
Linear Transformers Are Secretly Fast Weight Programmers

A. Update Rule Derivation
A.1. The Update Rule

Here we provide the intermediate steps from Eq. 23 to
Eq. 24.

W (i) = W (i−1) +v(i)
new ⊗ φ(k(i))︸ ︷︷ ︸

write

−v̄(i) ⊗ φ(k(i))︸ ︷︷ ︸
remove

(23)

= W (i−1) + β(i)(v(i) − v̄(i))⊗ φ(k(i)) (24)

By grouping the last two terms, Eq. 23 becomes:

W (i) = W (i−1) + (v(i)
new − v̄(i))⊗ φ(k(i)) (38)

By using the definition of v(i)
new from Eq. 22:

v(i)
new = β(i)v(i) + (1− β(i))v̄(i) (22)

we obtain:

v(i)
new − v̄(i) = β(i)v(i) + (1− β(i))v̄(i) − v̄(i) (39)

= β(i)(v(i) − v̄(i)) (40)

By substituting this expression to Eq. 38, we obtain Eq. 24
.

A.2. Key Sum Normalisation

By considering one-hot vectors {e(1), ..., e(i), ..., e(dkey)}
which form the Cartesian basis of Rdkey , any matrix W ∈
Rdvalue×dkey can be written as

W =

dkey∑
i=1

w(i) ⊗ e(i) (41)

where {w(1), ...,w(i), ...,w(dkey)} are the column vectors of
W . In the context of associative memory, we can interpret
this expression as a set of associations with fixed keys e(i)

and the associated values w(i).

In this view, any update of W can be written as updates
of each w(i). This perspective allows us to derive the sum
normalisation of Sec. 4.2. For that, we start by deriving the
update of w(i).

Given an arbitrary weight W , we consider updating it to
W ′ by adding a new association (k,v) using our update
rule of Sec. 4.2 (where we omit β):

v̄ = Wk (42)
W ′ = W + (v − v̄)⊗ k (43)

By substituting k in Eq. 43 by its expression in the Cartesian

basis k =

dkey∑
i=1

kie
(i) with ki ∈ R, we obtain:

W ′ = W + (v − v̄)⊗
dkey∑
i=1

kie
(i) (44)

= W +

dkey∑
i=1

ki(v − v̄)⊗ e(i) (45)

Now by substituting W by its expression of Eq. 41:

W ′ =

dkey∑
i=1

w(i) ⊗ e(i) +

dkey∑
i=1

ki(v − v̄)⊗ e(i) (46)

=

dkey∑
i=1

(
w(i) + ki(v − v̄)

)
⊗ e(i) (47)

The column-wise update is thus:

w′(i) = w(i) + ki(v − v̄) (48)

We can explicitly write down v̄ as:

v̄ = Wk = W

dkey∑
j=1

kje
(j) =

dkey∑
j=1

kjw
(j) (49)

which we can substitute in Eq. 48 to obtain:

w′(i) = w(i) + ki(v −
dkey∑
j=1

kjw
(j)) (50)

= w(i) + kiv −
dkey∑
j=1

kikjw
(j) (51)

In Eq. 51, the weight ki on the positive term v is in gen-
eral not equal to the total weights on the negative terms∑dkey
j=1 kikj . We can force these weights to be balanced by

introducing the normalisation:
dkey∑
j=1

kikj = ki.

If ki is non zero, we obtain:

dkey∑
j=1

kj = 1

This corresponds to the sum normalisation we introduced
in Sec. 4.2 .

B. Formal comparison to Peng et al. (2021)
Concurrently to our work, Peng et al. (2021) proposed the
following gated update rule:

W (i) = (1− β(i))W (i−1) + β(i)v(i) ⊗ φ(k(i)) (52)



Linear Transformers Are Secretly Fast Weight Programmers

which is motivated by the gating mechanism in recurrent
neural networks (Hochreiter & Schmidhuber, 1997). In
contrast, our update rule of Eq. 24

W (i) = W (i−1) + β(i)(v(i) − v̄(i))⊗ φ(k(i)) (24)

is driven by an associative memory perspective, relates to
the famous error-correcting delta rule, and offers a crucial
property.

To illustrate a similarity and a crucial difference between the
two update rules, we consider a fast weight matrix W which
is constructed by two associations (k1,v1) and (k2,v2), i.e.

W = v1 ⊗ k1 + v2 ⊗ k2 (53)

where we assume k1 and k2 to be orthonormal, and we
omit φ. Now we consider updating W to W ′ by adding a
new association (k3,v3) where k3 = k2. Using Peng et al.
(2021)’s update rule, we have:

W ′ = (1− β)W + βv3 ⊗ k3

This rule thus updates the value associated with the key
k2 = k3 to be a convex combination of the old and the new
values (1− β)v2 + βv3:

W ′k3 = (1− β)Wk3 + βv3

= (1− β)v2 + βv3

However, it also modifies or in the worst case erases the
value associated with the key k1:

W ′k1 = (1− β)Wk1 = (1− β)v1

In contrast, using our update rule, we have:

W ′ = W + β(v3 − v2)⊗ k3

since v̄ = Wk3 = Wk2 = v2.
Our rule thus also updates the value associated with the key
k2 = k3 to be a convex combination of the old and the new
values (1− β)v2 + βv3:

W ′k3 = Wk3 + β(v3 − v2)

= v2 + β(v3 − v2)

= (1− β)v2 + βv3

while crucially, it keeps the value associated with k1 un-
modified:

W ′k1 = Wk1 = v1

Our update rule thus differs from Peng et al. (2021)’s one on
this property of updating associations while keeping other
“unrelated” ones intact in an associative memory.

C. DPFP-ν Implementation
Listing 1 is a simple PyTorch implementation of DPFP-ν
(Eq. 37) which consist of two concatenations followed by
one element-wise multiplication.

1 import torch
2 from torch import cat
3 from torch.nn.functional import relu as r
4

5 def dpfp(x, nu=1):
6 x = cat([r(x), r(-x)], dim=-1)
7 x_rolled = cat([x.roll(shifts=j, dims=-1)
8 for j in range(1,nu+1)], dim=-1)
9 x_repeat = cat([x] * nu, dim=-1)

10 return x_repeat * x_rolled

Listing 1. Simple PyTorch implementation of DPFP-ν (Eq. 37).

D. Additional Experimental Results
In this section, we provide additional experimental results
which we could not include in the main paper because of
space limitations.

D.1. Synthetic Task Setting 1

Figure 4 shows learning curves for the synthetic setting 1
(without replacement) with 600 unique keys and values. The
scripts used to generate such figures can be found in our
GitHub repository.

Figure 4. Training curves for setting 1 with 600 unique keys/values
(sampled without replacement) as described in Sec. 6.1.1.

D.2. Synthetic Task Setting 2

Figure 5 is a capacity plot for setting 2 with an increasing
number of unique keys and queries (analogous to Figure 2
of setting 1 apart from the log-scale of the y-axis). We did
not include FAVOR+ in this plot, because its combination
with our update rule resulted in not-a-number in this setting.



Linear Transformers Are Secretly Fast Weight Programmers

Figure 5. Final evaluation loss on synthetic setting 2 (with replace-
ment) problems with the total number of unique associations rang-
ing from 20 to 200. Each individual symbol is a model trained
until convergence as described in Sec. 6.1.2. In all problems, with
different sequence lengths and a different number of unique keys,
our update rule outperforms all other approaches.

D.3. Language Modelling

In Sec. 6.3, we evaluated our update rule when the model
is under overcapacity regime. Here we present an extra
language modelling experiment which evaluate the bene-
fits of our update rule in non-overcapacity scenarios. This
also allows us to include DPFP in the evaluation. We train
both, Performer and DPFP, in the small setting (D = 128,
L = 256) with m = 16 and ν = 1, resulting in ddot = 256
for both cases. Table 5 shows the perplexity results. First
we observe that the Performer and DPFP baseline mod-
els with the sum update rule do not outperform the Linear
Transformer baseline from Table 2. In fact, language mod-
elling might be less affected by the capacity issue than the
synthetic retrieval task, as it might not require the exact
retrieval. Second we observe that our update rule improves
both variants of linear attention over the sum update-rule
baselines even in this condition. This indicates the general
benefits of our update rule in Fast Weight Programmers. We
note that the improvement is larger for the DPFP model
than for the Performer. This is similar to Table 2 where our
update rule improves the deterministic Linear Transformers
more than the Performers. Finally, we note that we also
tried the DPFP and Performer models with an increased
ddot by setting ν = 2 and m = 32 respectively. While this
increases ddot by a factor of two, it was not beneficial for
this language modelling setting.

E. Details on Machine Translation
Experiments

We implemented different φ functions in the FAIRSEQ tookit
(Ott et al., 2019). The Transformer architecture used in the
experiment is the one referred to as big in the original Trans-

Table 5. WikiText-103 language model perplexity results showing
effects of our update rule in non-overcapacity regime. The number
of trainable parameters are almost the same for all models, up to
the small difference introduced by gating in our update rule (16 K
parameters). The small config is used, i.e. D = 128, L = 256
(40 M parameters). We set m = 16 for the Performers and ν = 1
for the DPFP models, which result in ddot = 256 for both cases.
The model is thus not necessary in an overcapacity regime.

Update small
Rule Valid Test

Transformer - 33.0 34.1

Performer sum 38.0 38.8
delta 36.0 37.0

DPFP sum 37.7 38.8
delta 33.9 35.0

former paper (Vaswani et al., 2017): the model has 6 layers
each in the encoder and the decoder, with a hidden layer size
of 1024 with 16 attention heads, 4096-dimensional feed-
forward layers, using 32 K byte-pair encoding sub-word
units (Sennrich et al., 2016). FAIRSEQ provides a training
configuration for the corresponding model (Ott et al., 2018),
which we adapted for our infrastructure. We trained our
models on three GPUs using a batch size of up to 3584
tokens per GPU and accumulating gradients over 16 batches
for 45 epochs, and selected the best model based on the
validation BLEU score. In Table 1, we directly report BLEU
for different values of ddot; Table 6 provides the conversion
from hyper-parameters m of Performers or ν in the DPFP
to ddot.

Table 6. Relation between dot product space dimension and the
hyper-parameters in the Performer and our DPFP models. dkey =
64 in all our translation models.

ddot 256 384 512

Performer m 128 192 256
DPFP ν 2 3 4

F. Details on Language Modelling
Experiments

Implementation notes. All our implementations are
based on PyTorch (Paszke et al., 2019). Our base language
modelling code has been developed by using the public code
by Dai et al. (2019) for Transformer-XL as a starting point.
For φ functions, we ported the same implementation we
used for our translation experiments. For the implementa-
tion of our update rule, we modified the CUDA kernel for the
Linear Transformer made publicly available by Katharopou-
los et al. (2020). We note that a custom implementation of



Linear Transformers Are Secretly Fast Weight Programmers

the backward pass for fast weights is crucial for language
modelling. A naive backward computation generated by au-
tomatic differentiation would store the fast weights for each
time step, which can quickly hit the GPU memory limit.
The custom implementation ensures that we need to store
only one set of weights by recomputing the fast weights
needed for computing the gradients for each time step in
the backward pass (which still remains time-efficient as the
operations involved in the computation of our fast weights
are rather inexpensive).

Experimental details. Here we provide extra experimen-
tal details to complement the descriptions of Sec. 6.3. For
the small and medium configurations, we use batch sizes
of 96 and 56 sequences, respectively, and train for about
120 and 70 epochs. In both settings, we apply 10% dropout
(Hanson, 1990; Srivastava et al., 2014), and train using the
Adam optimiser (Kingma & Ba, 2014) with an initial learn-
ing rate of 0.00025 and 2000 learning rate warm-up steps.
For further details, we refer the readers to our code. For
experiments with Transformer-XL (Table 4), we train it
with the same backpropagation span as our models (i.e. 384
words in the medium configuration). The model is trained
with memory and target segment lengths of 384. The mod-
els with different state sizes in Table 4 are obtained by using
different Transformer-XL memory segment lengths at eval-
uation time. The models with state sizes of 1.05 M, 2.10 M,
and 6.29 M are obtained by using memory and target lengths
of 64, 128, and 384, respectively. The model with a state
size of 0.13 M uses a memory length of 15 and a target
length of 1. Like for other models, a batch size of 1 is used
for evaluating the Transformer XL. The state sizes in Table
4 are computed as follows. The per-layer state size of the
Linear Transformer and the Delta Net are: number of heads
(here 8) × fast weight matrix size which is per-head key
dimension (here 32) × per-head value dimension (here 32).
This yields a total size of 8,192. The per-layer state size of
the Transformer XL is: memory segment length × target
segment length × (total key dimension, here 256 + total
value dimension, here 256). We obtain the total state size
we report in Table 4 by multiplying the per-layer state size
by the number of layers which is 16 for all our models.


