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Abstract
Text-to-image generation has traditionally fo-
cused on finding better modeling assumptions for
training on a fixed dataset. These assumptions
might involve complex architectures, auxiliary
losses, or side information such as object part la-
bels or segmentation masks supplied during train-
ing. We describe a simple approach for this task
based on a transformer that autoregressively mod-
els the text and image tokens as a single stream of
data. With sufficient data and scale, our approach
is competitive with previous domain-specific mod-
els when evaluated in a zero-shot fashion.

1. Introduction
Modern machine learning approaches to text to image syn-
thesis started with the work of Mansimov et al. (2015),
who showed that the DRAW Gregor et al. (2015) generative
model, when extended to condition on image captions, could
also generate novel visual scenes. Reed et al. (2016b) later
demonstrated that using a generative adversarial network
(Goodfellow et al., 2014), rather than a recurrent variational
auto-encoder, improved image fidelity. Reed et al. (2016b)
showed that this system could not only generate objects with
recognizable properties, but also could zero-shot generalize
to held-out categories.

Over the next few years, progress continued using a combi-
nation of methods. These include improving the generative
model architecture with modifications like multi-scale gen-
erators (Zhang et al., 2017; 2018), integrating attention and
auxiliary losses (Xu et al., 2018), and leveraging additional
sources of conditioning information beyond just text (Reed
et al., 2016a; Li et al., 2019; Koh et al., 2021).

Separately, Nguyen et al. (2017) propose an energy-based
framework for conditional image generation that obtained
a large improvement in sample quality relative to contem-
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Figure 1. Comparison of original images (top) and reconstructions
from the discrete VAE (bottom). The encoder downsamples the
spatial resolution by a factor of 8. While details (e.g., the texture of
the cat’s fur, the writing on the storefront, and the thin lines in the
illustration) are sometimes lost or distorted, the main features of the
image are still typically recognizable. We use a large vocabulary
size of 8192 to mitigate the loss of information.

porary methods. Their approach can incorporate pretrained
discriminative models, and they show that it is capable of
performing text-to-image generation when applied to a cap-
tioning model pretrained on MS-COCO. More recently, Cho
et al. (2020) also propose a method that involves optimiz-
ing the input to a pretrained cross-modal masked language
model. While significant increases in visual fidelity have oc-
curred as a result of the work since Mansimov et al. (2015),
samples can still suffer from severe artifacts such as object
distortion, illogical object placement, or unnatural blending
of foreground and background elements.

Recent advances fueled by large-scale generative models
suggest a possible route for further improvements. Specifi-
cally, when compute, model size, and data are scaled care-
fully, autoregressive transformers (Vaswani et al., 2017)
have achieved impressive results in several domains such as
text (Radford et al., 2019), images (Chen et al., 2020), and
audio (Dhariwal et al., 2020).

By comparison, text-to-image generation has typically been
evaluated on relatively small datasets such as MS-COCO
and CUB-200 (Welinder et al., 2010). Could dataset size and
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(a) a tapir made of accordion.
a tapir with the texture of an
accordion.

(b) an illustration of a baby
hedgehog in a christmas
sweater walking a dog

(c) a neon sign that reads
“backprop”. a neon sign that
reads “backprop”. backprop
neon sign

(d) the exact same cat on the
top as a sketch on the bottom

Figure 2. With varying degrees of reliability, our model appears to be able to combine distinct concepts in plausible ways, create
anthropomorphized versions of animals, render text, and perform some types of image-to-image translation.

model size be the limiting factor of current approaches? In
this work, we demonstrate that training a 12-billion param-
eter autoregressive transformer on 250 million image-text
pairs collected from the internet results in a flexible, high
fidelity generative model of images controllable through
natural language.

The resulting system achieves high quality image generation
on the popular MS-COCO dataset zero-shot, without using
any of the training labels. It is preferred over prior work
trained on the dataset by human evaluators 90% of the time.
We also find that it is able to perform complex tasks such
as image-to-image translation at a rudimentary level. This
previously required custom approaches (Isola et al., 2017),
rather emerging as a capability of a single, large generative
model.

2. Method
Our goal is to train a transformer (Vaswani et al., 2017) to
autoregressively model the text and image tokens as a single
stream of data. However, using pixels directly as image
tokens would require an inordinate amount of memory for
high-resolution images. Likelihood objectives tend to pri-
oritize modeling short-range dependencies between pixels
(Salimans et al., 2017), so much of the modeling capac-
ity would be spent capturing high-frequency details instead
of the low-frequency structure that makes objects visually
recognizable to us.

We address these issues by using a two-stage training proce-
dure, similar to (Oord et al., 2017; Razavi et al., 2019):

• Stage 1. We train a discrete variational autoen-
coder (dVAE)1 to compress each 256×256 RGB image
into a 32× 32 grid of image tokens, each element of

1https://github.com/openai/DALL-E

which can assume 8192 possible values. This reduces
the context size of the transformer by a factor of 192
without a large degradation in visual quality (see Fig-
ure 1).

• Stage 2. We concatenate up to 256 BPE-encoded text
tokens with the 32 × 32 = 1024 image tokens, and
train an autoregressive transformer to model the joint
distribution over the text and image tokens.

The overall procedure can be viewed as maximizing the
evidence lower bound (ELB) (Kingma & Welling, 2013;
Rezende et al., 2014) on the joint likelihood of the model
distribution over images x, captions y, and the tokens z
for the encoded RGB image. We model this distribution
using the factorization pθ,ψ(x, y, z) = pθ(x | y, z)pψ(y, z),
which yields the lower bound

ln pθ,ψ(x, y) > E
z∼qφ(z | x)

(
ln pθ(x | y, z) −

β DKL(qφ(y, z |x), pψ(y, z))
)
, (1)

where:

• qφ denotes the distribution over the 32 × 32 image
tokens generated by the dVAE encoder given the RGB
image x2;

• pθ denotes the distribution over the RGB images gen-
erated by the dVAE decoder given the image tokens;
and

• pψ denotes the joint distribution over the text and image
tokens modeled by the transformer.

Note that the bound only holds for β = 1, while in practice
we find it helpful to use larger values (Higgins et al., 2016).
The following subsections describe both stages in further
detail.3

2We assume that y is conditionally independent of x given z.
3In preliminary experiments on ImageNet (Deng et al., 2009),

https://github.com/openai/DALL-E
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Figure 3. Comparison of samples from our model to those from prior approaches on captions from MS-COCO. Each of our model samples
is the best of 512 as ranked by the contrastive model. We do not use any manual cherrypicking with the selection of either the captions or
the samples from any of the models.

2.1. Stage One: Learning the Visual Codebook

In the first stage of training, we maximize the ELB with
respect to φ and θ, which corresponds to training a dVAE
on the images alone. We set the initial prior pψ to the uni-
form categorical distribution over the K = 8192 codebook
vectors, and qφ to be categorical distributions parameterized
by the 8192 logits at the same spatial position in the 32×32
grid output by the encoder.

The ELB now becomes difficult to optimize: as qψ is a dis-
crete distribution, and we cannot use the reparameterization
gradient to maximize it. Oord et al. (2017); Razavi et al.
(2019) address this using an online cluster assignment pro-
cedure coupled with the straight-through estimator (Bengio
et al., 2013). We instead use the gumbel-softmax relax-
ation (Jang et al., 2016; Maddison et al., 2016), replacing the
expectation over qφ with one over qτφ, where the relaxation
becomes tight as the temperature τ → 0. The likelihood
for pθ is evaluated using the log-laplace distribution (see

we attempted to maximize the ELB with respect to φ, θ, and ψ
jointly, but were unable to improve on two-stage training.

Appendix A.3 for a derivation).

The relaxed ELB is maximized using Adam (Kingma &
Ba, 2014) with exponentially weighted iterate averaging.
Appendix A.2 gives a complete description of the hyper-
parameters, but we found the following to be especially
important for stable training:

• Specific annealing schedules for the relaxation temper-
ature and step size. We found that annealing τ to 1/16
was sufficient to close the gap between the relaxed
validation ELB and the true validation ELB with qφ
intsead of qτφ.

• The use of 1× 1 convolutions at the end of the encoder
and the beginning of the decoder. We found that reduc-
ing the receptive field size for the convolutions around
the relaxation led to it generalizing better to the true
ELB.

• Multiplication of the outgoing activations from the
encoder and decoder resblocks by a small constant, to
ensure stable training at initialization.

We also found that increasing the KL weight to β = 6.6
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promotes better codebook usage and ultimately leads to a
smaller reconstruction error at the end of training.4

2.2. Stage Two: Learning the Prior

In the second stage, we fix φ and θ, and learn the prior
distribution over the text and image tokens by maximizing
the ELB with respect to ψ. Here, pψ is represented by a
12-billion parameter sparse transformer (Child et al., 2019).

Given a text-image pair, we BPE-encode (Sennrich et al.,
2015) the lowercased caption using at most 256 tokens5

with vocabulary size 16,384, and encode the image using
32 × 32 = 1024 tokens with vocabulary size 8192. The
image tokens are obtained using argmax sampling from the
dVAE encoder logits, without adding any gumbel noise.6

Finally, the text and image tokens are concatenated and
modeled autoregressively as a single stream of data.

The transformer is a decoder-only model in which each im-
age token can attend to all text tokens in any one of its 64
self-attention layers. The full architecture is described in Ap-
pendix B.1. There are three different kinds of self-attention
masks used in the model. The part of the attention masks
corresponding to the text-to-text attention is the standard
causal mask, and the part for the image-to-image attention
uses either a row, column, or convolutional attention mask.7

We limit the length of a text caption to 256 tokens, though
it is not totally clear what to do for the “padding” positions
in between the last text token and the start-of-image token.
One option is to set the logits for these tokens to −∞ in the
self-attention operations. Instead, we opt to learn a special
padding token separately for each of the 256 text positions.
This token is used only when no text token is available. In
preliminary experiments on Conceptual Captions (Sharma
et al., 2018), we found that this resulted in higher validation
loss, but better performance on out-of-distribution captions.

4This is contrary to the usual tradeoff between the two terms.
We speculate that for smaller values of β, the noise from the
relaxation causes the optimizer to reduce codebook usage toward
the beginning of training, resulting in worse ELB at convergence.

5During training, we apply 10% BPE dropout (Provilkov et al.,
2019), whose use is common in the neural machine translation
literature.

6Strictly speaking, Equation 1 requires us to sample from
the categorical distribution specified by the dVAE encoder log-
its, rather than taking the argmax. In preliminary experiments on
ImageNet, we found that this was a useful regularizer in the overpa-
rameterized regime, and allows the transformer to be trained using
soft targets for the cross-entropy loss. We decided against this
here since the model in consideration is in the underparameterized
regime.

7We found using a single attention operation for all three inter-
actions – “text attends to text”, “image attends to text”, and “image
attends to image” – to perform better than using separate attention
operations that are independently normalized.

Figure 4. Illustration of per-resblock gradient scaling for a trans-
former resblock. The solid line indicates the sequence of opera-
tions for forward propagation, and the dashed line the sequence of
operations for backpropagation. We scale the incoming gradient
for each resblock by its gradient scale, and unscale the outgoing
gradient before it is added to the sum of the gradients from the suc-
cessive resblocks. The activations and gradients along the identity
path are stored in 32-bit precision. The “filter” operation sets all
Inf and NaN values in the activation gradient to zero. Without this,
a nonfinite event in the current resblock would cause the gradient
scales for all preceding resblocks to unnecessarily drop, thereby
resulting in underflow.

We normalize the cross-entropy losses for the text and image
tokens by the total number of each kind in a batch of data.
Since we are primarily interested in image modeling, we
multiply the cross-entropy loss for the text by 1/8 and the
cross-entropy loss for the image by 7/8. The objective is
optimized using Adam with exponentially weighted iterate
averaging; Appendix B.2 describes the training procedure
in more detail. We reserved about 606,000 images for vali-
dation, and found no signs of overfitting at convergence.

2.3. Data Collection

Our preliminary experiments for models up to 1.2 billion pa-
rameters were carried out on Conceptual Captions, a dataset
of 3.3 million text-image pairs that was developed as an
extension to MS-COCO (Lin et al., 2014).

To scale up to 12-billion parameters, we created a dataset of
a similar scale to JFT-300M (Sun et al., 2017) by collecting
250 million text-images pairs from the internet. This dataset
does not include MS-COCO, but does include Conceptual
Captions and a filtered subset of YFCC100M (Thomee et al.,
2016). As MS-COCO was created from the latter, our train-
ing data includes a fraction of the MS-COCO validation
images (but none of the captions). We control for this in the
quantitative results presented in Section 3 and find that it has
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Figure 5. Communication patterns used for distributed training.
Each parameter array in the model is sharded among the eight
GPUs on each machine. During forward propagation, we prefetch
the parameter shards for the next resblock (using all-gather) while
computing the activations for the current resblock. To conserve
memory, the parameter shards from the other GPUs are immedi-
ately discarded. Similarly, during backpropagation, we prefetch
the parameter shards for the previous resblock while computing
the activations and gradients for the current resblock. After all
GPUs have computed the gradient with respect to an all-gathered
parameter, the reduce-scatter operation leaves each GPU with only
one slice – i.e., the gradient for its parameter shard, averaged over
the eight GPUs.

no appreciable bearing on the results. We provide further
details about the data collection process in Appendix C.

2.4. Mixed-Precision Training

To save GPU memory and increase throughput, most pa-
rameters, Adam moments, and activations are stored in
16-bit precision. We also use activation checkpointing and
recompute the activations within the resblocks during the
backward pass. Getting the model to train in 16-bit preci-
sion past one billion parameters, without diverging, was the
most challenging part of this project.

We believe the root cause of this instability to be under-
flow in the 16-bit gradients. Appendix D presents a set of
guidelines we developed to avoid underflow when training
large-scale generative models. Here, we describe one of
these guidelines: per-resblock gradient scaling.

Similar to prior work (Liu et al., 2020), we found that the
norms of the activation gradients from the resblocks de-
crease monotonically as we move from the earlier resblocks

Effective Parameter Count Compression Rank Compression Rate

2.8 · 109 (dmodel = 1920) 512 ≈83%
5.6 · 109 (dmodel = 2688) 640 ≈85%
12.0 · 109 (dmodel = 3968) 896 ≈86%

Table 1. We show the relationship between model size and the
minimum compression rank for the gradients (up to a multiple
of 128) necessary to avoid a gap in the training loss during the
first 10% of training. These results suggest that in our setting,
we can achieve a compression rate of about 85%, independent of
model size.

to the later ones.8 As the model is made deeper and wider,
the true exponents of the activation gradients for later res-
blocks can fall below the minimum exponent of the 16-bit
format. Consequently, they get rounded to zero, a phe-
nomenon called underflow. We found that eliminating un-
derflow allowed for stable training to convergence.

Standard loss scaling (Micikevicius et al., 2017) is able to
avoid underflow when the range spanned by the smallest and
largest activation gradients (in absolute value) fits within
the exponent range of the 16-bit format. On NVIDIA V100
GPUs, this exponent range is specified by five bits. While
this is sufficient for training vanilla language models of
the same size, we found the range to be too small for the
text-to-image model.

Our fix, which is shown in Figure 4, involves using a sepa-
rate “gradient scale” for each resblock in the model. This
can be seen as a practical alternative to a more general frame-
work for mixed-precision training called Flexpoint (Köster
et al., 2017), with the advantage that specialized GPU ker-
nels are not required. We found that Sun et al. (2020) had
independently developed similar procedure for training con-
volutional networks in 4-bit precision.

2.5. Distributed Optimization

Our 12-billion parameter model consumes about 24 GB of
memory when stored in 16-bit precision, which exceeds
the memory of a 16 GB NVIDIA V100 GPU. We address
this using parameter sharding (Rajbhandari et al., 2019).
As shown in Figure 5, parameter sharding allows us to
almost completely hide the latency of the intra-machine
communication by overlapping it with compute-intensive
operations.

On the cluster used to train the model, the bandwidth be-
tween machines is much lower than the bandwidth among
GPUs on the same machine. This makes the cost of the
operation used to average the gradient among the machines
(all-reduce) the main bottleneck during training. We were

8It is possible that better initialization schemes (Liu et al.,
2020) might be able to avoid this, but we did not have success with
alternative schemes in our experiments.
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Figure 6. Effect of increasing the number of images for the contrastive reranking procedure on MS-COCO captions.

able to drastically reduce this cost by compressing the gra-
dients using PowerSGD (Vogels et al., 2019).

In our implementation, each GPU in a machine computes
the low-rank factors for its parameter shard gradients in-
dependently of its neighboring GPUs.9 Once the low-rank
factors are computed, each machine sets its error buffer to
the residual between the uncompressed gradient averaged
over its eight GPUs (obtained from reduce-scatter), and the
decompressed gradient obtained from the low-rank factors.

PowerSGD replaces the large communication operation
for an uncompressed parameter gradient with two, much
smaller communication operations for its low-rank factors.
For a given compression rank r and transformer activa-
tion size dmodel, the compression rate is given by 1 −
5r/(8dmodel) (see Appendix E.1). Table 1 shows that we
can achieve a compression rate of about 85%, independent
of model size.

In Appendix E.2, we describe various details that were
necessary to get PowerSGD to perform well at scale. These
include:

• Saving memory by accumulating the gradient into the
error buffers during backpropagation, rather than allo-
cating separate buffers.

9There is still intra-machine communication for other opera-
tions; what we mean is that the low-rank factors across the shards,
when concatenated, are not regarded as collectively approximating
the gradient for the full parameter matrix.

• Minimizing instances in which we zero out the error
buffers (e.g., due to nonfinite values encountered dur-
ing mixed-precision backpropagation, or when resum-
ing training from a checkpoint).

• Improving numerical stability by using Householder
orthogonalization instead of Gram-Schmidt, together
with the addition of a small multiple of the identity
matrix to the input.

• Avoiding underflow by using a custom 16-bit floating
point format for the error buffers, their low-rank factors,
and the all-reduce communication operations involving
them.

We also found the warm-start procedure for the Q matrix
described in Vogels et al. (2019) to be unnecessary: we
were able to get equivalent results by fixing Q to a random
gaussian matrix at the start of training, and never updating
it.10

2.6. Sample Generation

Similar to Razavi et al. (2019), we rerank the samples
drawn from the transformer using a pretrained contrastive
model (Radford et al., 2021). Given a caption and a candi-
date image, the contrastive model assigns a score based on

10We verified that the error in reconstructing the true gradient is
higher when Q is fixed as opposed to being updated using warm-
starting, so it is interesting that this does not affect the loss. By
contrast, resampling Q at every update causes a large performance
hit.
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Figure 7. Human evaluation of our model (evaluated zero-shot
without temperature reduction) vs prior work (DF-GAN) on cap-
tions from MS-COCO. In a best-of-five vote, our model’s sample
was chosen as the most realistic 90.0% of the time, and was chosen
as the image best matching a shared caption 93.3% of the time.

how well the image matches the caption. Figure 6 shows the
effect of increasing the number of samples N from which
we select the top k images. This process can be seen as
a kind of language-guided search (Andreas et al., 2017),
and is also similar to the auxiliary text-image matching loss
proposed by Xu et al. (2018). Unless otherwise stated, all
samples used for both qualitative and quantitative results are
obtained without temperature reduction (i.e., using t = 1)
(except for Figure 2) and use reranking with N = 512.

3. Experiments
3.1. Quantitative Results

We evaluate our model zero-shot by comparing it to
three prior approaches: AttnGAN (Xu et al., 2018), DM-
GAN (Zhu et al., 2019), and DF-GAN (Tao et al., 2020),
the last of which reports the best Inception Score (Salimans
et al., 2016) and Fréchet Inception Distance (Heusel et al.,
2017) on MS-COCO. Figure 3 qualitatively compares sam-
ples from our model to those from prior work.

We also conduct a human evaluation similar to the one used
in Koh et al. (2021) to compare our approach to DF-GAN,
the results of which are shown in Figure 7. Given a caption,
the sample from our model receives the majority vote for
better matching the caption 93% of the time. It also receives
the majority vote for being more realistic 90% of the time.

Figure 9(a) shows that our model also obtains an FID score
on MS-COCO within 2 points of the best prior approach,
despite having never been trained on the captions. Our
training data incorporates a filtered subset of YFCC100M,

Figure 8. Zero-shot samples from our model on the CUB dataset.

and we found that it includes about 21% of the images in the
MS-COCO validation set from a de-duplication procedure
described in the next section. To isolate this effect, we
compute the FID statistics for the validation set both with
these images (solid lines) and without them (dashed lines),
finding no significant change in the results.

Training the transformer on the tokens from the dVAE en-
coder allows us to allocate its modeling capacity to the
low-frequency information that makes images visually rec-
ognizable to us. However, it also disadvantages the model,
since the heavy compression renders it unable to produce
high-frequency details. To test the effect of this on the
quantitative evaluations, we compute the FID and IS in Fig-
ure 9(a) after applying a Gaussian filter with varying radius
to both the validation images and samples from the models.
Our approach achieves the best FID by a margin of about
6 points with a slight blur of radius 1. The gap between
our approach and others tends to widen as the blur radius
is increased. We also obtain the highest IS when the blur
radius is greater than or equal to two.

Our model fares significantly worse on the CUB dataset, for
which there is a nearly 40-point gap in FID between our
model and the leading prior approach (Figure 9(b)). We
found an 12% overlap rate for this dataset, and again ob-
served no significant difference in the results after removing
these images. We speculate that our zero-shot approach is
less likely to compare favorably on specialized distributions
such as CUB. We believe that fine-tuning is a promising
direction for improvement, and leave this investigation to
future work. Samples from our model for captions in this
dataset are shown in Figure 8.

Finally, Figure 9(c) shows clear improvements in FID and IS
for MS-COCO as the sample size used for reranking with
the contrastive model is increased. This trend continues up
to a sample size of 32, after which we observe diminishing
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(a) FID and IS on MS-COCO as a func-
tion of blur radius.

(b) FID and IS on CUB as a function of
blur radius.

(c) FID and IS on MS-COCO as a func-
tion of the sample size used for rerank-
ing.

Figure 9. Quantitative results on MS-COCO and CUB. Solid lines represent FID computed against the original validation sets, and dashed
lines represent FID computed against validation sets with overlapping images removed (see Section 3.2). For MS-COCO, we evaluate all
models on a subset of 30,000 captions sampled from the validation set. For CUB, we evaluate all models on all of the unique captions in the
test set. We compute the FID and IS using the DM-GAN code, which is available at https://github.com/MinfengZhu/DM-GAN.

returns.

3.2. Data Overlap Analysis

We used the deduplication procedure described in Radford
et al. (2021) to determine which images to remove. For
each validation image, we find the closest image in the
training data using a contrastive model specifically trained
for this task. We then sort the images in descending order by
closeness to their nearest matches in the training data. After
inspecting the results by hand, we determine the images
to remove by manually selecting a conservative threshold
designed to minimize the false negative rate.

3.3. Qualitative Findings

We found that our model has the ability to generalize in
ways that we did not originally anticipate. When given the
caption “a tapir made of accordion...” (Figure 2a), the model
appears to draw a tapir with an accordion for a body, or an
accordion whose keyboard or bass are in the shape of a
tapir’s trunk or legs. This suggests that it has developed a
rudimentary ability to compose unusual concepts at high
levels of abstraction.

Our model also appears to be capable of combinatorial gen-
eralization, such as when rendering text (Figure 2b) or when
probed on sentences like “an illustration of a baby hedgehog
in a christmas sweater walking a dog” (Figure 2c). Prompts

like the latter require the model to perform variable bind-
ing (Smolensky, 1990; Greff et al., 2020) – it is the hedge-
hog that is in the christmas sweater, not the dog. We note,
however, that the model performs inconsistently on the task,
sometimes drawing both animals with christmas sweaters,
or drawing a hedgehog walking a smaller hedgehog.

To a limited degree of reliability, we also find our model to
be capable of zero-shot image-to-image translation control-
lable by natural language (Figure 2d). When the model is
given the caption “the exact same cat on the top as a sketch
at the bottom” and the top 15× 32 part of the image token
grid for a photo of a cat, it is able to draw a sketch of a
similar looking cat on the bottom.

This works with several other kinds of transformations, in-
cluding image operations (e.g., changing the color of the
image, converting it to grayscale, or flipping it upside-down)
and style transfer (e.g., drawing the cat on a greeting card, a
postage stamp, or a cell phone case). Some transformations,
such as those that involve only changing the color of the
animal, suggest that the model is capable of performing a
rudimentary kind of object segmentation. We provide addi-
tional examples of zero-shot image-to-image translation in
Section G.

https://github.com/MinfengZhu/DM-GAN
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4. Conclusion
We investigate a simple approach for text-to-image gener-
ation based on an autoregressive transformer, when it is
executed at scale. We find that scale can lead to improved
generalization, both in terms of zero-shot performance rela-
tive to previous domain-specific approaches, and in terms of
the range of capabilities that emerge from a single generative
model. Our findings suggest that improving generalization
as a function of scale may be a useful driver for progress on
this task.
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