and p > 1 be an
integer, and let X ∈ Rd×n be the data matrix such that
‖xi‖2 ≤ r for all i ∈ [n], where xi is the ith column of
X . Suppose K is a p-convergent matrix. If p > 1, let
m = Θ̃(ε−2nq3) and q = Θ

(
r2 + (n/ε)1/p

)
. There exists

an algorithm that computes a matrix Wg(X) ∈ Rm×n in
time Õ(ε−2n2q3 + nd) such that

Pr [Wg(X)>Wg(X) ≈ε G] ≥ 1− 1/poly(n).

For the sake of illustration, suppose r = 1. Then the first
term in the running time becomes ε−2− 3

pn2+ 3
p . When p is

large, Theorem 6.3 gives a fast algorithm for approximating
the kernel, but the runtime becomes much slower when p ∈
(1, 3). Therefore, we propose a novel sampling scheme to
deal with small values of p. Roughly speaking, we exactly
compute the first s terms in the Taylor expansion, while
for the remaining q − s terms we sample only s of them
proportional to their coefficient. Using a matrix Bernstein



Fast Sketching of Polynomial Kernels of Polynomial Degree

bound (Theorem B.4), we obtain an even faster algorithm.
We apply our result to the neural tangent kernel (NTK),
which is a 1.5-convergent kernel.

Corollary 6.4 (Approximate NTK, informal version of
Corollary C.3). Let r ∈ R+ and let X ∈ Rd×n be a data
matrix for which ‖xi‖2 ≤ 1 for all i ∈ [n], where xi is
the ith column of X . Suppose K ∈ Rn×n is the NTK ma-
trix. Then there exists an algorithm that computes a matrix
Wg(X) in time

Õ(ε−3n11/3 + nd)

such that

Pr
[
Wg(X)>Wg(X) ≈ε K

]
≥ 1− δ.

Remark 6.5. We remark that our definition of p-convergent
kernels captures a wide range of kernels that have slow de-
cay rate in their coefficients in their Taylor expansion, such
as NTK and arc-cosine kernels. Typically, the coefficients
are of the form 1/nc for some c > 1. In contrast, Gaussian
kernels enjoy a much faster decay rate, and therefore, de-
signing algorithm for the Gaussian kernel is considerably
simpler, since the number of terms we need to approximate
it with in its Taylor expansion is small, and no sampling is
necessary.

6.3. Kernel Linear Systems

Another interesting application of our sketching scheme is
to constructing a preconditioner for solving PSD systems
involving a kernel matrix (Cutajar et al., 2016). In order to
apply algorithms such as Conjugate Gradient (Shewchuk,
1994), one has to obtain a good preconditioner for a poten-
tially ill-conditioned kernel system.

Theorem 6.6 (Sketching as a Preconditioner, informal ver-
sion of Theorem D.1). LetG ∈ Rn×n be the Gaussian ker-
nel matrix forX ∈ Rd×n and suppose ‖xi‖2 ≤ 1,∀i ∈ [n],
where xi is the ith column of X . Let G = Z>Z and κ
denote the condition number of Z. There exists an algo-
rithm that, with probability at least 1 − δ, computes an
ε-approximate solution x̂ satisfying

‖Gx̂− y‖2 ≤ ε‖y‖2

in Õ
(
ε−2n2 log(κ/ε) + nω + nd

)
time, where ω is

the exponent of matrix multiplication (currently ω ≈
2.373 (Williams, 2012; Le Gall, 2014)).

Remark 6.7. In certain NLP (Drikvandi & Lawal, 2020)
and biological tasks (Teodoro et al., 2002) where d = nc

for a positive integer c, Theorem 6.6 provides a fast algo-
rithm for which the running time depends nearly linearly on
nd. We also remark that the algorithm we use for Theorem
6.6 is inspired by the idea of (Brand et al., 2021) (their situ-
ation involves c = 4). It is also interesting that in their ap-

plications, regularization is not needed since solving a ker-
nel system is equivalent to training an over-parametrized
ReLU network without regularization.

6.4. Kernel Ridge Regression

Kernel ridge regression (KRR) is a popular method to
model the relationship between data points and labels. Let
K = A>A denote the kernel matrix. Instead of solving the
ordinary regression minx∈Rn ‖Kx − y‖22, which is equiv-
alent to solving a linear system, we focus on solving the
following ridge regression problem:

min
x∈Rn

‖Kx− y‖22 + λ‖Ax‖22,

for λ > 0. A relevant notion is the statistical dimension:

Definition 6.8 (Statistical Dimension). Let λ > 0, and
K ∈ Rn×n be a positive semi-definite matrix. We define
the λ-statistical dimension of K to be

sλ(K) := tr[K(K + λIn)−1].

One drawback of our sketch is that we cannot obtain a di-
mension depending on sλ(K) instead of n, since it does
not have the approximate matrix product property. To mit-
igate this effect, we propose the following composition of
sketches.

Theorem 6.9 (Kernel Ridge Regression, informal version
of Theorem E.2). Let ε ∈ (0, 1), p > 1 be an integer and
X ∈ Rd×n. IfK is its degree-p polynomial kernel with sta-
tistical dimension sλ(K), where λ < ε−2λmax(K), then
we can compute Z such that Z>Z is a (1± ε)-spectral ap-
proximation to K, in Õ(ε−2p2n2 + nd) time. Moreover,
there exists a matrix S with m = Õ(ε−1sλ(K)) rows such
that the optimal solution x∗ to ‖S(Z>Zx−b)‖22 +λ‖Zx‖22
satisfies

‖Kx∗ − y‖22 + λ‖X⊗px∗‖22 ≤ (1 + ε) ·OPT,

where OPT is minx∈Rn ‖Kx − y‖22 + λ‖X⊗px‖22. The
time to solve the above KRR is

Õ(ε−2p2n(n+m2) + nω).

Acknowledgments: D. Woodruff would like to thank par-
tial support from NSF grant No. CCF-1815840, Office of
Naval Research grant N00014-18-1-256, and a Simons In-
vestigator Award.



Fast Sketching of Polynomial Kernels of Polynomial Degree

References
Ahle, T. D., Kapralov, M., Knudsen, J. B., Pagh, R., Vel-

ingker, A., Woodruff, D. P., and Zandieh, A. Obliv-
ious sketching of high-degree polynomial kernels. In
Proceedings of the Fourteenth Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA), pp. 141–160.
SIAM, 2020.

Ailon, N. and Chazelle, B. Approximate nearest neighbors
and the fast johnson-lindenstrauss transform. In STOC,
STOC, pp. 557—-563, 2006.

Alaoui, A. and Mahoney, M. W. Fast randomized kernel
ridge regression with statistical guarantees. In Advances
in Neural Information Processing Systems (NeurIPS),
pp. 775–783, 2015.

Alman, J., Chu, T., Schild, A., and Song, Z. Algorithms
and hardness for linear algebra on geometric graphs. In
FOCS, 2020.

Andoni, A., Lin, C., Sheng, Y., Zhong, P., and Zhong, R.
Subspace embedding and linear regression with orlicz
norm. In International Conference on Machine Learning
(ICML), pp. 224–233. PMLR, 2018.

Avron, H., Nguyen, H., and Woodruff, D. Subspace em-
beddings for the polynomial kernel. In Ghahramani, Z.,
Welling, M., Cortes, C., Lawrence, N. D., and Wein-
berger, K. Q. (eds.), Advances in Neural Information
Processing Systems 27, pp. 2258–2266. 2014.

Avron, H., Clarkson, K., and Woodruff, D. Sharper bounds
for regularized data fitting. In APPROX-RANDOM,
2017a.

Avron, H., Clarkson, K. L., and Woodruff, D. P. Faster ker-
nel ridge regression using sketching and precondition-
ing. SIAM Journal on Matrix Analysis and Applications,
38(4):1116–1138, 2017b.

Avron, H., Kapralov, M., Musco, C., Musco, C., Velingker,
A., and Zandieh, A. Random fourier features for kernel
ridge regression: Approximation bounds and statistical
guarantees. In ICML, 2017c.

Bach, F. Sharp analysis of low-rank kernel matrix approxi-
mations. In Conference on Learning Theory (COLT), pp.
185–209, 2013.

Boutsidis, C. and Woodruff, D. P. Optimal cur matrix de-
compositions. In Proceedings of the 46th Annual ACM
Symposium on Theory of Computing (STOC), pp. 353–
362. ACM, 2014.

Boutsidis, C., Woodruff, D. P., and Zhong, P. Optimal
principal component analysis in distributed and stream-
ing models. In Proceedings of the forty-eighth annual

ACM symposium on Theory of Computing (STOC), pp.
236–249, 2016.

Brand, J. v. d., Peng, B., Song, Z., and Weinstein, O. Train-
ing (overparametrized) neural networks in near-linear
time. In ITCS, 2021.

Chang, Y.-W., Hsieh, C.-J., Chang, K.-W., Ringgaard, M.,
and Lin, C.-J. Training and testing low-degree polyno-
mial data mappings via linear svm. Journal of Machine
Learning Research, pp. 1471–1490, 2010.

Cho, Y. and Saul, L. K. Kernel methods for deep learning.
In Advances in neural information processing systems
(NIPS), pp. 342–350, 2009.

Clarkson, K. L. and Woodruff, D. P. Low rank approxima-
tion and regression in input sparsity time. In Symposium
on Theory of Computing Conference (STOCå), pp. 81–
90, 2013.

Cooley, J. W. and Tukey, J. W. An algorithm for the ma-
chine calculation of complex fourier series. Mathematics
of computation, 19(90):297–301, 1965.

Cutajar, K., Osborne, M. A., Cunningham, J. P., and Filip-
pone, M. Preconditioning kernel matrices, 2016.

Demmel, J., Dumitriu, I., and Holtz, O. Fast linear algebra
is stable. Numerische Mathematik, 108(1):59–91, Oct
2007. ISSN 0945-3245.

Diao, H., Song, Z., Sun, W., and Woodruff, D. Sketch-
ing for kronecker product regression and p-splines. In
International Conference on Artificial Intelligence and
Statistics, pp. 1299–1308. PMLR, 2018.

Diao, H., Jayaram, R., Song, Z., Sun, W., and Woodruff,
D. P. Optimal sketching for kronecker product regression
and low rank approximation. In NeurIPS, 2019.

Drikvandi, R. and Lawal, O. Sparse principal compo-
nent analysis for natural language processing. Annals
of data science., 2020. URL http://dro.dur.ac.
uk/32054/.

Du, S. S., Zhai, X., Poczos, B., and Singh, A. Gradient de-
scent provably optimizes over-parameterized neural net-
works. In ICLR. arXiv preprint arXiv:1810.02054, 2019.

Goldberg, Y. and Elhadad, M. splitSVM: Fast, space-
efficient, non-heuristic, polynomial kernel computa-
tion for NLP applications. In Proceedings of ACL-
08: HLT, Short Papers, pp. 237–240, Columbus, Ohio,
June 2008. Association for Computational Linguistics.
URL https://www.aclweb.org/anthology/
P08-2060.



Fast Sketching of Polynomial Kernels of Polynomial Degree

Haupt, J., Li, X., and Woodruff, D. P. Near optimal sketch-
ing of low-rank tensor regression. In NeurIPS, 2017.

Huang, B., Li, X., Song, Z., and Yang, X. Fl-ntk: A neural
tangent kernel-based framework for federated learning
convergence analysis. In ICML, 2021.

Jacot, A., Gabriel, F., and Hongler, C. Neural tangent ker-
nel: Convergence and generalization in neural networks.
In Advances in neural information processing systems
(NeurIPS), pp. 8571–8580, 2018.

Jiang, H., Lee, Y. T., Song, Z., and Wong, S. C.-w. An
improved cutting plane method for convex optimization,
convex-concave games and its applications. In STOC,
2020.

Jiang, S., Song, Z., Weinstein, O., and Zhang, H. Faster
dynamic matrix inverse for faster lps. In STOC, 2021.

Le Gall, F. Powers of tensors and fast matrix multiplication.
In Proceedings of the 39th international symposium on
symbolic and algebraic computation (ISSAC), pp. 296–
303. ACM, 2014.

Lee, J. D., Shen, R., Song, Z., Wang, M., and Yu, Z. Gen-
eralized leverage score sampling for neural networks. In
NeurIPS, 2020.

Lee, Y. T., Song, Z., and Zhang, Q. Solving empirical risk
minimization in the current matrix multiplication time.
In COLT, 2019.

Lu, Y., Dhillon, P., Foster, D. P., and Ungar, L. Faster ridge
regression via the subsampled randomized hadamard
transform. In Advances in neural information process-
ing systems, pp. 369–377, 2013.

Meng, X. and Mahoney, M. W. Low-distortion subspace
embeddings in input-sparsity time and applications to
robust linear regression. In Proceedings of the forty-
fifth annual ACM symposium on Theory of computing
(STOC), pp. 91–100, 2013.

Musco, C. and Musco, C. Recursive sampling for the nys-
trom method. In Advances in Neural Information Pro-
cessing Systems (NeurIPS), pp. 3833–3845, 2017.

Nelson, J. and Nguyên, H. L. Osnap: Faster numerical lin-
ear algebra algorithms via sparser subspace embeddings.
In 2013 IEEE 54th Annual Symposium on Foundations of
Computer Science (FOCS), pp. 117–126. IEEE, 2013.

Ng, A., Jordan, M., and Weiss, Y. On spectral clustering:
Analysis and an algorithm. Advances in neural informa-
tion processing systems, 14:849–856, 2001.

Rahimi, A. and Recht, B. Random features for large-scale
kernel machines. In NIPS, volume 3, pp. 5. Citeseer,
2007.

Sarlos, T. Improved approximation algorithms for large
matrices via random projections. In 2006 47th Annual
IEEE Symposium on Foundations of Computer Science
(FOCS), pp. 143–152. IEEE, 2006.

Saunders, C., Gammerman, A., and Vovk, V. Ridge regres-
sion learning algorithm in dual variables. In Proceed-
ings of the Fifteenth International Conference on Ma-
chine Learning, ICML ’98, pp. 515–521, San Francisco,
CA, USA, 1998. Morgan Kaufmann Publishers Inc.

Shewchuk, J. R. An introduction to the conjugate gradient
method without the agonizing pain. Technical report,
Carnegie Mellon University, 1994.

Song, Z. and Yang, X. Quadratic suffices for over-
parametrization via matrix chernoff bound. arXiv
preprint arXiv:1906.03593, 2019.

Song, Z. and Yu, Z. Oblivious sketching-based central
path method for solving linear programming problems.
In 38th International Conference on Machine Learning
(ICML), 2021.

Song, Z., Woodruff, D. P., and Zhong, P. Low rank approx-
imation with entrywise `1-norm error. In Proceedings of
the 49th Annual Symposium on the Theory of Computing
(STOC), 2017.

Song, Z., Woodruff, D. P., and Zhong, P. Relative error
tensor low rank approximation. In SODA. arXiv preprint
arXiv:1704.08246, 2019.

Teodoro, M. L., Phillips, G., and Kavraki, L. A dimension-
ality reduction approach to modeling protein flexibility.
In RECOMB ’02, 2002.

Tropp, J. A. An introduction to matrix concentration in-
equalities. Foundations and Trends® in Machine Learn-
ing, 8(1-2):1–230, 2015.

Williams, V. V. Multiplying matrices faster than
coppersmith-winograd. In Proceedings of the forty-
fourth annual ACM symposium on Theory of computing
(STOC), pp. 887–898. ACM, 2012.

Woodruff, D. P. and Zandieh, A. Near input sparsity time
kernel embeddings via adaptive sampling. In ICML.
arXiv preprint arXiv:2007.03927, 2020.

Woodruff, D. P. et al. Sketching as a tool for numerical
linear algebra. Foundations and Trends in Theoretical
Computer Science, 10(1–2):1–157, 2014.



Fast Sketching of Polynomial Kernels of Polynomial Degree

Xie, B., Liang, Y., and Song, L. Diverse neural network
learns true target functions. In Artificial Intelligence and
Statistics (AISTATS), pp. 1216–1224, 2017.

Zandieh, A., Nouri, N., Velingker, A., Kapralov, M., and
Razenshteyn, I. Scaling up kernel ridge regression via
locality sensitive hashing. In AISTATS, 2020.

Zhang, Y., Duchi, J., and Wainwright, M. Divide and con-
quer kernel ridge regression: A distributed algorithm
with minimax optimal rates. The Journal of Machine
Learning Research, 16(1):3299–3340, 2015.


