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Abstract
Unlabeled sensing is a recent problem encompass-
ing many data science and engineering applica-
tions and typically formulated as solving linear
equations whose right-hand side vector has under-
gone an unknown permutation. It was generalized
to the homomorphic sensing problem by replacing
the unknown permutation with an unknown linear
map from a given finite set of linear maps. In this
paper we present tighter and simpler conditions
for the homomorphic sensing problem to admit a
unique solution. We show that this solution is lo-
cally stable under noise, while under a sparsity as-
sumption it remains unique under less demanding
conditions. Sparsity in the context of unlabeled
sensing leads to the problem of unlabeled com-
pressed sensing, and a consequence of our general
theory is the existence under mild conditions of
a unique sparsest solution. On the algorithmic
level, we solve unlabeled compressed sensing by
an iterative algorithm validated by synthetic data
experiments. Finally, under the unifying homo-
morphic sensing framework we connect unlabeled
sensing to other important practical problems.

1. Introduction
1.1. Compressed Sensing

The beginning of the 21st century has witnessed the birth
of compressed sensing, a subject, as written by Theodoridis
(2020), whose starting point is to develop conditions for the
solution of an underdetermined linear system of equations.
In an attempt at finding a sparsest solution of the linear equa-
tions y = Ax with A ∈ Rm×n, researchers have focused
on the optimization problem

min
x∈Rn

∥∥x∥∥
0

s.t. y = Ax. (1)
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Assuming the existence of a k-sparse solution x∗ to (1),
the first question is whether x∗ is unique. The answer is
typically characterized via two frequently used notions, the
spark (Donoho & Elad, 2003) or the Kruskal rank (Kruskal,
1977), and has played a major role in the theoretical founda-
tions of compressed sensing, where x∗ is typically viewed as
a sparse signal and A as a measurement matrix. Specifically,
for a generic1 A ∈ Rm×n, x∗ is the unique sparsest solution
to (1) if m ≥ 2k. Conversely, for any A ∈ Rm×n, there are
multiple sparsest solutions to (1) whenever m < 2k < n.
Later efforts considered the equivalence between the `0
semi-norm minimization (1) and its `1 relaxation known as
basis pursuit, typically studied via the nullspace property
(Cohen et al., 2009) or the restricted isometry property (Can-
des & Tao, 2005). Built upon those theoretical grounds are
efficient convex optimization algorithms that solve the `1
basis pursuit problem. For a modern account of compressed
sensing the reader is referred to the relevant chapters in
Theodoridis (2020); Wright & Ma (2020).

1.2. Unlabeled Sensing

Recently, increasing research efforts have concentrated on
the unlabeled sensing problem, proposed by Unnikrishnan
et al. (2015); Unnikrishnan et al. (2018) in signal processing
contexts. With Sm the set of m × m permutation matri-
ces, Π∗ ∈ Sm an unknown permutation, and y = Π∗Ax∗,
unlabeled sensing is concerned with solving the equations2

y = ΠAx, Π ∈ Sm, x ∈ Rn (2)

in the unknown x from the given data y,A. The connection
of unlabeled sensing with compressed sensing is that both
problems can be cast as subspace classification problems.
In both cases the given data can be thought of as a union of
subspaces

⋃
i∈[`] Vi ⊂ Rm together with a point y in that

union, and the problem is to determine which subspace Vi
the point y belongs to. In compressed sensing, the Vi’s arise
as the images of the ` =

(
n
k

)
k-dimensional coordinate sub-

spaces of Rn under the measurement matrix A; in unlabeled
sensing there are ` = m! subspacesR(ΠA) obtained as Π

1For now it is safe to think of “generic” as “random”, and “for
a generic A ∈ Rm×n” as “for almost all A ∈ Rm×n” (see §2.1).

2In fact Unnikrishnan et al. (2018) considered the even more
challenging problem where only a subset of the entries of y =
Π∗Ax∗ is given; see also §4.
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ranges in Sm, whereR(ΠA) is the column space of ΠA.

Applications. A prominent data analysis application of un-
labeled sensing is record linkage (Fellegi & Sunter, 1969;
Domingo-Ferrer & Muralidhar, 2016; Muralidhar, 2017).
This relates to linking records collected from different
sources, a routine operation of government agencies (e.g.,
see Antoni & Schnell (2019)), for the purpose of subsequent
data analysis. Due to privacy concerns, it is customary
for each entry of the records corresponding to some indi-
vidual to not be associated with a unique identifier of this
individual (e.g., the social security number). As a result,
domain-specific algorithms for linking the respective en-
tries in two (or more) records corresponding to the same
individual can be error-prone, yielding imperfect data for
later analysis. An alternative is to ask whether one can fit a
linear regression model between two unlinked records, say
y ∈ Rm and A ∈ Rm×n, where y records only one feature
while A records n features of the same m individuals. With-
out linkage, the correspondences between entries of y and
rows of A are unknown. Such data imperfection is naturally
modeled by an unknown permutation Π∗ ∈ Sm, and this
gives y = Π∗Ax∗ with x∗ ∈ Rn the unknown linear regres-
sion parameters. The aim is to recover x∗ from y,A and this
is exactly problem (2). Besides record linkage, other appli-
cations abound: signal estimation using distributed sensors
(Zhu et al., 2017; Song et al., 2018; Peng et al., 2019), target
localization in signal processing (Wang et al., 2020a), neu-
ron matching in computational neuroscience (Nejatbakhsh
& Varol, 2021), automated translation of medical codes (Shi
et al., 2020) and flow cytometry (Abid et al., 2017; Abid &
Zou, 2018) in biology, multi-target tracking (Ji et al., 2019;
Xie et al., 2021) and point set registration (Pananjady et al.,
2017; Lian et al., 2017) in computer vision; see Pananjady
et al. (2018); Xie et al. (2021) for more applications.

Theory. Unnikrishnan et al. (2015) proved the fundamental
fact that, if A is generic, then x∗ is the unique solution
to (2) if and only if m ≥ 2n, a result more recently and
independently also obtained by Han et al. (2018) using
different techniques. While this result holds for any x∗ ∈
Rn, Tsakiris et al. (2020) showed that m ≥ n+ 1 samples
are sufficient for uniqueness, if we additionally assume
that x∗ ∈ Rm is generic. Once the uniqueness for (2)
was settled, noisy measurements were considered. With
y := y + ε = Π∗Ax∗ + ε for some noise ε, Pananjady et al.
(2018) showed that the estimator

(x̂, Π̂) ∈ argmin
x∈Rn,Π∈Sm

∥∥y −ΠAx
∥∥

2
(3)

is NP-hard to compute if n > 1. Moreover, assuming A has
i.i.d. standard Gaussian entries and ε has Gaussian distribu-
tionN (0, σ2Im), they asserted that Π∗ = Π̂ with high prob-
ability as long as the SNR:=

∥∥x∗∥∥2

2
/σ2 is exponentially high

(e.g., SNR≥ mc for some constant c > 0). Of similar flavor

is a result of Hsu et al. (2017), where it was shown under
the same setting of Pananjady et al. (2018) that x∗ can not
be approximately recovered, unless the SNR is larger than
c′min{1, n/ log logm} for some constant c′ > 0. Later on,
under the above assumptions on A and ε, Slawski & Ben-
David (2019) showed that, if Π∗ is p-sparse in the sense that
Π∗ permutes at most p rows of A, then the estimator

argmin
x∈Rn

∥∥y −Ax∥∥
1

(4)

behaves well with high probability, in the sense that its
distance to x∗ is an increasing linear function of σ.

Algorithms. Under the above sparse assumption on Π∗, the
relaxation (3) of Slawski & Ben-David (2019) can be solved
via convex optimization. Empirically, this yields a good
estimate of x∗ as long as no more than half of the data are
shuffled, i.e., p/m < 0.5. This was improved by Slawski
et al. (2019); Slawski et al. (2021), who synthesized hy-
pothesis testing, expectation maximization, and recursively
reweighed least-squares into an efficient algorithm which
can handle up to p/m = 0.7 shuffled data, with a draw-
back of being sensitive to the distribution of A. Tsakiris &
Peng (2019), Tsakiris et al. (2020), and Peng & Tsakiris
(2020) followed a very different route towards solving (3),
with the aim of tackling the fully shuffled case p/m = 1.
The two algorithms of Tsakiris & Peng (2019) are based
on branch-and-bound and RANSAC respectively, and have
good performance for n ≤ 4, while intractable for n ≥ 5.
The algebraic approach of Tsakiris et al. (2020) is based on
solving a system of n polynomial equations in n variables,
and selects the most suitable among the finite set of roots to
initialize (3) towards alternating minimization. This gives
an algorithm of linear complexity in m, efficient for n ≤ 5
and intractable otherwise. The algorithm of Peng & Tsakiris
(2020) is based on a concave minimization reformulation
of (3) and is solved via branch-and-bound. It can handle
dimensions n ≤ 8, which to the best of our knowledge
is the largest value up to date for the successful operation
of an unlabeled sensing algorithm on fully shuffled data.
Let us also note that, when m < n, both (3) and (4) are
bound to have infinitely many solutions and thus all of the
above algorithms in principle break down. Finally, recent
algorithms that handle other types of unlabeled data include
Slawski et al. (2019); Wang et al. (2020b); Zhang et al.
(2019); Slawski et al. (2020); Zhang & Li (2020); Abbasi
et al. (2020); Marano & Willett (2020); Jeong et al. (2020);
Jeong et al. (2021); Abbasi et al. (2021); Yao et al. (2021).

1.3. Homomorphic Sensing

Inspired by Unnikrishnan et al. (2018) a generalization
of unlabeled sensing was posed by Tsakiris (2018; 2020);
Tsakiris & Peng (2019) under the name homomorphic sens-
ing. This generalization replaces the set Sm of m × m
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permutations with an arbitrary finite set T of r ×m matri-
ces, r ≤ m. That is

y = TAx, T ∈ T , x ∈ Rn, (5)

where we are now given the measurements as y = T ∗Ax∗

for some unknown T ∗ ∈ T and the goal is to solve (5) for x.
Tsakiris (2018; 2020) proved that if A is generic, then x∗ is
the unique solution to (5), providing that the dimension of a
certain algebraic variety that depends on T is at mostm−n.
Tsakiris (2018; 2020); Tsakiris & Peng (2019) applied their
results to unlabeled sensing (e.g., by setting T to be Sm) and
obtained the same conditions of Unnikrishnan et al. (2018)
which guarantee the uniqueness of the solution to (2).

1.4. Contributions of this paper

We improve, generalize prior works in several ways; com-
plete proofs of our statements are in Peng & Tsakiris (2021).

Sparse homomorphic sensing. We bring homomorphic
sensing and compressed sensing together, and arrive at the
problem of sparse homomorphic sensing. Recalling y =
T ∗Ax∗, we consider the following `0 optimization problem:

min
x∈Rn

∥∥x∥∥
0

s.t. y = TAx, T ∈ T (6)

Assuming that x∗ is a k-sparse solution to (6), we provide
conditions under which x∗ is the unique such solution (Theo-
rem 1). When k = n, our conditions in particular guarantee
the uniqueness of the solution to homomorphic sensing (5),
and they are tighter and simpler than those of Tsakiris (2018;
2020); Tsakiris & Peng (2019) (Corollary 1).

Noisy homomorphic sensing. We also extend homomor-
phic sensing (5) to noisy homomorphic sensing, where we
are given the noisy measurements y = y + ε = T ∗Ax∗ + ε.
We show in Theorem 2 that, as long as

∥∥ε∥∥
2

is sufficiently
small and (5) admits a unique solution, the following prob-
lem (7) produces an estimate x̂ close to x∗:

(x̂, T̂ ) ∈ argmin
x∈Rn,T∈T

∥∥y − TAx∥∥
2

(7)

When setting T to Sm (3), we obtain an improved result for
unlabeled sensing over that of Unnikrishnan et al. (2018).

Unlabeled compressed sensing. We propose unlabeled
compressed sensing, where we let y = Π∗Ax∗ with x∗ a
k-sparse solution to the following optimization problem:

min
x∈Rn

∥∥x∥∥
0

s.t. y = ΠAx, Π ∈ Sm (8)

Clearly, (8) is a special case of (6), where T is set to Sm. So
our theorem for sparse homomorphic sensing can be applied
to unlabeled compressed sensing, and in so doing, we get:

Proposition 1. For a generic A ∈ Rm×n, x∗ is the unique
sparsest solution to (8) as long as m ≥ 2k.

Proposition 1 seems interesting. Indeed, the number 2k
is the threshold for unique recovery of x∗ in compressed
sensing (recall §1.1), but this number remains the same in
unlabeled compressed sensing, even though there could be
m! choices for the potential permutations. In particular,
Proposition 1 holds true even when m� n.

Computationally, we consider a relaxation of (8), which we
solve via an iterative algorithm based on subgradient de-
scend and `1 minimization (§3.2). This is the first algorithm
for unlabeled sensing which works even when m < n, a
regime unexplored in prior works. By experiments (§3.3),
we empirically show that i) the algorithm returns a correct
estimate as long as x∗ and Π∗ are both sufficiently sparse
(i.e., p, k are small), ii) it is efficient, iii) it is robust to noise.

A broader picture. As it turns out, we find that, besides
unlabeled sensing, homomorphic sensing contains as special
cases other important inverse problems, such as real phase
retrieval, mixed linear regression, missing data recovery, to
name a few. This allows our theory to be further applied
to those special cases, and also allows potential connec-
tions between these problems themselves via the unifying
framework of homomorphic sensing. We discuss this in §4.

2. Homomorphic sensing theory
In §2.1 we give some preliminaries on algebraic geometry.
In §2.2 we formally state the problem and discuss imme-
diate observations. In §2.3 we describe conditions for the
uniqueness of the solution to (6). In §2.4 and §2.5, we intro-
duce Theorems 1 and 2 for sparse and noisy homomorphic
sensing, respectively. Along the way we give intuition on
the proofs when space allows and we refer the reader to
Peng & Tsakiris (2021) for the complete arguments.

2.1. Preliminaries on algebraic geometry

Here we review some background from algebraic geometry.
A very accessible introduction to this subject is Cox et al.
(2013) and a friendly one is Eisenbud (2013).

The basic object in algebraic geometry is a complex (resp.
real) algebraic variety, say Q, which is typically defined
as the set of complex (resp. real) roots of finitely many
polynomials p1, . . . , ps in m variables with complex (resp.
real) coefficients; in other words, Q := {z : pi(z) = 0, i =
1, . . . , s}. A subvariety of some algebraic variety Q is a
subset of Q that is itself an algebraic variety. For example,
a linear subspace of Rm is an algebraic variety defined by
linear forms, and so is the union of finitely many linear
subspaces, ∪si=1Vi, which is defined by the products of the
defining equations of its constituent subspaces Vi’s.
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Declaring the subvarieties of Rm×n as closed sets, we ob-
tain the so-called Zariski topology, and, as usual, the com-
plement of a closed set is called (Zariski) open. By a generic
matrix of Rm×n having some property, we mean that there
is some non-empty Zariski open subset O of Rm×n such
that every matrix of O satisfies this property. A non-empty
Zariski open subset is dense, in view of the fact that Rm×n

is irreducible (an irreducible algebraic variety is one which
can not be written as the union of two proper subvarieties of
it). The consequence of such a non-empty Zariski open set
O being dense is that a matrix randomly chosen from Rm×n

according to some continuous probability distribution will
land itself in O , with probability one.

The final algebraic-geometric notion which we need is that
of dimension, and for technical reasons, we consider this
notion over the complex field, C. Intuitively, the dimension
of a given subset of Cm is a non-negative number that mea-
sures the size of the set. Formally, the dimension dim(Q)
of an algebraic variety Q is the maximal length t of the
chains Q0 ⊂ Q1 ⊂ · · · ⊂ Qt of distinct irreducible alge-
braic varieties contained in Q; and the dimension of any set
is the dimension of its closure, i.e., the smallest algebraic
variety which contains it. For example, it is not hard to show
by definition that a linear subspace has its linear-algebraic
dimension equal to its algebraic-geometric dimension, and
that the dimension of a finite union of linear subspaces,
dim(∪si=1Vi), is equal to the maximum dimension of its
constituent subspaces, maxi=1,...,s dim(Vi).

2.2. The uniqueness at first glance

The uniqueness for (6) involves the measurements y =
T ∗Ax∗, where x∗ is k-sparse and can otherwise be arbitrary,
and we seek conditions that guarantee that it is the only k-
sparse solution to (6). This motivates Definition 1.
Definition 1 (hsp). Let A ∈ Rm×n, T ⊂ Rr×m. If for any
T1, T2 ∈ T and any k-sparse x1, x2 ∈ Rn we have

T1Ax1 = T2Ax2 ⇒ x1 = x2,

then we say that T and A satisfy the homomorphic sensing
property for k-sparse vectors, denoted as hsp(T , A, k).

While hsp(T , A) := hsp(T , A, n) is a clearly special case
of hsp(T , A, k) (with k set to be n), Definition 1 suggests
that hsp(T , A) implies hsp(T , A, k) for any k ≤ n. More-
over, hsp(T , A) is the same as the uniqueness of the solu-
tion to the homomorphic sensing problem (5), which, in
turn, is equivalent to that x∗ is the only feasible point of (6)
and necessarily the unique solution to (6). More generally,
Definition 1 immediately implies the following equivalence.
Proposition 2. We have hsp(T , A, k) if and only if Problem
(6) always has a unique k-sparse solution.

Next, our main focus will be on hsp(T , A, k). Specifically,

we will discuss the conditions to put on T under which
hsp(T , A, k) holds for a generic A ∈ Rm×n.

2.3. Conditions for hsp(T , A, k)

Recall that T is a finite set of matrices. We first handle the
finiteness of T by the following fact.

Proposition 3. Suppose that hsp({T1, T2}, A, k) holds for
every T1, T2 ∈ T and for a generic A ∈ Rm×n, then
hsp(T , A, k) holds for A ∈ Rm×n generic.

Proof. This follows directly from the fact that the intersec-
tion of finitely many non-empty Zariski open subsets of
Rm×n is again non-empty and Zariski open.

Proposition 3 is intuitive, and it suggests us to focus on
hsp(T , A, k) with two matrices T1, T2 ∈ T fixed. In what
follows we will consider when hsp({T1, T2}, A, k) would
be violated, so as to derive conditions for it to hold. One
condition will be the rank constraint (10) (§2.3.1) and the
other will be the quasi-variety constraint (12) (§2.3.2).

2.3.1. THE RANK CONSTRAINT

By Definition 1, hsp({T1, T2}, A, k) is tightly related to the
column spaces of T1 and T2. This motivates us to consider

ZT1,T2
:= {u ∈ Cm : T1u = T2u}. (9)

Note that ZT1,T2
is a complex3 linear subspace of Cm, and

therefore a complex algebraic variety. The role of ZT1,T2

in hsp can be seen as follows. Let x1, x2 be k-sparse
and their images Ax1, Ax2 under A are vectors of ZT1,T2 .
Then T1Ax1 = T2Ax2 is the same as T1A(x1 − x2) = 0.
Hence, whether T1Ax1 = T2Ax2 implies x1 = x2 reduces
to the problem of compressed sensing, and the answer is
immediate from inspecting the spark or Kruskal rank of
T1A (recall §1.1). As a consequence, to fully understand
hsp({T1, T2}, A, k) it suffices to only focus on k-sparse
vectors whose images under A are not contained in ZT1,T2 .

We now therefore assume, without loss of generality (see
Peng & Tsakiris (2021) for full arguments), that ZT1,T2

does not intersect the images of all k-sparse vectors under
a generic A. Since the latter form a union of subspaces
in Rm of dimension k, we can simply assume that ZT1,T2

has dimension smaller than or equal to m− k. Under this
assumption we obtain the following characterization.

Proposition 4. Let dim(ZT1,T2
) ≤ m− k, rank[T1 T2] <

2k. hsp({T1, T2}, A, k) is false for A ∈ Rm×n generic.

Proof. It suffices to show that hsp({T1, T2}, Ai, k) is false
for Ai ∈ Rm×k generic (here one could regard Ai as con-

3While T1 and T2 are real matrices, we define ZT1,T2 as a
complex object on account of technical reasons.
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sisting of k distinct columns of A). If rank(T1Ai) < k then
hsp({T1}, Ai, k) is false. Hence let us assume m ≥ k, r ≥
k, rank(T1Ai) = k, and similarly assume rank(T2Ai) = k.
But [T1 T2] ∈ Rr×2m has rank smaller than 2k, so does the
r × 2k matrix [T1Ai T2Ai]. As a result, there are non-zero
vectors x1, x2 ∈ Rk such that T1Aix1 = T2Aix2. Assume
x1 = x2. Then Aix1 = Aix2 and Aix1 is an element of
ZT1,T2 . But ZT1,T2 ∩ Rm has dimension at most m − k,
so, for a generic Ai ∈ Rm×k, the column space intersects
ZT1,T2

only at zero. This gives Aix1 = 0 and x1 = 0, a
contradiction. Hence x1 6= x2.

To prevent Proposition 4 from happening, we consider:

The Rank Constraint

rank(T ) ≥ 2k, ∀ T ∈ T . (10)

The rank constraint (10) ensures that rank[T1 T2] ≥ 2k for
any T1, T2 ∈ T , so that the bad situation in Proposition 4
would never occur. This constraint is perhaps the simplest,
because it does not involve any interaction of T1 and T2.

However, the rank constraint does not exclude all possible
violations of hsp({T1, T2}, A, k), as illustrated next.

Example 1. Suppose m = 4, r = 4, k = 2. For any
A ∈ R4×n, let a>4 ∈ R1×n be the last row of A. Note that
the null space of a>4 has dimension at least n− 1, it must
intersect any subspace of dimension 2 at some non-zero
point. Hence there is a non-zero k-sparse vector u of Rn

which satisfies a>4 u = 0. Let T1 and T2 be defined as below.

T1 =


1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

 T2 =


3 6 9 20
15 18 21 40
27 30 33 60
39 42 45 80


Then we have T1A(3u) = T2Au, but 3u 6= u. The rank
constraint is satisfied, but hsp({T1, T2}, A, k) is violated.

2.3.2. THE QUASI-VARIETY CONSTRAINT

Here we introduce a constraint on {T1, T2} under which the
situation of Example 1 would not happen. This involves
the following algebraic-geometric object. For a column
vector w of m variables, consider all 2× 2 determinants of
the r × 2 matrix [T1w T2w]. Each such determinant is a
quadratic polynomial in entries of w. Let YT1,T2

⊂ Cm be
the complex algebraic variety defined by those determinants.

Example 2. For m = 3, r = 2 and

T1 =

[
0 0 2
2 4 1

]
, and T2 =

[
1 2 3
4 5 6

]
,

the variety YT1,T2
consists of the complex roots of the fol-

lowing polynomial p in variables w1, w2, and w3.

p = det

[
2w3 w1 + 2w2 + 3w3

2w1 + 4w2 + w3 4w1 + 5w2 + 6w3

]

Alternatively and equivalently, we might describe YT1,T2

as the set of vectors u’s of Cm for which T1u and T2u
are linearly dependent. Observing that ZT1,T2 of (9) is a
subvariety of YT1,T2

, we define the following set

UT1,T2
:= YT1,T2

\ZT1,T2
(11)

to be the set-theoretical difference between two varieties
YT1,T2 and ZT1,T2 , with one containing the other. Based on
the definition, UT1,T2 is usually named as a quasi-variety.

Letting b :=
(
n
k

)
, [b] := {1, . . . , b}, and denoting the set of

submatrices of A of size m× k by {Ai}bi=1, we show that
UT1,T2 is of potential harm to hsp({T1, T2}, A, k):

Proposition 5. If for any i ∈ [b], the intersection of UT1,T2

and the column space R(Ai) of Ai is not empty, then
hsp({T1, T2}, A, k) is not true.

Proof. Suppose that R(Ai) ∩ UT1,T2
is not empty and let

u ∈ R(Ai) ∩ UT1,T2
. Then there is some λ ∈ R such

that T1u = λT2u or λT1u = T2u. Since u ∈ UT1,T2 , we
have u 6= 0 and λ 6= 1. Since u ∈ R(Ai) we have for
some x ∈ Rn with Aix = u that T1Aix = T2Ai(λx) or
T1Ai(λx) = T2Aix. But x 6= λx.

Proposition 5 suggests that the bad event where UT1,T2
in-

tersects R(A) must be prevented. We then expect the quasi-
variety UT1,T2 to be as of small size as possible. Its size can
be modeled by dimension, an algebraic-geometric notion
that assigns to each subset of Cm a non-negative integer with
the convention dim(∅) := −1 (recall §2.1). To say that
dim(UT1,T2

) is small is to say that UT1,T2
is small, which in

turn implies that it is unlikely for UT1,T2
to intersect R(A).

We formalize this intuition below.

Proposition 6. Suppose dim(UT1,T2) ≤ m− k. Then, for
a generic matrix A ∈ Rm×n, the column space R(Ai) of
Ai does not intersect UT1,T2

for any i ∈ [b].

As per Proposition 6, enforcing UT1,T2
to have small dimen-

sion is indeed an effective means to exclude the bad event of
UT1,T2 intersecting R(Ai); that is, with dim(UT1,T2) ≤ k
the violation of hsp({T1, T2}, A, k) in Proposition 5 would
not happen. This justifies the following constraint:

The Quasi-variety Constraint

dim(UT1,T2
) ≤ m− k, ∀ T1, T2 ∈ T . (12)
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Remark 1. The dimension dim(UT1,T2
) that appeared in

(12) can be computed as follows. In commutative algebra
terms (Cox et al., 2013; Eisenbud, 2013), dim(UT1,T2) is
equal to the (Krull) dimension of the vanishing ideal of
the closure of UT1,T2

. This vanishing ideal, by definition
(11), is the saturation of the vanishing ideal of YT1,T2

with
respect to the vanishing ideal ofZT1,T2

. The saturation, and
thus its Krull dimension, can be computed directly based
on the definitions of YT1,T2 and ZT1,T2 , using commutative
algebra software, e.g., Macaulay2.

Example 3. In Example 1, we have dim(UT1,T2) = 3 which
is larger thanm−k = 2. As a result, T1 and T2 of Example
1 violate the quasi-variety constraint.

The rank constraint (10) and quasi-variety constraint (12)
are sufficient for hsp(T , A, k), as we will see soon.

2.4. Unique recovery in sparse homomorphic sensing

Theorem 1. If a finite set T ⊂ Rr×m of matrices satisfies
the rank constraint (10) and quasi-variety constraint (12),
we have hsp(T , A, k) for a generic A ∈ Rm×n.

Constraints (10), (12) of Theorem 1 guarantee the unique-
ness of the solution to sparse homomorphic sensing (6).

There are two major hurdles towards proving Theorem 1.
One is the non-linearity brought by the setK of k-sparse vec-
tors. The other is from the matrix set T . Indeed, matrices of
T might be non-diagonalizable and even non-invertible (e.g.,
see §4); this makes analysis here harder than in unlabeled
sensing. Moreover, we have to consider the interaction of
K and T . Overcoming these hurdles requires several novel
technical ideas; see Peng & Tsakiris (2021) for details.

We remark that (12) is the tightest in the following sense:

Proposition 7. If dim(UT1,T2
) > m − k, then a generic

A ∈ Cm×n violates hsp(T , A, k).

2.4.1. UNIQUE RECOVERY IN HOMOMORPHIC SENSING

Theorem 1 implies the following result (with k set to be n).

Corollary 1. Suppose that a finite set T ⊂ Rr×m satisfies
that rank(T ) ≥ 2n for any T ∈ T and that

dim(UT1,T2
) ≤ m− n, ∀ T1, T2 ∈ T . (13)

Then we have hsp(T , A) for a generic A ∈ Rm×n.

As mentioned, hsp(T , A) is equivalent to the uniqueness of
the solution to the homomorphic sensing problem (5).

To compare, note that Tsakiris (2018; 2020); Tsakiris &
Peng (2019) used the same rank constraint rank(T ) ≥ 2n
and a different quasi-variety constraint for hsp(T , A). The
quasi-variety constraint of Tsakiris (2018; 2020); Tsakiris
& Peng (2019) is dim(UPT1,T2) ≤ m − n, where P is

some unknown projection onto the column space of T2.4

It is easy to verify that UT1,T2 is a subset of UPT1,T2 and
so dim(UT1,T2) ≤ dim(UPT1,T2). Thus, in comparison,
constraint (13) is tighter. In fact, it is the tightest in the sense
of Proposition 7. Finally, constraint (13) is also simpler
because it dispenses with the unknown projection matrix P .

2.5. Noisy homomorphic sensing

We consider the homomorphic sensing problem in the pres-
ence of noise ε ∈ Rr. Let y := y + ε = T ∗Ax∗ + ε be our
measurements. The questions are i) how we can estimate
x∗, given y, T , A, and ii) how good the estimate is.

For i), we shortly mention that we can in principle solve (7)
to obtain an estimate (x̂, T̂ ) of interest via exhaustive search.
Indeed, for each T0 ∈ T compute the least-squares solution
x0 := (T0A)†y which minimizes

∥∥y − T0Ax
∥∥

2
over Rn in

variables x, where we used (·)† to denote the pseudoinverse
of a matrix. Among all least-squares solutions, then, take x̂
which causes the minimum residual error.

Question ii), or more specifically whether x̂ is close to x, is
our main focus. This question is naturally discrete for the
following reason. For arbitrary noise ε, the optimal T̂ can
be any matrix of T . Since T is an arbitrary discrete set of
matrices, the corresponding x̂ can be arbitrarily far from x∗.

We handle this discreteness by identifying “nice” matrices
contained in T ; by “nice” we mean a subset T1 of T such
that each matrix of T1 will yield a least-squares solution
which is close to x∗. With R(·) denoting the column space
of a matrix, a concrete definition of T1 is given as

T1 =
{
T ∈ T : y ∈ R(TA)

}
.

With σ(·) denoting the largest singular value of a matrix,
the next proposition explains why T1 is a “nice” set.

Proposition 8. Assume T0 ∈ T1 and that hsp(T , A) holds
for someA ∈ Rm×n. Then x0−x∗ = (T0A)†ε where x0 =
(T0A)†y. In particular

∥∥x0 − x∗
∥∥

2
≤ σ((T0A)†)

∥∥ε∥∥
2
.

Under the uniqueness assumption for the homomorphic
sensing problem (hsp(T , A)), Proposition 8 states that any
T0 ∈ T results a stable least-squares estimate x0, whose dis-
tance to x∗ can be upper bounded in terms of noise and data.
As for the estimate (x̂, T̂ ) of (7), the remaining question is
whether T̂ is a “nice” matrix contained in T1.

First note that T1 is not empty because y = T ∗Ax∗ and
T ∗ ∈ T1. Also, if T1 = T then T̂ is of course an element
of T1. In fact, our next claim is that T̂ is always “nice" (i.e.,
T̂ ∈ T1) in presence of sufficiently small noise.

4Here UPT1,T2 is defined by replacing T1 of UT1,T2 with PT1.
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Proposition 9. We have T̂ ∈ T1 whenever T1 = T or

∥∥ε∥∥
2
<
∥∥y∥∥

2

(
1− max

T∈T \T1,x∈Rn

y>TAx∥∥y∥∥
2

∥∥TAx∥∥
2

)
. (14)

Since for every T ′ ∈ T \T1, the column space of T ′A does
not contain y, the maximization term of (14) is strictly
smaller than 1. Hence, the right-hand side of (14) is positive.

From Propositions 8 and 9, we are ready to draw a local
stability result for noisy homomorphic sensing.

Theorem 2. Suppose i) hsp(T , A) holds true, ii) T1 = T
or (14) holds, then x̂ − x∗ = (T̂A)†ε, and in particular∥∥x̂− x∗∥∥

2
≤ σ((T̂A)†)

∥∥ε∥∥
2
.

Condition (14) defines a non-asymptotic regime, where the
local stability of x̂ is guaranteed (Theorem 2). In partic-
ular, if T = Sm, Theorem 2 is an improvement over the
asymptotic result of Unnikrishnan et al. (2018).

3. Unlabeled compressed sensing
3.1. Theory

Recall Proposition 1 where the uniqueness for unlabeled
compressed sensing is guaranteed. Here we derive Propo-
sition 1 from Corollary 1. When T is Sm, some algebraic
properties of permutations might be utilized to simplify the
rank and quasi-variety constraints. Indeed, every permu-
tation of Sm has rank m, so the rank constraint becomes
m ≥ 2k, a requirement on the number of samples. More-
over, inspired by Tsakiris (2018; 2020); Tsakiris & Peng
(2019), an interesting result is that, whenever the rank con-
straint is fulfilled, the quasi-variety constraint is automati-
cally satisfied (this is not always true for a set of arbitrary
matrices T ; see Example 1):

Proposition 10. For two permutation matrices Π1,Π2 ∈
Sm, we have dim(UΠ1,Π2

) ≤ m− k as long as m ≥ 2k.

Combining Corollary 1 with Proposition 10 gives:

Corollary 2. The following is true for A ∈ Rm×n generic:

m ≥ 2k ⇒ hsp(Sm, A, k)

Recalling Proposition 2, we note that, for a generic A ∈
Rm×n, the condition m ≥ 2k of Corollary 2 implies the
uniqueness of the solution to unlabeled compressed sensing
8. Thus, Corollary 2 is the same as Proposition 1.

3.2. Algorithm

Besides the k-sparsity assumption on x∗, we also assume
that, in light of Slawski & Ben-David (2019), the ground-
truth permutation matrix Π∗ is p-sparse, i.e.,

∥∥y−Ax∥∥
0
≤ p

(see §1). This naturally leads us to the problem

min
x∈Rn

∥∥y −Ax∥∥
0

s.t.
∥∥x∥∥

0
≤ k. (15)

Problem (15) is in general NP-hard, so we relax it into

min
x∈Rn

∥∥y −Ax∥∥
1

s.t.
∥∥x∥∥

0
≤ k. (16)

The objective function of (16) is about an old problem, least
absolute deviation, also known as sparse error correction;
see, e.g., Kendall (1960); Candes & Tao (2005). The next
natural choice is further relaxing the sparsity constraint of
(16), so as to arrive at the convex problem5 of minimizing∥∥y − Ax

∥∥
1

+ λ
∥∥x∥∥

1
in n variables x ∈ Rn with some

hyper-parameter λ > 0. But such relaxation does not yield
satisfactory performance for our purpose.

We solve (16) using the idea of hard thresholding pursuit
(Foucart, 2011; Cai et al., 2020). Following Cai et al. (2020),
we assume that k is known in advance, and use x(0) := 0 as
initialization. The iterative update is given as:

x(t+1) ← ProjK
(
x(t) − µA>sgn(Ax(t+1) − y)

)
(17)

J ← the support {i : x
(t+1)
i 6= 0} of x(t+1)

x
(t+1)
J ← argmin

x∈Rn

∥∥y −AJx
∥∥

1
(18)

In (17), we note that i)A>sgn(Ax(t+1)−y) is a subgradient
of
∥∥y − Ax∥∥

1
at the point x(t+1), where sgn: Rn → Rn

sends [v1, . . . , vn]> to a vector whose i-th entry is 1 if vi ≥
0, or −1 otherwise, ii) µ is a step size to be determined, iii)
ProjK(·) projects a vector to its closest k-sparse counterpart.
In (18), we update the non-zero entries x(t+1)

J of x(t+1) by
solving the convex optimization problem, where AJ is the
column-submatrix of A with its columns indexed by J ; AJ

is a tall matrix under the tacit assumption m ≥ 2k. We
note two differences of the algorithm from (Cai et al., 2020).
First, instead of (18) they solved a least-squares problem.
Second, they run the algorithm by one iteration.

While (17) is straightforward to compute, we solve (18)
by invoking an ADMM algorithm implemented in the FOM
toolbox of Beck & Guttmann-Beck (2019).

3.3. Experiments

We evaluate the algorithm with µ := 10−4 and with the
number of iterations set to T := 20 on an Intel(R) i7-8650
U, 1.9 GHz, 16 GB machine.6 We have not known obvious
baselines or other approaches for the task of interest.

5This problem was considered by Wright & Ma (2009) with
λ = 1 in the context of dense error correction, where they assumed
that the ground-truth signal x∗ has non-negative entries.

6Other choices of µ did not yield significantly better results.
The algorithm usually converges in about 10 iterations.
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Figure 1. The performance of the algorithm on synthetic data.

Data generation. We generate data by i) randomly sam-
pling the entries of A ∈ Rm×n from the standard normal
distribution N (0, 1), ii) randomly selecting a support of the
k-sparse x∗ ∈ Rn whose non-zero entries are randomly
sampled also from N (0, 1), iii) randomly producing a p-
sparse permutation Π∗, and iv) computing y = Π∗Ax∗.

Evaluation metrics. One evaluation metric which we use
is the estimation error, computed as

∥∥x∗ − x(opt)
∥∥

2
/
∥∥x∗∥∥

2
,

where x(opt) is among {x(1), . . . , x(T )} which minimizes
(16).7 Inspired by Netrapalli et al. (2013); Netrapalli et al.
(2015), the other evaluation metric is the (empirical) sample
complexity. Similar to Netrapalli et al. (2013), the algo-
rithm is said to succeed if the estimation error is smaller
than 0.01. The sample complexity of the algorithm is then
the smallest among {2k, 3k, . . . } for which the algorithm
always succeeds over 100 trials for a fixed k.

Results. Figure 1 depicts the performance of the algorithm
on synthetic data, with n = 2000 fixed. In Figure 1a we set
p := b0.2mc, and observed that the sampling complexity
m increased as the sparsity k grew, which in turn entailed
an increased running time. For example, when n = 2000
and k = 25, it took m = 1400 samples for the algorithm to
succeed and 0.47 seconds to finish computation. Zooming
in on the 100 trials at k = 25 of Figure 1a yields Figure
1b, where the estimation errors for the 100 trials were sum-
marized. We saw that the estimation error is no more than
10−10 for 65 trials, and 96% of the 100 errors fall into the
intervals (10−6, 10−4] and (−∞, 10−10].

Keeping m = 1400, n = 2000, k = 25, p = b0.2mc fixed,
we furthermore evaluated the robustness of the algorithm
to noise. We added noise to the measurements y as per the
SNR, run the algorithm, and the result was in Figure 1c (100
trials). As the SNR condition improved, the estimation error
declined, from 0.3268 (5dB) to 0.011 (30dB) and further
to 0.0005 (55dB). Finally, a holistic understanding on the
algorithm might be obtained via Figure 1d, where we fixed
m = 1400, n = 2000 and SNR= 40dB and presented the
estimation errors with the two sparsity levels k and p varying

7Recall that a subgradient might not give a descent direction.

(100 trials). We observed that the algorithm consistently
made errors smaller than 0.01 in the presence of ≤ 20%
shuffled data and k ≤ 35. In the extremely sparse case k =
5, the algorithm could tolerate up to 45% shuffled data (with
errors no more than 0.1). On the other hand, the algorithm
could fail in an attempt at working at the challenging high-p,
high-k region. To summarize, the algorithm was shown to
be time-efficient, robust to noise, and to succeed when the
ground-truth x∗ and Π∗ are both sufficiently sparse.

4. A broader picture
The matrix set T in (sparse) homomorphic sensing ((5), (6))
provides some flexibility to model other important inverse
problems than unlabeled sensing. We next present several
other choices of T than Sm that arise from data applications.

Unlabeled sensing with missing entries. In fact, (Unnikr-
ishnan et al., 2018) considered a more general version of
unlabeled sensing, where some entries of y are missing and
the positions of missing entries in y are unknown. In other
words, it means that i) one is given y = S∗Ax∗ ∈ Rr with
some unknown selection matrix S∗, i.e., S∗ is a permutation
matrix with (m−r) rows removed, and ii) one aims to solve

y = SAx, S ∈ Sr,m, x ∈ Rn, (19)

for x, where Sr,m is the set of r ×m selection matrices.8

This was known by Tsakiris (2018; 2020); Tsakiris & Peng
(2019) as an example of homomorphic sensing.

Missing data recovery. We find that the problem of missing
data recovery (Zhang, 2006; Liu et al., 2017; Liu et al.,
2019) or of signal recovery with erasures at known locations
(Han & Sun, 2014) is also a special case of homomorphic
sensing (5). In this problem one aims to recover x∗ from
y = O∗Ax∗, where O∗ is some m × m diagonal matrix

8In Unnikrishnan et al. (2018), (19) was called as unlabeled
sensing and (2) as an important special case. The follow-up works
referred to (2) as unlabeled sensing, or as linear regression without
correspondences, or as shuffled linear regression; see, e.g., Hsu
et al. (2017). In this paper we used unlabeled sensing for (2) and
unlabeled sensing with missing entries for (19).
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with 0 or 1 on its diagonal. Its differences from (19) are that,
i) in general, the positions at which the entries are missing
are understood from the positions of non-zero entries of y,
and ii) there is no unknown permutation involved.

Real phase retrieval. We also find that the perhaps more
familiar problem of real phase retrieval is another homo-
morphic sensing example. This problem can be traced back
to the 1910s when the research on X-ray crystallography
was launched, and has been receiving increasing attention
in recent years; see, e.g., Grohs et al. (2020) for a vivid
account. In this problem, we are given

y = BAx, B ∈ Bm, x ∈ Rn, (20)

where y = B∗Ax∗, B∗ ∈ Bm, and Bm is the set of m ×
m sign matrices, i.e., diagonal matrices with ±1 on the
diagonal. Since uniquely recovering x∗ is impossible9, the
goal then becomes unique recovery of x∗ up to sign. The
problem of symmetric mixture of two linear regressions
(Balakrishnan et al., 2017) also admits formulation (20);
see, e.g., Chen et al. (2019); Klusowski et al. (2019) for a
discussion which connects the two problems.

The final example is a combination of (19) and (20), ex-
plored by Lv & Sun (2018). This involves the matrix set
Sr,mBm := {SB : S ∈ Sr,m, B ∈ Bm} and the relation

y = CAx, C ∈ Sr,mBm, x ∈ Rn.

To summarize, the above problems are concerned with miss-
ing correspondences, missing values, missing signs, or com-
binations thereof, and they are actually of the same type,
where the linear measurements Ax∗ have further undergone
some unknown linear map belonging to a specific set of
maps, e.g., Sm, Sr,m, Bm, and Sr,mBm. In Peng & Tsakiris
(2021) we present the applications of our theory to those
examples, which yield either i) known results from prior
works, e.g., Balan et al. (2006); Unnikrishnan et al. (2018);
Han et al. (2018); Lv & Sun (2018); Dokmanic (2019);
Akçakaya & Tarokh (2014); Wang & Xu (2014), or ii) even
novel results for those examples. Finally, it is natural to
consider our theory as having potential wider applicability
to new examples of homomorphic sensing yet to discover.

5. Discussion and future work
On the theoretical part, we presented conditions guaran-
teeing the uniqueness for sparse homomorphic sensing (6),
from which a uniqueness result for unlabeled compressed
sensing follows. The next step for research is to find con-
ditions under which the corresponding `1 relaxation (e.g.,
(16)) has a unique solution, which we leave as future work.
Taking noise into consideration, we provided a deterministic

9Both (B∗, x∗) and (−B∗,−x∗) satisfy (20).

condition for the local stability in homomorphic sensing,
from which a probabilistic condition might be derived.

On the algorithmic front, we initiated a computational in-
vestigation into unlabeled compressed sensing. Future work
might include developing theoretical guarantees for the algo-
rithm of §3.2, tackling the case where more data are shuffled,
dispensing with the hyper-parameters, and so on. Finally,
we presented a broader picture in §4 using the homomorphic
sensing framework. Tools from other fields might be key to
advancing the research for unlabeled (compressed) sensing.
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