
PHEW : Constructing Sparse Networks that Learn Fast and Generalize Well without Training Data

A. Proofs
A.1. Maximum path kernel trace

We consider a single hidden-layer network, f : RD → RD,
with N hidden units and D inputs and outputs. The incom-
ing and outgoing weights of each hidden unit are initialized
by sampling from N (0, 1). The number of connections in
the unpruned network is M , while the target number of
connections in the pruned network is m < M . The corre-
sponding network density is ρ = m/M .

Using the notation of Section 2, the path kernel trace maxi-
mization problem is to select the m edges that form a set of
paths P such that the following function is maximum:

P∑
p=1

m∑
i=1

(
πp(θ)

θi

)2

pi, given m = ρ×M (12)

The following lemma identifies the architecture that max-
imizes the previous expression, under the following two
assumptions:

1. For simplicity, we assume that m is a multiple of 2D, so
that we can form a fully-connected network with an integer
number of hidden units.

2. Because all hidden units follow the same weight distri-
bution, we assume that the sum of squares of the top-d (out
of D) outgoing weights is approximately the same for all
hidden units – and denote that constant byKd. This assump-
tion is reasonable if D is large and d � 1. Also, because
the incoming weights in a hidden unit follow the same dis-
tribution with the outgoing weights, Kd also approximates
the sum of squares of the top-d (out ofD) incoming weights
at each hidden unit.

Lemma 1: The maximization of the path kernel trace results
in a fully-connected network in which only n = m

2D of the
hidden-layer units remain in the pruned network – all other
units and their connections are removed. So, given a target
network density, the network that maximizes the path kernel
trace has the narrowest possible hidden-layer width.

Proof: Consider a path p defined by the set of edge-weights
{θ[1]p , θ[2]p } at the first and second hop, respectively. We can
re-write the optimization problem as,

max

P∑
p=1

[
(θ[1]p)2 + (θ[2]p)2

]
, given m = ρ×M (13)

Let us denote as din the number of incoming connections of
a hidden unit, and dout the number of outgoing connections.
The total degree of that unit is din + dout. We can assume
that this quantity is even for the following reason. The total
number of edges m is even, and so the total number of units

with odd degree has to be even. So, if there is a unit j with
odd degree, we can move a connection from another odd-
degree unit i to j so that both i and j have even degree. We
can repeat this step for every pair of units with odd degree
until all hidden units have even degree.

Let us now consider a hidden unit j with in-degree din and
out-degree dout. The path kernel trace contribution of the
incoming and outgoing connections of unit j is:

din∑
i=1

dout∑
k=1

[
(θ[0](j, i))2 + (θ[1](k, j))2

]
(14)

which is equivalent with:

din ×
dout∑
k=1

(θ[1](k, j))2 + dout ×
din∑
i=1

(θ[0](j, i))2 (15)

To maximize this expression, we can select the top-din in-
coming connections and the top-dout outgoing connections
in terms of squared weights. Then, based on Assumption-2,
the previous expression becomes:

din ×Kdout + dout ×Kdin (16)

Suppose that dout ≥ din + 2 (recall that dout + din is even
and so it cannot be that dout = din + 1). Then, we can
remove the connection with the lowest squared weight of
the dout outgoing connections and include an additional
incoming connection – the one with the highest (din + 1)-
ranked squared weight). This operation will result in the
following path kernel trace difference:

(din + 1)×Kdout−1 + (dout − 1)×Kdin+1

−din ×Kdout − dout ×Kdin

(17)

= din × (Kdout−1 −Kdout
)

+dout × (Kdin+1 −Kdin)

+Kdout−1 −Kdin+1

(18)

This difference is always positive because dout ≥ din +
2, and so |Kdout−1 − Kdout

| ≤ |Kdin+1 − Kdin | and
Kdout−1 ≥ Kdin+1.

If din ≥ dout + 2 we repeat the same process but removing
an incoming connection and adding an outgoing connection.

We can continue this iterative process for every hidden unit,
strictly increasing the path kernel trace at each step, until
din = dout = d for every hidden unit.

After the completion of the previous process, every hidden
unit j will have the same number dj of input and output
connections. So, 2×

∑
j dj = m. The path kernel trace for

the entire network will then be:

Tr(Πθ) =

n∑
j=1

2 dj Kdj (19)

PHEW : Constructing Sparse Networks that Learn Fast and Generalize Well without Training Data

We can simplify this expression because dj = d for all j,
based on Assumption-2. The resulting path kernel trace
becomes:

Tr(Πθ) = 2ndKd = mKd (20)

The optimization problem can now be written as,

d∗ = argmax
d
{m×Kd} such that d ≤ D (21)

As d increases so does the sum Kd because m is a con-
stant. Therefore the objective is maximized when d takes
the largest possible value D. That is, each of the n hidden
units will be connected to all of the input and output units,
i.e., d∗ = D.

So, the optimal width of the hidden layer is n∗ = m/(2D),
which is the lowest possible width given the target number
of edges m. In the next Lemma (A.2), we show that P ∗ =
nD2 is the maximum possible number of paths given m.

Open Question: The previous result refers to a single hid-
den layer. We were not able to generalize it to deeper net-
works. If we simplify the problem by considering networks
in which all edge-weights are equal to the same value, it is
easy to show that the subnetwork that maximizes the num-
ber of input-output paths also maximizes the path kernel
trace (see Appendix A.2).

A.2. MLP architecture with maximum number of
paths

Let us consider an ReLU MLP network with L > 1 hidden
layers, and with Nl hidden layer units at layer l = 1, ..., L.
Without loss of generality, we can consider the case that the
number of both inputs and outputs is equal to D.

Let the number of connections in the un-pruned network
be M , the target number of remaining connections after
pruning be m, and the target network density be ρ = m/M .

For simplicity, assume that m is such that we can form a
fully-connected network with the same number k of hidden
units at each layer. In other words, we assume that there
is an integer k that satisfies the following equation: m =
k (2D + (L− 1)k).

The next Lemma identifies the pruned architecture with the
maximum number of paths, given m.

Lemma 2: In an MLP network with a target number of
parameters m, the maximum number of input-output paths
results when each hidden layer has the same number of units
after pruning, and those units are fully connected with the
units of the previous layer.

Proof:

Base case: Consider a network with two hidden layers. Let

the number of units in the two hidden layers of the unpruned
network be N1 and N2.

We first show that, for a hidden layer l, the number of paths
through that layer is maximized by selecting nl ≤ Nl fully-
connected units – and pruning all other units. Then we show
that the number of paths is maximized when the two hidden
layers have the same number of (fully-connected) units after
pruning, i.e., n1 = n2.

Let the number of incoming and outgoing connections for
unit i in a hidden layer be {di, ki}. Then the number of
paths from the previous layer to the next layer is given by
P =

∑Nl

i=1 di × ki.

Suppose we can identify two hidden units X and Y that
are not fully-connected. The number of paths through
X from the previous layer to the next layer is P (X) =
dx × kx – and similarly for Y , P (Y) = dy × ky. If
P (Y) > P (X) we move an edge from X to Y such that
the edge is selected from either dx or kx, choosing the
larger among the two. Similarly, the edge is added to ei-
ther dy or ky, choosing the smaller among the two. This
process causes the number of paths to strictly increase,
that is, ∆P = max{dy, ky} − min{dx, kx} > 0. In
the case of a tie, if P (X) = P (Y), we select the unit
with the higher number of incoming/outgoing edges so that
max{dy, ky} ≥ min{dx, kx}. If there are still ties, we
break them moving edges from lower-index units to higher-
index units.

We repeat this process, increasing the number of paths in
each iteration, until we cannot find any units that are not
fully-connected. Then, the layer l will consist of nl ≤ Nl
fully-connected units.

We want to choose n1 and n2 to maximize the total number
of paths:

D2 × n1 × n2, such that m = D(n1 + n2) + n1n2 (22)

Substituting n2, we want to maximize the function of n1:

D2 × n1 ×
m−Dn1
D + n1

(23)

The maximum results when n1 =
√
D2 +m−D. Solving

for n2, we get that the corresponding with of layer-2 is
n2 =

√
D2 +m − D = n1. Therefore, the number of

paths is maximized by having the same number of units
n = n1 = n2 in the two hidden layers.

Inductive step: The induction hypothesis on a network
with L − 1 hidden layers is: given the target number of
connectionsm, the number of paths for a network with L−1
hidden layers is maximized by considering a fully-connected
network with the same number of units in each hidden layer,
n ≤ Ni, i = 1, ..., L− 1, and m = n(2D + (L− 2)n).

PHEW : Constructing Sparse Networks that Learn Fast and Generalize Well without Training Data

Consider now a network with L hidden layers. From the
induction hypothesis we know that the number of paths
PL−1 till the last hidden layer is maximized when each
hidden layer contains the same number of units n and is
fully-connected. All the units in layer L− 1 have the same
number of incoming paths PL−1/n.

Suppose that the number of selected units in the last hidden
layer is nL ≤ NL. The number of paths P =

∑n
i=1 Pi ×

PL−1/n = PL−1/n×
∑n
i=1 Pi, where Pi is the number of

paths from the ith unit in hidden layer L− 1 to the output
units. Using the same approach with the base case, we see
that P is maximized when nL = n.

A.3. PHEW and per-layer width

Consider a fully-connected MLP network, f : RD → RK ,
with L hidden layers and Nl units per layer (l = 1 . . . L).
The weights are initialized with the Kaiming method, i.e.,
the initial weight from unit j at layer l − 1 to unit i at layer
l is θ[l](i, j) ∼ N (0, σ2

l), where σ2
l = 2/Nl.

Lemma 3: The expected number of PHEW random walks
through each unit of layer l is W/Nl, where W is the re-
quired number of walks to achieve the target network density
ρ. In other words, at least in expectation, PHEW utilizes
every hidden unit of a layer, resulting in the maximum per-
layer width.

Proof: Let us first consider a network with a single hidden
layer that has N hidden units. In PHEW, we start the same
number of walks from each input unit. So, given the num-
ber of walks required to achieve the target density W , the
number of walks starting from any input unit is W/D.

Let Wn be the number of walks passing through hidden unit
n. Then,

E(Wn) =

D∑
i=1

W

D
×Q[1](n, i) (24)

where Q[1](n, i) is the probability that the walk will move
from input unit i to a unit n at the first hidden layer. For
PHEW random walks this expectation is given by,

E(Wn) =
W

D

D∑
i=1

|θ[1](n, i)|∑N
j=1 |θ[1](j, i)|

(25)

The denominator of the previous equation is:

N∑
j=1

|θ[1](j, i)| = N ×

 1

N

N∑
j=1

|θ[1](j, i)|

 = N × θ̄N (i)

(26)
where θ̄N (i) is the sample mean of the folded normal dis-
tribution. For a sufficiently large sample size N (in prac-
tice > 40), the sample mean is approximately equal to the

population mean µ. So we replace θ̄N (i) with µ for all
i = 1, ..., D:

E(Wn) ≈ W

Nµ

1

D

D∑
i=1

|θ[1](n, i)| (27)

Similarly we approximate the sample average of the previ-
ous equation with µ:

E(Wn) ≈ W

Nµ
µ =

W

N
(28)

Hence, the expected number of PHEW walks through any
hidden unit is the same.

Similarly, the number of walks through each of theK output
units is W/K, where K is the number of output units.

For networks with more than one hidden layer, it is simple to
use induction and show that the expected number of random
walks using PHEW through any unit at layer l is W/Nl.

A.4. PHEW and path kernel trace

Consider a fully-connected MLP network, f : RD → RK
with L hidden layers and Nl units per layer (l = 1 . . . L),
and suppose that the weights are initialized using the Kaim-
ing method.

Lemma 4: Consider two input-output paths u and b in the
previous MLP network: u has been selected with a uniform
random walk, while b has been selected with the PHEW
random walk process. Then,

E[Πθ(b, b)] = 2L × E[Πθ(u, u)] (29)

Proof: The path kernel matrix is given as :

Πθ(p, p′) =

m∑
i=1

(
πp(θ)

θi

)(
πp′(θ)

θi

)
pip
′
i (30)

Let path p be a path selected through a random walk process
from an input unit to an output unit. The diagonal element
that represents the contribution of p to the path-kernel trace
is given by

Πθ(p, p) =

m∑
i=1

(
πp(θ)

θi

)2

pi (31)

Suppose that path p is formed by the edge weights {θ[l]p }L+1
l=1 .

Then,

Πθ(p, p) =

L+1∑
l=1

(
πp(θ)

θ
[l]
p

)2

(32)

PHEW : Constructing Sparse Networks that Learn Fast and Generalize Well without Training Data

Figure 8. Comparison of the path kernel trace of sparse networks obtained using PHEW, unbiased random walks, and inverse-weighted
random walks.

We can observe that Πθ(p, p) is a linear function with re-
spect to {(θ[l]p)2}L+1

l=1 . Therefore,

E[Πθ(p, p)] =

L+1∑
l=1

 L+1∏
i=1,i6=l

E[θ[i]p]2

 (33)

The probability of selecting unit j at layer l given that the
walk is on a unit k at layer l − 1 is Q[l](j, k).

We compute the expected value of each squared-weight in a
sequential manner. That is,

E[(θ[l]p)2] =

Nl∑
j=1

(θ[l](j, k))2Q[l](j, k) (34)

Uniform random walks: First, suppose that the random
walk is not biased. Denote an unbiased path by u. Then,
Q[l](j, k) = 1/Nl. Let us now start the walk with a ran-
domly selected input unit k,

E[(θ[1]u)2] =

N1∑
j=1

(θ[1](j, k))2
1

N1
≈ σ2

1 (35)

This is the sample mean of Nl squares from a normal distri-
bution. If Nl is sufficiently large, we can approximate the
sample mean with the expected value E[(θ[1](j, k))2]. Note
that we are only interested in the expectation of the weight
value and not the position of the corresponding connection.

Moving to the next hop, we observe that the initialized
weight distribution for all edges is the same regardless of
the previous unit. Hence,

E[(θ[l]p)2] = σ2
l (36)

Plugging the values back in the expectation of the path
kernel trace,

E[Πθ(u, u)] =

L+1∑
l=1

 L+1∏
i=1,i6=l

σ2
l

 (37)

PHEW random walks: Now consider a path b that is sam-
pled using the PHEW biased random walk process. Here,

Q[l](j, k) =
|θ[l](j, k)|∑Nl

i=1 |θ[l](i, k)|
(38)

Let us again start the random walk process with some input
unit k,

E[(θ
[1]
b)2] =

N1∑
j=1

(θ[1](j, k))2
|θ[l](j, k)|∑N1

i=1 |θ[l](i, k)|

=

∑N1

j=1 |θ[l](j, k)|3∑N1

i=1 |θ[l](i, k)|

=

1

N1

∑N1

j=1 |θ[l](j, k)|3

1

N1

∑N1

i=1 |θ[l](i, k)|

(39)

We approximate this ratio of sample means by the ratio of
the corresponding two population means,

E[(θ
[1]
b)2] ≈

2

√
2

π
σ3
1N1√

2

π
σ1N1

= 2σ2
1 (40)

where the numerator is the expected value of |X|3, X ∼
N (0, σ2

1), and the denominator is the expected value of
|X|, X ∼ N (0, σ2

1).

Moving on to the next hop, we perform the same process
as in the case of unbiased random walks, where the ex-
pected weight value is only dependent on the initialization
distribution of the edges. We know that the initialization
distribution is the same for all edges regardless of the unit
they are connected to in the previous layer. Hence,

E[(θ
[l]
b)2] ≈ 2σ2

l (41)

Plugging this value back into the expected path kernel trace,

PHEW : Constructing Sparse Networks that Learn Fast and Generalize Well without Training Data

Figure 9. Examples of inputs and outputs for the MNIST image transformation task

E[Πθ(b, b)] =

L+1∑
l=1

 L+1∏
i=1,i6=l

2σ2
l

 = 2L
L+1∑
l=1

 L+1∏
i=1,i6=l

σ2
l

(42)

We conclude that a path selected using PHEW will con-
tribute to the path kernel trace much more than a path
selected through an unbiased random walk, and this gap
increases exponentially with the depth L of the network:

E[Πθ(b, b)] = 2L × E[Πθ(u, u)] (43)

B. Image transformation task
In this section we present results for a regression task in
which the number of inputs is the same with the number
of outputs. The task is to perform MNIST image transfor-
mations (rotation and shearing). The angle of rotation and
the shearing coefficient are class-specific. We crop and pad
the rotated image to fit the original dimensions. The classes
are rotated in multiples of 30◦ and sheared with coefficients
uniformly sampled between -0.6 and 0.6. Figure 9 shows
various input-output examples.

In this task, we use MLPs with width equal to 100, 200, 300
and 400. We use 1000 examples per class for training and 20
epochs. The learning rate is 0.001 with an exponential decay
factor of 0.95 after every epoch, Adam optimizer, batch size
of 32. The loss function is the mean-squared error between
the actual output and correct output. Test performance is
evaluated using the MSE metric on the entire test set. ReLU
in combination with batch-normalization are implemented
at each hidden layer.

B.1. Comparison between PHEW and other pruning
methods on transformation task

Here, we present results for the image transformation task.
Specifically, we compare the performance of PHEW with
the two data-dependent methods SNIP and GraSP as well as
with the data-agnostic methods SynFlow and SynFlow-L2.

Figure 10 shows that PHEW performs better than the other

algorithms in a wide range of network density values. Of
course, as the density increases the differences between
these methods diminish.

An interesting observation here is that the data-dependent
methods SNIP and GraSP perform worse in this task than
the data-agnostic methods. This may be due to the change in
the loss function from cross entropy to mean squared error
for regression. We plan to investigate this phenomenon
further by introducing different tasks/loss functions and
architectures.

B.2. Number of input-output paths

Here, we present results for the number of input-output
paths resulting from different pruning methods in the image
transformation task – see Figure 11.

We observe that the sub-networks resulting from SynFlow
and SynFlow-L2 indeed have the highest number of input-
output paths. This empirical observation provides further
evidence for the connection between the magnitude of the
path kernel trace and the number of input-output paths (see
Appendix A.1).

C. Ablations of SynFlow and SynFlow-L2
The formation of narrow subnetworks through SynFlow was
first discovered in the ablation studies conducted in (Frankle
et al., 2021). In that work, the edges of a layer are shuffled,
creating a uniform distribution of connections across all
units in the layer.

In Figures 12 and 13, we observe that for both SynFlow
and SynFlow-L2, random shuffling of weights increases
performance. The performance increase becomes larger in
datasets with more classes. We believe that this is due to
the increased complexity of those datasets and the need for
a larger layer width to learn disconnected decision regions
(Nguyen et al., 2018).

The authors of (Frankle et al., 2021) hypothesised that the
cause of this effect is the iterative nature of the SynFlow
algorithm along with the number of paths through specific

PHEW : Constructing Sparse Networks that Learn Fast and Generalize Well without Training Data

Figure 10. Comparison of PHEW against other pruning-before-training methods for the MNIST image transformation task.

Figure 11. Comparison of the number of paths obtained through PHEW and other pruning methods.

Figure 12. SynFlow ablation: Performance comparison of sub-
networks obtained using SynFlow and subnetworks obtained by
layer-wise randomized SynFlow subnetworks.

Figure 13. SynFlow-L2 Ablation: Performance comparison of
subnetworks obtained using SynFlow-L2 and subnetworks ob-
tained by random layer-wise weight shuffling of SynFlow-L2 sub-
networks.

units. The scoring function for a specific edge-weight θi
in SynFlow is

∑P
p=1 |πp(θ)|pi. This represents the sum of

edge-weight-products of all paths through θi. Similarly, for
SynFlow-L2 the scoring function is

∑P
p=1 πp(θ)2pi/|θi|.

In both of these iterative pruning methods, if a unit has
some pruned edges in the first few iterations it becomes
more likely to be pruned in subsequent iterations (due to
the reduction in the number of paths that traverse that unit).
Hence, these iterative methods are more likely to completely
eliminate some hidden units. This conjecture is aligned with
our observation that by maximizing the number of input-
output paths, the SynFlow and SynFlow-L2 methods elimi-
nate many hidden units and result in very narrow layers.

D. Implementation details
In this section we report implementation details and hyper-
parameter values for our experiments.

D.1. Networks, datasets and hyperparameters

We present results on three networks and three datasets for
classification. The combination of networks and datasets
used are as follows:

1. ResNet20 and CIFAR-10

2. ResNet20 and CIFAR-100

3. VGG19 and CIFAR-10

4. VGG19 and CIFAR-100

PHEW : Constructing Sparse Networks that Learn Fast and Generalize Well without Training Data

Network Dataset Epochs Batch-size Optimizer Momentum Learning Rate Lr Drop Weight Decay
ResNet20 CIFAR-10 160 128 SGD 0.9 0.1 10x at 1/2 and 3/4 epochs 1e-4
ResNet20 CIFAR-100 160 128 SGD 0.9 0.1 10x at 1/2 and 3/4 epochs 1e-4
VGG19 CIFAR-10 160 128 SGD – 0.1 10x at 1/2 and 3/4 epochs 5e-3
VGG19 CIFAR-100 160 128 SGD – 0.1 10x at 1/2 and 3/4 epochs 5e-3

ResNet18 Tiny-ImageNet 200 256 SGD 0.9 0.2 10x at 1/2 and 3/4 epochs 1e-4
VGG19 Tiny-ImageNet 200 256 SGD 0.9 0.2 10x at 1/2 and 3/4 epochs 1e-4

Table 1. Hyperparameters used for various combinations of datasets and networks in the experiments.

5. ResNet18 (Modified) and Tiny-ImageNet

6. VGG19 and Tiny-ImageNet

ResNet20: The ResNet20 architecture was designed for
CIFAR-10 (He et al., 2016). The same network is also used
for CIFAR-100. The network consists of 20 layers and
batch-normalization is performed before activation.

VGG19 : The VGG19 architecture was taken from the origi-
nal paper (Simonyan & Zisserman, 2014). The network con-
sists of five convolutional blocks followed by max-pooling.
The first block consist of two layers with width 64 – that
is 64 filters. The second block contained two layers with
width of 128; the third, fourth and fifth blocks consist of
three layers each with the same width: 256, 512 and 512
respectively. All the filters have dimension 3× 3, with the
number of channels varying. For CIFAR-10/100 we replace
the three linear layers in the original network by a single
layer with width equal to the number of classes.

ResNet18 (Modified): ResNet18 was originally proposed
for classification on ImageNet (He et al., 2016). A modifica-
tion of the original architecture was provided by the authors
of SynFlow (Tanaka et al., 2020) for Tiny-ImageNet. For
a fair comparison we use the same architecture with the
SynFlow paper. Specifically, the first convolutional layer
uses a filter of dimensions 3× 3 with a stride of 1, without
the use of max-pooling.

All networks are initialized with Kaiming Normal initializa-
tion ((He et al., 2015)).

Datasets: We use three well known datasets for classifi-
cation: CIFAR10, CIFAR-100 and Tiny-ImageNet, (the
smaller version of ImageNet dataset)(Russakovsky et al.,
2015). Due to resource limitations we are unable to present
results for the full ImageNet dataset. For CIFAR-10/100
we perform channel-wise normalization using mean and
standard deviation and use random horizontal flipping. For
Tiny-ImageNet we use channel-wise normalization, random
cropping of size 64× 64 and random horizontal flipping.

Hyperparameters: We provide the hyperparameters for
each of the networks and datasets in Table 1. Note that these
hyperparameters were tuned for the unpruned network and
not for sparse networks.

D.2. Pruning mechanisms

The pruning algorithms that we use as baselines follow a
two-step process: first a score is computed for each edge,
and then some edges are eliminated based on this score.
Below we report various implementation details for each
baseline. We use the same training hyperparameters for
every baseline.

Random pruning: Upon initialization, all edges are as-
signed a score. The score follows a uniform distribution
with 0-1 range.

Magnitude pruning after training: First, the given dense
network is trained. Each edge is assigned a score that is
equal to the absolute value of its weight. Then, the network
is pruned iteratively, with one epoch of training (fine-tuning)
after each pruning iteration. Once the target network density
is obtained, the sparse network is fully trained once again.
Note that the weights are not reverted back to the initial
weights for that second training cycle.

We use the pruning schedule of (Zhu & Gupta, 2017) for
iterative pruning. The number of pruning iterations is five
for ResNet20 on CIFAR-10, ten for VGG19 on CIFAR-
100 and Tiny-ImageNet, and twentyfive for ResNet18 on
Tiny-ImageNet.

SNIP: Upon initialization, we compute the SNIP score∣∣∣∣∂L∂θ � θ
∣∣∣∣ using a random subset of training data. That

data is chosen such that they consist of 10 images per class
(Lee et al., 2019b). The scores are computed for batches of
size 256 for CIFAR-10/100 and 64 for Tiny-ImageNet and
summed across batches.

GraSP: Similar to SNIP but the score is given by(
H
∂L

∂θ

)
� θ.

SynFlow: Given the desired final network density, we com-
pute the target density at each iteration of the algorithm.

Then we compute the SynFlow score given by,
∣∣∣∣∂RSF∂θ

� θ
∣∣∣∣

and prune the lowest scoring edges. We repeat this process
over 100 iterations, with an exponential decay of the net-
work density, to achieve the target density at the 100th

iteration.

SynFlow-L2: Similar to SynFlow but the score is given by

PHEW : Constructing Sparse Networks that Learn Fast and Generalize Well without Training Data∣∣∣∣∂RSF2

∂θ2
� θ
∣∣∣∣.

PHEW: We first compute the discrete probability distribu-
tion for all possible states in both forward and backward
directions.

The selection of the starting unit for each random walk in
the forward (or backward) direction is performed in a round
robin manner.

The random walk process is repeated until the target density
is achieved.

