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Abstract

Off-policy evaluation learns a target policy’s value
with a historical dataset generated by a differ-
ent behavior policy. In addition to a point es-
timate, many applications would benefit signifi-
cantly from having a confidence interval (CI) that
quantifies the uncertainty of the point estimate. In
this paper, we propose a novel deeply-debiasing
procedure to construct an efficient, robust, and
flexible CI on a target policy’s value. Our method
is justified by theoretical results and numeri-
cal experiments. A Python implementation of
the proposed procedure is available at https:
//github.com/RunzheStat/D2OPE.

1. Introduction
Reinforcement learning (RL, Sutton & Barto, 2018) is a gen-
eral technique in sequential decision making that learns an
optimal policy to maximize the average cumulative reward.
Prior to adopting any policy in practice, it is crucial to know
the impact of implementing such a policy. In many real
domains such as healthcare (Murphy et al., 2001; Luedtke &
van der Laan, 2017; Shi et al., 2020a), robotics (Andrychow-
icz et al., 2020) and autonomous driving (Sallab et al., 2017),
it is costly, risky, unethical, or even infeasible to evaluate a
policy’s impact by directly running this policy. This moti-
vates us to study the off-policy evaluation (OPE) problem
that learns a target policy’s value with pre-collected data
generated by a different behavior policy.

In many applications (e.g., mobile health studies), the num-
ber of observations is limited. Take the OhioT1DM dataset
(Marling & Bunescu, 2018) as an example, only a few thou-
sands observations are available (Shi et al., 2020b). In these
cases, in addition to a point estimate on a target policy’s
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value, it is crucial to construct a confidence interval (CI)
that quantifies the uncertainty of the value estimates.

This paper is concerned with the following question: is it
possible to develop a robust and efficient off-policy value
estimator, and provide rigorous uncertainty quantification
under practically feasible conditions? We will give an affir-
mative answer to this question.

Overview of the OPE Literature. There is a growing lit-
erature for OPE. Existing works can be casted into as direct
method (see e.g., Le et al., 2019; Shi et al., 2020c; Feng
et al., 2020), importance sampling-based method (IS, Pre-
cup, 2000; Thomas et al., 2015b; Hanna et al., 2016; Liu
et al., 2018; Nachum et al., 2019; Dai et al., 2020) and dou-
bly robust method (Jiang & Li, 2016; Thomas & Brunskill,
2016; Farajtabar et al., 2018; Tang et al., 2019; Uehara et al.,
2019; Kallus & Uehara, 2020; Jiang & Huang, 2020). Direct
method derives the value estimates by learning the system
transition matrix or the Q-function under the target policy.
IS estimates the value by re-weighting the observed rewards
with the density ratio of the target and behavior policies.
Both direct method and IS have their own merits. In general,
IS-type estimators might suffer from a large variance due
to the use of the density ratio, whereas direct method might
suffer from a large bias due to the potential misspecification
of the model. Doubly robust methods combine both for
more robust and efficient value evaluation.

Despite the popularity of developing a point estimate of a
target policy’s value, less attention has been paid to con-
structing its CI, which is the focus of this paper. Among
those available, Thomas et al. (2015b) and Hanna et al.
(2016) derived the CI by using bootstrap or concentration in-
equality applied to the stepwise IS estimator. These methods
suffer from the curse of horizon (Liu et al., 2018), leading to
very large CIs. Feng et al. (2020) applied the Hoeffding’s in-
equality to derive the CI based on a kernel-based Q-function
estimator. Similar to the direct method, their estimator might
suffer from a large bias. Dai et al. (2020) reformulated the
OPE problem using the generalized estimating equation ap-
proach and applied the empirical likelihood approach (see
e.g., Owen, 2001) to CI estimation. They derived the CI by
assuming the data transactions are i.i.d. However, observa-
tions in reinforcement learning are typically time-dependent.
Directly applying the empirical likelihood method to weakly
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dependent data would fail without further adjustment (Ki-
tamura et al., 1997; Duchi et al., 2016). The resulting CI
might not be valid. We discuss this in detail in Appendix D.

Recently, Kallus & Uehara (2019) made an important step
forward for OPE, by developing a double reinforcement
learning (DRL) estimator that achieves the semiparametric
efficiency bound (see e.g., Tsiatis, 2007). Their method
learns a Q-function and a marginalized density ratio and
requires either one of the two estimators to be consistent.
When both estimators converge at certain rates, DRL is
asymptotically normal, based on which a Wald-type CI can
be derived. However, these convergence rates might not be
achievable in complicated RL tasks with high-dimensional
state variables, resulting in an asymptotically biased value
estimator and an invalid CI. See Section 2.2 for details.

Finally, we remark that our work is also related to a line of
research on statistical inference in bandits (Van Der Laan &
Lendle, 2014; Deshpande et al., 2018; Zhang et al., 2020;
Hadad et al., 2021). However, these methods are not appli-
cable to our setting.

Advances of the Proposed Method. Our proposal is built
upon the DRL estimator to achieve sample efficiency. To
derive a valid CI under weaker and practically more feasi-
ble conditions than DRL, we propose to learn a conditional
density ratio estimator and develop a deeply-debiasing pro-
cess that iteratively reduces the biases of the Q-function and
value estimator. Debiasing brings additional robustness and
flexibility. In a contextual bandit setting, our proposal shares
similar spirits to the minimax optimal estimating procedure
that uses higher order influence functions for learning the
average treatment effects (see e.g., Robins et al., 2008; 2017;
Mukherjee et al., 2017; Mackey et al., 2018). As such, the
proposed method is:

• robust as the proposed value estimator is more robust
than DRL and can converge to the true value in cases
where neither the Q-function nor the marginalized den-
sity ratio estimator is consistent. More specifically, it is
“triply-robust" and requires the Q-function, marginal-
ized density ratio, or conditional density ratio estimator
to be consistent. See Theorem 1 for a formal statement.

• efficient as we can show it achieves the semiparametric
efficiency bound as DRL. This in turn implies that the
proposed CI is tight. See Theorem 2 for details.

• flexible as it requires much weaker and practically
more feasible conditions to achieve nominal coverage.
Specifically, our procedure allows the Q-estimator and
marginalized density ratio to converge at an arbitrary
rate. See Theorem 3 for details.

2. Preliminaries
We first formulate the OPE problem. We next review the
DRL method, as it is closely related to our proposal.

2.1. Off-Policy Evaluation

We assume the data in OPE follows a Markov Decision
Process (MDP, Puterman, 2014) model defined by a tuple
(S,A, p, r, γ), where S is the state space, A is the action
space, p : S2 ×A → [0, 1] is the Markov transition matrix
that characterizes the system transitions, r : S ×A → R is
the reward function, and γ ∈ (0, 1) is a discounted factor
that balances the immediate and future rewards. To sim-
plify the presentation, we assume the state space is discrete.
Meanwhile, the proposed method is equally applicable to
continuous state space as well.

Let {(St, At, Rt)}t≥0 denote a trajectory generated from
the MDP model where (St, At, Rt) denotes the state-action-
reward triplet at time t. Throughout this paper, we assume
the following Markov assumption (MA) and the conditional
mean independence assumption (CMIA) hold:

P(St+1 = s|{Sj , Aj , Rj}0≤j≤t) = p(s;At, St), (MA),

E(Rt|St, At, {Sj , Aj , Rj}0≤j<t) = r(At, St), (CMIA).

These two assumptions guarantee the existence of an opti-
mal stationary policy (see e.g., Puterman, 2014). Following
a given stationary policy π, the agent will select action a
with probability π(a|s) at each decision time. The corre-
sponding state value function and state-action value function
(better known as the Q-function) are given as follows:

V π(s) =

+∞∑
t=0

γtEπ(Rt|S0 = s),

Qπ(a, s) =

+∞∑
t=0

γtEπ(Rt|A0 = a, S0 = s),

where the expectation Eπ is defined by assuming the system
follows the policy π.

The observed data consists of n i.i.d. trajectories, and can
be summarized as {(Si,t, Ai,t, Ri,t, Si,t+1)}0≤t<Ti,1≤i≤n
where Ti denotes the termination time of the ith trajectory.
Without loss of generality, we assume T1 = · · · = Tn = T
and the immediate rewards are uniformly bounded. We
consider evaluating the value of a given target policy π with
respect to a given reference distribution G, defined as

ηπ = Es∼GV π(s).

In applications such as video games where a large number
of trajectories are available, one may set G to the initial state
distribution and approximate it by the empirical distribution
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of {Si,0}1≤i≤n. In applications such as mobile health stud-
ies, the number of trajectories is limited. For instance, the
OhioT1DM dataset contains data for six patients (trajecto-
ries) only. In these cases, G shall be manually specified.
In this paper, we primarily focus on the latter case with a
prespecified G. Meanwhile, the proposed method is equally
applicable to the former case as well.

2.2. Double Reinforcement Learning

We review the DRL estimator in this section. We first define
the marginalized density ratio under the target policy π as

ωπ(a, s) =
(1− γ)

∑+∞
t=0 γ

tpπt (a, s)

p∞(a, s)
, (1)

where pπt (a, s) denotes the probability of (At, St) = (a, s)
following policy π with S0 ∼ G, and p∞ denotes the lim-
iting distribution of the stochastic process {(At, St)}t≥0.
Such a marginalized density ratio plays a critical role in
breaking the curse of horizon.

Let Q̂ and ω̂ be some estimates for Qπ and ωπ , respectively.
Kallus & Uehara (2019) proposed to construct the following
estimating function for every i and t:

ψi,t ≡
1

1− γ
ω̂(Ai,t, Si,t){Ri,t − Q̂(Ai,t, Si,t)+

γEa∼π(·|Si,t+1)Q̂(a, Si,t+1)}+ Es∼G,a∼π(·|s)Q̂(a, s).

(2)

The resulting value estimator is given by

η̂DRL =
1

nT

n∑
i=1

T−1∑
t=0

ψi,t.

One can show that η̂DRL is consistent when either Q̂ or ω̂
is consistent. This is referred to as the doubly-robustness
property. In addition, when both Q̂ and ω̂ converge at a rate
faster than (nT )−1/4,

√
nT (η̂DRL − ηπ) converges weakly

to a normal distribution with mean zero and variance

1

(1− γ)2
E [ωπ(A,S){R+ γV π(S′)−Qπ(A,S)}]2 , (3)

where the tuple (S,A,R, S′) follows the limiting distribu-
tion of the process {(St, At, Rt, St+1)}t≥0. See Theorem
11 of Kallus & Uehara (2019) for a formal proof. A consis-
tent estimator for (3) can be derived based on the observed
data. A Wald-type CI for ηπ can thus be constructed.

Moreover, it follows from Theorem 5 of Kallus & Uehara
(2019) that (3) is the semiparametric efficiency bound for
infinite-horizon OPE. Informally speaking, a semiparamet-
ric efficiency bound can be viewed as the nonparametric
extension of the Cramer–Rao lower bound in parametric
models (Bickel et al., 1993). It provides a lower bound
of the asymptotic variance among all regular estimators

(Van der Vaart, 2000). Many other OPE methods such as
Liu et al. (2018), are statistically inefficient in that the vari-
ance of their value estimator is strictly larger than this bound.
As such, CIs based on these methods are not tight.

2.3. Limitations of DRL

We end this section by discussing the limitations of DRL. As
we commented in Section 2.2, the validity of the Wald-type
CI based on DRL requires both nuisance function estima-
tors to converge at a rate faster than (nT )−1/4. When this
assumption is violated, the resulting CI cannot achieve nom-
inal coverage.

To elaborate this, we design a toy example with three states
(denote by A, B and C) arranged on a circle. The agent can
move either clockwise or counter-clockwise. The reward
is 1 if the agent reaches state A and 0 otherwise. We set
the behaviour policy to a random policy. The target policy
is very close to the optimal one. We inject some random
errors to the true Q-function and marginalized density ratio
to construct the CI based on DRL. It can be seen from
Figure 1 that DRL is valid when the nuisance estimators are
(nT )−1/2-consistent but fails when they are (nT )−1/4- or
(nT )−1/6-consistent. See Appendix C for details.

We remark that the convergence rate assumption required
by DRL is likely to be violated in complicated RL tasks
with high-dimensional state variables. Take the Q-function
estimator as an example. Suppose the true Q-function is
Hölder smooth with exponent β and Q̂ is computed via the
deep Q-network (Mnih et al., 2015) algorithm. Then similar
to Theorem 4.4 of Fan et al. (2020), we can show that Q̂
converges at a rate of (nT )−β/(2β+d) where d denotes the
dimension of the state. When d ≥ 2β, it is immediate
to see that the assumption on Q̂ is violated. Learning the
marginalized density ratio is even more challenging than
learning the Q-function. We expect that the convergence
rate assumption on ω̂ would be violated as well.

This motivates us to derive a valid CI under weaker and
practically more feasible conditions. Our proposal requires
to specify a hyper-parameter that determines the order of
our value estimator. The larger this parameter, the weaker
assumption our method requires. As an illustration, it can be
seen from Figure 1 that our CI (denote by TR) achieves nom-
inal coverage when the nuisance estimators are (nT )−1/4-
or even (nT )−1/6-consistent.

3. Deeply-Debiased OPE
3.1. An Overview of Our Proposal

We first present an overview of our algorithm. Our proce-
dure is composed of the following four steps, including data
splitting, estimation of nuisance functions, debias iteration
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Figure 1. Empirical coverage probabilities for CIs based on DRL
and the proposed triply-robust (TR) estimator, aggregated over
200 replications in the toy example. The nominal level is 90%
and γ = 0.95. From left to right, we inject noises to the true
Q-function and marginalized density ratio with standard errors
proportional to (nT )−1/2, (nT )−1/4, and (nT )−1/6, respectively.
We vary the number of trajectories n and fix T = 50.

and construction of the CI.

Step 1. Data Splitting. We randomly divide the indices
of all trajectories {1, · · · , n} into K ≥ 2 disjoint subsets.
Denote the kth subset by Ik and let Ick = {1, · · · , n} − Ik.
Data splitting allows us to use one part of data (Ick) to train
RL models and the remaining part (Ik) to do the estimation
of the main parameter, i.e., ηπ. We could aggregate the
resulting estimates over different k to get full efficiency.
This allows us to establish the limiting distribution of the
value estimator under minimal conditions. Data splitting has
been commonly used in statistics and machine learning (see
e.g., Chernozhukov et al., 2017; Kallus & Uehara, 2019; Shi
& Li, 2021).

Step 2. Estimation of Nuisance Functions. This step is to
estimate three nuisance functions, including the Q-function
Qπ, the marginalized density ratio ωπ, and a conditional
density ratio τπ . Several algorithms in the literature can be
applied to learn Qπ and ωπ , e.g., Le et al. (2019); Liu et al.
(2018); Kallus & Uehara (2019); Uehara et al. (2019). The
conditional density ratio can be learned from the observed
data in a similar fashion as ωπ. See Section 3.3 for more
details. We use Q̂k, ω̂k and τ̂k to denote the corresponding
estimators, computed based on each data subset in Ick.

Step 3. Debias Iteration. This step is the key to our pro-
posal. It recursively reduces the biases of the initial Q-
estimator, allowing us to derive a valid CI for the target
value under weaker and more practically feasible conditions
on the estimated nuisance functions. Specifically, our CI al-
lows the nuisance function estimator to converge at arbitrary
rates. See Section 3.2 for details.

Step 4. Construction of the CI. Based on the debiased Q-
estimator obtained in Step 3, we construct our value estimate
and obtain a consistent estimator for its variance. A Wald-
type CI can thus be derived. See Section 3.4 for details.

In the following, we detail some major steps. We first
introduce the debias iteration, as it contains the main idea
of our proposal. We next detail Step 2 and Step 4.

3.2. Debias Iteration

3.2.1. THE INTUITION FOR DEBIAS

To motivate the proposed debias iteration, let us take a
deeper look at DRL. Note that the second term on the right-
hand-side of (2) is a plug-in estimator of the value based on
the initial Q-estimator. The first term corresponds to an aug-
mentation term. The purpose of adding this term is to offer
additional protection against potential model misspecifica-
tion of the Q-function. The resulting estimator’s consistency
relies on either Qπ or ωπ to be correctly specified. As such,
(2) can be understood as a de-biased version of the plug-in
value estimator Es∼G,a∼π(·|s)Q̂(a, s).

Similarly, we can debias the initial Q-estimator Q̂(a0, s0)
for any (a0, s0). Toward that end, we introduce the condi-
tional density ratio. Specifically, by setting G(•) to a Dirac
measure I(• = s0) and further conditioning on an initial
action a0, the marginalized density ratio in (1) becomes a
conditional density ratio τπ(a, s, a0, s0), defined as

(1− γ){I(a = a0, s = s0) +
∑+∞
t=1 γ

tpπt (a, s|a0, s0)}
p∞(a, s)

,

where pπt (a, s|a0, s0) denotes the probability of (At, St) =
(a, s) following policy π conditional on the event that
{A0 = a0, S0 = s0}, and I(·) denotes the indica-
tor function. By definition, the numerator corresponds
to the discounted conditional visitation probability fol-
lowing π given that the initial state-action pair equals
(s0, a0). In addition, one can show that ωπ(a, s) =
Es0∼G,a0∼π(·|s0)τ

π(a, s, a0, s0).

By replacing ω̂k in (2) with some estimated conditional
density ratio τ̂k, we obtain the following estimation function

D(i,t)
k Q(a, s) = Q(a, s) +

1

1− γ
τ̂k(Ai,t, Si,t, a, s)

×{Ri,t + γEa′∼π(·|Si,t+1)Q(a′, Si,t+1)−Q(Ai,t, Si,t)},
(4)

for any Q. Here, we refer D(i,t)
k as the individual debiasing

operator, since it debiases any Q based on an individual
data tuple (Si,t, Ai,t, Ri,t, Si,t+1).

Similar to (2), the augmentation term in (4) is to offer pro-
tection against potential model misspecification of the Q-
function. As such, D(i,t)

k Q(a, s) is unbiased to Qπ(a, s)
whenever Q = Qπ or τ̂k = τπ .

3.2.2. THE TWO-STEP DEBIAS ITERATION

Based on the above discussions, a debiased version of the
Q-estimator is given by averaging D(i,t)

k Q̂k over the data
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Figure 2. Root mean squared error (RMSE) of the proposed esti-
mators in the toy example, computed over 200 replications. From
left to right, we inject non-degenerate noises into Qπ and ωπ , Qπ

and τπ , ωπ and τπ , respectively. It can be seen that the RMSE
decays as the sample size increases, when one of the three models
is correctly specified.

tuples in Ik, i.e.,

Q̂
(2)
k =

1

|Ik|T
∑
i∈Ik

∑
0≤t<T

D(i,t)
k Q̂k.

The bias of this estimator will decay at a faster rate than the
initial Q-estimator Q̂k, as shown in the following lemma.

Lemma 1 For any k, suppose Q̂k and τ̂k converge in L2-
norm to Qπ and τπ at a rate of (nT )−α1 and (nT )−α2 ,
respectively. With weakly dependent data (see Condition
(A1) in Section 4 in detail), we have

E(a,s)∼p∞ |EQ̂
(2)
k (a, s)−Q(a, s)| = O{(nT )−(α1+α2)}.

To save space, we defer the detailed definition of L2-norm
convergence rate in Appendix A.2. Suppose the square bias
and variance of Q̂k are of the same order. Then we can show
that the aggregated bias E(a,s)∼p∞ |EQ̂k(a, s)−Q(a, s)| de-
cays at a rate of (nT )−α1 . Consequently, Lemma 1 implies
that the bias of Q̂(2)

k decays faster than Q̂k.

To illustrate the usefulness of the debiased Q-estimator Q̂(2)
k ,

we propose to construct an estimating function ψ(2)
i,t for any

(i, t) ∈ Ik by replacing Q̂ in (2) with Q̂(2)
k . This yields our

second-order estimator

η̂
(2)
TR = (nT )−1

∑
i,t

ψ
(2)
i,t .

As we will show in Theorem 1, the proposed estimator η̂(2)
TR

converges to the true value when one model for Qπ, ωπ or
τπ is correctly specified. As such, it is triply-robust. See
Figure 2 as an illustration. In addition, similar to Lemma 1,
the bias of η̂(2)

TR decays at a faster rate than the DRL estimator.
Specifically, we have the following results.

Lemma 2 Suppose the conditions in Lemma 1 hold and ω̂k
converges in L2-norm to ωk at a rate of (NT )−α3 for any

k. Let α = min(1, α1 + α2 + α3). Then

|Eη̂(2)
TR − ηπ| = O{(nT )−α}.

In contrast, the bias of the DRL estimator decays at a rate
of (nT )−α1−α3 . To ensure the resulting CI achieves valid
coverage, we require the bias to decay at a rate faster than
its variance which is typically of the order O{(nT )−1/2}.
As such, DRL requires min(α1, α3) > 1/4 whereas our
second-order triply robust estimator relaxes this condition
by requiring min(α1, α2, α3) > 1/6, as shown in Figure 1.

3.2.3. THE m-STEP DEBIAS ITERATION

To further relax the convergence rate requirement, we can
iteratively debias the Q-estimator to construct higher-order
value estimates. Specifically, for any order m ≥ 2, we itera-
tively apply the debiasing operator to the initial Q-estimator
m− 1 times and average over all individual tuples, leading
to the following estimator,

Q̂
(m)
k =

(
|Ik|T

(m− 1)

)−1∑
D(i1,t1)
k · · · D(im−1,tm−1)

k Q̂k.

Here, the sum is taken over all possible combinations of
disjoint tuples (i1, t1), (i2, t2), · · · , (im−1, tm−1) in the set
{(i, t) : i ∈ Ik, 0 ≤ t < T}. Note that the definition
involves repeated compositions of debiasing operator. For
m = 3, we present the detailed form in the appendix. In
general, Q̂(m)

k (a, s) corresponds to an order (m − 1) U-
statistic (see e.g., Lee, 2019) for any (a, s). The resulting
value estimator η̂(m)

TR is given by (nT )−1
∑
i,t ψ

(m)
i,t where

for any (i, t) ∈ Ik, the estimating function ψ(m)
i,t is obtained

by replacing Q̂ in (2) with Q̂(m)
k .

We make a few remarks. First, when m = 1, Q̂(m)
k cor-

responds to the initial Q-estimator. As such, the proposed
estimator reduces to the DRL estimator. When m = 2, the
definition here is consistent to the second-order triply-robust
estimator.

Second, for large m, calculating Q̂
(m)
k is computation-

ally intensive. In practice, we may approximate it us-
ing the incomplete U-statistics (Lee, 2019; Chen et al.,
2019) to facilitate the computation. For instance, to cal-
culate Q̂(3)

−k(a, s), we could approximate it by averaging

D̂(i1,t1)
k D̂(i2,t2)

k Q̂k(a, s) over M pairs sampled from the set
{(i1, t1, i2, t2) : i1, i2 ∈ Ik, (i1, t1) 6= (i2, t2)}. We re-
quire M to diverge with nT such that the approximation
error is asymptotically negligible. The computational com-
plexity of our whole algorithm is analyzed in Appendix C.4
in the supplement.

Third, the bias of the Q-estimator and that of the resulting
value decrease as the order m increases. Specifically, we
have the following results.



Deeply-Debiased Off-Policy Interval Estimation

Lemma 3 Suppose the conditions in Lemma 2 hold. Let
α∗ = α1+(m−1)α2 and α = min(1, α1+(m−1)α2+α3).
Then E(a,s)∼p∞ |EQ̂

(m)
k (a, s)−Q(a, s)| = O{(nT )−(α∗)}

and |Eη̂(m)
TR − ηπ| = O{(NT )−α}.

To ensure α < 1/2, it suffices to require α1 + (m− 1)α2 +
α3 > 1/2. As long as α1, α2, α3 > 0, there exists some
m that satisfies this condition. As such, the resulting bias
decays faster than (nT )−1/2. This yields the flexibility of
our estimator as it allows the nuisance function estimator to
converge at an arbitrary rate. When m = 2, Lemmas 1 and
2 are directly implied by Lemma 3.

3.3. Learning the Nuisance Functions

This step is to estimate the nuisance functions used in our
algorithm, including Qπ, ωπ, and τπ, based on each data
subset Ick, for k = 1, · · · ,K.

The Q-function. There are multiple learning methods avail-
able to produce an initial estimator for Qπ. We employ
the fitted Q-evaluation method (Le et al., 2019) in our im-
plementation. Based on the Bellman equation for Qπ (see
Equation (4.6), Sutton & Barto, 2018), it iteratively solves
the following optimization problem,

Q̂` = arg min
Q

∑
i∈Ick

∑
t<T

{γEa′∼π(·|Si,t+1)Q̂
`−1(a′, Si,t+1)

+Ri,t −Q(Ai,t, Si,t)}2,

for ` = 1, 2, · · · , until convergence.

We remark that the above optimization problem can be
conveniently solved via supervised learning algorithms. In
our experiments, we use random forest (Breiman, 2001) to
estimate Qπ .

The Marginalized Density Ratio. We next discuss the
method for learning ωπ. In our implementation, we em-
ploy the method of Uehara et al. (2019). The following
observation forms the basis of the method: when the pro-
cess {(St, At)}t≥0 is stationary, ωπ satisfies the equation
EL(ωπ, f) = 0 for any function f , where L(ωπ, f) equals[
Ea∼π(·|St+1){ωπ(At, St)(γf(a, St+1)− f(At, St))}

+ (1− γ)Es∼G,a∼π(·|s)f(a, s).
(5)

As such, ωπ can be learned by solving the following mini-
max problem,

arg min
ω∈Ω

sup
f∈F
{EL(ω, f)}2, (6)

for some function classes Ω and F . The expectation in
(6) is approximated by the sample mean. To simplify the
calculation, we choose F to be a reproducing kernel Hilbert

space (RKHS). This yields a closed form expression for
supf∈F{EL(ω, f)}2. Consequently, ωπ can be learned
by solving the outer minimization via stochastic gradient
descent. To save space, we defer the details to Appendix
B.2 in the supplementary article.

The Conditional Density Ratio. Finally, we develop a
method to learn τπ based on the observed data. Note that
τπ can be viewed as a version of ωπ by conditioning on the
initial state-action pair. Similar to (5), we have

E
[
Ea∼π(·|St+1)τ

π(At, St, a0, s0){γg(a, St+1)

−g(At, St)}
]

+ (1− γ)g(a0, s0) = 0,

for any g and state-action pair (a0, s0), or equivalently,

E
[
Ea∼π(·|St+1)τ

π(At, St, a0, s0){γf(a, St+1, a0, s0)

−f(At, St, a0, s0)}
]

+ (1− γ)f(a0, s0, a0, s0) = 0,
(7)

for any function f and (a0, s0). Integrating (a0, s0) on the
left-hand-side of (7) with respect to the stationary state-
action distribution p∞, we obtain the following lemma.

Lemma 4 Suppose the process {(At, St)}t≥0 is strictly
stationary. For any function f , τπ satisfies the equation
h(τπ, f) = 0 where h(τπ, f) is given by

E
[
(1− γ)f(Ai1,t1 , Si1,t1 , Ai1,t1 , Si1,t1)−

τπ(Ai2,t2 , Si2,t2 , Ai1,t1 , Si1,t1)×
{f(Ai2,t2 , Si2,t2 , Ai1,t1 , Si1,t1)

− γEa∼π(·|Si2,t2+1)f(Si2,t2+1, a;Si1,t1 , Ai1,t1)}
]
,

for any i1 6= i2 such that (Si1,t1 , Ai1,t1 , Si1,t1+1) and
(Si2,t2 , Ai2,t2 , Si2,t2+1) are independent.

Similar to Lemma 15 of Kallus & Uehara (2019), we can
also show that τπ is the only function that satisfies Lemma
4. Motivated by this lemma, τπ can be learned by solving
the following mini-max optimization problem

arg min
τ∈T

sup
f∈F

h2(τ, f), (8)

for some function classes T and F . For any τ and f , we
estimate h(τ, f) based on the observed data. Setting F to an
RKHS and T to a class of deep neural networks, the above
optimization can be solved in a similar fashion as (6). We
defer the details to Appendix B.3 to save space.

3.4. Construction of the CI

In this step, we construct a CI based on η̂
(m)
TR . Specif-

ically, under mild assumptions, the asymptotic variance
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of
√
nT η̂

(m)
TR can be consistently estimated by the sam-

pling variance estimator of {ψ(m)
i,t }i,t (denote by {σ̂(m)}2).

For a given significance level α, the corresponding two-
sided CI is given by [η̂

(m)
TR − zα/2(nT )−1/2σ̂(m), η̂

(m)
TR +

zα/2(nT )−1/2σ̂(m)] where zα corresponds to the upper αth
quantile of a standard normal random variable.

4. Robustness, Efficiency and Flexibility
We first summarize our results. Theorem 1 establishes the
triply-robust property of our value estimator η̂(m). Theorem
2 shows the asymptotic variance of η̂(m) achieves the semi-
parametric efficiency bound (3). As such, our estimator is
sample efficient. Theorem 3 implies that our CI achieves
nominal coverage under weaker and much practically feasi-
ble conditions than DRL. All of our theoretical guarantees
are derived under the asymptotic framework that requires
either the number of trajectories n or the number of decision
points T per trajectory to diverge to infinity. Results of this
type provide useful theoretical guarantees for different types
of applications, and are referred as bidirectional theories.

We next introduce some conditions.

(A1) The process {(St, At, Rt)}t≥0 is strictly stationary
and exponentially β-mixing (see e.g., Bradley, 2005, for a
detailed explanation of this definition).

(A2) For any k, Q̂k, τ̂k and ω̂k converge in L2-norm to Qπ ,
τπ and ωπ at a rate of (nT )−α1 , (nT )−α2 and (nT )−α3 for
any α1, α2 and α3 > 0, respectively.

(A3) τπ and ωπ are uniformly bounded away from infinity.

Condition (A1) allows the data observations to be weakly de-
pendent. When the behavior policy is not history-dependent,
the process {(St, At, Rt)}t≥0 forms a Markov chain. The
exponential β-mixing condition is automatically satisfied
when the Markov chain is geometrically ergodic (see The-
orem 3.7 of Bradley, 2005). Geometric ergodicity is less
restrictive than those imposed in the existing reinforcement
learning literature that requires observations to be indepen-
dent (see e.g., Dai et al., 2020) or to follow a uniform-
ergodic Markov chain (see e.g., Bhandari et al., 2018; Zou
et al., 2019). We also remark that the stationarity assump-
tion in (A1) is assumed for convenience, since the Markov
chain will eventually reach stationarity.

Condition (A2) characterizes the theoretical requirements
on the nuisance function estimators. This assumption is
mild as we require these estimators to converge at any rate.
When using kernels or neural networks for function approx-
imation, the corresponding convergence rates of Q̂k and ω̂k
are provided in Fan et al. (2020); Liao et al. (2020). The
convergence rate for τ̂k can be similarly derived as ω̂k.

Condition (A3) essentially requires that any state-action

pair supported by the density function (1− γ)
∑
t≥0 γ

tpπt
is supported by the stationary behavior density function as
well. This assumption is similar to the sequential overlap
condition imposed by Kallus & Uehara (2020).

Theorem 1 (Robustness) Suppose (A1) and (A3) hold,
and Q̂k, τ̂k, ω̂k are uniformly bounded away from infin-
ity almost surely. Then for any m, as either n or T diverges
to infinity, our value estimator η̂(m)

TR is consistent when Q̂k,
τ̂k or ω̂k converges in L2-norm to Qπ , τπ or ωπ for any k.

Theorem 1 does not rely on Condition (A2). It only requires
one of the three nuisance estimators to converge. As such,
it is more robust than existing doubly-robust estimators.

Theorem 2 (Efficiency) Suppose (A1) and (A2) hold, and
Q̂k, τ̂k, ω̂k, τπ, ωπ are uniformly bounded away from in-
finity almost surely. Then for any m, as either n or T ap-
proaches infinity,

√
nT (η̂

(m)
TR − Eη̂(m)

TR )
d→ N(0, σ2) where

σ2 corresponds to the efficiency bound in (3).

We make some remarks. In the proof of Theorem 2, we
show that η̂(m)

TR is asymptotically equivalent to an mth order
U-statistic. According to the Hoeffding decomposition (Ho-
effding, 1948), we can decompose the U-statistic into the
sum ηπ +

∑m
j=1 η̂j , where ηπ is the main effect term that

corresponds to the asymptotic mean of the value estimator,
η̂1 is the first-order term

1

nT (1− γ)

n∑
i=1

T−1∑
t=0

ωπ(Ai,t, Si,t){Ri,t +

γEa∼π(·|Si,t+1)Q
π(a, Si,t+1)−Qπ(Ai,t, Si,t)},

and η̂j corresponds to a jth order degenerate U-statistic
for any j ≥ 2. See Part 3 of the proof of Theorem 2 for
details. Note that the DRL estimator is asymptotically equiv-
alent to ηπ + η̂1. Under (A1), these η̂js are asymptotically
uncorrelated. As such, the variance of our estimator is
asymptotically equivalent to

m∑
j=1

Var(η̂j) =

m∑
j=1

(
nT

j

)−1

σ2
j ,

where σ2
j s are bounded. When j = 1, we have σ2

j = σ2.
For j ≥ 2, Var(η̂j) decays at a faster rate than Var(η̂1) =
σ2(nT )−1. As such, the variance of our estimator is asymp-
totically equivalent to that of DRL.

However, in finite sample, the variance of the proposed es-
timator is strictly larger than DRL, due to the presence of
high-order variance terms. This is consistent with our ex-
periment results (see Section 5) where we find the proposed
CI is usually slightly wider than that based on DRL. This
reflects a bias-variance trade-off. Specifically, our proce-
dure alleviates the bias of the DRL estimator to obtain valid
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uncertainty quantification. The resulting estimator would
have a strictly larger variance than DRL in finite samples,
although the difference is asymptotically negligible. We
also remark that in interval estimation, the first priority is
to ensure the CI has nominal coverage. This requires an
estimator’s bias to decay faster than its variance. The sec-
ond priority is to shorten the length of CI (the variance of
the estimator) if possible. In that sense, variance is less
significant than bias.

Theorem 3 (Flexibility) Suppose the conditions in Theo-
rem 2 hold. Then as long as m satisfies α1 + (m− 1)α2 +
α3 > 1/2, the proposed CI achieves nominal coverage.

Theorem 3 implies that our CI allows the nuisance functions
to diverge at an arbitrary rate for sufficiently large m.

5. Experiments
In this section, we evaluate the empirical performance of
our method using two synthetic datasets: CartPole from the
OpenAI Gym environment (Brockman et al., 2016) and a
simulation environment (referred to as Diabetes) to simulate
the OhioT1DM data (Shi et al., 2020b). In the second envi-
ronment, the goal is to learn an optimal policy as a function
of patients’ time-varying covariates to improve their health
status. In both settings, following Uehara et al. (2019), we
first learn a near-optimal policy as the target policy, and
then apply softmax on its Q-function divided by a temper-
ature parameter τ to set the action probabilities to define
a behaviour policy. A larger τ implies a larger difference
between the behaviour policy and the target policy.

We denote the proposed method as TR and present results
with m = 2 and 3. The choice of m represents a trade-off.
In theory, m shall be as large as possible to guarantee the
validity of our CI. Yet, the computation complexity increases
exponentially in m. In our experiments, we find that setting
m = 3 yields satisfactory performance in general.

For point estimation, we compare the bias and RMSE of our
method with DRL and the estimator computed via fitted-Q
evaluation (FQE). For interval estimation, we compare the
proposed CI with several competing baselines, including
CoinDICE (Dai et al., 2020), stepwise IS-based estimator
with bootstrapping (Thomas et al., 2015a), stepwise IS-
based estimator with Bernstein inequality (Thomas et al.,
2015b), and the CI based on DRL. For each method, we
report the empirical coverage probability and the average
length of the constructed CI.

We set T = 300 and γ = 0.98 for CartPole, and T = 200
and γ = 0.95 for Diabetes. For both environments, we vary
the number of trajectories n and the temperature τ to design
different settings. Results are aggregated over 200 replica-
tions. Note that FQE and DR share the same subroutines

with TR, and hence the same hyper-parameters are used.
More details about the environments and the implementa-
tions can be found in Section C of the supplement.

The results for CartPole and Diabetes are depicted in Fig-
ures 3 and 4, respectively. We summarize our findings as
follows. In terms of interval estimation, first, the proposed
CI achieves nominal coverage in all cases, whereas the CI
based on DRL fails to cover the true value. This demon-
strates that the proposed method is more robust than DRL.
In addition, the average length of our CI is slightly larger
than that of DRL in all cases. This reflects the bias-variance
tradeoff we detailed in Section 4. Second, CoinDice yields
the narrowest CI. However, its empirical coverage proba-
bility is well below the nominal level in all cases. As we
have commented in the introduction, this is due to that their
method requires i.i.d. observations and would fail with
weakly dependent data. Please refer to Appendix D for de-
tails. Third, the stepwise IS-based estimators suffer from the
curse of horizon. The lengths of the resulting CIs are much
larger than ours. Moreover, the CI based on bootstrapping
the stepwise IS-estimator fails to achieve nominal coverage.
This is because the standard bootstrap method is not valid
with weakly dependent data.

In terms of point estimation, TR yields smaller bias than
DRL in all cases. FQE suffers from the largest bias among
the three methods. The RMSEs of DRL and TR are compa-
rable and generally smaller than that of FQE. This demon-
strates the efficiency of the proposed estimator.

6. Discussion
6.1. Order Selection

In this paper, we develop a deeply-debiased procedure for
off-policy interval estimation. Our proposal relies on the
specification of m, the number of the debias iteration. The
choice of m represents a trade-off. In theory, m shall be
as large as possible to reduce the bias of the value estima-
tor and guarantee the validity of the resulting CI. Yet, the
variance of the value estimator and the computation of our
procedure increase with m. In the statistics literature, Lep-
ski’s method is a data-adaptive procedure for identifying
optimal tuning parameter where cross-validation is difficult
to implement, as in our setup (see e.g., Su et al., 2020). It
can be naturally coupled with the proposed method for order
selection, to balance the bias-variance trade-off. Practical
version of Lepski’s method was developed using bootstrap
in Chernozhukov et al. (2014). This idea is worthwhile to
explore and we leave it for future research.

6.2. Nonasymptotic Confidence Bound

Non-asymptotic confidence bound is typically obtained by
applying concentration inequalities (e.g., Hoeffding’s in-
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Figure 3. Results for Cartpole. We fix n = 20 and vary τ in the upper subplots, and fix τ = 0.3 and vary n in the lower subplots. The
subplots from left to right are about the coverage frequency with α = 0.9, the coverage frequency with α = 0.95, the mean log width of
CIs with α = 0.95, the RMSE of value estimates, and the bias of value estimates, respectively. The yellow line (TR, m = 2) and green
line (TR, m = 3) are largely overlapped.

Figure 4. Results for Diabetes. We fix n = 20 and vary τ in the upper subplots, and fix τ = 1.0 and vary n in the lower subplots. Same
legend as Figure 3. The yellow line (TR, m = 2) and green line (TR, m = 3) are largely overlapped.

equality or Bernstein inequality Van Der Vaart & Wellner,
1996) to a sum of uncorrelated variables. In our setup, the
proposed estimator is a U-statistic. We could apply con-
centration inequalities to U-statistics (see e.g., Feng et al.,
2020) to derive the confidence bound. Alternatively, we
may apply self-normalized moderate deviation inequalities
(Peña et al., 2008) to derive the non-asymptotic bound. The
resulting confidence bound will be wider than the proposed
CI. However, it is valid even with small sample size.

6.3. Hardness of Learning of τπ

Learning τπ could be much challenging than ωπ. In our
current numerical experiments, all the state variables are
continuous and it is challenging to obtain the ground truth
of the conditional density ratio which involves estimation of
a high-dimensional conditional density. As such, we did not
investigate the goodness-of-fit of the proposed estimator for
τπ . It would be practically interesting to explore the optimal

neural network structure to approximate τπ and investigate
the finite-sample rate of convergence of our estimator. How-
ever, this is beyond the scope of the current paper. We leave
it for future research.

6.4. Extension to Exploration

Finally, we remark that based on the proposed debiased
Q-estimator, a two-sided CI can be similarly to quantify
its uncertainty. It allows us to follow the “optimism in the
face of uncertainty" principle for online exploration. This is
another topic that warrants future investigation.
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