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Abstract
We study online learning with bandit feedback
(i.e. learner has access to only zeroth-order oracle)
where cost/reward functions ft admit a "pseudo-
1d" structure, i.e. ft(w) = `t(gt(w)) where the
output of gt is one-dimensional. At each round,
the learner observes context xt, plays predic-
tion gt(wt;xt) (e.g. gt(·) = 〈xt, ·〉) for some
wt ∈ Rd and observes loss `t(gt(wt)) where `t
is a convex Lipschitz-continuous function. The
goal is to minimize the standard regret metric.
This pseudo-1d bandit convex optimization prob-
lem (PBCO) arises frequently in domains such
as online decision-making or parameter-tuning in
large systems. For this problem, we first show a
lower bound of min(

√
dT , T 3/4) for the regret of

any algorithm, where T is the number of rounds.
We propose a new algorithm OPTPBCO that com-
bines randomized online gradient descent with a
kernelized exponential weights method to exploit
the pseudo-1d structure effectively, guaranteeing
the optimal regret bound mentioned above, up
to additional logarithmic factors. In contrast, ap-
plying state-of-the-art online convex optimization
methods leads to Õ

(
min

(
d9.5
√
T ,
√
dT 3/4

))
regret, that is significantly suboptimal in d.

1. Introduction
Online learning with bandit feedback is a cornerstone prob-
lem in the online learning literature and can be used to
model a variety of practical systems where at each step
t, the system takes an action wt ∈ Rd for which it in-
curs a loss of ft(wt). Now, often times in practice, the
action space has significantly more structure. For exam-
ple, in large-scale parameter tuning the reward/loss is com-
puted on a scalar parameter predicted by an underlying ML
model applied to the current context of system. That is,
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the problem has a "pseudo-1d" structure in the loss func-
tions ft(w) = `t(gt(w;xt)) where gt : Rd → R is a one-
dimensional function.

We formulate the Pseudo-1d Bandit Convex Optimization
(in Section 2) as follows: given a data point, or context,
xt ∈ X at round t, the prediction of the learner is given
by gt(wt;xt) for some wt ∈ W ⊆ Rd and known gt,
e.g. gt(wt;xt) = 〈wt,xt〉. The learner then receives
`t(gt(wt;xt)) from the adversary for some unknown con-
vex, Lipschitz-continuous loss `t. The goal is to minimize
regret, i.e. the excess cumulative loss suffered by the learner
over the best, fixed, parameter w∗ ∈ W in hindsight. As
mentioned above, the pseudo-1d structure arises naturally
in online parameter tuning/decision making where the goal
is to learn the optimal parameters w that govern the system,
which can be very high-dimensional, but the dynamic re-
ward `t depends only on a one-dimensional action gt taken
by the system based on parameters w and the observed
context xt.

A concrete application that motivates our work is in the do-
main of large scale distributed services where programmers
are required to set configuration parameters of services using
hand-written heuristics for some control or decision logic;
this is indeed an important research question at the inter-
section of Programming Languages and ML, see Natarajan
et al. (2020). For example, a programmer wants to decide
the minimum amount of RAM required for a service, which
in turn depends on other configuration parameters such as
the number of threads running on the VM (x1) and the num-
ber of users served (x2), say, via gt(w;x) = w1x1 + w2x2.
The ultimate validation of the choices of w1 and w2 is by
observing overall failures and system throughput, which is
the reward `t obtained in the bandit sense. This is an in-
stance of the pseudo-1d problem, and arises as part of tuning
configuration settings of large-scale services in Microsoft.

The problem is a special case of the standard bandit convex
optimization for which the state-of-the-art methods have
regret of O(d9.5

√
T ) (Bubeck et al., 2017) or O(

√
dT 3/4)

(Flaxman et al., 2005). So, the key question we answer in
this paper is if and when the pseudo-1d structure can help
obtain learning algorithms with better sample complexity
or regret guarantees. For example, can we design an algo-
rithm that has the optimal

√
T regret in terms of T , but its
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regret is completely independent of d? Note that in the full-
information setting, i.e., when full access to `t is available,
the standard Online Gradient Descent (OGD) (Zinkevich,
2003) indeed obtains the optimal

√
T regret independent of

d.

Somewhat surprisingly, our first result (Theorem 1 in Sec-
tion 3) shows that, even though the problem has a pseudo-1d
structure, in the worst case, any algorithm will suffer a re-
gret of min(

√
dT , T 3/4) after T rounds. That is, for large

T , optimal regret has to scale with d.

So, the next natural question is if we can design an algorithm
to achieve the optimal regret. We answer that question in af-
firmative (Theorem 2 in Section 4) by designing an efficient
algorithm that indeed achieves the optimal regret when the
loss function `t is convex and Lipschitz. Our method criti-
cally utilizes the pseudo-1d structure to define the algorithm
in two regimes: a) for d ≥

√
T , we present a modification of

the randomized gradient descent method by Flaxman et al.
(2005) to get the rate optimal in this regime, b) for d ≤

√
T

we exploit a kernelized exponential weighting scheme simi-
lar to that of Bubeck et al. (2017) to again obtain the optimal
rate in this regime. A key contribution of our work is that
exploiting the problem structure also greatly simplifies the
analysis and the proofs become significantly clearer (pre-
sented in Section 4, Lemma 5), and much more palatable,
than the general d-dimensional analysis by Bubeck et al.
(2017).

Now, it is instructive to compare our results against those of
contextual bandit (CB) algorithms as the high level goal of
both the formulations is similar. But, there are certain key
distinctions between the two formulations. CB formulations
work with general loss/reward functions while we restrict
our methods to convex Lipschitz functions only. On the
other hand, CB methods are designed in general for discrete
action and policy space (see Remark 3 in Section 2) un-
like pseudo-1d bandit formulation that handles continuous
prediction/action space and infinite policy space.

Our solution enables modeling and solving pseudo-1d prob-
lems arising in practice (like the parameter tuning example
cited in the beginning of this section) automatically with
small sample complexity. Libraries like Vowpal Wabbit are
extensively used by practitioners for such problems (char-
acterized by Algorithm 1 in Bietti et al. (2018)) and there
are frameworks used at enterprise scale based on bandit
formulations (Agarwal et al., 2016), but their applicability
to the general setting is limited.

We present simulations in Section 5 that demonstrate
the regret bounds on simple synthetic problems. Our
contributions are summarized below:
1) A novel problem formulation that captures practical
online learning scenarios with bandit feedback and structure

in the reward/loss function.
2) A lower bound for the pseudo-1d bandit convex
optimization problem – in the worst case, any learning
strategy suffers a regret of O(min(

√
dT , T 3/4)).

3) A learning algorithm that is provably optimal, assuming
the loss functions are convex and Lipschitz — with a regret
bound that matches the lower bound up to logarithmic
factors.

Related Work. Flaxman et al. (2005) initiated the
study of bandit optimization for general convex functions
and showed a regret guarantee of O(

√
dT 5/6) using

online gradient-descent; with additional assumption of
Lipschitzness, they improve the bound to O(

√
dT 3/4), and

recently (Hazan & Li, 2016) and (Bubeck et al., 2017)
showed

√
T -regret (optimal in terms of T , but highly

suboptimal in terms of d) using two different types of
algorithms. Due to the fundamental nature of the problem,
there is a long line of work in this space (Bubeck & Eldan,
2016; Chen et al., 2018; Sahu et al., 2018), that look at
certain types of losses (e.g. linear losses) (Abernethy
et al., 2009; Y. Abbasi-Yadkori & Szepesvari, 2011),
different types of feedback (e.g. two-point feedback, as
against one-point feeback in our work) (Agarwal et al.,
2011; Shamir, 2017), or different settings (stochastic vs
adversarial) where improved regret bounds are possible
(Ghadimi & Lan, 2013; Shamir, 2013; Yang & Mohri, 2016;
Saha & Tewari, 2011).

On the contrary, in the full information (online convex opti-
mization) setting, where the gradient information of the loss
function is known, Zinkevich (2003) showed that online
gradient descent achieves a regret of O(

√
T ) (which can

be improved under additional assumptions (Hazan et al.,
2007)). Wang et al. (2017) consider a composite structure
of the loss function (H(·) in Eqn. (1) of their paper) similar
to our pseudo-1d structure. However, they (a) work in the
stochastic optimization setting, i.e., the goal is to design an
algorithm that minimizes f(·) = E[`(E[g(·)])] (rewritten
using our notation), where E is expectation w.r.t. underlying
stochasticity, and (b) assume a first-order gradient feedback
model, i.e., they require access to (noisy) ∇`(.) (in addi-
tion to∇g(.)). Thus, their problem setup is strictly simpler
than ours. Consequently, they are able to obtain O(

√
T )

convergence when g is linear, and ` is smooth but possibly
non-convex (they do not explicitly quantify the dependence
on d or the pseudo-dimension). In contrast, our goal is to
design an algorithm with bounded regret in the online set-
ting when ft’s are adversarially chosen, while the learner
has only zeroth-order oracle access for the losses `t.

Contextual bandit learning has a vast literature and results
focusing on finite/discrete action spaces (survey by Bubeck
et al. (2012)). The state-of-the-art results for continuous
action spaces (i.e. at each round, the learner receives context
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xt and plays a value from [0, 1]) is due to Krishnamurthy
et al. (2019); Majzoubi et al. (2020); here, they work with a
notion of “smoothed” regret, where each action is mapped
to a smoothed action, and the learner also competes with
a smoothed policy class (that maps context to action, akin
to gt). One key difference in the bandit learning literature
is that typically there is no (or mild) assumption on the
loss/reward function (See Remark 3).

2. Problem Setup and Preliminaries
The standard online (bandit) convex optimization framework
proceeds in rounds: at round t, the learner plays wt ∈ W ⊆
Rd and receives the incurred loss ft(wt) as feedback, for
some convex ft chosen adversarially. The “action space”
W is restricted to be a closed convex set with diameter
W = maxw,w′∈W ‖w −w′‖2. The goal of the (possibly
randomized) learnerA is to have a bounded regret compared
to a fixed w∗ ∈ W in hindsight that achieves the least
cumulative loss, i.e. to minimize the regret defined as:

RT (A) =

T∑
t=1

E
[
ft(wt)

]
−

T∑
t=1

ft(w
∗), (1)

where w∗ = arg minw∈W
∑T
t=1 ft(w), and E[.] is wrt to

any randomness in A. In our formulation, at each round,
the learner receives context xt ∈ X , chooses parameters
wt and plays its prediction gt(wt;xt), and receives loss for
this prediction; the loss functions chosen by the adversary
at each round satisfies:

ft(wt) = `t(gt(wt;xt)), (2)

for some gt :W ×X → G ⊆ R, and bounded convex and
L-Lipschitz `t : G → [0, C]. Note that while the learner
receives bandit feedback for `t, it has complete knowledge
of gt, for example, gt(·) = 〈·,xt〉. Thus, in particular, the
learner has access to both zeroth- and first-order information
for gt but only zeroth-order information for `t. We refer
to G as the prediction space. With this set up, we formally
state the problem of interest below.

Pseudo-1d Bandit Convex Optimization (PBCO):
Minimize (1) where the functions ft(.) admit the structure
in (2), and `t,xt are chosen adversarially.
Remark 1. Note that the goal is to minimize cumulative
regret (1) with respect to the best fixed d-dimensional param-
eter w∗, though the learner plays in the prediction space G
which is one-dimensional.
Remark 2 (Applying bandit convex optimization). Ignor-
ing the structure in (2), one can apply bandit convex opti-
mization algorithms to PBCO problem. The state-of-the-art
result for online convex optimization with bandit feedback
is by Bubeck et al. (2017); using their algorithm gives a
significantly sub-optimal regret bound of O(d9.5

√
T ).

Remark 3 (Applying continuous contextual bandits). The
recent work by Krishnamurthy et al. (2019) provides op-
timal guarantees for contextual bandits with continuous
actions (i.e. the learner plays an action from [0, 1] at each
round). Applying their algorithm to our setting yields a

“smoothed” regret (which is a weaker notion of regret, and
not directly comparable to ours) of O(T 2/3(Ld)1/3), where
L is Lipschitz constant of `t. Note, however, that their guar-
antees apply to general losses and in particular do not need
convexity.

In the (easier) setting of (bandit) stochastic convex optimiza-
tion, there is a fixed unknown f (.) for which the learner
obtains noisy evaluations. The goal is to minimize the ex-
pected value of the function, i.e., to bound:

R̄(A) := min
w∈W

EZ [f (w;Z)− f (w∗;Z)], (3)

where w∗ = arg minw∈W EZ [f(w;Z)]. Naturally, we can
pose a stochastic version of the PBCO problem where f
admits the pseudo-1d structure.

Notation. Let [n] = {1, 2, . . . n}, for any n ∈ N. For
any δ > 0, let Bd(δ) and Sd(δ) denote the ball and the
surface of the sphere of radius δ in d dimensions respectively.
Lower case bold letters denote vectors, upper case bold
letters denote matrices. PX ,‖·‖(x) denotes the nearest point
projection of a point x ∈ Rd on to set X ⊆ Rd with respect
to norm ‖ · ‖, i.e. PX (x) := arg minz∈X ‖x− z‖. For any
vector x ∈ Rd, ‖x‖2 denotes the `2 norm of vector x. To be
consistent with the literature, we will use ft as a short-hand
for `t(gt(.)) in this paper (as defined in (2)); and use gt(w)
as a short-hand for gt(w;xt) when xt is implicit from the
context.

Below we give definitions that will be used in the remainder
of the paper.

(A1) Convexity: For all w1,w2 ∈ W and λ ∈ [0, 1],
(i) `t

(
λgt(w1) + (1 − λ)gt(w2)

)
≤ λ`t(gt(w1)) + (1 −

λ)`t(gt(w2))
(ii) ft

(
λw1 + (1− λ)w2

)
≤ λft(w1) + (1− λ)ft(w2).

(A2) L-Lipschitzness: For all w1,w2 ∈ W ,
‖`t(gt(w1))− `t(gt(w2))‖2 ≤ L‖gt(w1)− gt(w2)‖2.

While we require the loss function to be convex, the learner
can choose any bounded prediction function as stated below.

(A3) Boundedness of gt: (i) gt ∈ G = [αW , βW ] ⊆ R, (ii)
‖∇wgt(w;x)‖ ≤ D, for all x ∈ X ,w ∈ W . Note A3(ii)
implies gt is D-Lipschitz.

Remark 4. Note that when gt is linear, i.e. gt(w;x) =
〈w,x〉, then the above assumptions simplify: In particular,
(a) (A1) (i) ⇐⇒ (A1) (ii), (b) ‖∇wgt(w;x)‖ = ‖x‖ ≤ D,
whereD denotes the diameter ofX , and gt ∈ [−DW,DW ],
where W is the diameter ofW .
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All detailed proofs are provided in the supplementary (Ap-
pendix A).

3. A lower bound for PBCO
It does appear that the PBCO problem introduced in Sec-
tion 2 is effectively a one-dimensional problem because the
loss function `t is computed on a scalar. This raises the
natural question as to when and if one can get rid of dimen-
sion dependence in the regret. Recall that existing bandit
convex optimization techniques (Remark 2 in Section 2) do
suffer poly(d) dependence. In the following we show that,
in general, one cannot avoid the dependence on d, and in
particular, we show a lower bound that is Ω(

√
dT ), in the

regime d = O(
√
T ). For larger d, any algorithm must suffer

a regret that is Ω(T 3/4).
Theorem 1 (Lower bound for PBCO). For any algorithm
A for the PBCO problem, there exists W ⊆ Bd(1), and
sequence of loss functions f1, . . . fT : W 7→ R where for
any t, E[ft(·)] ∈ [0, 1], the expected regret suffered by A
satisfies:

E
[
RT (A)

]
= E

[ T∑
t=1

ft(wt)− min
w∈W

T∑
t=1

ft(w)

]
≥ 1

32
min

(√
dT , T 3/4

)
.

In particular, the lower bound holds under the assumptions
(A1), (A2) and (A3).

Proof Sketch. We give a simple construction of problem
instance to show the desired lower bound. We will work
with linear model, i.e. gt(.) = 〈xt, ·〉, andW = 1√

d
{±1}d

which suffices for a lower bound. The idea is to divide the
max rounds [T ] into d equal length sub intervals (each of
length T/d) T1, . . . , Td (let T0 = ∅). Now, for i ∈ [d],
choose σi ∼ Ber(±1), and set xi = ei. At round t ∈ Ti ={
T
d (i−1)+1, . . . , Td i

}
, i ∈ [d], adversary chooses xt = xi

and the loss function ft(w) = µσi(w
>xi)+εt, where εt ∼

N (0, 1
16 ), for some constant µ > 0,∀w ∈ W . For this

problem instance, it is easy to show that w∗ = − σ√
d
∈ W ,

where σ = (σ1, . . . , σd). The learner’s goal is then to figure
out σ. Now, we argue a lower bound for two regimes:
Case d ≤ 16

√
T . We can show that any learning strategy

must suffer an expected regret of at least
√
dT

32 if we set
µ = d

16
√
T
< 1 (used by the adversary for constructing

ft(w) mentioned above).
Case d > 16

√
T . One can use an embedding trick, and

simply ignore the d− 16
√
T dimensions. In this setup, we

can argue that any learner must suffer a regret of at least
T 3/4

32 by falling back on the first case.
Together, we get the desired lower bound. See Appendix A
for details.

Remark 5. Note that in the lower bound instance of Theo-
rem 1, `t and xt are dependent random variables. In fact,
this dependence is crucial for obtaining a lower bound that
depends on the dimension d. It is indeed possible to design
an algorithm that achieves Õ

(√
T
)

regret for the stochas-
tic setting where `t is independent of xt. The main idea is
this: all one needs to estimate is the minimizer of the one-
dimensional function E [`t]. However, this situation does
not seem to be of much interest and hence we do not provide
a proof of this claim.

4. An optimal algorithm for PBCO
In this section, we develop a method for the PBCO problem
in the adversarial setting, and show that it achieves a regret
that matches the lower bound presented in Section 3, up to
logarithmic factors. The proposed solution operates in two
regimes, mirroring the lower bound analysis: in one regime,
when d = O(

√
T ), it relies on a kernelized exponential

weights scheme, and in the other regime, when d is larger,
it relies on an online gradient descent style algorithm. This
method, called OPTPBCO, is presented in Algorithm 1.

Algorithm 1 OPTPBCO
1: Input:
2: max rounds T , dimensionality d
3: if d ≤ WLD

√
T

C log(L′T ) then
4: Run Kernelized Exponential Weights for PBCO (Al-

gorithm 2) with η =

√
d log(L′T )

C
√
BT

, T

5: else
6: Run Online Gradient Descent for PBCO (Algo-

rithm 3) with η = Wδ
DC
√
T
, δ =

(
WDC
3L
√
T

)1/2

, α = δ,

and T
7: end if

We now state our second key result of the paper — OPTP-
BCO achieves an optimal regret bound given below.

Theorem 2 (Regret bound for OPTPBCO (Algorithm 1)).
If the loss functions `t : G → [0, C], ft satisfy (A1),
(A2), (A3), W = Bd(W ), the expected regret of the
PBCO learner presented in Algorithm 1 can be bounded
as:

E[RT (AOPTPBCO)] ≤

2
√

2 min

(
C
√
dT log(L′T ),

√
WLDCT 3/4

)
where L′ = LDW and the expectation E[·] is with respect
to the algorithm’s randomization.

Proof. The bound follows from Lemmas 5 and 7, the choice
of parameters given in steps 4 and 6 of Algorithm 1, and
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noticing that when d is larger than the threshold in step 3 of
the Algorithm, OGD (Algorithm 3) achieves a smaller regret
than Kernelized Exponential Weights (Algorithm 2).

Corollary 3. When gt is linear, i.e. gt(.) = 〈xt, ·〉, then D
is the diameter of X .

A few remarks are in order.

Remark 6. OPTPBCO requires the knowledge of the Lips-
chitz constant L (e.g. in Step 3) of unknown loss `t. This is a
standard assumption made in the bandit convex optimization
literature (Flaxman et al., 2005).

Remark 7. It is straight-forward to state a result similar to
Theorem 2 for the stochastic version of the PBCO problem.

4.1. Regime d = Õ(
√
T ): Kernelized Exp. Weights

The key idea in our approach is to use a kernelized exponen-
tial weights scheme that exploits the pseudo-1d structure in
the loss function. Exponential weights is a popular online
learning algorithm for contextual bandits. Recently (Bubeck
et al., 2017) developed a meticulous kernel method that uses
exponential weight update at its core to prove O(

√
T ) re-

gret for general convex (and Lipschitz) functions. Their
approach hinges on using a smoothing operator (kernel) to
obtain an estimator of the loss function ft (the analogous
estimator is fairly straight-forward in the multi-arm bandit
setting) in the bandit convex optimization setting.

In the general d-dimensional setting, defining a kernel such
that the resulting estimator of ft is both (almost) unbiased
and has bounded variance turns out to be extremely compli-
cated and incurs large polynomial factors in dimension d.
But, we can exploit the pseudo-1d structure in our setting
to define a relatively simple kernel in the one-dimensional
prediction space instead. A key benefit of using the simple
1-d kernel is that much of the analysis in (Bubeck et al.,
2017) can be greatly simplified, and the proofs become
significantly easier to follow.

Before describing the main ideas of the algorithm, we need
some notation and definitions set up. Let pt denote the
distribution over parametersW maintained by the learner
at round t. Also let Gt := {gt(w,xt) | w ∈ W} ⊆ R,
for any t ∈ [T ], and Wt(y) := {w ∈ W | gt(w,xt) =
y}, for y ∈ Gt. Given this, we obtain a one dimensional
distribution qt ∈ Qt over Gt from pt as follows: dqt(y) :=∫
Wt(y)

dpt(w), ∀y ∈ Gt.

The kernelized exponential weights scheme crucially uses a
kernel map to obtain a smooth estimate of the loss function
on the action space based on a single point evaluation. The
key observation we make is that, in our setting, it suffices
to define such a kernel over the scalar prediction space
than over the d-dimensional action space as in (Bubeck
et al., 2017). This 1-dimensional kernel map, denoted K′t,

is carefully constructed at each round t based on qt and the
observed context xt as given below:

Definition 4 (Bubeck et al. (2017)). Given a distribution
qt over Gt, and ε > 0, we define a one-dimension kernel
K′t : Gt × Gt 7→ R+ as:

K′t(y, y
′) =


I
(
y ∈ [y′, ȳ]

)
|y′ − ȳ|

, if |y′ − ȳ| ≥ ε,

I
(
y ∈ [ȳ − ε, ȳ]

)
ε

, when y′ ∈ [ȳ − ε, ȳ + ε]

,

where ȳ := Eqt [y], and I(.) is the indicator function.

For the kernel K′t defined above, we can verify that∫
Gt K′t(y, y′)dy = 1 for every y′ ∈ Gt. Further we de-

fine a linear operator on any q ∈ Qt (a smoothing of q w.r.t.
K′t) as:

K′tq(y) :=

∫
y′∈Gt

K′t(y, y
′)dq(y′) ∀y ∈ Gt. (4)

This operator is particularly useful because for any valid
probability measure q ∈ Qt, the map K′tq also defines a
valid probability distribution over Gt (a precise statement is
proved in Lem. 8, Appendix A.2).

Even though we leverage the (above) definition of the 1-d
kernel from Bubeck et al. (2017), the crucial difference in
our analysis is that while they optimize the regret over just
a scalar parameter (in their 1-d case), we leverage the same
1-d kernel for learning d-dimensional parameters, exploit-
ing the pseudo-1d structure. Consequently, our algorithm
design and the corresponding regret analysis is different
than Bubeck et al. (2017), as outlined next.

Algorithm (main ideas). We start with maintaining uni-
form weight over theW : p1 ← 1

vol(W) . At any time t ∈ [T ],
upon receiving xt, we first compute the effective scalar de-
cision space Gt and sample a yt ∈ Gt according to the
smoothed distribution of K′tqt. However, since the task is
to choose a prediction point from the d-dimensional space
W , we pick any (uniformly) random wt that maps to yt,
i.e. wt ∈ Wt(yt) uniformly at random (Line 7 in Algo-
rithm 2). Upon receiving the zeroth-order feedback ft(wt),
we estimate the loss at each point w ∈ W as follows:

f̃t(w)← ft(wt)

K′tqt(yt)
K′t(yt, y), ∀ w ∈ W.

Note the above loss estimate f̃t ensures for a fixed y ∈
Gt, f̃t(w) is same for all w ∈ Wt(y) (as justified by the
structure: ft(·) = `t(gt(·))). Finally, using the (estimated)
loss f̃ : W 7→ R, we update pt identical to the standard
exponential weights algorithm:

pt+1(w)←
pt(w) exp

(
− ηf̃t(w)

)∫
w̃
pt(w̃) exp

(
− ηf̃t(w̃)

)
dw̃

, ∀ w ∈ W.
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Algorithm 2 summarizes the proposed kernelized exponen-
tial weights scheme for PBCO.

Algorithm 2 Kernelized Exponential Weights for PBCO
1: Input: learning rate: η > 0, ε > 0, max rounds T .
2: Initialize: w1 ← 0,p1 ← 1

vol(W) .
3: for t = 1, 2, · · ·T do
4: Receive xt, and define Gt := {gt(w,xt) | w ∈

W} ⊆ R
5: Define qt such that dqt(y) :=

∫
Wt(y)

dpt(w), ∀y ∈
Gt, whereWt(y) := {w ∈ W | gt(w,xt) = y}

6: Using xt and qt, and given ε, define kernel K′t :
Gt × Gt 7→ R (according to Definition 4)

7: Sample yt ∼ K′tqt and pick any wt ∈ Wt(yt) uni-
formly at random

8: Play gt(wt;xt) and receive loss ft(wt) =
`t(gt(wt;xt))

9: f̃t(w) ← ft(wt)

K′tqt(yt)
K′t(yt, y), for all w ∈

W(y),∀y ∈ Gt . estimator of ft

10: pt+1(w) ←
pt(w) exp

(
− ηf̃t(w)

)∫
w̃
pt(w̃) exp

(
− ηf̃t(w̃)

)
dw̃

, for all

w ∈ W
11: end for

We show in the following Lemma that the regret bound
for Algorithm 2 is bounded by Õ(

√
dT ). Exploiting the

problem structure gets us significantly improved dependence
on d compared to the original result by Bubeck et al. (2017)
for the general case (as stated in Remark 2).

Lemma 5 (Regret bound for Algorithm 2). If the losses `t :
G → [0, C] and gt, t ∈ [T ] satisfy (A1) (i), (A2), and (A3),
then for the choice of {Kt}t∈[T ] as defined in Definition
4, the expected regret of Algorithm 2, with learning rate

η =
(

2d log(L′T )
BC2T

) 1
2

and ε = 1
3LT , can be bounded as:

E[RT ] ≤ 4 + 2
√

2

(√
dBC2T log(L′T )

)
= O

(
C
√
dT log(L′T )

)
whereB = 2

(
1+ln(3LT )+ln

(
βW−αW

))
, L′ = LDW ,

W = Diam(W) and the expectation E[·] is with respect to
the algorithm’s randomization.

Proof sketch. Detailed proof (and supporting lemmas)
is presented in Appendix A. Here, we sketch all its key
constituents. The proof relies on key properties of the afore-
mentioned 1-d kernel map, shown in Lemma 11. We start
by analyzing the expected regret w.r.t. the optimal point
w∗ ∈ W (denote y∗t = gt(w

∗) for all t ∈ [T ]). Define

∀y ∈ Gt, ˜̀
t(y) := f̃t(w), for any w ∈ W(y). Also

let Ht = σ
(
{xτ ,pτ ,wτ , fτ}t−1

τ=1 ∪ {xt,pt}
)

denote the
sigma algebra generated by the history till time t. Then
the expected cumulative regret of Algorithm 2 over T time
steps can be bounded as:

E[RT (w∗)] := E
[ T∑
t=1

(
`t(gt(wt;xt))− `t(gt(w∗;xt))

)]

= E
[ T∑
t=1

(
`t(yt)− `t(y∗t )

)]
= E

[ T∑
t=1

〈
K′tqt − δy∗t , `t

〉]

≤ 6εLT + 2

T∑
t=1

E
[〈

K′t(qt − δy∗t ), `t
〉]

(a)
= 6εLT + 2

T∑
t=1

E
[ T∑
t=1

Eyt∼K′tqt

[〈
qt − δy∗t ,

˜̀
t

〉
| Ht

]]

= 6εLT + 2

T∑
t=1

E
[ T∑
t=1

Eyt∼K′tqt

[〈
pt − δw∗ , f̃t

〉
| Ht

]]
(5)

where the last equality follows by Lemma 9, and by〈
δw∗ , f̃t

〉
= f̃t(w

∗) = ˜̀
t(y
∗
t ) =

〈
δy∗t ,

˜̀
t

〉
; (a) and

the first inequality rely on the properties of the kernel in
Lemma 11. Let us denote by p∗ a uniform measure on the
setWκ := {w | w = (1−κ)w∗+κw′, for any w′ ∈ W}
for some κ ∈ (0, 1). We can then show that the inner expec-
tation in (5) can be bounded by

∑T
t=1 Eyt∼K′tqt [

〈
pt, f̃t

〉
−〈

p∗, f̃t
〉
] + κLDWT using the assumption that gt is D-

Lipschitz, and a certain adjoint operator on the kernel map is
L-Lipschitz. The term

∑T
t=1

〈
pt − p∗, f̃t

〉
can be bounded

(via Lemma 10) by
KL(p∗||p1)

η
+ η

2

〈
qt, ˜̀2

t

〉
. Now, the sec-

ond term Eyt∼K′tqt

[〈
qt, ˜̀2

t

〉]
relates to the variance of the

loss estimator, and can be bounded by a constant, ensured
by our choice of the 1d-kernel; and the first, KL divergence,
term can be bounded by d log 1

κ by the definition of p∗.
Plugging these bounds in (5), letting L′ = LDW , and set-
ting κ = 1

L′T , ε = 1
3LT , (5) yields:

E[RT (w∗)] ≤ O(1) + 2

(
d logL′T

η
+
ηBC2T

2

)

By choosing η to minimize the RHS above, the proof is
complete.

We observe from Lemma 5 that when d is small and con-
stant, the bound behaves like

√
T but when d is large, say,

d = T 2/3, the bound behaves like T 5/6. In what follows,
we show that an online gradient descent style algorithm
achieves a regret that scales as T 3/4 independent of d.
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4.2. Larger d: Online Gradient Descent

Consider the standard online gradient descent algorithm
of (Zinkevich, 2003), but with an estimator in lieu of the
true gradient as in (Flaxman et al., 2005) to deal with bandit
feedback. The key observation here is that we can perform
the gradient estimation much more accurately exploiting the
pseudo-1d structure. In particular, using the chain rule, one
can write the gradient of the loss function wrt to w as:

∇wft(w) = ∇w`t(gt(w;xt)) = `′t(gt(w;xt))∇wgt(w;xt)
(6)

Notice that because we have access to gt, we know the d-
dimensional gradient part accurately. The only unknown
part in the equation above is the scalar quantity which is
`′t(g(wt;xt)). For this, we can use the one-point estimator
as in (Flaxman et al., 2005), which in expectation gives the
gradient wrt to not the actual loss `t but wrt to a smoothed
loss, as stated in the following lemma.
Lemma 6. Fix δ > 0 and let u take 1 or -1 with equal prob-
ability. Define the one-point gradient estimator, ∇̂`t(a) :=
1
δ `t
(
a+ δu

)
u. Then:

∇wEu
[
`t
(
gt(wt;xt) + δu

)]
= Eu

[
∇̂`t

(
gt(wt;xt)

)]
.∇wgt(wt;xt)

The resulting online gradient descent method for PBCO is
given in Algorithm 3. In Lemma 7, we give the O(T 3/4)
regret bound for the algorithm.

Algorithm 3 Online Gradient Descent for PBCO
1: Input:
2: Perturbation parameter: δ > 0, α ∈ (0, 1], learning

rate: η > 0, max rounds T
3: Initialize:
4: w1 ← 0
5: for t = 1, 2, · · ·T do
6: Sample u ∼ U

(
S1(1)

)
(i.e. select u uniformly from

{−1, 1})
7: Receive xt
8: Project wt ← PWα

(wt), whereWα = {w ∈ W |
gt(w;xt) ∈ G − α}

9: Play at = gt(wt;xt) + δu and receive loss `t(at)
10: Update wt+1 ← wt − η

[
1
δ `t(at)u∇gt(wt;xt)

]
.

One-point estimator of ∇ft(wt)
11: end for

Lemma 7 (Regret bound for Algorithm 3). ConsiderW =
Bd(W ). If the losses ft :W → [0, C] and gt, t ∈ [T ] satisfy
(A1) (ii), (A2), and (A3) (ii), then setting η = Wδ

DC
√
T

, δ =(
WDC
3L
√
T

)1/2

, and α = δ, the expected regret of Algorithm 3
can be bounded as:

E[RT (A)] ≤ 2
√

3WLDCT 3/4,

where the expectation E[·] is with respect to the algorithm’s
randomization.

Thus, we are able to guarantee optimal regret bound for
OPTPBCO matching the lower bound, by falling back on
a suitably modified OGD algorithm when d is sufficienly
large.

Remark 8 (Assumptions for OGD vs Kernelized Exponen-
tial Weights). To show the regret bound for Algorithm 2,
we only need convexity of the one-dimensional function `t
unlike in the OGD case (Algorithm 3) where we need con-
vexity of ft in the d-dimensional parameter w. In particular,
our analysis of kernelized exponential weights method (in
Lemma 5) does not need other assumptions on gt other than
boundedness, which may be counter-intuitive (for exam-
ple, consider when gt is possibly non-convex and `t is the
identity function). But note that the analysis relies on the
complete knowledge of gt and ignores the computational
complexity. To be able to implement Algorithm 2 efficiently,
we will need some nice property of gt like convexity.

The following remark shows that pseudo-1d structure helps
improve known bounds for bandit convex optimization by a
factor of

√
d at least.

Remark 9. Consider the simple setting of bandit convex
optimization when the loss functions are linear, ft(wt) =
〈wt, ξt〉, where ξt is the cost vector chosen by the adver-
sary, not revealed to the learner. It is known that, for
bandit linear optimization, the minimax optimal regret is
Θ(d
√
T ) (Shamir, 2015). Note that, in contrast, the context

vector xt is revealed to the learner in our setting, and only
the (scalar) loss computed on the linear model 〈wt,xt〉 is
not revealed, which captures typical online decision making
setting. This way of posing the problem helps us leverage
the structure, and get a better dependence on d.

5. Simulations
We present synthetic experiments that showcase the regret
bounds established in Section 4. We work with a linear
gt for all the experiments. We fix W = Bd(1), context
vectors from {‖xt‖2 ≤ 1}, and the two loss functions (a)
ft(w) = (〈w,xt〉 − y∗t )2 where y∗t = 〈w∗,xt〉, for a fixed
w∗ ∈ Bd(1), and (b) ft(w) = |〈w,xt〉 − y∗t |. The details
on implementing Algorithm 2 are given in Appendix B.

OGD vs Kernelized Exponential Weights for PBCO.
In Figure 1 (a)-(b), we show the expected regret of Al-
gorithm 3 on the synthetic problem (averaged over 50 prob-
lem instances), scaled by 1/t3/4 at round t, for the two
loss functions; this, according to Lemma 7, ensures that
the expected regret converges to a numerical constant, in-
dependent of d, with increasing rounds. We observe this
is indeed the case for different d values. In Figure 1 (c)-
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(d), we show the expected regret of Algorithm 2 on this
problem (averaged over 50 problem instances), scaled by
1/
√
t at round t, for the two loss functions; this, according

to Lemma 5, ensures that the regret converges to O(
√
d),

with increasing rounds; notice that, e.g., in (c), for differ-
ent d values, the converged scaled regret is γ

√
d where

γ ≈ 0.02/
√

40 ≈ 0.015/
√

20 ≈ 0.01/
√

10 ≈ 0.003.

Comparison to (Flaxman et al., 2005). We present com-
parisons to the bandit OGD algorithm of (Flaxman et al.,
2005) that does not exploit the pseudo-1d structure of the
loss, achieving a regret of O(

√
dT 3/4), as against our Algo-

rithm 3 that achieves a regret ofO(T 3/4). In Figure 1 (e)-(f),
we show the expected regret of the bandit OGD algorithm
of (Flaxman et al., 2005) on the same data as earlier (aver-
aged over 50 problem instances), scaled by 1/t3/4 at round
t, for the two loss functions; this, according to (Flaxman
et al., 2005), ensures that the regret converges to O(

√
d),

with increasing rounds; notice that, e.g., in (e), for different
d values, we can infer that the ratio of the converged regrets
of (Flaxman et al., 2005) and our algorithm (corresponding
to plot (a)) is at most 3

√
d; the additional constant factor

also appears in the analysis of (Flaxman et al., 2005).

6. Conclusions and Future Work
We have formulated a novel bandit convex optimization
problem with pseudo-1d structure motivated by its applica-
tions in online decision making and large-scale parameter
tuning in systems. We provide optimal minimax regret
bounds for the pseudo-1d bandit convex optimization prob-
lem. An open question here is if there is a single algo-
rithm that achieves the regret trade-off we show in the lower
bound (as against our method, that relies on two schemes
in two regimes of dimensionality of the problem). Another
follow-up direction is to extend the results in this work to
settings when gt is high-dimensional (when one needs to
take multiple decisions based on the observed context), say
gt(W;x) = Wx, where the parameters to estimate are
W ∈ Rm×d.

Acknowledgments: Most of the work was completed
while AS was a graduate student at IISc, Bangalore and
interning at MSR, India. AS thanks Qualcomm Innovation
Fellowship 2019-20 for supporting this work.
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(a) Alg 3 (squared `) (b) Alg 3 (abs. `)

(c) Alg 2 (squared `) (d) Alg 2 (abs. `)

(e) OGD of (Flaxman et al., 2005) (squared `) (f) OGD of (Flaxman et al., 2005) (abs. `)

Figure 1. (a)-(b): Algorithm 3: Scaled cumulative regret Rt/t
3/4 vs. t for the squared loss (a) and the absolute deviation loss (b). By

Lemma 7, the (scaled) regret converges to a numerical constant independent of d. (c)-(d): Algorithm 2: Scaled cumulative regret Rt/
√
t

vs. t for the squared loss (c) and the absolute deviation loss (d). In accordance with Lemma 5, the (scaled) regret converges to a value
proportional to

√
d. (e)-(f): OGD algorithm of (Flaxman et al., 2005): Scaled cumulative regret Rt/t

3/4 vs. t for the squared loss (e) and
the absolute deviation loss (f). Compared to the corresponding pots in (a) and (b), it is evident that the regret is much higher here; in
particular, in accordance with the result in (Flaxman et al., 2005), the (scaled) regret converges to a value proportional to

√
d.
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