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Abstract

We propose to analyse the conditional distribu-
tional treatment effect (CoDiTE), which, in con-
trast to the more common conditional average
treatment effect (CATE), is designed to encode
a treatment’s distributional aspects beyond the
mean. We first introduce a formal definition of
the CoDiTE associated with a distance function
between probability measures. Then we discuss
the CoDiTE associated with the maximum mean
discrepancy via kernel conditional mean embed-
dings, which, coupled with a hypothesis test, tells
us whether there is any conditional distributional
effect of the treatment. Finally, we investigate
what kind of conditional distributional effect the
treatment has, both in an exploratory manner via
the conditional witness function, and in a quan-
titative manner via U-statistic regression, gener-
alising the CATE to higher-order moments. Ex-
periments on synthetic, semi-synthetic and real
datasets demonstrate the merits of our approach.

1. Introduction
Analysing the effect of a treatment (medical drug, economic
programme, etc.) has long been a problem of great impor-
tance, and has attracted researchers from diverse domains,
including econometrics (Imbens & Wooldridge, 2009), polit-
ical sciences (Künzel et al., 2019), healthcare (Foster et al.,
2011) and social sciences (Imbens & Rubin, 2015). The
field has naturally received much attention of statisticians
over the years (Rosenbaum, 2002; Rubin, 2005; Imbens &
Rubin, 2015), and in the past few years, the machine learn-
ing community has started applying its own armoury to this
problem – see Section 1.2 for a succinct review.

Traditional methods for treatment effect evaluation focus
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on the analysis of the average treatment effect (ATE), such
as an increase or decrease in average income, inequality
or poverty, aggregated over the population. However, the
ATE is not informative about the individual responses to
the intervention and how the treatment impact varies across
individuals (known as treatment effect heterogeneity). The
study of conditional average treatment effect (CATE)1 has
been proposed to analyse such heterogeneity in the mean
treatment effect. Although sufficient in many cases, the
CATE is still an average. As such, it fails to capture infor-
mation about distributional aspects of the treatment beyond
the mean. A significant amount of interest exists for de-
veloping methods that can analyse distributional treatment
effects conditioned on the covariates (Chang et al., 2015;
Bitler et al., 2017; Shen, 2019; Chernozhukov et al., 2020;
Hohberg et al., 2020; Briseño Sanchez et al., 2020).

Our contributions are as follows. Firstly, we formally de-
fine the conditional distributional treatment effect (CoDiTE)
associated with a chosen distance function between distri-
butions. Then we use kernel conditional mean embeddings
(Song et al., 2013; Park & Muandet, 2020a) to analyse the
CoDiTE associated with the maximum mean discrepancy
(Gretton et al., 2012). Coupled with a statistical hypothesis
test, this can determine whether there exists any effect of
the treatment, conditioned on a set of covariates. Finally, we
use conditional witness functions and U-statistic regression
to investigate what kind of effect the treatment has.

1.1. Problem Set-Up: Potential Outcomes Framework

Throughout this paper, we take (Ω,F , P ) as the underly-
ing probability space, X as the input space and Y ⊆ R
as the output space. Let Z : Ω → {0, 1}, X : Ω → X
and Y0, Y1, Y : Ω → Y be random variables representing,
respectively, the treatment assignment, covariates, the poten-
tial outcomes under control and treatment, and the observed
outcome, i.e. Y = Y0(1 − Z) + Y1Z. For example, Z
may indicate whether a subject is administered a medical
treatment (Z = 1) or not (Z = 0). The potential outcomes
Y1, Y0 respectively correspond to subject’s responses had
they received treatment or not. The covariates X corre-

1See Section 1.1 for the definitions of the ATE and CATE.
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Figure 1. Toy illustration of higher-order heterogeneity that cannot be captured by CATE. (a) Data. X ∼ Uniform[0, 1], Y0 =
3+ 5X + 1X<0.3N + 71X≥0.3(1 + (X − 0.3))N and Y1 = 4X + 1X<0.3N + 71X≥0.3(1 + (X − 0.3))N , where N ∼ N (0, 1); in
particular, the CATE is increasing with X . (b) Hypothesis test (Section 4.2) Each of the hypotheses PY0|X ≡ PY0|X , PY1|X ≡ PY1|X
and PY0|X ≡ PY1|X are tested 100 times. The last (false) hypothesis is rejected in most tests, while the first two (true) hypotheses are
not rejected in most tests, meaning that both type I and type II errors are low. (c) Conditional witness function (Section 5.1). The
conditional witness function is close to zero for all Y at X ≥ 0.5, demonstrating that PY0|X and PY1|X are similar in this region of X .
For X < 0.4, the witness function is positive in regions where the density of Y1 is higher than that of Y0, and negative in regions where
the density of Y0 is higher than that of Y1. (d) U-statistic regression (Section 5.2). True conditional standard deviation (in black) is
estimated (in red and blue for control and treatment groups respectively) as a function of X via U-statistic regression (since variance is a
U-statistic) and the square-root operation. We see that the standard deviation increases linearly for X ≥ 0.3.

spond to subject’s characteristics such as age, gender, race
that could influence both the potential outcomes and the
choice of treatment. We denote the distributions of random
variables by subscripting P , e.g. PX for the distribution of
X . Throughout, we impose the mild condition that condi-
tional distribution P (· | X) admits a regular version (Çınlar,
2011, p.150, Definition 2.4, Proposition 2.5).

Each unit i = 1, ..., n is associated with an independent
copy (Xi, Zi, Y0i, Y1i) of (X,Z, Y0, Y1). However, for
each i = 1, ..., n, we observe either Y0i or Y1i; this miss-
ing value problem is known as the fundamental problem
of causal inference (Holland, 1986), preventing us from
directly computing the difference in the outcomes under
treatment and control for each unit. As a result, we only
have access to samples {(xi, zi, yi)}ni=1 of (X,Z, Y ). We
write n0 =

∑n
i=1 1zi=0 and n1 =

∑n
i=1 1zi=1 for the con-

trol and treatment sample sizes, and denote the control and
treatment samples by {(x0

i , y
0
i )}n0

i=1 and {(x1
i , y

1
i )}n1

i=1.

We assume strong ignorability (Rosenbaum & Rubin, 1983):

unconfoundedness Z ⊥⊥ (Y0, Y1) | X; and

overlap 0 < e(X) = P (Z = 1 | X) = E[Z | X] < 1.

Causal treatment effects are then identifiable from obser-
vational data, since PY0|X = PY0|X,Z=0 = PY |X,Z=0, and
similarly for PY1|X . The quantity e(X) is the propensity
score. In a randomised experiment, e(X) is known and
controlled (Imbens & Rubin, 2015, p.40, Definition 3.10).

The usual objects of interest in the treatment effect literature
are the average treatment effect (ATE), E [Y1 − Y0], and
the conditional average treatment effect (CATE), T (x) =
E
[
Y1 − Y0 | X = x

]
. In this paper, we propose to extend

the analysis to compare other aspects of the conditional

distributions, PY0|X and PY1|X . One compelling reason to
do this is that estimating CATE is inherently a problem of
comparing two means, and as such, is only meaningful if the
corresponding variances are given. Consider the toy exam-
ple in Figure 1. The CATE is constructed to be increasing
with X , but taking into account the variance, the treatment
effect is clearly more pronounced for small values of X .
For example, the probability of Y1 being greater than Y0 is
much higher for smaller values of X .

Beyond the mean and variance, researchers may also be in-
terested in other higher-moment treatment effect heterogene-
ity, such as Gini’s mean difference or skewness, or indeed
how the entire conditional densities of the control and treat-
ment groups differ given the covariates, in an exploratory
fashion. Panels (b), (c) and (d) in Figure 1 demonstrate
each of the steps we propose in this paper applied to this
toy dataset: hypothesis testing of equality of conditional dis-
tributions, the conditional witness function and U-statistic
regression (variance, in this instance), respectively.

1.2. Related Work & Summary of Contributions

In the past few years the machine learning community has
focused much effort on models for estimating the CATE
function. Some approaches include Gaussian processes
(Alaa & van der Schaar, 2017; 2018), Bayesian regression
trees (Hill, 2011; Hahn et al., 2020), random forests (Wager
& Athey, 2018), neural networks (Johansson et al., 2016;
Shalit et al., 2017; Louizos et al., 2017; Atan et al., 2018;
Shi et al., 2019), GANs (Yoon et al., 2018), boosting and
adaptive regression splines (Powers et al., 2018) and kernel
mean embeddings (Singh et al., 2020).

Distributional extensions of the ATE have been considered
by many authors. Abadie (2002) tested the hypotheses of
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equality and stochastic dominance of the marginal outcome
distributions PY0 and PY1 , whereas Kim et al. (2018); Muan-
det et al. (2018) focus on estimating PY0 and PY1 , or some
distance between them. These works do not consider treat-
ment effect heterogeneity. Singh et al. (2020, Appendix C)
consider CATE as well as distributional treatment effect,
and while it seems that the ideas can straightforwardly be
extended to conditional distributional treatment effect, it is
not explicitly considered in the paper.

The CoDiTE incorporates both distributional considerations
of treatment effects and treatment effect heterogeneity. Inter-
est has been growing, especially in the econometrics litera-
ture, for such analyses – indeed, Bitler et al. (2017) provided
concrete evidence that in some settings, the CATE does not
suffice. Existing works that analyse the CoDiTE can be split
into three categories, depending on how distributions are
characterised: (i) quantiles, (ii) cumulative distributional
functions, and (iii) specific distributional parameters, such
as the mean, variance, skewness, etc. In category (i), quan-
tile regression is a powerful tool (Koenker, 2005); however,
in order to get a distributional picture via quantiles, one
needs to estimate a large number of quantiles, and issues
of crossing quantiles arise, whereby estimated quantiles are
non-monotone. In category (ii), Chernozhukov et al. (2013;
2020) propose splitting Y into a grid and regressing for the
cumulative distribution function at each point in the grid,
but this also brings issues of non-monotonicity of the cu-
mulative distribution function, similar to crossing quantiles.
Shen (2019) estimates the cumulative distribution functions
P (Y0 < y∗) and P (Y1 < y∗) for each y∗ ∈ Y given
each value of X = x by essentially applying the Nadaraya-
Watson conditional U-statistic of Stute (1991) to the U-
kernel h(y) = 1(y ≤ y∗). In category (iii), generalised
additive models for location, scale and shape (GAMLSS)
(Stasinopoulos et al., 2017) have been applied for CoDiTE
analysis (Hohberg et al., 2020; Briseño Sanchez et al., 2020),
but being a parametric model, despite its flexibility, the re-
searcher has to choose a model beforehand to proceed, and
issues of model misspecification are unavoidable.

Interest has also always existed for hypothesis tests in the
context of treatment effect analysis, especially in economet-
rics (Imbens & Wooldridge, 2009, Sections 3.3 and 5.12).
Abadie (2002) tested the equality between the marginal dis-
tributions of Y0 and Y1, while Crump et al. (2008) tested
for the equality of E[Y1|X] and E[Y0|X]. Lee & Whang
(2009); Lee (2009); Chang et al. (2015); Shen (2019) were
interested, among others, in the hypothesis of the equality
of PY1|X and PY0|X , which we consider in Section 4.2.

Summary of Contributions We characterise distribu-
tions in two ways – first as elements in a reproducing ker-
nel Hilbert space via kernel conditional mean embeddings,
which, to the best of our knowledge, is a novel attempt

in the treatment effect literature, and secondly via specific
distributional parameters, as in category (iii). The former
characterisation gives us a novel way of testing for the equal-
ity of conditional distributions, as well as an exploratory
tool for density comparison between the groups via condi-
tional witness functions. For the latter characterisation, we
provide, to the best of our knowledge, a novel U-statistic
regression technique by generalising kernel ridge regres-
sion, which, in contrast to GAMLSS, is fully nonparametric.
Neither characterisation requires the estimation of a large
number of quantities, unlike characterisations via quantiles
or cumulative distribution functions.

2. Preliminaries
In this section, we briefly review reproducing kernel Hilbert
space embeddings and U-statistics. A more complete intro-
duction can be found in Appendix A.

2.1. Reproducing Kernel Hilbert Space Embeddings

Let l : Y × Y → R be a (scalar) positive definite kernel
on Y with reproducing kernel Hilbert space (RKHS) H
(Berlinet & Thomas-Agnan, 2004, p.7, Definition 1). Given
a random variable Y on Y satisfying E[

√
l(Y, Y )] < ∞,

the kernel mean embedding of Y is defined as µY (·) =
E[l(Y, ·)] (Smola et al., 2007, Eqn. (2a)). Given two random
variables Y and Y ′, the maximum mean discrepancy (MMD)
between them is defined as ‖µY − µY ′‖H (Gretton et al.,
2012, Lemma 4), where µY − µY ′ is the (unnormalised)
witness function (Gretton et al., 2012, Section 2.3; Lloyd
& Ghahramani, 2015, Eqn. (3.2)). If the embedding is
injective from the space of probability measures on Y toH,
then we say that l is characteristic (Fukumizu et al., 2008,
Section 2.2), in which case the MMD is a proper metric.
Given another random variable X on X , the conditional
mean embedding (CME) of Y givenX is defined as µY |X =
E[l(Y, ·) | X] (Park & Muandet, 2020a, Definition 3.1)2.

Denote by L2(X , PX ;H) the Hilbert space of (equivalence
classes of) measurable functions F : X → H such that
‖F (·)‖2H is PX -integrable, with inner product 〈F1, F2〉2 =∫
X 〈F1(x), F2(x)〉HdPX(x). Given an operator-valued ker-

nel Γ : X × X → L(H), where L(H) is the Banach space
of bounded linear operators H → H, there exists an asso-
ciated vector-valued RKHS of functions X → H (Carmeli
et al., 2006, Definition 2.1, Definition 2.2, Proposition 2.3).

2.2. U-Statistics

Let Y1, ..., Yr be independent copies of Y , and let h : Yr →
R be a symmetric function, i.e. for any permutation π

2We use the conditional expectation interpretation of the CME.
An interpretation of the CME as an operator from an RKHS on X
toH also exists (Song et al., 2009; 2013; Fukumizu et al., 2013).
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of (1, ..., r), h(y1, ..., yr) = h(yπ(1), ..., yπ(r)), such that
h(Y1, ..., Yr) is integrable. Given i.i.d. copies {Yi}ni=1 of
Y , the U-statistic (Hoeffding, 1948; Serfling, 1980, p. 172)
for an unbiased estimation of θ(PY ) = E[h(Y1, ..., Yr)]

is θ̂(Y1, ..., Yn) = 1

(nr)

∑
h (Yi1 , ..., Yir ) where

(
n
r

)
is the

binomial coefficient and the summation is over the
(
n
r

)
com-

binations of r distinct elements {i1, ..., ir} from {1, ..., n}.

This has been extended to the conditional case (Stute, 1991).
Given another random variable X on X and independent
copies X1, ..., Xr of it, we can consider the estimation
of θ(PY |X) = E[h(Y1, ..., Yr)|X1, ..., Xr]. Stute (1991);
Derumigny (2019) extend the Nadaraya-Watson regressor
(Nadaraya, 1964; Watson, 1964) to estimate θ(PY |X).

3. Conditional Distributional Treatment
Effect

In this section, we generalise the notion of CATE to account
for distributional differences between treatment and control
groups, rather than just the mean difference.
Definition 3.1. Let D be some distance function between
probability measures. We define the conditional distribu-
tional treatment effect (CoDiTE) associated with D as

UD(x) = D(PY0|X=x, PY1|X=x).

Here, the choice of D depends on what characterisation
of distributions is used (c.f. Section 1.2). For example, if
D(PY0|X=x, PY1|X=x) = E[Y1 | X = x]−E[Y0 | X = x],
we recover the CATE, i.e. UD(x) = T (x), thereby show-
ing that the CoDiTE is a strict generalisation of the CATE.
Different choices of D will require different estimators.

The usual performance metric of a CATE estimator T̂ is the
precision of estimating heterogeneous effects (PEHE) (first
proposed in sample form by Hill (2011, Section 4.3); we
report the population-level definition, found in, for example,
Alaa & Van Der Schaar (2019, Eqn. (5)):

‖T̂ − T‖22 = E[|T̂ (X)− T (X)|2].

We propose a performance metric of an estimator of the
CoDiTE in an exactly analogous manner.
Definition 3.2. Given a distance function D, for an esti-
mator ÛD of UD, we define the precision of estimating
heterogeneous distributional effects (PEHDE) as

ψD(ÛD) = ‖ÛD − UD‖22 = E[|ÛD(X)− UD(X)|2].

Again, if D measures the difference in expectations, then
the associated PEHDE ψD reduces to the usual PEHE.

Henceforth, we explore different choices of the distance
function D, as well as methods of estimating the corre-
sponding CoDiTE UD, to answer the following questions:

Q1 Are PY0|X and PY1|X different? In other words, is there
any distributional effect of the treatment? (Section 4)

Q2 If so, how does the distribution of the treatment group
differ from that of the control group? (Section 5)

4. CoDiTE associated with MMD via CMEs
In this section, we answer Q1, i.e. we investigate whether
the treatment has any effect at all. To this end we choose D
to be the MMD with the associated kernel l being charac-
teristic. Then writing µY0|X and µY1|X for the CMEs of Y0

and Y1 given X respectively (c.f. Section 2.1), we have

UMMD(x) = MMD(PY0|X=x, PY1|X=x)

= ‖µY1|X=x − µY0|X=x‖H.
(1)

Since l is characteristic, PY0|X=x and PY1|X=x are equal if
and only if MMD(PY0|X=x, PY1|X=x) = 0. What makes
the MMD a particularly convenient choice is that for each
x ∈ X , PY0|X=x and PY1|X=x are represented by individual
elements µY0|X=x and µY1|X=x in the RKHS H, which
means that we can estimate the associated CoDiTE simply
by performing regression with X as the input space andH
as the output space, as will be shown in the next section.

4.1. Estimation and Consistency

We now discuss how to obtain empirical estimates of
UMMD(x). Recall that, by the unconfoundedness assump-
tion, we can estimate µY0|X and µY1|X separately from
control and treatment samples respectively. We perform
operator-valued kernel regression (Micchelli & Pontil, 2005;
Kadri et al., 2016) in separate vector-valued RKHSs G0

and G1, endowed with kernels Γ0(·, ·) = k0(·, ·)Id and
Γ1(·, ·) = k1(·, ·)Id, where k0, k1 : X × X → R are
scalar-valued kernel and Id : H → H is the identity op-
erator. Following Park & Muandet (2020a, Eqn. (4)), the
empirical estimates µ̂Y0|X and µ̂Y1|X of µY0|X and µY1|X
are constructed, for each x ∈ X , as

µ̂Y0|X=x = kT0 (x)W0l0 ∈ G0

and µ̂Y1|X=x = kT1 (x)W1l1 ∈ G1, where
(2)

W0 = (K0 + n0λ
0
n0
In0

)−1, W1 = (K1 + n1λ
1
n1
In1

)−1,
[K0]1≤i,j≤n0

= k0(x0
i , x

0
j ), [K1]1≤i,j≤n1

= k1(x1
i , x

1
j ),

λ0
n0
, λ1
n1
> 0 are regularisation parameters, In0

and In1
are

identity matrices, k0(x) = (k0(x0
1, x), ..., k0(x0

n0
, x))T ,

k1(x) = (k1(x1
1, x), ..., k1(x1

n1
, x))T , l0 =

(l(y0
1 , ·), ..., l(y0

n0
, ·))T and l1 = (l(y1

1 , ·), ..., l(y1
n1
, ·))T .

By plugging in the estimates (2) in the expression (1) for
UMMD, we can construct ÛMMD as

ÛMMD(x) = ‖µ̂Y1|X=x − µ̂Y0|X=x‖H.

The next lemma establishes a closed-form expression for
ÛMMD based on the control and treatment samples.
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Algorithm 1 Kernel conditional discrepancy (KCD) test of
conditional distributional treatment effect

Input: data {(xi, zi, yi)}ni=1, significant level α, kernels
k0, k1, l, regularisation parameters λ0

n0
, λ1
n1

, no. of per-
mutations m.
Calculate t̂ using Lemma 4.4 based on the input data.
KLR of {zi}ni=1 against {xi}ni=1 to obtain ê(xi).
for k = 1 to m do

For each i = 1, ..., n, sample z̃i ∼ Bernoulli(ê(xi)).
Calculate t̂k from the new dataset {xi, z̃i, yi}ni=1.

end for
Calculate the p-value as p =

1+
∑m
l=1 1{t̂l>t̂}
1+m .

if p < α then
Reject H0.

end if

Lemma 4.1. For each x ∈ X , we have

Û2
MMD(x) = kT0 (x)W0L0W

T
0 k0(x)

− 2kT0 (x)W0LW
T
1 k1(x)

+ kT1 (x)W1L1W
T
1 k1(x), where

[L0]1≤i,j≤n0
= l(y0

i , y
0
j ), [L]1≤i≤n0,1≤j≤n1

= l(y0
i , y

1
j )

and [L1]1≤i,j≤n1
= l(y1

i , y
1
j ).

The proof of this, and all other results, are deferred to Ap-
pendix C. The next theorem shows that, using universal
kernels Γ0,Γ1 (Carmeli et al., 2010, Definition 4.1), ÛMMD
is universally consistent with respect to the PEHDE.

Theorem 4.2 (Universal consistency). Suppose that k0, k1

and l are bounded, that Γ0 and Γ1 are universal, and that
λ0
n0

and λ1
n1

decay at slower rates than O(n
−1/2
0 ) and

O(n
−1/2
1 ) respectively. Then as n0, n1 →∞,

ψMMD(ÛMMD) = E[(ÛMMD(X)− UMMD(X))2]
p→ 0.

4.2. Statistical Hypothesis Testing

We are interested in whether or not the two conditional
distributions PY0|X and PY1|X , corresponding to control
and treatment, are equal. The hypotheses are then

H0: PY0|X=x(·) = PY1|X=x(·) PX -almost everywhere.

H1: There exists A ⊆ X with positive measure such that
PY0|X=x(·) 6= PY1|X=x(·) for all x ∈ A.

The null hypothesis H0 means that the treatment has no
effect for any of the covariates, whereas the alternative hy-
pothesis H1 means that the treatment has an effect on some
of the covariates, where the effect is distributional. For
notational simplicity, we write PY0|X ≡ PY1|X if H0 holds.

We use the following criterion for PY0|X ≡ PY1|X , which
we call the kernel conditional discrepancy (KCD):

t = E[‖µY1|X − µY0|X‖
2
H].

The following lemma tells us that t can indeed be used as a
criterion of PY0|X ≡ PY1|X .
Lemma 4.3. If l is a characteristic kernel, PY0|X ≡ PY1|X
if and only if t = 0.

Next, we define a plug-in estimate t̂ of t, which we will use
as the test statistic of our hypothesis test:

t̂ =
1

n

n∑
i=1

∥∥∥µ̂Y1|X=xi − µ̂Y0|X=xi

∥∥∥2

H
.

Then we have a closed-form expression for t̂ as follows.
Lemma 4.4. We have

t̂ =
1

n
Tr
(
K̃0W0L0W

T
0 K̃

T
0

)
− 2

n
Tr
(
K̃0W0LW

T
1 K̃

T
1

)
+

1

n
Tr
(
K̃1W1L1W

T
1 K̃

T
1

)
,

where L0,L1 and L are as defined in Lemma 4.1 and
[K̃0]1≤i≤n,1≤j≤n0

= k0(xi, x
0
j ) and [K̃1]1≤i≤n,1≤j≤n1

=

k1(xi, x
1
j ).

The consistency of t̂ in the limit of infinite data is shown in
the following theorem.
Theorem 4.5. Under the same assumptions as in Theorem
4.2, we have t̂

p→ t as n0, n1 →∞.

Unfortunately, it is extremely difficult to compute the
(asymptotic) null distribution of t̂ analytically, and so we
resort to resampling the treatment labels to simulate the null
distribution. To ensure that our resampling scheme respects
the control and treatment covariate distributions PX|Z=0

and PX|Z=1, we follow the conditional resampling scheme
of Rosenbaum (1984). We first estimate the propensity
score e(xi) for each datapoint xi (e.g. using kernel logis-
tic regression (KLR) (Zhu & Hastie, 2005; Marteau-Ferey
et al., 2019)), and then resample each data label from this
estimated propensity score. By repeating this resampling
procedure and computing the test statistic on each resampled
dataset, we can simulate from the null distribution of the test
statistic. Finally, the test statistic computed from the original
dataset is compared to this simulated null distribution, and
the null hypothesis is rejected or not rejected accordingly.
The exact procedure is summarised in Algorithm 1.

5. Understanding the CoDiTE
After determining whether PY0|X and PY1|X are different
via MMD-associated CoDiTE and hypothesis testing, we
now turn to Q2, i.e. we investigate how they are different.
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5.1. Conditional Witness Functions

For two real-valued random variables, the witness function
between them is a useful tool for visualising where their
densities differ, without explicitly estimating the densities
(Gretton et al., 2012, Figure 1; Lloyd & Ghahramani, 2015,
Figure 1). We extend this to the conditional case with the
(unnormalised) conditional witness function µY1|X −µY0|X .

Let us fix x ∈ X . The witness function between PY1|X=x

and PY0|X=x is µY1|X=x − µY0|X=x : Y → R. For y ∈ Y
in regions where the density of PY1|X=x is greater than that
of PY0|X=x, we have µY1|X=x(y)− µY0|X=x(y) > 0. For
y in regions where the converse is true, we similarly have
µY1|X=x(y)− µY0|X=x(y) < 0. The greater the difference
in density, the greater the magnitude of the witness function.
For each y ∈ Y , the associated CoDiTE is

Uwitness,y(x) = µY1|X=x(y)− µY0|X=x(y).

The estimates in (2) can be plugged in to obtain the estimate
Ûwitness,y = µ̂Y1|X=x(y)− µ̂Y0|X=x(y). Since convergence
in the RKHS norm implies pointwise convergence (Berlinet
& Thomas-Agnan, 2004, p.10, Corollary 1), Theorem 4.2
implies the consistency of Ûwitness,y with respect to the corre-
sponding PEHDE. Clearly, if X is more than 1-dimensional,
heat maps as in Figure 1(c) cannot be plotted; however, fix-
ing a particular x ∈ X , µ̂Y1|X=x − µ̂Y0|X=x can be plotted
against y, since Y ⊆ R. Such plots will be informative
of where the density of PY1|X=x is greater than that of
PY0|X=x and vice versa.

5.2. CoDiTE associated with Specific Distributional
Quantities via U-statistic Regression

Next, we consider CoDiTE on specific distributional quanti-
ties, such as the mean, variance or skewness, or some func-
tion thereof. For example, Briseño Sanchez et al. (2020, Eqn.
(2)) were interested, in addition to the CATE, in the treat-
ment effect on the standard deviation UD(x) = std(Y1|X =
x)− std(Y0|X = x). Our motivating example in Figure 1
could inspire a “standardised” version of the CATE3:

UD(x) =
E[Y1|X = x]− E[Y0|X = x]√

Var(Y1|X = x) + Var(Y0|X = x)
. (3)

Many of these quantities can be represented as the expec-
tation of a U-kernel, i.e. E[h(Y1, ..., Yr)] (c.f. Section 2.2).
For example, h(y) = y gives the mean, h(y1, y2) = 1

2 (y1−
3In practice, if the CoDiTE involves ratios of estimated quanti-

ties, we do not recommend plugging in the estimates directly into
the ratio, since, if the denominator is small, then a small error in
the estimation of the denominator will result in a large error in
the overall CoDiTE estimation. Instead, we recommend that the
practitioner estimate the numerator and the denominator separately
and interpret the results directly from the raw estimates.

y2)2 gives the variance and h(y1, y2) = |y1 − y2| gives
Gini’s mean difference. We consider their conditional coun-
terparts, i.e. θ(PY0|X) = E[h(Y01, ..., Y0r)|X1, ..., Xr] and
θ(PY1|X) = E[h(Y11, ..., Y1r)|X1, ..., Xr] (c.f. Section
2.2). By Çınlar (2011, p.146, Theorem 1.17), there ex-
ist functions F0, F1 : X r → R such that F0(X1, ..., Xr) =
θ(PY0|X) and F1(X1, ..., Xr) = θ(PY1|X).

Estimation of F0 and F1 can be done via U-statistic regres-
sion, by generalising kernel ridge regression as follows. As
in Section 4.1, let k0 : X × X → R be a kernel on X with
RKHSH0. Then if we define kr0 : X r ×X r → R as

kr0((x1, ..., xr), (x
′
1, ..., x

′
r)) = k0(x1, x

′
1)...k0(xr, x

′
r),

Berlinet & Thomas-Agnan (2004, p.31, Theorem 13) tells
us that kr0 is a reproducing kernel on X r with RKHSHr0 =
H0 ⊗ ... ⊗ H0, the r-times tensor product of H0, whose
elements are functions X r → R. We estimate F0 in Hr0.
Given any F ∈ Hr0, the natural least-squares risk is

E(F ) = E[(F (X1, ..., Xr)− h(Y01, ..., Y0r))
2].

Recalling the control sample {(x0
i , y

0
i )}n0

i=1, we solve the
following regularised least-squares problem:

F̂0 = arg min
F∈Hr0

{
Ê(F ) + λ0

n0
‖F‖2Hr0

}
(4)

where the empirical least-squares risk Ê is defined as

Ê(F ) =
1(
n0

r

) ∑(
F (x0

i1 , ..., x
0
ir )− h(y0

i1 , ..., y
0
ir )
)2

,

with the summation over the
(
n0

r

)
combinations of r distinct

elements {i1, ..., ir} from {1, ..., n0}. Note that Ê(F ) is
itself a U-statistic for the estimation of E(F ). The following
is a representer theorem for the problem in (4).

Theorem 5.1. The solution F̂0 to the problem in (4) is

F̂0(x1, ..., xr) =

n0∑
i1,...,ir

k0(x0
i1 , x1)...k0(x0

ir , xr)c
0
i1,...,ir

where the coefficients c0i1,...,ir ∈ R are the unique solution
of the nr linear equations,

n0∑
j1,...,jr=1

(
k0

(
x0
i1 , x

0
j1

)
...k0

(
x0
ir , x

0
jr

)

+

(
n0

r

)
λ0
n0
δi1j1 ...δirjr

)
c0j1,...,jr = h

(
y0
i1 , ..., y

0
ir

)
.

Note that if r = 1 and h(y) = y, we recover the usual
kernel ridge regression. The following result shows that this
estimation procedure is universally consistent.
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Table 1. Root mean square error in estimating the conditional standard deviation, with standard error from 100 simulations, for GAMLSS
(implemented via the R package gamlss (Rigby & Stasinopoulos, 2005)) and our U-statistic regression via generalised kernel ridge
regression (U-regression KRR; implemented via the Falkon library on Python (Rudi et al., 2017; Meanti et al., 2020)). Lower is better.

Method Setting SN Setting LN Setting HN
Control Treatment Control Treatment Control Treatment

GAMLSS 0.17± 0.031 0.767± 0.414 3.3± 0.55 15.44± 8.128 2.27± 0.44 10.91± 5.42
U-regression KRR 0.13± 0.059 0.16± 0.059 1.1± 0.31 2.16± 0.61 0.7± 0.25 1.39± 0.47

Figure 2. Hypothesis testing and witness functions on the IHDP dataset. (a) Hypothesis test is conducted on 100 simulations for each
setting, with the bar chart showing proportion of tests rejected for each setting. In setting “LN”, where the variance overwhelms the CATE,
the test does not reject the hypothesis PY0|X ≡ PY1|X , whereas in the other two settings, the hypothesis is rejected. (b) At both X = a
and X = b, the density of the control group is larger than that of the treatment group around Y = 0, and the reverse is true around Y = 4,
showing the marked effect of the treatment. (c) At both X = a and X = b, the density of the control and treatment groups are roughly
equal for all Y . (d) At X = a, where the variance engulfs the CATE, the density of the control and treatment groups are roughly equal for
all Y , whereas at X = b, the witness function clearly shows where the density of one group dominates the other. The juxtaposition of
witness functions at different points in the covariate space is an exploratory tool to compare the relative strength of the treatment effect.

Theorem 5.2. Suppose kr0 is a bounded and universal ker-
nel and that λ0

n0
decays at a slower rate than O(n

−1/2
0 ).

Then as n0 →∞,

E
[(
F̂0 (X1, ..., Xr)− F0 (X1, ..., Xr)

)2
]

p→ 0.

A consistent estimate F̂1 of F1 is obtained by exactly the
same procedure, using the treatment sample {(x1

i , y
1
i )}n1

i=1.

6. Experiments
6.1. Semi-synthetic IHDP Data

We demonstrate the use of our methods on the Infant Health
and Development Program (IHDP) dataset (Hill, 2011, Sec-
tion 4). The covariates are taken from a randomised control
trial, from which a non-random portion is removed to imi-
tate an observational study. The reason for its popularity in
the CATE literature is that, for each datapoint, the outcome
is simulated for both treatment and control, enabling cross-
validation and evaluation, which is usually not possible in
observational studies due to the missing counterfactuals. Ex-
isting works first define the noiseless response surfaces for
the control and treatment groups, and generate realisations
of the potential outcomes by applying Gaussian noise with
constant variance across the whole dataset.

This last assumption of constant variance is somewhat un-

realistic, but of little importance in evaluating CATE esti-
mators. In our experiments, we modify the data generating
process in three different ways, all of which have the same
parallel linear mean response surfaces, with the CATE of
4 (“response surface A” in Hill (2011)). In setting “SN”
(“small noise”), the standard deviation of the noise is con-
stant at 1, so that the CATE of 4 translates to a meaningful
treatment effect. In setting “LN” (“large noise”), the stan-
dard deviation of the noise is constant at 20, meaning that
the mean difference in the response surfaces is negligible
in comparison. In this case, our test does not reject the hy-
pothesis that the two conditional distributions are the same,
and there is no case for further investigation (see middle bar
in Figure 2(a)). In setting “HN” (“heterogeneous noise”),
the standard deviation is heterogeneous across the dataset,
so that the standard deviation is 1 for some data points
while others have standard deviation of 20. The exact data
generating process is detailed in Appendix B.

In setting “HN”, let us consider points a,b ∈ X with
sd(Y |X = a) = 20 and sd(Y |X = b) = 1. Then
even though the CATE at a and b are equal at 4, we have
std(Y1−Y0|X = a)� std(Y1−Y0|X = b), such that there
is a pronounced treatment effect at b, while the variance en-
gulfs the treatment effect at a. The comparative magnitudes
of the witness functions conditioned on a and b confirm
this heterogeneity (see Figure 2(d)). In Table 1, the quality
of estimation of the standard deviation via our U-statistic
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Figure 3. Witness functions for Black, unmarried participant
up to the age of 25, unemployed in both 1974 and 1975. Each
curve (witness function) corresponds to an individual in this subset.

regression is compared with GAMLSS (Stasinopoulos et al.,
2017) estimation for each setting.

An immediate benefit is a better understanding of the treat-
ment. Even a perfect CATE estimator cannot capture such
heterogeneity in distributional treatment effect (variance,
in this case). As argued in Section 1.1, any method that
involves comparing mean values (of which CATE is one)
should also take into account the variance for it to be mean-
ingful. This will give a clearer picture of the subpopulations
on which there is a marked treatment effect, and those on
which it is weaker, than relying on the CATE alone. Such
knowledge should in turn influence policy decisions, in
terms of which subpopulations should be targeted. We note
that recently Jesson et al. (2020) considered CATE uncer-
tainty in IHDP in the context of a different task: making or
deferring treatment recommendations while using Bayesian
neural networks, focusing on cases where overlap fails or
under covariate shift; however, distributional considerations
can be important even when overlap is satisfied and no co-
variate shift takes place.

6.2. Real Outcomes: LaLonde Data

In this section, we apply the proposed methods to LaLonde’s
well-known National Supported Work (NSW) dataset
(LaLonde, 1986; Dehejia & Wahba, 1999) which has been
used widely to evaluate estimators of treatment effects. The
outcome of interest Y is the real earnings in 1978, with
treatment Z being the job training. We refer the interested
readers to Dehejia & Wahba (1999, Sec. 2.1) for a de-
tailed description of the dataset. As income distributions
are known to be skewed to the right, it may be interesting to
investigate not only the CATE, but the entire distributions.

The test rejects the hypothesis PY0|X ≡ PY1|X with p-value
of 0.013. As a demonstration of the kind of exploratory
analysis that can be conducted using the conditional witness
functions, we focus our attention on a subset of the data on
which the overlap condition is satisfied – Black, unmarried
participants up to the age of 25, who were unemployed in
both 1974 and 1975. Figure 3 shows the witness function

for each individual in this subset, with the colour of the
curve delineating whether the corresponding individual has
a high school diploma.

We can see clearly that for those without a high school
diploma, the treatment effect is not so pronounced, whereas
there is a marked treatment effect for those with it. Negative
values of the witness function for small income values mean
that we are more likely to get small income values from
the control group than the treatment group, whereas larger
income values are more likely to come from the treatment
group, as indicated by the positive values of the witness
functions. In particular, the tail of the blue curves to the
right implies a skewness of the density of the treated group
relative to the control group, and the treatment group con-
tinues to have larger density than the control group for high
income values (> 25000), albeit to a lesser extent. Such
comparison of densities in different regions of Y is not pos-
sible with the CATE, which is a simple difference of the
means between the control and treated groups.

7. Discussion & Conclusion
In this paper, we discussed the analysis of the conditional
distributional treatment effect (CoDiTE). We first propose
a new kernel-based hypothesis test via kernel conditional
mean embeddings to see whether there exists any CoDiTE.
Then we proceeded to investigate the nature of the treatment
effect via conditional witness functions, revealing where and
how much the conditional densities differ, and U-statistic
regression, which is informative about the differences in
specific conditional distributional quantities.

We foresee that much of the work that has been done by the
machine learning community on treatment effect analysis,
although cast mostly in the context of CATE, applies for
the CoDiTE. Examples include meta learners (Künzel et al.,
2019), model validation (Alaa & Van Der Schaar, 2019),
subgroup analysis (Su et al., 2009; Lee et al., 2020) and co-
variate balancing (Gretton et al., 2009; Kallus, 2018). overo
A major obstacle in any covariate-conditional analysis of
treatment effect is this: when the covariate space is high-
dimensional, the accuracy and reliability of the estimates
deteriorate significantly due to the curse of dimensionality,
and we heavily rely on changes to be smooth across the co-
variate space. This limitation is present not only in methods
presented in this paper, but any CATE or CoDiTE analysis.
While out of scope for the present paper, it is of interest to
investigate how to mitigate this problem.

Last but not least, we argue that the conditional distribu-
tional treatment effect can play an important role in making
fair and explainable decisions as it provides a more complete
picture of the treatment effect. On the one hand, policymak-
ers can use tools that we develop to identify the groups of
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individuals for which the outcome distributions differ most
through the effect modifiers. On the other hand, the pres-
ence of effect modification that is associated with sensitive
attributes such as race, ethnicity, and gender creates chal-
lenges for decision makers. If they knew that there is effect
modification by race, for example, certain groups of indi-
viduals may be treated unfairly. In practice, our tools can
potentially be used to detect the discrepancy between out-
come distributions conditioned on these sensitive attributes,
which is also an interesting avenue for future work.
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ligent Systems, Tübingen, for readily providing help with
running the codes, and for other insightful discussions. We
also thank Alexis Derumigny at Delft University of Tech-
nology and Giacomo Meanti at Università degli Studi di
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