
Ensemble Bootstrapping for Q-Learning

Oren Peer 1 Chen Tessler 1 Nadav Merlis 1 Ron Meir 1

Abstract
Q-learning (QL), a common reinforcement learn-
ing algorithm, suffers from over-estimation bias
due to the maximization term in the optimal
Bellman operator. This bias may lead to sub-
optimal behavior. Double-Q-learning tackles
this issue by utilizing two estimators, yet re-
sults in an under-estimation bias. Similar to
over-estimation in Q-learning, in certain scenar-
ios, the under-estimation bias may degrade per-
formance. In this work, we introduce a new
bias-reduced algorithm called Ensemble Boot-
strapped Q-Learning (EBQL), a natural extension
of Double-Q-learning to ensembles. We analyze
our method both theoretically and empirically.
Theoretically, we prove that EBQL-like updates
yield lower MSE when estimating the maximal
mean of a set of independent random variables.
Empirically, we show that there exist domains
where both over and under-estimation result in
sub-optimal performance. Finally, We demon-
strate the superior performance of a deep RL vari-
ant of EBQL over other deep QL algorithms for a
suite of ATARI games.

1. Introduction
In recent years, reinforcement learning (RL) algorithms
have impacted a vast range of real-world tasks, such as
robotics (Andrychowicz et al., 2020; Kober et al., 2013),
power management (Xiong et al., 2018), autonomous con-
trol (Bellemare et al., 2020), traffic control (Abdulhai et al.,
2003; Wiering, 2000), and more (Mahmud et al., 2018; Lu-
ong et al., 2019). These achievements are possible by the
ability of RL agents to learn a behavior policy via interac-
tion with the environment while simultaneously maximizing
the obtained reward.

A common family of algorithms in RL is Q-learning
(Watkins & Dayan, 1992, QL) based algorithms, which

1Viterbi Faculty of Electrical Engineering, Technion Institute
of Technology, Haifa, Israel. Correspondence to: Oren Peer
<orenpeer@campus.technion.ac.il>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

focuses on learning the value-function. The value represents
the expected, discounted, reward-to-go that the agent will
obtain. In particular, such methods learn the optimal pol-
icy via an iterative maximizing bootstrapping procedure. A
well-known property in QL is that this procedure results in
a positive estimation bias. Van Hasselt (2010) and Van Has-
selt et al. (2016) argue that over-estimating the real value
may negatively impact the performance of the obtained pol-
icy. They propose Double Q-learning (DQL) and show that,
as opposed to QL, it has a negative estimation bias.

The harmful effects of any bias on value-learning are widely
known. Notably, the deadly triad (Sutton & Barto, 2018;
Van Hasselt et al., 2018) attributes the procedure of boot-
strapping with biased values as one of the major causes of
divergence when learning value functions. This has been
empirically shown in multiple works (Van Hasselt et al.,
2016; 2018). Although this phenomenon is well known,
most works focus on avoiding positive-estimation instead of
minimizing the bias itself (Van Hasselt et al., 2016; Wang
et al., 2016; Hessel et al., 2018).

In this work, we tackle the estimation bias in an underesti-
mation setting. We begin, similar to Van Hasselt (2010), by
analyzing the estimation bias when observing a set of i.i.d.
random variables (RVs). We consider three schemes for
estimating the maximal mean of these RVs. (i) The single-
estimator, corresponding to a QL-like estimation scheme.
(ii) The double-estimator, corresponding to DQL, an estima-
tion scheme that splits the samples into two equal-sized sets:
one for determining the index of the RV with the maximal
mean and the other for estimating the mean of the selected
RV. (iii) The ensemble-estimator, our proposed method,
splits the data into K sets. Then, a single set is used for
estimating the RV with the maximal-mean whereas all other
sets are used for estimating the mean of the selected RV.

We start by showing that the ensemble estimator can be
seen as a double estimator that unequally splits the samples
(Proposition 1). This enables, for instance, less focus on
maximal-index identification and more on mean estimation.
We prove that the ensemble estimator under-estimates the
maximal mean (Lemma 1). We also show, both theoreti-
cally (Proposition 2) and empirically (Fig. 1), that in order
to reduce the magnitude of the estimation error, a double
estimator with equally-distributed samples is sub-optimal.

Ensemble Bootstrapping for Q-Learning

Following this theoretical analysis, we extend the ensem-
ble estimator to the multi-step reinforcement learning case.
We call this extension Ensemble Bootstrapped Q-Learning
(EBQL). We analyze EBQL in a tabular meta chain MDP
and on a set of ATARI environments using deep neural net-
works. In the tabular case, we show that as the ensemble size
grows, EBQL minimizes the magnitude of the estimation
bias. Moreover, when coupled with deep neural networks,
we observe that EBQL obtains superior performance on a
set of ATARI domains when compared to Deep Q-Networks
(DQN) and Double-DQN (DDQN).

Our contributions are as follows:

• We Analyze the problem of estimating the maximum
expectation over independent random variables. We
prove that the estimation mean-squared-error (MSE)
can be reduced using the Ensemble Estimator. In addi-
tion, we show that obtaining the minimal MSE requires
utilizing more than two ensemble members.

• Drawing inspiration from the above, we introduce En-
semble Bootstrapped Q-Learning (EBQL) and show
that it reduces the bootstrapping estimation bias.

• We show that EBQL is superior to both Q-learning and
double Q-learning in both a tabular setting and when
coupled with deep neural networks (ATARI).

2. Preliminaries
2.1. Model Free Reinforcement Learning

A reinforcement learning (Sutton & Barto, 2018) agent faces
a sequential decision-making problem in some unknown or
partially known environment. We focus on environments
in which the action space is discrete. The agent interacts
with the environment as follows. At each time t, the agent
observes the environment state st∈S and selects an action
at∈A. Then, it receives a scalar reward rt∈R and transi-
tions to the next state st+1∈S according to some (unknown)
transition kernel P (st+1|st, at). A policy π : S → A, is
a function that determines which action the agent should
take at each state and the sampled performance of a policy,
a random variable starting from state s, is denoted by

Rπ(s) =

∞∑
t=0

γtrt|s0 = s, a ∼ π(st) . (1)

where γ ∈ [0, 1) is the discount factor, which determines
how myopic the agent should behave. As Rπ is a random
variable, in RL we are often interested in the expected per-
formance, also known as the policy value,

vπ(s) = Eπ
[∞∑
t=0

γtr(st)|s0 = s

]
.

The goal of the agent is to learn an optimal policy π∗ ∈
argmaxπ v

π(s). Importantly, there exists a policy π∗ such
that vπ

∗
(s) = v∗(s) for all s ∈ S (Sutton & Barto, 2018).

2.2. Q-Learning

One of the most prominent algorithms for learning π∗ is
Q-learning (Watkins & Dayan, 1992, QL). Q-learning learns
the Q-function, which is defined as follows

Qπ(s, a) = Eπ
[∞∑
t=0

γtrt(st, at)|s0 = s, a0 = a

]
.

Similar to the optimal value function, the optimal Q-function
is denoted by Q∗(s, a) = maxπ Q

π(s, a), ∀(s, a)∈S×A.
Given Q∗, the optimal policy π∗ can obtained by using the
greedy operator π∗(s) = argmaxaQ

∗(s, a) ∀s ∈ S.

QL is an off-policy algorithm that learns Q∗ using transition
tuples (s, a, r, s′). Here, s′ is the state that is observed
after performing action a in state s and receiving reward
r. Specifically, to do so, QL iteratively applies the optimal
Bellman equation (Bellman, 1957):

Q(s, a)← (1−α)Q(s, a)+α(rt+γmax
a′

Q(s′, a′)) . (2)

Under appropriate conditions, QL asymptotically converges
almost surely to an optimal fixed-point solution (Tsitsiklis,
1994), i.e. Qt(s, a)

t→∞−−−→ Q∗(s, a) ∀s ∈ S, a ∈ A.

A known phenomenon in QL is the over-estimation of the
Q-function. The Q-function is a random variable, and the
optimal Bellman operator, Eq. (2), selects the maximal value
over all actions at each state. Such estimation schemes are
known to be positively biased (Smith & Winkler, 2006).

2.3. Double Q-Learning

A major issue with QL is that it overestimates the true Q
values. Van Hasselt (2010); Van Hasselt et al. (2016) show
that, in some tasks, this overestimation can lead to slow con-
vergence and poor performance. To avoid overestimation,
Double Q-learning (Van Hasselt, 2010, DQL) was intro-
duced. DQL combines two Q-estimators: QA and QB , each
updated over a unique subset of gathered experience. For
any two estimators A and B, the update step of estimator A
is defined as (full algorithm in the appendix Algorithm 3):

â∗A = argmax
a′

QA(st+1, a
′)

QA(st, at)← (1− αt)QA(st, at)

+ αt
(
rt + γQB (st+1, â

∗
A)
)
. (3)

Importantly, Van Hasselt (2010) proved that DQL, as op-
posed to QL, leads to underestimation of the Q-values.

Ensemble Bootstrapping for Q-Learning

3. Related Work
Q-learning stability. Over the last three decades, QL has
inspired a large variety of algorithms and improvements,
both in the tabular setting (Strehl et al., 2006; Kearns &
Singh, 1999; Ernst et al., 2005; Azar et al., 2011) and in the
function approximation-based settings (Schaul et al., 2015;
Bellemare et al., 2017; Hessel et al., 2018; Jin et al., 2018;
Badia et al., 2020). Many improvements focus on the esti-
mation bias of the learned Q-values, first identified by Thrun
& Schwartz (1993), and on minimizing the variance of the
target approximation-error (Anschel et al., 2017). Address-
ing this bias is an ongoing effort in other fields as well, such
as economics and statistics (Smith & Winkler, 2006; Thaler,
2012). Some algorithms (Van Hasselt, 2010; Zhang et al.,
2017) tackle the QL estimator inherent bias by using dou-
ble estimators, resulting in a negative bias. Recently, Lan
et al. (2020) introduces an bias-controlling algorithm called
MaxMin Q-Learning, that uses ensemble to control the bias
direction and magnitude. For large ensembles, it results
with large underestimation, whereas for small ensembles, it
results with overestimation.

RL algorithms that use neural-network-based function ap-
proximators (deep RL) are known to be susceptible to over-
estimation and oftentimes suffer from poor performance in
challenging environments. Specifically, estimation bias, a
member of the deadly triad (Van Hasselt et al., 2018), is
considered as one of the main reasons for the divergence of
QL-based deep-RL algorithms.

In our work, we tackle the estimation bias by reducing the
MSE of the next-state Q-values. While EBQL is negatively
biased, we show that it better balances the bias-variance
of the estimator. We also show that the bias magnitude of
EBQL is governed by the ensemble size and reduces as the
ensemble size grows.

Ensembles. One of the most exciting applications of en-
sembles in RL (Osband et al., 2018; Lee et al., 2020) is to
improve exploration and data collection. These methods can
be seen as a natural extension of Thompson sampling-like
methods to deep RL. The focus of this work complements
their achievements. While they consider how an ensemble
of estimators can improve the learning process, we focus on
how to better train the estimators themselves.

4. Estimating the Maximum Expected Value
As mentioned in Section 2, QL and DQL display opposing
behaviors of over- and under-estimation of the Q-values. To
better understand these issues, and our contribution, we take
a step back from RL and statistically analyze the different
estimators on i.i.d. samples.

Consider the problem of estimating the maximal expected
value of m independent random variables (X1, . . . , Xm) ,

X , with means µ= (µ1, . . . , µm) and standard deviations
σ=(σ1, . . . , σm). Namely, we are interested in estimating

max
a

E [Xa] = max
a

µa , µ∗ . (4)

The estimation is based on i.i.d. samples from the same
distribution as X . Formally, let S = {Sa}ma=1 be a set of
samples, where Sa = {Sa(n)}Nn=1 is a subset of N i.i.d.
samples from the same distribution as Xa. Specifically, this
implies that E [Sa(n)] = µa for all n ∈ [Na]. We further
assume all sets are mutually independent.

Denote the empirical means of a set Sa by µ̂a(Sa) =
1
Na

∑
n∈[Na] Sa(n). This is an unbiased estimator of µa,

and given sufficiently many samples, it is reasonable to ap-
proximate µ̂a(Sa) ≈ µa. Then, a straightforward method
to estimate (4) is to use the Single-Estimator (SE):

µ̂∗SE , max
a

µ̂a(Sa) ≈ max
a

E [µ̂a(Sa)] = µ∗ .

As shown in (Smith & Winkler, 2006) (and rederived in
Appendix D for completeness), this estimator is positively
biased. This overestimation is believed to negatively impact
the performance of SE-based algorithms, such as QL.

To mitigate this effect, (Van Hasselt, 2010) introduced the
Double Estimator (DE). In DE, the samples of each random
variable a ∈ [m] are split into two disjoint, equal-sized
subsets S(1)

a and S
(2)
a , such that S(1)

a ∪ S(2)
a = Sa and

S
(1)
a ∩ S(2)

a = ∅ for all a ∈ [m]. For brevity, we denote the
empirical mean of the samples in S(j)

a by µ̂(j)
a , µ̂a(S

(j)
a).

Then, DE uses a two-phase estimation process: In the
first phase, the index of the variable with the maximal ex-
pectation is estimated using the empirical means of S(1),
â∗ = argmaxa µ̂

(1)
a . In the second phase, the mean of Xâ∗

is estimated using S(2)
â∗ , µ̂∗DE = µ̂

(2)
â∗ . The resulting estimator

is negatively biased, i.e., E [µ̂∗DE] ≤ µ∗ (Van Hasselt, 2010).

4.1. The Ensemble Estimator

In this section, we introduce the Ensemble Estimator (EE),
a natural generalization of DE to K estimators. We take
another step forward and ask:

How can we benefit by using K estimators rather than 2?

In the DE, two sources are affecting the approximation error.
One type of error rises when the wrong index â∗ is selected
(inability to identify the maximal index). The second, when
the mean is incorrectly estimated. While increasing the
number of samples used to identify the index reduces the
chance of misidentification, it results with fewer samples
for mean estimation. Notably, the DE naı̈vely allocates the
same number of samples to both stages. As we show, the
optimal “split” is not necessarily equal, hence, in an attempt
to minimize the total MSE, a good estimator should more
carefully tune the number of samples allocated to each stage.

Ensemble Bootstrapping for Q-Learning

Consider, for example, the case of two independent random
variables (X1, X2) ∼

(
N (µ1, σ

2),N (µ2, σ
2)
)
. When the

means µ1 and µ2 are dissimilar, i.e., |µ1 − µ2|/σ � 1,
the chance of index misidentification is low, and thus, it
is preferable to allocate more samples to the task of mean
estimation. On the other extreme, as |µ1 − µ2|/σ → 0, the
two distributions are effectively identical, and the task of
index identification becomes irrelevant. Thus, most of the
samples should be utilized for mean estimation. Interest-
ingly, in both these extremities, it is beneficial to allocate
more samples to mean estimation over index identification.

As argued above, minimizing the MSE of the estimator can
be achieved by controlling the relative number of samples in
each estimation phase. We will now formally define the en-
semble estimator and prove that it is equivalent to changing
the relative allocation of samples between index-estimation
and mean-estimation (Proposition 1). Finally, we demon-
strate both theoretically and numerically that EE achieves
lower MSE than DE, and by doing so, better balances the
two sources of errors.

Ensemble estimation is defined as follows: While the DE
divides the samples into two sets, the EE divides the samples
of each random variable a ∈ [m] into K equal-sized dis-
joint subsets, such that Sa =

⋃K
k=1 S

(k)
a and S(k)

a ∩S(l)
a = ∅,

∀k 6= l ∈ [K]. We further denote the empirical mean of
the ath component of X , based on the kth set, by µ̂(k)

a . As
in double-estimation, EE uses a two-phase procedure to
estimate the maximal mean. First, a single arbitrary set
k̃ ∈ [K] is used to estimate the index of the maximal expec-

tation, â∗ = argmaxa µ̂
(k̃)
a . Then, EE utilizes the remaining

ensemble members to jointly estimate µâ∗ , namely,

µ̂∗EE ,
1

K − 1

∑
j∈[K]\k̃

µ̂
(j)
â∗

≈ max
a

E

 1

K − 1

∑
j∈[K]\k̃

µ̂(j)
a

 = µ∗ .

Lemma 1 shows that by using EE, we still maintain the
underestimation nature of DE.

Lemma 1. LetM = argmaxa E [Xa] be the set of indices

where E[Xa] is maximized. Let â∗ ∈ argmaxa µ̂
(k̃)
a be the

estimated maximal-expectation index according to the k̃th

subset. Then E [µ̂∗EE] = E [µâ∗] ≤ maxa E [Xa]. Moreover,
the inequality is strict if and only if P (â∗ /∈M) > 0.

The proof can be found in Appendix A. In addition, below,
we show that changing the size of the ensemble is equivalent
to controlling the partition of data between the two estima-
tion phases. As previously mentioned, the split-ratio greatly
affects the MSE, and therefore, this property enables the
analysis of the effect of the ensemble size K on the MSE.

Proposition 1 (The Proxy Identity). Let S(1), . . . , S(K) be
some subsets of the samples of equal sizes N/K and let
k̃ ∈ [K] be an arbitrary index. Also, denote by µ̂∗EE, the
EE that uses the k̃th subset for its index-estimation phase.
Finally, let µ̂∗W-DE be a DE that uses S(k̃) for its index-
selection and all other samples for mean-estimation; i.e.,
â∗ = argmaxa µ̂

(k̃)
a and µ̂∗W-DE = µ̂â∗

(⋃
j∈[K]\k̃ S

(j)
)

.
Then, µ̂∗EE = µ̂∗W-DE.

We call the weighted version of the DE that uses 1/K of its
samples to the index estimation W-DE. The proxy identity
establishes that W-DE is equivalent to the ensemble estima-
tor. Specifically, let N1 be the number of samples used in
the first phase of W-DE (index estimation) and say that the
MSE of the W-DE is minimized at N1 = N∗1 . Then, by
the proxy-identity, the optimal ensemble size of the EE is
K ≈ N/N∗1 . Thus, the optimal split-ratio of W-DE serves
as a proxy to the number of estimators to be used in EE.

To better understand the optimal split-ratio, we analyze the
MSE of the EE. To this end, we utilize the proxy identity
and instead calculate the MSE of the W-DE with N1 ≈
N/K samples for index-estimation. Let X be a vector
with independent component of means (µ1, . . . , µm) and
variances

(
σ2

1 , . . . , σ
2
m

)
. Assume w.l.o.g. that the means are

sorted such that µ1 ≥ µ2 ≥ · · · ≥ µm. Then, the following
holds (see derivations in Appendix C.1):

bias(µ̂∗W-DE) =

m∑
a=1

(µa − µ1)P (â∗ = a),

var(µ̂∗W-DE) =

m∑
a=1

(
σ2
a

N −N1
+ µ2

a

)
P (â∗ = a)

−

(
m∑
a=1

µaP (â∗ = a)

)2

.

As µ1 is assumed to be largest, the bias is always negative;
hence, EE underestimates the maximal mean. Furthermore,
we derive a closed form for the MSE:

MSE (µ̂∗W-DE)

=

m∑
a=1

(
σ2
a

N −N1
+ (µ1 − µa)2

)
P (â∗ = a) . (5)

We hypothesize that in most cases, the MSE is minimized
for K > 2. As (5) is rather cumbersome to analyze, we
prove this hypothesis in a simpler case and demonstrate it
numerically for more challenging situations.
Proposition 2. LetX = (X1, X2) ∼ N

(
(µ1, µ2)T , σ2I2

)
be a Gaussian random vector such that µ1 ≥ µ2 and let
∆ = µ1 − µ2. Also, define the signal to noise ratio as
SNR = ∆

σ/
√
N

and let µ̂∗W-DE be a W-DE that uses N1 sam-
ples for index estimation. Then, for any fixed even sample-
size N > 10 and any N∗1 that minimizes MSE(µ̂∗W-DE), it

Ensemble Bootstrapping for Q-Learning

Figure 1: The MSE values as function of the split-ratio for
two Gaussians with different mean-gaps ∆ = µ1 − µ2 and
σ2 = 0.25. Stars mark values in which the minimum MSE
is achieved. As expected from Proposition 2, the optimal
split-ratio is always smaller than N/2. The black arrows
show the trend of the optimum as ∆ increases. Notably, the
optimal split-ratio increases from 0 to 0.4 and then decreases
back to 0, with alignment to the SNR claims.

holds that (1) As SNR → ∞, N∗1 → 1 (2) As SNR → 0,
N∗1 → 1 (3) For any σ and ∆, it holds that N∗1 < N/2.

The proof can be found in Appendix C.2. Note that a simi-
lar analysis can be done for sub-Gaussian variables, using
standard concentration bounds instead of using Φ. However,
in this case, we have to bound P (â∗ = a) and can only
analyze an upper bound of the MSE.

Proposition 2 yields a rather intuitive, yet surprising re-
sult. From the first claim, we learn that when X1 and X2

are easily distinguishable (high SNR), samples should not
be invested in index-estimation, but rather allocated to the
mean-estimation. Moreover, the second claim establishes
the same conclusion for the case whereX1 andX2 are indis-
cernible (low SNR). Then, X1 and X2 have near-identical
means, and samples are better used for reducing the variance
of any of them. The most remarkable claim is the last one;
it implies that that the optimal split ratio is always smaller
than half. In turn, when N is large enough, this implies that
there exists K > 2 such that the MSE of EE is strictly lower
than the one of DE. To further demonstrate our claim for
intermediate values of the SNR, Fig. 1 shows the MSE as
a function of N1 for different values of ∆ = µ1 − µ2 (and
fixed variance σ2 = 0.25).

In Fig. 2 we plot the value of N1 that minimizes the MSE as
a function of the normalized-distance of the means, ∆

σ
√
m

,
for a different number of random variables m ∈ {2, 4, 6}.
The means are evenly spread on the interval ∆, all with
σ2 =0.25. Fig. 2 further demonstrates that using N1 <

N
2

Figure 2: Numerical calculation of the optimal sample split-
ratio as function of normalized gap for 2, 4 and 6 Gaussians
with means uniformly spread over the interval ∆=µmax−
µmin.

can reduce the MSE in a large range of scenarios. By the
proxy-identity, this is equivalent to using ensemble sizes
of K > 2. Therefore, we expect that in practice, EE will
outperform DE in terms of the minimal MSE (MMSE).

5. Ensemble Bootstrapped Q-Learning
In Section 4.1, we presented the ensemble estimator and its
benefits. Namely, ensembles allow unevenly splitting sam-
ples between those used to select the index of the maximal
component and those used to approximate its mean. We also
showed that allocating more samples to estimate the mean,
rather than the index, reduces the MSE in various scenarios.

Although the analysis in Section 4.1 focuses on a statisti-
cal framework, a similar operation is performed by the QL
agent during training when it bootstraps on next-state values.
Specifically, recall that Rπ(s, a) is the reward-to-go when
starting from state s and action a (see Eq. (1)). Then, denot-
ing (X1, . . . , Xm) = (Rπ(st+1, a1), . . . , Rπ(st+1, am))
and (µ1, . . . , µm) = (Qπ(st+1, a1), . . . , Qπ(st+1, am)),
the next-state value used by QL is determined by maxa µa.
As the real Q-values are unknown, DQL uses two Q estima-
tors

(
µ

(1)
1 , . . . , µ

(1)
m

)
= QA and

(
µ

(2)
1 , . . . , µ

(2)
m

)
= QB

in a way that resembles the DE – the index is selected as
a∗ = argmaxa µ

(1)
a and the value as µ(2)

a∗ .

Our method, Ensemble Bootstrapped Q-Learning (EBQL)
presented in Algorithm 1, can be seen as applying the con-
cepts of EE to the QL bootstrapping phase by using an en-
semble of K Q-function estimators. Similar to DQL, when
updating the kth ensemble member in EBQL, we define the
next-state action as â∗ = argmaxaQ

k(st+1, a). However,
while DQL utilizes two estimators, in EBQL, the value is

Ensemble Bootstrapping for Q-Learning

(a) (b) (c)

Figure 3: Correct-action rate from state Ai as function of episode in the Meta Chain MDP. Fig. 3a shows the results of a
specific chain-MDP where µi = −0.2 < 0, where in Fig. 3b, µi = 0.2 > 0. In Fig. 3c, the average of 6 symmetric µ-values
is presented. All results are averaged over 50 random seeds.

Algorithm 1 Ensemble Bootstrapped Q-Learning (EBQL)

Parameters: learning-rates: {αt}t≥1

Initialize: Q-ensemble of size K :
{
Qi
}K
i=1

, s0

for t = 0, . . . , T do
Choose action at = argmaxa

[∑K
i=1Q

i(st, a)
]

at = explore(at) //e.g. ε-greedy
st+1, rt ← env.step(st, at)
Sample an ensemble member to update: kt∼U([K])
â∗ = argmaxaQ

kt(st+1, a)
Qkt(st, at)← (1− αt)Qkt(st, at)

+αt
(
rt + γQEN\kt(st+1, â

∗)
)

end for
Return

{
Qi
}K
i=1

obtained by averaging over the remaining ensemble mem-
bers QEN\k = 1

K−1

∑
j∈[K]\kQ

j(st+1, â
∗). Notice how

when K = 2 (two ensemble members) we recover the same
update scheme as DQL, showing how EBQL is a natural
extension of DQL to ensembles. In practice, the update is
done using a learning rate αt, as in DQL (Eq. (3)).

6. Experiments
In this section, we present two main experimental results of
EBQL compared to QL and DQL in both a tabular setting
and on the ATARI ALE (Bellemare et al., 2013) using the
deep RL variants. We provide additional details on the
methodology in Appendix E.

6.1. Tabular Experiment - Meta Chain MDP

We begin by analyzing the empirical behavior of the various
algorithms on a Meta Chain MDP problem (Fig. 4). In this
setting, an agent repeatedly interacts with a predetermined
set of N chain-MDPs. All chain-MDPs share the same
structure, and by the end of the interaction with one MDP,

Figure 4: The Meta-Chain-MDP, a set of chain-MDPs dif-
fering by the reward at state D. Each episode the agent
is randomly initialized in one of the MDPs. The variance
σ = 1 is identical across the chain MDPs.

the next MDP is sampled uniformly at random.

For each chain-MDP i ∈ [N], the agent starts at state Ai

and can move either left or right. While both immediate re-
wards are 0, transitioning to state Ci terminates the episode.
However, from state Bi, the agent can perform one of m
actions, all transitioning to state Di and providing the same
reward r(Di) ∼ N (µi, σ

2), and the episode is terminated.
The set of chain MDPs is a symmetrical mixture of chains
with positive and negative means. While a negative µi am-
plifies the sub-optimality of QL due to the over-estimation
bootstrapping bias, we observe that positive µi presents the
sub-optimality of DQL under-estimation bias.

This simple, yet challenging MDP serves as a playground
to examine whether an algorithm balances optimism and
pessimism. It also provides motivation for the general case,
where we do not know if optimism or pessimism is better.

Analysis: We present the empirical results in Fig. 3. In
addition to the results on the meta chain MDP, we also
present results on the single-chain setting, for both positive
and negative reward means µi.

As expected, due to its optimistic nature, QL excels in sub-

Ensemble Bootstrapping for Q-Learning

Figure 5: Estimation bias of the optimal action in state Ai

as a function of time in the meta-chain MDP.

MDPs where µi > 0 (Fig. 3b). The optimistic nature of
QL drives the agent towards regions with higher uncertainty
(variance). As argued above, we observe that in this case,
DQL is sub-optimal due to the pessimistic nature of the
estimator. On the other hand, due to its pessimistic nature,
and as shown in Van Hasselt (2010), DQL excels when
µi < 0. We replicate their results in Fig. 3a.

Although QL and DQL are capable of exploiting the nature
of certain MDPs, this may result in catastrophic failures.
On the other hand, and as shown in Fig. 3c, EBQL excels
in the meta chain MDP, a scenario that averages over the
sub-MDPs, showing the robustness of the method to a more
general MDP. Moreover, we observe that as the size of the
ensemble grows, the performance of EBQL improves.

Estimation Bias: In addition to reporting the performance,
we empirically compare the bias of the various learned Q-
functions on the meta chain MDP. The results are presented
in Fig. 5. As expected QL and DQL converge to 0+ and 0−

respectively. In addition to QL and DQL, we compare EBQL
to Average QL Anschel et al. (2017) and MaxMin QL (Lan
et al., 2020). Notably, Average QL converges slowly while
overestimating the Q function, as expected from a variance-
reduced extension of QL. In addition, observe that the bias
of MaxMin–QL strongly depends on the ensemble size K
and varies from overestimation (K = 2) to underestimation
(K > 2). Hence, for MaxMin–QL to be unbiased, we
must tune its ensemble size using some prior knowledge
on the environment. In particular, when the environment
‘encourages’ optimism, small ensembles are advantageous,
and vice-versa for pessimism encouraging environments.

Interestingly, the absolute bias of EBQL decreases and the
algorithm becomes less pessimistic as the ensemble size K
grows. This explains the results of Fig. 3, where increasing

Figure 6: Normalized scores: We present both the mean
and median normalized scores over the 11 environments (Ta-
ble 1) with 5 seeds per environment. Curves are smoothed
with a moving average over 5 points. In addition to DQN,
DDQN and Ensemble DQN (Anschel et al., 2017), we pro-
vide a comparison against Rainbow (Hessel et al., 2018).
Rainbow represents the state-of-the-art non-distributed Q-
learning-based agent.

the ensemble size greatly improves the performance in chain
MDPs with µi > 0. To maintain fairness, all Q-tables were
set to zero, which can explain the positive bias of EBQL in
the initial episodes.

6.2. Atari

Here, we evaluate EBQL in a high dimensional task –
ATARI ALE (Bellemare et al., 2013). We present EBQL’s
performance when K = 5 (ensemble size). Here, we com-
pare to the DQN (Mnih et al., 2015) and DDQN (Van Hasselt
et al., 2016) algorithms, the deep RL variants of Q-learning
and Double-Q-Learning respectively.

While there exists a multitude of extensions and practical
improvements to DQN, our work focuses on learning the Q-
function at a fundamental level. Similarly to what is shown
in Rainbow (Hessel et al., 2018), most of these methods are
orthogonal and will thus only complement our approach.

Ensemble Bootstrapping for Q-Learning

Table 1: ATARI: Comparison of the DQN, DDQN and EBQL agents on 11 random ATARI environments. Each algorithm
is evaluated for 50m steps over 5 random seeds. We present the average score of the final policies.

Environment
Algorithm Human Random DQN DDQN EBQL

Asterix 8503.3 210.0 4603.2 5718.1 22152.5
Breakout 31.8 1.7 283.5 333.4 406.3

CrazyClimber 35410.5 10780.5 93677.1 111765.4 127967.5
DoubleDunk -15.5 -18.6 -15.8 -18.6 -10.1

Gopher 2321.0 257.6 3439.4 6940.5 21940.0
Pong 9.3 -20.7 17.4 19.9 21.0

PrivateEye 69571.3 24.9 78.1 100.0 100.0
Qbert 13455.0 163.9 5280.2 6277.1 14384.4

RoadRunner 7845.0 11.5 27671.4 40264.9 55927.5
Tennis -8.9 -23.8 -1.2 -14.5 -1.1

VideoPinball 17297.6 16256.9 104146.4 230534.3 361205.1

In order to obtain a fair comparison, we do not use the en-
semble for improved exploration (as was done in Osband
et al. 2016; 2018; Lee et al. 2020). Rather, the action is se-
lected using a standard ε-greedy exploration scheme, where
the greedy estimator is taken on the average Q-values of the
ensemble. All hyper-parameters are identical to the base-
lines, as reported in (Mnih et al., 2015), including the use
of target networks (see Appendix E for pseudo-codes).

Analysis: We test all methods on 11 randomly-chosen envi-
ronments. Each algorithm is trained over 50m steps and 5
random seeds. To ensure fairness, for DQN and DDQN we
report the results as provided by Quan & Ostrovski (2020).
The complete training curves over all environments are pro-
vided in Appendix F. The numerical results are shown in
Table 1. In addition to the numerical results, we present the
mean and median normalized scores in Fig. 6.

When comparing our method to DQN and DDQN, we ob-
serve that, in the environments we tested, EBQL consistently
obtains the highest performance. In addition, PrivateEye is
the only evaluated environment where EBQL did not out-
perform the human baseline. Remarkably, despite EBQL
not containing many improvements (e.g., prioritized experi-
ence replay (Schaul et al., 2015), distributional estimators
(Bellemare et al., 2017), and more (Hessel et al., 2018)), it
outperforms the more complex Rainbow in the small-sample
region (< 20 million steps, Fig. 6). Particularly in the Break-
out and RoadRunner domains (Appendix F), EBQL also
outperforms Rainbow over all 50m training steps.

An interesting result is observed when comparing EBQL
with ENSM-DQN (Anschel et al., 2017), see Fig. 6. Both
methods are competitive with one another. This suggests
that, as practical methods don’t directly follow the theoreti-
cal guidelines (e.g., separated data-set per ensemble mem-
ber), in practice the variance reduction obtained via the
ensemble training has the biggest impact on performance.

This in contrary to our theoretical results (Fig. 3) where we
saw thatm as EBQL directly minimized the MSE and not
only the variance, EBQL obtains superior performance.

7. Summary and Future Work
In this work, we presented Ensemble Bootstrapped Q-
Learning, an under-estimating bias-reduction method. We
started by analyzing the simple statistical task of estimating
the maximal mean of a set of independent random variables.
Here, we proved that the ensemble estimator is equivalent to
a weighted double-estimator that unevenly splits samples be-
tween its two phases (index-selection and mean-estimation).
Moreover, we showed both theoretically and empirically
that in some scenarios, the optimal partition is not symmet-
rical. Then, using the ensemble estimator is beneficial.

Based on this analysis, we propose EBQL, a way of utiliz-
ing the ensemble estimator in RL. Our empirical results in
the meta chain MDP show that, compared to QL (single
estimator) and DQL (double estimator), EBQL dramatically
reduces the estimation bias while obtaining superior per-
formance. Finally, we evaluated EBQL on 11 randomly
selected ATARI environments. To ensure fairness, we com-
pared DQN, DDQN and EBQL without any additional im-
provements (Hessel et al., 2018). In all the evaluated envi-
ronments, EBQL exhibits the best performance, in addition
to outperforming the human baseline in all but a single
environment. Finally, EBQL performs competitively with
Rainbow in the small-samples regime, even though it does
not utilize many of its well-known improvements.

Ensembles are becoming prevalent in RL, especially due
to their ability to provide uncertainty estimates and im-
proved exploration techniques (Osband et al., 2018; Lee
et al., 2020). Although ensembles are integral to our method,
to ensure a fair evaluation, we did not utilize their properties

Ensemble Bootstrapping for Q-Learning

for improved exploration. These results are exciting as they
suggest that by utilizing these properties, the performance
of EBQL can be dramatically improved.

We believe that our work leaves room to many interesting
extensions. First, recall that EBQL fixes the ensemble size
at the beginning of the interaction and then utilizes a single
estimator to estimate the action index. However, in Sec-
tion 4.1, we showed that the optimal split ratio depends on
the distribution of the random variables in question. There-
fore, one possible extension is to dynamically change the
number of ensemble members used for the index-estimation,
according to observed properties of the MDP.

Also, when considering the deep RL implementation, we
provided a clean comparison of the basic algorithms (QL,
DQL and EBQL). Notably, and in contrast to previous work
on ensembles in RL, we did not use ensembles for improved
exploration. However, doing so is non-trivial; for explo-
ration needs, previous work decouples the ensemble mem-
bers during training, whereas our update does the opposite.

Acknowledgments
This work is partially supported by the Ollendorff Center of
the Viterbi Faculty of Electrical Engineering at the Technion,
and by the Skillman chair in biomedical sciences. This work
was also partially funded by the Israel Science Foundation
under ISF grant number 2199/20. NM is partially supported
by the Gutwirth scholarship.

References
Abdulhai, B., Pringle, R., and Karakoulas, G. J. Rein-

forcement learning for true adaptive traffic signal control.
Journal of Transportation Engineering, 129(3):278–285,
2003.

Andrychowicz, O. M., Baker, B., Chociej, M., Jozefowicz,
R., McGrew, B., Pachocki, J., Petron, A., Plappert, M.,
Powell, G., Ray, A., et al. Learning dexterous in-hand
manipulation. The International Journal of Robotics
Research, 39(1):3–20, 2020.

Anschel, O., Baram, N., and Shimkin, N. Averaged-dqn:
Variance reduction and stabilization for deep reinforce-
ment learning. In International Conference on Machine
Learning, pp. 176–185. PMLR, 2017.

Arulkumaran, K. Rainbow dqn. https://https://
github.com/Kaixhin/Rainbow, 2019.

Azar, M. G., Munos, R., Ghavamzadeh, M., and Kappen, H.
Speedy q-learning. In Advances in Neural Information
Processing Systems, 2011.

Badia, A. P., Piot, B., Kapturowski, S., Sprechmann, P.,
Vitvitskyi, A., Guo, Z. D., and Blundell, C. Agent57:

Outperforming the atari human benchmark. In Interna-
tional Conference on Machine Learning, pp. 507–517.
PMLR, 2020.

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M.
The arcade learning environment: An evaluation plat-
form for general agents. Journal of Artificial Intelligence
Research, 47:253–279, 2013.

Bellemare, M. G., Dabney, W., and Munos, R. A distribu-
tional perspective on reinforcement learning. In Interna-
tional Conference on Machine Learning, pp. 449–458.
PMLR, 2017.

Bellemare, M. G., Candido, S., Castro, P. S., Gong, J.,
Machado, M. C., Moitra, S., Ponda, S. S., and Wang, Z.
Autonomous navigation of stratospheric balloons using
reinforcement learning. Nature, 588(7836):77–82, 2020.

Bellman, R. A markovian decision process. Journal of
mathematics and mechanics, pp. 679–684, 1957.

Ernst, D., Geurts, P., and Wehenkel, L. Tree-based batch
mode reinforcement learning. Journal of Machine Learn-
ing Research, 6:503–556, 2005.

Hessel, M., Modayil, J., Van Hasselt, H., Schaul, T., Os-
trovski, G., Dabney, W., Horgan, D., Piot, B., Azar, M.,
and Silver, D. Rainbow: Combining improvements in
deep reinforcement learning. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 32, 2018.

Jin, C., Allen-Zhu, Z., Bubeck, S., and Jordan, M. I.
Is q-learning provably efficient? arXiv preprint
arXiv:1807.03765, 2018.

Kearns, M. and Singh, S. Finite-sample convergence rates
for q-learning and indirect algorithms. Advances in neural
information processing systems, pp. 996–1002, 1999.

Kober, J., Bagnell, J. A., and Peters, J. Reinforcement
learning in robotics: A survey. The International Journal
of Robotics Research, 32(11):1238–1274, 2013.

Lan, Q., Pan, Y., Fyshe, A., and White, M. Maxmin q-
learning: Controlling the estimation bias of q-learning.
arXiv preprint arXiv:2002.06487, 2020.

Lee, K., Laskin, M., Srinivas, A., and Abbeel, P. Sunrise: A
simple unified framework for ensemble learning in deep
reinforcement learning. arXiv preprint arXiv:2007.04938,
2020.

Luong, N. C., Hoang, D. T., Gong, S., Niyato, D., Wang, P.,
Liang, Y.-C., and Kim, D. I. Applications of deep rein-
forcement learning in communications and networking:
A survey. IEEE Communications Surveys & Tutorials, 21
(4):3133–3174, 2019.

https://https://github.com/Kaixhin/Rainbow
https://https://github.com/Kaixhin/Rainbow

Ensemble Bootstrapping for Q-Learning

Mahmud, M., Kaiser, M. S., Hussain, A., and Vassanelli, S.
Applications of deep learning and reinforcement learning
to biological data. IEEE transactions on neural networks
and learning systems, 29(6):2063–2079, 2018.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., et al. Human-level control
through deep reinforcement learning. nature, 518(7540):
529–533, 2015.

Osband, I., Blundell, C., Pritzel, A., and Van Roy, B. Deep
exploration via bootstrapped dqn. In Advances in neural
information processing systems, pp. 4026–4034, 2016.

Osband, I., Aslanides, J., and Cassirer, A. Randomized prior
functions for deep reinforcement learning. In Advances in
Neural Information Processing Systems, pp. 8617–8629,
2018.

Quan, J. and Ostrovski, G. DQN Zoo: Reference imple-
mentations of DQN-based agents, 2020. URL http:
//github.com/deepmind/dqn_zoo.

Schaul, T., Quan, J., Antonoglou, I., and Silver, D. Priori-
tized experience replay. arXiv preprint arXiv:1511.05952,
2015.

Smith, J. E. and Winkler, R. L. The optimizer’s curse:
Skepticism and postdecision surprise in decision analysis.
Management Science, 52(3):311–322, 2006.

Strehl, A. L., Li, L., Wiewiora, E., Langford, J., and Littman,
M. L. Pac model-free reinforcement learning. In Pro-
ceedings of the 23rd international conference on Machine
learning, pp. 881–888, 2006.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT press, 2018.

Thaler, R. H. The winner’s curse: Paradoxes and anomalies
of economic life. Simon and Schuster, 2012.

Thrun, S. and Schwartz, A. Issues in using function approx-
imation for reinforcement learning. In Proceedings of the
1993 Connectionist Models Summer School Hillsdale, NJ.
Lawrence Erlbaum, 1993.

Tsitsiklis, J. N. Asynchronous stochastic approximation and
q-learning. Machine learning, 16(3):185–202, 1994.

Van Hasselt, H. Double q-learning. Advances in neural
information processing systems, 23:2613–2621, 2010.

Van Hasselt, H., Guez, A., and Silver, D. Deep reinforce-
ment learning with double q-learning. In Proceedings
of the AAAI Conference on Artificial Intelligence, vol-
ume 30, 2016.

Van Hasselt, H., Doron, Y., Strub, F., Hessel, M., Sonnerat,
N., and Modayil, J. Deep reinforcement learning and the
deadly triad. arXiv preprint arXiv:1812.02648, 2018.

Wang, Z., Schaul, T., Hessel, M., Hasselt, H., Lanctot, M.,
and Freitas, N. Dueling network architectures for deep
reinforcement learning. In International conference on
machine learning, pp. 1995–2003. PMLR, 2016.

Watkins, C. J. and Dayan, P. Q-learning. Machine learning,
8(3-4):279–292, 1992.

Wiering, M. A. Multi-agent reinforcement learning for
traffic light control. In Machine Learning: Proceedings of
the Seventeenth International Conference (ICML’2000),
pp. 1151–1158, 2000.

Xiong, R., Cao, J., and Yu, Q. Reinforcement learning-based
real-time power management for hybrid energy storage
system in the plug-in hybrid electric vehicle. Applied
energy, 211:538–548, 2018.

Zhang, Z., Pan, Z., and Kochenderfer, M. J. Weighted
double q-learning. In IJCAI, pp. 3455–3461, 2017.

http://github.com/deepmind/dqn_zoo
http://github.com/deepmind/dqn_zoo

Ensemble Bootstrapping for Q-Learning

A. Proof of Lemma 1
Recall the setting of EE defined as follows: Let X = (X1, . . . , Xm) be a vector of independent random variables and let{
µ̂(k) =

(
µ̂

(k)
1 , . . . , µ̂

(k)
m

)}K
k=1

be K unbiased, independent, estimators of E[X]. In our algorithm and analysis, we set

µ̂
(j)
a to be the empirical means of the jth subset of samples from the distribution of Xa. Also, let k̃ ∈ [K] be some index.

Then, the ensemble estimator is defined as µ̂∗EE = 1
K−1

∑
j∈[K]\k̃ µ̂

(j)
â∗ , where â∗ = argmaxa µ̂

(k̃)
a .

Lemma 1. LetM = argmaxa E [Xa] be the set of indices where E[Xa] is maximized. Let â∗ ∈ argmaxa µ̂
(k̃)
a be the

estimated maximal-expectation index according to the k̃th subset. Then E [µ̂∗EE] = E [µâ∗] ≤ maxa E [Xa]. Moreover, the
inequality is strict if and only if P (â∗ /∈M) > 0.

Proof. Since all sets are equally-distributed, assume w.l.o.g. that EE performs its first stage based on the k̃th subset.
Moreover, recall that the estimators

{
µ̂(k)

}K
k=1

are independent and unbiased. Therefore, using the tower property, we get

E [µ̂∗EE] = E

 1

K − 1

∑
j∈[K]\k̃

µ̂
(j)
â∗

= E

E
 1

K − 1

∑
j∈[K]\k̃

µ̂(j)
a

∣∣∣∣â∗ = a

 (Tower property)

= E

E
 1

K − 1

∑
j∈[K]\k̃

µa

∣∣∣∣â∗ = a

 (Estimators are independent and unbiased)

= E [E [µa|â∗ = a]]

= E [µâ∗] ,

which proves the first result of the lemma. Next we prove the inequality. First notice that if P (â∗ ∈ M) = 1, then
â∗ ∈ argmaxa E[Xa] almost-surely; then,

E [µ̂∗EE] = E [µâ∗] = E [µ∗] = µ∗.

Otherwise, assume that P (â∗ ∈ M) < 1. Then, there exists an index a such that µa < µ∗ and P (â∗ = a) > 0, which
implies that:

E [µ̂∗EE] =
m∑
a′=1

µa′P (â∗ = a′)

≤
∑
a′ 6=a

µ∗P (â∗ = a′) + µaP (â∗ = a)

<
∑
a′ 6=a

µ∗P (â∗ = a′) + µ∗P (â∗ = a)

=

m∑
a′=1

P (â∗ = a′)µ∗ = µ∗.

Ensemble Bootstrapping for Q-Learning

B. Proof of Proposition 1
Proposition 1 (The Proxy Identity). Let S(1), . . . , S(K) be some subsets of the samples of equal sizes N/K and let k̃ ∈ [K]
be an arbitrary index. Also, denote by µ̂∗EE, the EE that uses the k̃th subset for its index-estimation phase. Finally, let µ̂∗W-DE

be a DE that uses S(k̃) for its index-selection and all other samples for mean-estimation; i.e., â∗ = argmaxa µ̂
(k̃)
a and

µ̂∗W-DE = µ̂â∗
(⋃

j∈[K]\k̃ S
(j)
)

. Then, µ̂∗EE = µ̂∗W-DE.

Proof. Denote by â∗EE and â∗W-DE, the output indices from the first stage of EE and W-DE, respectively. Importantly, by

definitions of both algorithms, we have that â∗W-DE = argmaxa µ̂
(k̃)
a = â∗EE. For brevity, we denote this index by â∗.

For the second stage, notice that all subsets are of equal-size, i.e., |S(j)
â∗ | = N/K for all j ∈ [K]. Also, denote the sample

sets for second stage of the W-DE by SW-DE
a =

⋃
j∈[K]\k̃ S

(j)
â∗ , which is of size

∣∣SW-DE
a

∣∣ = N(1−1/K). Then, the ensemble
estimator can be written as

µ̂∗EE =
1

K − 1

∑
j∈[K]\k̃

µ̂
(j)
â∗

=
1

K − 1

∑
j∈[K]\k̃

1

|S(j)
â∗ |

|S(j)

â∗ |∑
n=1

S
(j)
â∗ (n)

=
1

K − 1

∑
j∈[K]\k̃

1

N/K

N/K∑
n=1

S
(j)
â∗ (n)

=
1

N(K − 1)/K

∑
j∈[K]\k̃

N/K∑
n=1

S
(j)
â∗ (n)

=
1

|SW-DE
a |

|SW-DE
a |∑
n=1

SW-DE
â∗ (n)

= µ̂â∗

 ⋃
j∈[K]\k̃

S
(j)
â∗

= µ̂∗W-DE.

Ensemble Bootstrapping for Q-Learning

C. MSE Analysis of the Weighted Double Estimator
C.1. Calculating the Bias, Variance and MSE of the Estimator

In this appendix, we analyze the bias, variance and MSE of the W-DE as a function of the number of samples used for index
estimation N1. Formally, for some N ∈ N, we define S(1) and S(2) to be sets of samples from the same distribution as
X of sizes |S(1)| = N1 ∈ [1, N − 1] and |S(2)| = N −N1 respectively. We further assume that all samples are mutually
independent. We then define the empirical mean estimators as

µ̂(j)
a =

1∣∣S(k)
∣∣
|S(k)|∑
j=1

S(k)
a (j), ∀k ∈ {1, 2} , a ∈ [m] .

The estimators are naturally unbiased, namely, E
[
µ̂

(j)
a

]
= µa, and since samples are independent, have variance of

var
[
µ̂

(j)
a

]
= 1
|S(j)|σ

2
a. Then, the W-DE is calculated via the following two-phases estimation procedure:

1. Index-estimation using samples from S(1): â∗ ∈ argmaxa µ̂
(1)
a .

2. Mean-estimation using samples from S(2): µ̂∗W-DE = µ̂
(2)
â∗ .

By the proxy-identity (Proposition 1), this estimator is closely related to the ensemble estimator. Specifically, we can
understand how the ensemble size affects the MSE of EE by analyzing the effect of N1 on the MSE of W-DE. We now
directly calculate the statistics of W-DE.

• First moment. Since the samples from the different components ofX are mutually independent and µ̂(2) is an unbiased
estimator, we can write

E [µ̂∗W-DE] = E
[
µ̂

(2)
â∗

]
= E

[
E
[
µ̂(2)
a |â∗ = a

]]
= E [E [µa|â∗ = a]] = E [µâ∗] =

m∑
a=1

µaP (â∗ = a) .

• Second moment. Similar to the first moment, we get

E
[
(µ̂∗W-DE)

2
]

= E
[(
µ̂

(2)
â∗

)2
]

= E
[
E
[(
µ̂(2)
a

)2

|â∗ = a

]]
=

m∑
a=1

E
[(
µ̂(2)
a

)2
]
P (â∗ = a)

=

m∑
a=1

(
var
(
µ̂(2)
a

)
+
(
E
[
µ̂(2)
a

])2
)
P (â∗ = a)

=

m∑
a=1

(
σ2
a

N −N1
+ µ2

a

)
P (â∗ = a) .

Next, we calculate the bias, variance and MSE of the estimator. To this end, assume w.l.o.g. that µ1 ≥ · · · ≥ µm. In
particular, it implies that µ∗ = µ1.

• Bias.

bias (µ̂∗W-DE) = E [µ̂∗W-DE]− µ∗ =

m∑
a=1

µaP (â∗ = a)− µ1 =

m∑
a=1

(µa − µ1)P (â∗ = a) . (6)

• Variance.

var (µ̂∗W-DE) = E
[
(µ̂∗W-DE)

2
]
− (E [µ̂∗W-DE])

2
=

m∑
a=1

(
σ2
a

N −N1
+ µ2

a

)
P (â∗ = a)−

(
m∑
a=1

µaP (â∗ = a)

)2

. (7)

Ensemble Bootstrapping for Q-Learning

Finally, we calculate the MSE of the estimator. First recall that for any estimator µ̂ of µ∗, it holds that

MSE (µ̂) = E
[
(µ̂− µ∗)2

]
= E

[
(µ̂− E [µ̂] + E [µ̂]− µ∗)2

]
= E

[
(µ̂− E [µ̂])

2
]

︸ ︷︷ ︸
=var(µ̂)

+2E [µ̂− E [µ̂]]︸ ︷︷ ︸
=0

(E [µ̂]− µ∗) + (E [µ̂]− µ∗)2︸ ︷︷ ︸
=bias(µ̂)2

= var(µ̂) + bias(µ̂)2 (8)

Specifically, for W-DE, we get

bias (µ̂∗W-DE)
2

=

(
m∑
a=1

(µa − µ1)P (â∗ = a)

)2

=

(
m∑
a=1

µaP (â∗ = a)

)2

− 2

m∑
a=1

µaµ1P (â∗ = a) + µ2
1

=

(
m∑
a=1

µaP (â∗ = a)

)2

+

m∑
a=1

(µ2
1 − 2µaµ1)P (â∗ = a) (9)

and combining Eq. (7), Eq. (8) and Eq. (9), we get

MSE (µ̂∗W-DE) = var (µ̂∗W-DE) + bias (µ̂∗W-DE)
2

=

m∑
a=1

(
σ2
a

N −N1
+ µ2

a

)
P (â∗ = a) +

m∑
a=1

(µ2
1 − 2µaµ1)P (â∗ = a)

=

m∑
a=1

(
σ2
a

N −N1
+ (µ1 − µa)2

)
P (â∗ = a)

,
m∑
a=1

(
σ2
a

N −N1
+ ∆2

a

)
P (â∗ = a) , (10)

where we defined ∆a = µ1 − µa.

Finally, we address the values of the probabilities P (â∗ = a) where m = 2. For this, we assume that all samples are drawn
independently from a Gaussian distribution. Then, if Φ is the cumulative distribution function (cdf) of a standard Gaussian
variable, we have that

P (â∗ = 1) = P
(
µ̂

(1)
1 ≥ µ̂(1)

2

)
= P (Z1,2 ≥ 0) (For Za,j ∼ N

(
µa − µj ,

σ2
a+σ2

j

N1

)
)

= 2 ·
2∏
j=1

Φ

√N1 (µ1 − µj)√
σ2
j + σ2

1

where in the last relation, we substituted the cdf of the Gaussian distribution and used the fact that for j = a, we have
Φ(0) = 1

2 . Moreover, from symmetry, a similar relation holds for P (â∗ = 2), and we can write

P (â∗ = a) = 2 ·
2∏
j=1

Φ

√Na (µa − µj)√
σ2
j + σ2

a

 . (11)

Finally, plugging Eq. (11) to Eq. (10), we get

MSE (µ̂∗W-DE) = 2

2∑
i=1

(σ2
a

N −N1
+ (µa − µ1)

2

) 2∏
j=1

Φ

√Ni (µi − µj)√
σ2
i + σ2

j

 (12)

Ensemble Bootstrapping for Q-Learning

C.2. Proof of Proposition 2

Proposition 2. Let X = (X1, X2) ∼ N
(
(µ1, µ2)T , σ2I2

)
be a Gaussian random vector such that µ1 ≥ µ2 and let

∆ = µ1 − µ2. Also, define the signal to noise ratio as SNR = ∆
σ/
√
N

and let µ̂∗W-DE be a W-DE that uses N1 samples for

index estimation. Then, for any fixed even sample-size N > 10 and any N∗1 that minimizes MSE(µ̂∗W-DE), it holds that (1) As
SNR→∞, N∗1 → 1 (2) As SNR→ 0, N∗1 → 1 (3) For any σ and ∆, it holds that N∗1 < N/2.

Proof. For this proof, we analyze the case of m = 2 where σ1 = σ2 = σ and ∆ = µ1 − µ2 ≥ 0. In this specific case, by
Eq. (12), we have

MSE (µ̂∗W-DE) =
σ2

N −N1
Φ

(
∆
√
N1√

2σ

)
+

(
σ2

N −N1
+ ∆2

)(
1− Φ

(
∆
√
N1√

2σ

))
=

σ2

N −N1
+ ∆2 −∆2Φ

(
∆
√
N1√

2σ

)
, MSE(N1)

For the analysis, we allow N1 to be continuous in the interval [1, N − 1]. We then show that there exists a value Ñ1 such
that for any N ≥ Ñ1, the function MSE(N1) is strictly increasing. This implies that even for integer values, any minimizer
of the MSE N∗1 is upper-bounded by N∗1 ≤ dÑ1e. To do so, we lower bound the derivative of the MSE, which equals to

dMSE(N1)

dN1
=

σ2

(N −N1)
2 −

∆3

4σ
√
πN1

e−
1
4

∆2

σ2 N1 (13)

=
σ2

(N −N1)
2 −

(
2σ2

√
πN2

1

)(
1

4

(
∆

σ

)2

N1

) 3
2

e−
1
4 (∆

σ)
2
N1 (14)

Proof of part (1) We now focus on lower bounding the derivative in Eq. (13). Denoting b = ∆3

4σ
√
π

, we have that

dMSE(N1)

dN1
≥ σ2

(N −N1)
2 −

∆3

4σ
√
πN1

=
σ2

(N −N1)
2 −

b√
N1

=
σ2
√
N1 − b

(
N2 − 2NN1 +N2

1

)
(N −N1)2

>
σ2
√
N1 − bN (N −N1)

(N −N1)2
. (N1 < N and thus N2

1 < N1N)

Next, denote x =
√
N1. Then, the numerator of the derivative is quadratic in x and can be written as

σ2
√
N1 − bN (N −N1) = σ2x− bN

(
N − x2

)
= bNx2 + σ2x− bN2.

as the denominator is always positive, and since b > 0 and x =
√
N1 > 0, the derivative will always be strictly positive for

any N1 > Ñ1 such that

√
Ñ1 ≥

−σ2 +
√
σ4 + 4b2N3

2bN
=
−σ2 +

√
σ4 + 4

(
∆3

4σ
√
π

)2

N3

2N ∆3

4σ
√
π

=
√
N
−1 +

√
1 +

(
1

2
√
π

)2 (
∆

σ/
√
N

)6

(
∆

σ/
√
N

)3
1

2
√
π

(∗)
=
√
N
−1 +

√
1 + c2

(
∆

σ/
√
N

)6

(
∆

σ/
√
N

)3

c
=
√
N
−1 +

√
1 + c2 (SNR)

6

(SNR)
3
c

where in (∗) we defined c , 1
2
√
π

and in the last equality, we substituted SNR , ∆
σ/
√
N

. Notably, when SNR → 0, one

can easily verify that Ñ1 → 0. Thus, when the SNR is large enough, we will have that Ñ1 < 1, and MSE(N1) will strictly
increase in N1 for any integer value in [1, N − 1]; then, it will be minimized at N∗1 = 1.

Ensemble Bootstrapping for Q-Learning

Proof of part (2): For this part of the proof, we focus on the second form of the derivative in Eq. (14) and denote
f(x) = x3/2e−x. Importantly, there exists x0 such that f(x) < e−x/2 for any x ≥ x0. Since N1 ≥ 1 for any ∆, σ such
that 1

4

(
∆
σ

)2 ≥ x0, we have that

dMSE(N1)

dN1
=

σ2

(N −N1)
2 −

(
2σ2

√
πN2

1

)(
1

4

(
∆

σ

)2

N1

) 3
2

e−
1
4 (∆

σ)
2
N1

≥ σ2

(N −N1)
2 −

(
2σ2

√
πN2

1

)
e−

1
8 (∆

σ)
2
N1

≥ σ2

(N −N1)
2 −

(
2σ2

√
πN2

1

)
e−

1
8 (∆

σ)
2

. (N1 ≥ 1)

One can easily verify that this lower bound on the derivative of the MSE is strictly positive for any N1 ∈ (Ñ1, N), where

Ñ1 =

√(
2√
π

)
e−

1
8 (∆

σ)
2

1 +

√(
2√
π

)
e−

1
8 (∆

σ)
2
N =

√(
2√
π

)
e−

1
8N SNR2

1 +

√(
2√
π

)
e−

1
8N SNR2

N

Notably, for any fixed N and large enough SNR, we have that 1
4

(
∆
σ

)2 ≥ x0 and Ñ1 < 1. Then, the MSE is strictly
increasing in N1 for any integer value N1 ∈ [1, N] and N∗1 = 1.

Proof of part (3): We start from the derivative form of Eq. (14). Notice that the strict maximum of the function f(x) =
x3/2e−x over [0,∞) is achieved at x∗ = 1.5; hence, for any x ≥ 0, we have that f(x) ≤ f(x∗) = 1.51.5e−1.5, which
allows us to bound the derivative by

dMSE(N1)

dN1
≥ σ2

(N −N1)
2 −

2σ2

√
πN2

1

1.51.5e−1.5 ,
σ2

(N −N1)
2 −

σ2

N2
1

d, (15)

where d = 1.51.5e−1.5 2√
π

. One can easily verify that the lower bound of Eq. (15) equals zero when N1 =
√
d

1+
√
d
N , Ñ1

and is strictly positive for any N1 ∈ (Ñ1, N). Notably, Ñ1 ≈ 0.405N , and therefore, if N > 10 then dÑ1e < N/2, and
choosing N1 = dÑ1e leads to strictly lower MSE than choosing N1 = N/2. This hold for any values of ∆, σ > 0 and
proves the third claim of the proposition.

Ensemble Bootstrapping for Q-Learning

D. Single Estimator (SE) is positively biased
Let X = (X1, . . . , Xm) be a vector of m independent random variables with expectations µ = (µ1, . . . µm). We wish to
estimate maxa E [Xa] = maxa µa using samples from same distribution: S = {S1, . . . Sm} where Sa = {Sa(n)}|Sa|n=1 is a
set of i.i.d. samples from the same distribution as Xa.

The Single Estimator- µ̂∗SE approximates the maximal expectation via the maximal empirical mean over the entire set of
samples; namely, if µ̂a = 1

|Sa|
∑|Sa|
n=1 Sa(n), then

µ̂∗SE(S) , max
a∈[m]

µ̂a ≈ max
a∈[m]

E [Xa] . (16)

The single estimator presented in (16) overestimates the true maximal expectation. i.e., is positively biased: E [µ̂∗SE] −
maxa EXa ≥ 0.

Proof. Let a∗ ∈ argmaxa∈[m] µa be an index that maximizes the expected value of X and let â∗ = argmaxa∈[m] µ̂a be an
index that maximizes the empirical mean. Specifically, by definition, we have that µ̂a∗ ≤ µ̂â∗ . In turn, this implies that

µa∗ − µ̂â∗ ≤ µa∗ − µ̂a∗ .

Then, by the monotonicity of the expectation, we get

E [µa∗ − µ̂â∗] ≤ E [µa∗ − µ̂a∗] = 0,

or E [µa∗] ≤ E [µ̂â∗], which concludes the proof. The equality holds since we assumed that the samples Sa(j) are drawn
from the same distribution as Xa and are therefore unbiased:

E[µ̂a∗] = E

 1

|Sa∗ |

|Sa∗ |∑
j=1

Sa∗(j)

 = µa∗ .

Ensemble Bootstrapping for Q-Learning

E. Implementation details
E.1. Meta-Chain MDP

Environment: We have tested the algorithms (QL, DQL and EBQL) over 5000 episodes and averaged the results of
50 random-seeds. The meta-chain MDP was constructed by 6 chain MDPs with r(Di) ∼ N (µi, 1), where {µi}6i=1 =
{−0.6,−0.4,−0.2, 0.2, 0.4, 0.6}. In all chain MDPs, the number of actions available at state Bi was set to 10.

Algorithm: The learning rate αt of EBQL was chosen to be polynomial, similar to the one in (Van Hasselt, 2010);
α(st, at) = 1/nit(st, at)

0.8, where nit(s, a) is the number of updates made until time t in the (s, a) entry of the i’th
estimator. We tested EBQL for different ensemble sizes K ∈ {3, 7, 10, 15, 25}. The discount factor was set to γ = 1.

E.2. Deep EBQL

Our code is based on (Arulkumaran, 2019), and can be found in the supplementary material of our paper.

Denote the TD-error of EBQL for ensemble member k as Y EBQLk (s, a, r, s′) = r + γQEN\k(s′, â∗)−Qk(s, a).

Algorithm 2 Deep Ensemble Bootstrapped Q-Learning (Deep-EBQL)

Initialize: Q-ensemble with size K, parametrized by random weights: {Q(·, · ; θi)}Ki=1, Experience Buffer B
for t = 0, . . . , T do

Choose action at = argmaxa

[∑K
i=1Q

i(st, a; θi)
]

at = explore(at) //e.g. ε-greedy
st+1, rt ← env.step(st, at)
B ← (st, at, rt, st+1)
Set k = t%K
Define a∗ = argmaxaQ(st+1, a; θk)

Take a gradient step to minimize L = E(s,a∗,r,s′)∼B

∥∥∥Y EBQLk (s, a, r, s′)−Q(s, a; θk)
∥∥∥2

end for
Return

{
Qi
}K
i=1

While in theory, each ensemble member should observe a unique data set, we saw that similar to Osband et al. (2016; 2018);
Anschel et al. (2017); Lee et al. (2020), EBQL performs well when all ensemble members are updated every iteration using
the same samples from the experience replay. In addition, we use a shared feature extractor for the entire ensemble, followed
by the independent head for each ensemble member.

E.3. The Double Q-Learning Algorithm

Algorithm 3 Double Q-Learning (DQL)

Initialize: Two Q-tables: QA and QB , s0

for t = 1, . . . , T do
Choose action at = argmaxa

[
QA(st, a) +QB(st, a)

]
at = explore(at) //e.g. ε-greedy
st+1, rt ← env.step(st, at)
if t%2 == 0 then

Define a∗ = argmaxaQ
A(st+1, a) //Update A

QA(st, at)← QA(st, at) + αt
(
rt + γQB(st+1, a

∗)−QA(st, at)
)

else
Define b∗ = argmaxaQ

B(st+1, a) //Update B
QB(st, at)← QB(st, at) + αt

(
rt + γQA(st+1, b

∗)−QB(st, at)
)

end if
end for
Return QA, QB

Ensemble Bootstrapping for Q-Learning

F. Additional Experimental Results
Below we provide the per-environment training curves. A somewhat surprising result is that EBQL is capable of outperform-
ing Rainbow in several domains, although Rainbow combines a multitude of improvements which we did not add on top of
EBQL (distributional, dueling, prioritized experience replay and multi-step learning).

Figure 7: Comparison between DQN, DDQN, Rainbow and EBQL on each domain over 50m steps averaged across 5
random seeds.

