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Abstract
The linear contextual bandit literature is mostly
focused on the design of efficient learning algo-
rithms for a given representation. However, a
contextual bandit problem may admit multiple lin-
ear representations, each one with different char-
acteristics that directly impact the regret of the
learning algorithm. In particular, recent works
showed that there exist “good” representations
for which constant problem-dependent regret can
be achieved. In this paper, we first provide a
systematic analysis of the different definitions of
“good” representations proposed in the literature.
We then propose a novel selection algorithm able
to adapt to the best representation in a set of M
candidates. We show that the regret is indeed
never worse than the regret obtained by running
LINUCB on the best representation (up to a lnM
factor). As a result, our algorithm achieves con-
stant regret whenever a “good” representation is
available in the set. Furthermore, we show that
the algorithm may still achieve constant regret by
implicitly constructing a “good” representation,
even when none of the initial representations is
“good”. Finally, we empirically validate our theo-
retical findings in a number of standard contextual
bandit problems.

1. Introduction
The stochastic contextual bandit is a general framework to
formalize sequential decision-making problems in which
at each step the learner observes a context drawn from a
fixed distribution, it plays an action, and it receives a noisy
reward. The goal of the learner is to maximize the reward
accumulated over n rounds, and the performance is typically
measured by the regret w.r.t. playing the optimal action in
each context. This paradigm has found application in a large
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range of domains, including recommendation systems, on-
line advertising, and clinical trials (e.g., Bouneffouf & Rish,
2019). Linear contextual bandit (Lattimore & Szepesvári,
2020) is one of the most studied instances of contextual ban-
dit due to its efficiency and strong theoretical guarantees. In
this setting, the reward for each context x and action a is as-
sumed to be representable as the linear combination between
d-dimensional features φ(x, a) ∈ Rd and an unknown pa-
rameter θ? ∈ Rd. In this case, we refer to φ as a realizable
representation. Algorithms based on the optimism-in-the-
face-of-uncertainty principle such as LINUCB (Chu et al.,
2011) and OFUL (Abbasi-Yadkori et al., 2011), have been
proved to achieve minimax regret bound O

(
Sd
√
n ln(nL)

)
and problem-dependent regret O

(
S2d2

∆ ln2(nL)
)
, where ∆

is the minimum gap between the reward of the best and
second-best action across contexts, and L and S are upper
bounds to the `2-norm of the features φ and θ?, respectively.

Unfortunately, the dimension d, and the norm upper bounds
L and S, are not the only characteristics of a representation
to have an effect on the regret and existing bounds may fail
at capturing the impact of the context-action features on the
performance of the algorithm. In fact, as illustrated in Fig. 1,
running LINUCB with different realizable representations
with same parameters d and S may lead to significantly
different performance. Notably, there are “good” represen-
tations for which LINUCB achieves constant regret, i.e., not
scaling with the horizon n. Recent works identified differ-
ent conditions on the representation that can be exploited to
achieve constant regret for LINUCB (Hao et al., 2020; Wu
et al., 2020). Similar conditions have also been leveraged
to prove other interesting learning properties, such as sub-
linear regret for greedy algorithms (Bastani et al., 2020), or
regret guarantees for model selection between linear and
multi-arm representations (Chatterji et al., 2020; Ghosh
et al., 2020). While all these conditions, often referred to
as diversity conditions, depend on how certain context-arm
features span the full Rd space, there is no systematic analy-
sis of their connections and of which ones can be leveraged
to achieve constant regret in linear contextual bandits.

In this paper, we further investigate the concept of “good”
representations in linear bandit and we provide the follow-
ing contributions: 1) We review the diversity conditions
available in the literature, clarify their relationships, and
discuss how they are used. We then focus on our primary
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Figure 1. Regret of LINUCB with different realizable representa-
tions with same dimension d and parameter bound S. The dashed
blue line is LEADER, our proposed representation selection algo-
rithm. Details in App. G.1.

goal, which is to characterize the assumptions needed to
achieve constant regret for LINUCB. 2) We introduce a novel
algorithm that effectively selects the best representation in a
given set, thus achieving constant regret whenever at least
one “good” representation is provided. 3) Furthermore, we
show that, in certain problems, the algorithm is able to
combine given representations to implicitly form a “good”
one, thus achieving constant problem-dependent regret even
when running LINUCB on any of the representations would
not. 4) Finally, we empirically validate our theoretical find-
ings on a number of contextual bandit problems.

Related work. The problem of selecting the best represen-
tation in a given set can be seen as a specific instance of
the problem of model selection in bandits. In model selec-
tion, the objective is to choose the best candidate in a set
of base learning algorithms. At each step, a master algo-
rithm is responsible for selecting a base algorithm, which
in turn prescribes the action to play and the reward is then
provided as feedback to the base algorithms. Examples of
model selection methods include adversarial masters –e.g.,
EXP4 (Auer et al., 2002; Maillard & Munos, 2011) and
CORRAL (Agarwal et al., 2017; Pacchiano et al., 2020b)–
and stochastic masters (Abbasi-Yadkori et al., 2020; Lee
et al., 2020; Bibaut et al., 2020; Pacchiano et al., 2020a).
For a broader discussion refer to App. A or (Pacchiano et al.,
2020a, Sec. 2). Most of these algorithms achieve the regret
of the best base algorithm up to a polynomial dependence
on the number M of base algorithms (Agarwal et al., 2017).
While existing model selection methods are general and can
be applied to any type of base algorithms, 1 they may not be
effective in problems with a specific structure.

An alternative approach is to design the master algorithm
for a specific category of base algorithms. An instance of

1Most of existing methods only require prior knowledge of the
regret of the optimal base algorithm or a bound on the regret of
all base algorithms. CORRAL also requires the base algorithms to
satisfy certain stability conditions.

this case is the representation-selection problem, where the
base algorithms only differ by the representation used to
estimate the reward. Foster et al. (2019) and Ghosh et al.
(2020) consider a set of nested representations, where the
best representation is the one with the smallest dimensional-
ity for which the reward is realizable. Finally, Chatterji et al.
(2020) focus on the problem of selecting between a linear
and a multi-armed bandit representation. In this paper, we
consider an alternative representation-selection problem in
linear contextual bandits, where the objective is to exploit
constant-regret “good” representations. Differently from
our work, Lattimore et al. (2020) say that a linear repre-
sentation is “good” if it has a low misspecification (i.e., it
represents the reward up to a small approximation error),
while we focus on realizable representations for which LIN-
UCB achieves constant-regret.

2. Preliminaries
We consider the stochastic contextual bandit problem (con-
textual problem for short) with context space X and finite
action set A = [K] = {1, . . . ,K}. At each round t ≥ 1,
the learner observes a context xt sampled i.i.d. from a distri-
bution ρ over X , it selects an arm at ∈ [K] and it receives
a reward yt = µ(xt, at) + ηt where ηt is a σ-subgaussian
noise. The learner’s objective is to minimize the pseudo-
regretRn =

∑n
t=1 µ

?(xt)−µ(xt, at) for any n > 0, where
µ?(xt) := maxa∈[K] µ(xt, a). We define the minimum
gap as ∆ = infx∈X :ρ(x)>0,a∈[K],∆(x,a)>0{∆(x, a)} where
∆(x, a) = µ?(x) − µ(x, a). A realizable dφ-dimensional
linear representation is a feature map φ : X × [K] →
Rdφ for which there exists an unknown parameter vector
θ?φ ∈ Rdφ such that µ(x, a) = 〈φ(x, a), θ?φ〉. When a realiz-
able linear representation is available, the problem is called
(stochastic) linear contextual bandit and can be solved us-
ing, among others, optimistic algorithms like LINUCB (Chu
et al., 2011) or OFUL (Abbasi-Yadkori et al., 2011).

Given a realizable representation φ, at each round t, LIN-
UCB builds an estimate θtφ of θ?φ by ridge regression
using the observed data. Denote by Vtφ = λIdφ +∑t−1
k=1 φ(xk, ak)φ(xk, ak)T the (λ > 0)-regularized design

matrix at round t, then θtφ = V −1
tφ

∑t−1
k=1 φ(xk, ak)yk. As-

suming that ‖θ?φ‖2 ≤ Sφ and supx,a ‖φ(x, a)‖2 ≤ Lφ,
LINUCB builds a confidence ellipsoid Ctφ(δ) =

{
θ ∈ Rdφ :∥∥θtφ − θ∥∥Vtφ ≤ βtφ(δ)

}
. As shown in (Abbasi-Yadkori

et al., 2011, Thm. 1), when

βtφ(δ) := σ

√
2 ln

(
det(Vtφ)1/2 det(λIdφ)−1/2

δ

)
+
√
λSφ,

then P(∀t ≥ 1, θ?φ ∈ Ctφ(δ)) ≥ 1 − δ. At each step t,
LINUCB plays the action with the highest upper-confidence
bound at = argmaxa∈[K] maxθ∈Ctφ(δ)〈φ(xt, a), θ〉, and it
is shown to achieve a regret bounded as reported in the
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following proposition.

Proposition 1 (Abbasi-Yadkori et al., 2011, Thm. 3, 4). For
any linear contextual bandit problem with dφ-dimensional
features, supx,a ‖φ(x, a)‖2 ≤ Lφ, an unknown parameter
vector ‖θ?φ‖2 ≤ Sφ, with probability at least 1− δ, LINUCB

suffers regretRn = O
(
Sφdφ

√
n ln(nLφ/δ)

)
. Furthermore,

if the problem has a minimum gap ∆ > 0, then the regret is

bounded as2 Rn = O

(
S2
φd

2
φ

∆ ln2(nLφ/δ)

)
.

In the rest of the paper, we assume w.l.o.g. that all terms λ,
∆max = maxx,a ∆(x, a), Sφ, σ are larger than 1 to simplify
the expression of the bounds.

3. Diversity Conditions
Several assumptions, usually referred to as diversity condi-
tions, have been proposed to define linear bandit problems
with specific properties that can be leveraged to derive im-
proved learning results. While only a few of them were
actually leveraged to derive constant regret guarantees for
LINUCB (others have been used to prove e.g., sub-linear re-
gret for the greedy algorithm, or regret guarantees for model
selection algorithms), they all rely on very similar condi-
tions on how certain context-action features span the full
Rdφ space. In this section, we provide a thorough review
of these assumptions, their connections, and how they are
used in the literature. As diversity conditions are getting
more widely used in bandit literature, we believe this review
may be of independent interest. Sect. 4 will then specifically
focus on the notion of good representation for LINUCB.

We first introduce additional notation. For a realizable
representation φ, let φ?(x) := φ(x, a?x), where a?x ∈
argmaxa∈[K] µ(x, a) is an optimal action, be the vector
of optimal features for context x. In the following we
make the assumption that φ?(x) is unique. Also, let
X ?(a) = {x ∈ X : µ(x, a) = µ?(x)} denote the set of
contexts where a is optimal. Finally, for any matrix A, we
denote by λmin(A) its minimum eigenvalue. For any con-
textual problem with reward µ and context distribution ρ,
the diversity conditions introduced in the literature are sum-
marized in Tab. 2 together with how they were leveraged to
obtain regret bounds in different settings.3

We first notice that all conditions refer to the smallest eigen-
value of a design matrix constructed on specific context-
action features. In other words, diversity conditions re-
quire certain features to span the full Rdφ space. The

2The logarithmic bound reported in Prop. 1 is slightly different
than the one in (Abbasi-Yadkori et al., 2011) since we do not
assume that the optimal feature is unique.

3In some cases, we adapted conditions originally defined in
the disjoint-parameter setting, where features only depend on the
context (i.e., φ(x)) and the unknown parameter θ?a is different for
each action a, to the shared-parameter setting (i.e., where features
are functions of both contexts and actions) introduced in Sect. 2.

non-redundancy condition is a common technical assump-
tion (e.g., Foster et al., 2019) and it simply defines a prob-
lem whose dimensionality cannot be reduced without losing
information. Assuming the context distribution ρ is full
support, BBK and CMB are structural properties of the
representation that are independent from the reward. For
example, BBK requires that, for each action, there must be
feature vectors lying in all orthants of Rdφ . In the case of fi-
nite contexts, this implies there must be at least 2dφ contexts.
WYS and HLS involve the notion of reward optimality. In
particular, WYS requires that all actions are optimal for at
least a context (in the continuous case, for a non-negligible
set of contexts), while HLS only focuses on optimal actions.

We now review how these conditions (or variations thereof)
were applied in the literature. CMB is a rather strong con-
dition that requires the features associated with each in-
dividual action to span the whole Rdφ space. Chatterji
et al. (2020) leverage a CMB-like assumption to prove re-
gret bounds for OSOM, a model-selection algorithm that
unifies multi-armed and linear contextual bandits. More pre-
cisely, they consider a variation of CMB, where the context
distribution induces stochastic feature vectors for each ac-
tion that are independent and centered. The same condition
was adopted by Ghosh et al. (2020) to study representation-
selection problems and derive algorithms able to adapt to
the (unknown) norm of θ?φ or select the smallest realizable
representation in a set of nested representations. Bastani
et al. (2020, Assumption 3) introduced a condition simi-
lar to BBK for the disjoint-parameter case. In their set-
ting, they prove that a non-explorative greedy algorithm
achieves O(ln(n)) problem-dependent regret in linear con-
textual bandits (with 2 actions).4 Hao et al. (2020, Theorem
3.9) showed that HLS representations can be leveraged to
prove constant problem-dependent regret for LINUCB in
the shared-parameter case. Concurrently, Wu et al. (2020)
showed that, under WYS, LINUCB achieves constant ex-
pected regret in the disjoint-parameter case. A WYS-like
condition was also used by Bastani et al. (2020, Assumption
4) to extend the result of sublinear regret for the greedy al-
gorithm to more than two actions. The relationship between
all these conditions is derived in the following lemma.

Lemma 1. For any contextual problem with reward µ and
context distribution ρ, let φ be a realizable linear represen-
tation. The relationship between the diversity conditions in
Tab. 2 is summarized in Fig. 3, where each inclusion is in a
strict sense and each intersection is non-empty.

This lemma reveals non-trivial connections between the
diversity conditions, better understood through the exam-
ples provided in the proof (see App. B.1). BBK is indeed

4Whether this is enough for the optimality of the greedy algo-
rithm in the shared-parameter setting is an interesting problem, but
it is beyond the scope of this paper.
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Name Definition Application

Non-
redundant λmin

(
1/K

∑
a∈[K] Ex∼ρ

[
φ(x, a)φ(x, a)T

])
> 0

CMB ∀a, λmin

(
Ex∼ρ

[
φ(x, a)φ(x, a)T

])
> 0 Model selection

BBK
∀a,u ∈ Rd,

λmin

(
Ex
[
φ(x, a)φ(x, a)T1

{
φ(x, a)Tu ≥ 0

}] )
> 0

Logarithmic regret
for greedy

HLS λmin

(
Ex∼ρ

[
φ?(x)φ?(x)T

])
> 0

Constant regret for
LINUCB

WYS ∀a, λmin

(
Ex∼ρ

[
φ(x, a)φ(x, a)T1 {x ∈ X ?(a)}

])
> 0

Constant regret for
LINUCB

Figure 2. Diversity conditions proposed in the literature adapted to the shared-parameter setting. The
names refer to the authors who first introduced similar conditions.

HLS

CMB

BBK

WYS

Non-redundant

Figure 3. Categorization of
diversity conditions.

stronger than CMB, and thus it is sufficient for the model
selection results by Chatterji et al. (2020). By superficially
examining their definitions, CMB may appear stronger than
HLS, but the two properties are actually non-comparable,
as there are representations that satisfy one condition but
not the other. The implications of Fig. 3 on constant-regret
guarantees are particularly relevant for our purposes. There
are representations that satisfy BBK or CMB and are nei-
ther HLS nor WYS and thus may not enable constant regret
for LINUCB. We notice that WYS is a stronger condition
than HLS. Although WYS may be necessary for LINUCB to
achieve constant regret in the disjoint-parameter case, HLS
is sufficient for the shared-parameter case we consider in
this paper. For this reason, in the following section we adopt
HLS to define good representations for LINUCB and provide
a more complete characterization.

4. Good Representations for Constant Regret
The HLS condition was introduced by Hao et al. (2020), who
provided a first analysis of its properties. In this section, we
complement those results by providing a complete proof of a
constant regret bound, a proof of the fact that HLS is actually
necessary for constant regret, and a novel characterization
of the existence of HLS representations. In the following
we define λφ,HLS := λmin

(
Ex∼ρ

[
φ?(x)φ?(x)T

])
, which is

strictly positive for HLS representations.

4.1. Constant Regret Bound

We begin by deriving a constant problem-dependent regret
bound for LINUCB under the HLS condition.

Lemma 2. Consider a contextual bandit problem with real-
izable linear representation φ satisfying the HLS condition
(see Tab. 2). Assume ∆ > 0, maxx,a ‖φ(x, a)‖2 ≤ L and
‖θ?φ‖2 ≤ S. Then, with probability at least 1−2δ, the regret
of OFUL after n ≥ 1 steps is at most

Rn ≤
32λ∆2

maxS
2
φσ

2

∆

(
2 ln

(
1

δ

)
+ dφ ln

(
1 +

τφL
2
φ

λdφ

))2

,

where ∆max = maxx,a ∆(x, a) is the maximum gap and

τφ ≤ max

{
3842d2

φL
2
φS

2
φσ

2λ

λφ,HLS∆2
ln2

(
64d2

φL
3
φσSφ

√
λ√

λφ,HLS∆δ

)
,

768L4
φ

λ2
φ,HLS

ln

(
512dφL

4
φ

δλ2
φ,HLS

)}
.

We first notice that τφ is independent from the horizon n,
thus making the previous bound a constant only depending
on the problem formulation (i.e., gap ∆, norms Lφ and
Sφ) and the value λφ,HLS which measures “how much” the
representation φ satisfies the HLS condition. Furthermore,
one can always take the minimum between the constant
regret in Lem. 2 and any other valid regret bound for OFUL
(e.g.,O(log(n)/∆))), which may be tighter for small values
of n. While Lem. 2 provides high-probability guarantees,
we can easily derive a constant expected-regret bound by
running LINUCB with a decreasing schedule for δ (e.g.,
δt ∝ 1/t3) and with a slightly different proof (see App. C
and the proof sketch below).

Proof sketch (full proof in App. C). Following Hao et al.
(2020), the idea is to show that the instantaneous regret
rt+1 = 〈θ?, φ?(xt+1) − φ(xt+1, at+1)〉 is zero for suffi-
ciently large (but constant) time t. By using the standard
regret analysis, we have

rt+1 ≤ 2βt+1(δ) ‖φ(xt+1, at+1)‖V −1
t+1
≤ 2Lβt+1(δ)√

λmin(Vt+1)
.

Given the minimum-gap assumption, a sufficient condition
for rt+1 = 0 is that the previous upper bound is smaller
than ∆, which gives λmin(Vt+1) > 4L2β2

t+1(δ)/∆2. Since
∆ > 0, the problem-dependent regret bound in Prop. 1
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holds, and the number of pulls to suboptimal arms up to
time t is bounded by gt(δ) = O

(
(d ln(t/δ)/∆)2

)
. Hence,

the optimal arms are pulled linearly often and, by leveraging
the HLS assumption, we are able to show that the minimum
eigenvalue of the design matrix grows linearly in time as

λmin(Vt+1) ≥ λ+ tλHLS − 8L2

√
t ln

(
2dt

δ

)
− L2gt(δ).

By relating the last two equations, we obtain an inequality
of the form tλHLS − o(t) > o(t). If we define τ < ∞ as
the smallest (deterministic) time such that this inequality
holds, we have that after τ the immediate regret is zero, thus
concluding the proof. Note that, if we wanted to bound
the expected regret, we could set δt ∝ 1/t3 and the above
inequality would still be of the same form (although the
resulting τ would be slightly different).

Comparison with existing bounds. Hao et al. (2020,
Theorem 3.9) prove that LINUCB with HLS representations
achieves lim supn→∞Rn <∞, without characterizing the
time at which the regret vanishes. Instead, our Lem. 2 pro-
vides an explicit problem-dependent constant regret bound.
Wu et al. (2020, Theorem 2) consider the disjoint-parameter
setting and rely on the WYS condition. While they indeed
prove a constant regret result, their bound depends on the
the minimum probability of observing a context (or, in the
continuous case, a properly defined meta-context). This
reflects the general tendency, in previous works, to frame
diversity conditions simply as a property of the context dis-
tribution ρ. On the other hand, our characterization of τ in
terms of λφ,HLS (Lem. 2) allows relating the regret to the
“goodness” of the representation φ for the problem at hand.

4.2. Removing the Minimum-Gap Assumption

Constant-regret bounds for LINUCB rely on a minimum-
gap assumption (∆ > 0). In this section we show that
LINUCB can still benefit from HLS representations when
∆ = 0, but a margin condition holds (e.g., Rigollet & Zeevi,
2010; Reeve et al., 2018). Intuitively, we require that the
probability of observing a context x decays proportionally
to its minimum gap ∆(x) = mina ∆(x, a).
Assumption 1 (Margin condition). There exists C,α > 2
such that for all ε > 0: ρ

(
{x ∈ X : ∆(x) ≤ ε}

)
≤ Cεα.

The following theorem provides a problem-dependent regret
bound for LINUCB under this margin assumption.
Theorem 1. Consider a linear contextual bandit prob-
lem satisfying the margin condition (Asm. 1). Assume
maxx,a ‖φ(x, a)‖2 ≤ Lφ and ‖θ?φ‖2 ≤ Sφ. Then, given
a representation φ, with probability at least 1 − 3δ, the
regret of OFUL after n ≥ 1 steps is at most

Rn ≤ O
((

λ(∆maxSφσdφ)2n1/α +
√
Cdφ

)
ln2(Lφn/δ)

)
.

When φ is HLS (λφ,HLS > 0), let τφ ∝ (λφ,HLS)
α

2−α , then

Rn ≤ O
(

∆maxτφ +
√
Cdφ ln2(Lφn/δ)

)
.

We first notice that in general, LINUCB suffers Õ(n1/α) re-
gret, which can be significantly larger than in the minimum-
gap case. On the other hand, with HLS representations,
LINUCB achieves logarithmic regret, regardless of the value
of α. The intuition is that, when the HLS condition holds,
the algorithm collects sufficient information about θ?φ by
pulling the optimal arms in rounds with large minimum
gap, which occur with high probability by the margin condi-
tion. This yields at most constant regret in such rounds (first
term above), while it can be shown that the regret in steps
when the minimum gap is very small is at most logarithmic
(second term above).

4.3. Further Analysis of the HLS Condition

While Lem. 2 shows that HLS is sufficient for achieving
constant regret, the following proposition shows that it is
also necessary. While this property was first mentioned
by Hao et al. (2020) as a remark in a footnote, we provide a
formal proof in App. C.5.
Proposition 2. For any contextual problem with finite con-
texts, full-support context distribution, and given a non-
redundant realizable representation φ, LINUCB achieves
sub-logarithmic regret if and only if φ satisfies the HLS
condition.

As already observed in Section 4, the HLS condition can be
equivalently expressed as:5

span{φ?(x) | x ∈ X} = Rd,

i.e., optimal features must span the whole d-dimensional
Euclidean space, where d is the dimension of φ. If we admit
redundant representations, a weaker condition is sufficient
to achieve constant regret:

span{φ?(x) | x ∈ X} = span{φ(x, a) | x ∈ X , a ∈ A},
i.e., optimal features must span the whole feature space,
which may be a subspace of Rd in general. We prove that
this weak HLS condition is sufficient for LINUCB to achieve
constant regret as Corollary 1 in App. E.2. This also shows
that constant-regret guarantees are preserved by adding re-
dundant features to an HLS representation.

Finally, we derive the following important existence result.
Lemma 3. For any contextual bandit problem with optimal
reward 6 µ?(x) 6= 0 for all x ∈ X , that has either i) a

5That is assuming the context distribution is full-support. Oth-
erwise, it is enough to replace X with the support of the context
distribution supp(ρ).

6This condition is technical and it can be easily relaxed.
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finite context set with at least d contexts with nonzero prob-
ability, or ii) a Borel context space and a non-degenerate
context distribution7, for any dimension d ≥ 1, there ex-
ists an infinite number of d-dimensional realizable HLS
representations.

This result crucially shows that the HLS condition is “ro-
bust”, since in any contextual problem, it is possible to
construct an infinite number of representations satisfying
the HLS condition. In App. B.2, we indeed provide an ora-
cle procedure for constructing an HLS representation. This
result also supports the starting point of next section, where
we assume that a learner is provided with a set of representa-
tions that may contain at least a “good” representation, i.e.,
an HLS representation.

5. Representation Selection
In this section, we study the problem of representation selec-
tion in linear bandits. We consider a linear contextual prob-
lem with reward µ and context distribution ρ. Given a set of
M realizable linear representations {φi : X × [K]→ Rdi},
the objective is to design a learning algorithm able to per-
form as well as the best representation, and thus achieve
constant regret when a “good” representation is available.
As usual, we assume θ?i ∈ Rdi is unknown, but the algo-
rithm is provided with a bound on the parameter and feature
norms of the different representations.

5.1. The LEADER Algorithm

We introduce LEADER (Linear rEpresentation bAnDit
mixER), see Alg. 1. At each round t, LEADER builds an
estimate θti of the unknown parameter θ?i of each repre-
sentation φi.8 These estimates are by nature off-policy,
and thus all the samples (xl, al, yl)l<t can be used to
solve all ridge regression problems. For each φi, define
Vti = λIdi +

∑t−1
l=1 φi(xl, al)φi(xl, al)

T, θti and Cti(δ/M)
as in Sec. 2. Since all the representations are realizable, we
have that P (∀i ∈ [M ], θ?i ∈ Cti(δ/M)) ≥ 1− δ. As a con-
sequence, for each representation φi we can build an upper-
confidence bound to the reward such that, ∀x ∈ X , a ∈ A,
with high probability

µ(x, a) ≤ max
θ∈Cti(δ/M)

〈φi(x, a), θ〉 := Uti(x, a). (1)

Given this, LEADER uses the tightest available upper-
confidence bound to evaluate each action and then it selects
the one with the largest value, i.e.,

at ∈ argmax
a∈[K]

min
i∈[M ]

{Uti(xt, a)}. (2)

7For instance, if X = Rm and the context distribution must
have positive variance in all directions.

8We use the subscript i ∈ [M ] instead of φi to denote quantities
related to representation φi.

Let it = argmini∈[M ]{Uti(xt, at)} be the representa-
tion associated to the pulled arm at. Interestingly, de-
spite at being optimistic, in general it may not corre-
spond to the optimistic action of representation φit , i.e.,
at /∈ argmaxa{Ut,it(xt, a)}. If a representation provides
an estimate that is good along the direction associated to
a context-action pair, but possibly very uncertain on other
actions, LEADER is able to leverage this key feature to re-
duce the overall uncertainty and achieve a tighter optimism.
Space and time complexity of LEADER scales linearly in
the number of representations, although the updates for each
representation could be carried out in parallel.

Regret bound. For ease of presentation, we assume a
non-zero minimum gap (∆ > 0). The analysis can be
generalized to ∆ = 0 as done in Sec. 4.2. Thm. 2 establishes
the regret guarantee of LEADER (Alg. 1).
Theorem 2. Consider a contextual bandit problem with
reward µ, context distribution ρ and ∆ > 0. Let (φi) be
a set of M linearly realizable representations such that
maxx,a ‖φi(x, a)‖2 ≤ Li and ‖θ?i ‖i ≤ Si. Then, for any
n ≥ 1, with probability 1− 2δ, LEADER suffers a regret

Rn ≤ min
i∈[M ]

{
32λ∆2

maxS
2
i σ

2

∆
×

×
(

2 ln

(
M

δ

)
+ di ln

(
1 +

min{τi, n}L2
i

λdi

))2}
where τi ∝ (λi,HLS∆)−2 if φi is HLS and τi = +∞ other-
wise.

This shows that the problem-dependent regret bound of
LEADER is not worse than the one of the best representa-
tion (see Prop. 1), up to a lnM factor. This means that the
cost of representation selection is almost negligible. Fur-
thermore, Thm. 2 shows that LEADER not only achieves a
constant regret bound when an HLS representation is avail-
able, but this bound scales as the one of the best HLS rep-
resentation. In fact, notice that the “quality” of an HLS
representation does not depend only on known quantities
such as di, Li, Si, but crucially on HLS eigenvalue λi,HLS,
which is usually not known in advance, as it depends on the
features of the optimal arms.

5.2. Combining Representations

In the previous section, we have shown that LEADER
can perform as well as the best representation in the set.
However, by inspecting the action selection rule (Eq. 2),
we notice that, to evaluate the reward of an action in the
current context, LEADER selects the representation with
the smallest uncertainty, thus potentially using different
representations for different context-action pairs. This leads
to the question: can LEADER do better than the best
representation in the set?
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Algorithm 1 LEADER Algorithm
Input: representations (φi)i∈[M ] with values (Li, Si)i∈[M ],
regularization factor λ ≥ 1, confidence level δ ∈ (0, 1).
Initialize V1i = λIdi , θ1i = 0di for each i ∈ [M ]
for t = 1, . . . do

Observe context xt
Pull action at ∈ argmaxa∈[K] mini∈[M ]{Uti(xt, a)}
Observe reward rt and, for each i ∈ [M ], set
Vt+1,i = Vti + φi(xt, at)φi(xt, at)

T and
θt+1,i = V −1

t+1,i

∑t
l=1 φi(xl, al)rl

end for

We show that, in certain cases, LEADER is able to combine
representations and achieve constant regret when none of
the individual representations would. The intuition is that a
subset of “locally good” representations can be combined to
recover a condition similar to HLS. This property is formally
stated in the following definition.

Definition 1 (Mixing HLS). Consider a linear contextual
problem with reward µ and context distribution ρ, and a set
of M realizable linear representations φ1, . . . , φM . Define
Mi = Ex∼ρ

[
φ?i (x)φ?i (x)T

]
and let Zi = {(x, a) ∈ X ×

A | φi(s, a) ∈ Im(Mi)} be the set of context-action pairs
whose features belong to the column space of Mi, i.e., that
lie in the span of optimal features. We say that the set (φi)

satisfies the mixed-HLS condition if X ×A ⊆ ⋃Mi=1 Zi.

Let λ+
i = λ+

min(Mi) be the minimum nonzero eigenvalue
ofMi. Intuitively, the previous condition relies on the obser-
vation that every representation satisfies a “restricted” HLS
condition on the context-action pairs (x, a) whose features
φi(x, a) are spanned by optimal features φ?(x). In this case,
the characterizing eigenvalue is λ+

i , instead of the smallest
eigenvalue λi,HLS (which may be zero). If every context-
action pair is in the restriction Zi of some representation,
we have the mixed-HLS property. In particular, if represen-
tation i is HLS, λ+

i = λi,HLS and Zi = S × A. So, HLS
is a special case of mixed-HLS. In App. E.2, we provide
simple examples of sets of representations satisfying Def. 1.
Note that, strictly speaking, there is not a single “mixed rep-
resentation” solving the whole problem. Even defining one
would be problematic since each representation may have a
different parameter and even a different dimension. Instead,
each representation “specializes” on a different portion of
the context-action space. If together they cover the whole
space, the benefits of HLS are recovered, as illustrated in
the following theorem.

Theorem 3. Consider a stochastic bandit problem with
reward µ, context distribution ρ and ∆ > 0. Let (φi) be
a set of M realizable linear representations satisfying the
mixed-HLS property in Def. 1. Then, with probability at
least 1− 2δ, there exists a time τ <∞ independent from n
such that, for any n ≥ 1, the pseudo-regret of LEADER is

bounded as

Rn ≤ min
i∈[M ]

{
32λ∆2

maxS
2
i σ

2

∆
×

×
(

2 ln

(
M

δ

)
+ di ln

(
1 +

τL2
i

λdi

))2}
.

First, note that we are still scaling with the characteristics
of the best representation in the set (i.e., di, Li and Si).
However, the time τ to constant regret is a global value
rather than being different for each representation. This
highlights that mixed-HLS is a global property of the set of
representations rather than being individual as before. In
particular, whenever no representation is (globally) HLS
(i.e., λi,HLS = 0 for all φi), we can show that in the worst
case τ scales as (mini λ

+
i )−2. In practice, we may expect

LEADER to even behave better than that since i) not all the
representations may contribute actively to the mixed-HLS
condition; and ii) multiple representations may cover the
same region of the context-action space. In the latter case,
since LEADER leverages all the representations at once,
its regret would rather scale with the largest minimum non-
zero eigenvalue λ+

i among all the representations covering
such region. We refer to App. E.2 for a more complete
discussion.

5.3. Discussion

Most of the model selection algorithms reviewed in the
introduction could be readily applied to select the best rep-
resentation for LINUCB. However, the generality of their
objective comes with several shortcomings when instanti-
ated in our specific problem (see App. A for a more detailed
comparison). First, model selection methods achieve the
performance of the best algorithm, up to a polynomial de-
pendence on the number M of models. This already makes
them a weaker choice compared to LEADER, which, by
leveraging the specific structure of the problem, suffers only
a logarithmic dependence on M . Second, model selection
algorithms are often studied in a worst-case analysis, which
reveals a high cost for adaptation. For instance, corralling
algorithms (Agarwal et al., 2017; Pacchiano et al., 2020b)
pay an extra

√
n regret, which would make them unsuitable

to target the constant regret of good representations. Simi-
lar costs are common to other approaches (Abbasi-Yadkori
et al., 2020; Pacchiano et al., 2020a). It is unclear whether a
problem-dependent analysis can be carried out and whether
this could shave off such dependence. Third, these algo-
rithms are generally designed to adapt to a specific best
base algorithm. At the best of our knowledge, there is no
evidence that model selection methods could combine algo-
rithms to achieve better performance than the best candidate,
a behavior that we proved for LEADER in our setting.

On the other hand, model selection algorithms effec-
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tively deal with non-realizable representations in certain
cases (e.g., Foster et al., 2020; Abbasi-Yadkori et al., 2020;
Pacchiano et al., 2020a), while LEADER is limited to the re-
alizable case. While a complete study of the model misspeci-
fication case is beyond the scope of this paper, in App. F, we
discuss how a variation of the approach presented in (Agar-
wal et al., 2012b) could be paired to LEADER to discard
misspecified representations and possibly recover the prop-
erties of “good” representations.

6. Experiments
In this section, we report experimental results on two syn-
thetic and one dataset-based problems. For each problem,
we evaluate the behavior of LEADER with LINUCB and
model selection algorithms: EXP4.IX (Neu, 2015), COR-
RAL and EXP3.P in the stochastic version by Pacchiano
et al. (2020b) and Regret Balancing with and without elim-
ination (REGBALELIM and REGBAL) (Abbasi-Yadkori
et al., 2020; Pacchiano et al., 2020a). See App. G for a
detailed discussion and additional experiments. All results
are averaged over 20 independent runs, with shaded areas
corresponding to 2 standard deviations. We always set the
parameters to λ = 1, δ = 0.01, and σ = 0.3. All the repre-
sentations we consider are normalized to have ‖θ?i ‖ = 1.

Synthetic Problems. We define a randomly-generated con-
textual bandit problem, for which we construct sets of
realizable linear representations with different properties
(see App. G.1 for details). The purpose of these experi-
ments is twofold: to show the different behavior of LINUCB
with different representations, and to evaluate the ability of
LEADER of selecting and mixing representations.

Varying dimension. We construct six representations of vary-
ing dimension from 2 up to 6. Of the two representations
of dimension d = 6, one is HLS. Fig. 4(left) shows that in
this case, LINUCB with the HLS representation outperforms
any non-HLS representation, even if they have smaller di-
mension. This property is inherited by LEADER, which
performs better than LINUCB with non-HLS representations
even of much smaller dimension 2.

Mixing representations. We construct six representations of
the same dimension d = 6, none of which is HLS. However,
they are constructed so that together they satisfy the weaker
mixed-HLS assumption (Def. 1). Fig. 4(middle left) shows
that, as predicted by Thm. 3, LEADER leverages different
representations in different context-action regions and it
thus performs significantly better than any LINUCB using
non-HLS representations. The superiority of LEADER
w.r.t. the model-selection baselines is evident in this case
(Fig. 4(middle right) ), since only LEADER is able to
mix representations, whereas model-selection algorithms
target the best in a set of “bad” representations. Additional
experiments in App. G confirm that LEADER consistently

outperforms all model-selection algorithms.

Jester Dataset. In the last experiment, we extract multi-
ple linear representations from the Jester dataset (Goldberg
et al., 2001), which consists of joke ratings in a continuous
range from −10 to 10 for a total of 100 jokes and 73421
users. For a subset of 40 jokes and 19181 users rating all
these 40 jokes, we build a linear contextual problem as fol-
lows. First, we fit a 32× 32 neural network to predict the
ratings from features extracted via a low-rank factorization
of the full matrix. Then, we take the last layer of the net-
work as our “ground truth” linear model and fit multiple
smaller networks to clone its predictions, while making sure
that the resulting misspecification is small. We thus obtain
7 representations with different dimensions among which,
interestingly, we find that 6 are HLS. Figure 4(right) reports
the comparison between LEADER using all representations
and LINUCB with each single representation on a log-scale.
Notably, the ability of LEADER to mix representations
makes it perform better than the best candidate, while transi-
tioning to constant regret much sooner. Finally, the fact that
HLS representations arise so “naturally” raises the question
of whether this is a more general pattern in context-action
features learned from data.

Last.fm dataset. In App. F we study a variant of LEADER
that is able to handle misspecified representations, and we
test it on the Last.fm music-recommendation dataset (Can-
tador et al., 2011). See App. F.4 for details.

7. Conclusion
We provided a complete characterization of “good” realiz-
able representations for LINUCB, ranging from existence
to a sufficient and necessary condition to achieve problem-
dependent constant regret. We introduced LEADER, a
novel algorithm that, given a set of realizable linear repre-
sentations, is able to adapt to the best one and even lever-
age their combination to achieve constant regret under the
milder mixed-HLS condition. While we have focused on
LINUCB, other algorithms (e.g., LinTS (Abeille & Lazaric,
2017)) as well as other settings (e.g., low-rank RL (Jin
et al., 2020)) may also benefit from HLS-like assumptions.
We have mentioned an approach for eliminating misspec-
ified representations, but a non-trivial trade-off may exist
between the level of misspecification and the goodness of
the representation. A slightly imprecise but very informa-
tive representation may be preferable to most bad realizable
ones. Finally, we believe that moving from selection to
representation learning –e.g., provided a class of features
such as a neural network– is an important direction both
from a theoretical and practical perspective.
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Figure 4. Regret of LEADER and model-selection baselines on different linear contextual bandit problems. (left) Synthetic problem with
varying dimensions. (middle left) Representation mixing. (middle right) Comparison to model selection baselines. (right) Jester dataset.
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