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Abstract

We consider a stochastic contextual bandit prob-
lem where the dimension d of the feature vectors
is potentially large, however, only a sparse subset
of features of cardinality s0 ⌧ d affect the re-
ward function. Essentially all existing algorithms
for sparse bandits require a priori knowledge of
the value of the sparsity index s0. This knowl-
edge is almost never available in practice, and
misspecification of this parameter can lead to se-
vere deterioration in the performance of existing
methods. The main contribution of this paper is to
propose an algorithm that does not require prior
knowledge of the sparsity index s0 and establish
tight regret bounds on its performance under mild
conditions. We also comprehensively evaluate our
proposed algorithm numerically and show that it
consistently outperforms existing methods, even
when the correct sparsity index is revealed to them
but is kept hidden from our algorithm.

1. Introduction

In classical multi-armed bandits (MAB), one of the arms
is pulled in each round and a reward corresponding to the
chosen arm is revealed to the decision-making agent. The re-
wards are, typically, independent and identically distributed
samples from an arm-specific distribution. The goal of the
agent is to devise a strategy for pulling arms that maximizes
cumulative rewards, suitably balancing between exploration
and exploitation. Linear contextual bandits (Abe & Long,
1999; Auer, 2002; Chu et al., 2011) and generalized linear
contextual bandits (Filippi et al., 2010; Li et al., 2017) are
more recent important extensions of the basic MAB setting,
where each arm a is associated with a known feature vector
xa 2 Rd, and the expected payoff of the arm is a (typically,
monotone increasing) function of the inner product x>

a �
⇤

for a fixed and unknown parameter vector �⇤
2 Rd. Unlike
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the traditional MAB problem, here pulling any one arm
provides some information about the unknown parameter
vector, and hence, insight into the average reward of all the
other arms. These contextual bandit algorithms are applica-
ble in a variety of problem settings, such as recommender
systems, assortment selection in online retail, and healthcare
analytics (Li et al., 2010; Oh & Iyengar, 2019; Tewari &
Murphy, 2017), where the contextual information can be
used for personalization and generalization.

In most application domains highlighted above, the fea-
ture space is high-dimensional (d� 1), yet typically only
a small subset of the features influence the expected re-
ward. That is, the unknown parameter vector is sparse
with only elements corresponding to the relevant features
being non-zero, i.e., the sparsity index s0 = k�⇤

k0 ⌧ d,
where the zero norm kxk0 counts non-zero entries in the
vector x. There is an emerging body of literature on con-
textual bandit problems with sparse linear reward functions
(Abbasi-Yadkori et al., 2012; Gilton & Willett, 2017; Bas-
tani & Bayati, 2020; Wang et al., 2018; Kim & Paik, 2019)
which propose methods to exploit the sparse structure under
various conditions. However, there is a crucial shortcoming
in almost all of these approaches: the algorithms require
prior knowledge of the sparsity index s0, information that
is almost never available in practice. In the absence of
such knowledge, the existing algorithms fail to fully lever-
age the sparse structure, and their performance does not
guarantee the improvements in dimensionality-dependence
which can be realized in the sparse problem setting (and
can lead to extremely poor performance if s0 is underspec-
ified). The purpose of this paper is to demonstrate that a
relatively simple contextual bandit algorithm that exploits
`1-regularized regression using Lasso (Tibshirani, 1996) in
a sparsity-agnostic manner, is provably near-optimal insofar
as its regret performance (under suitable regularity). Our
contributions are as follows:

(a) We propose the first general sparse bandit algorithm
that does not require prior knowledge of the sparsity
index s0.

(b) We establish that the regret bound of our proposed al-
gorithm is O(s0

p
T log(dT )) for the two-armed case,

which affords the most accessible exposition of the key
analytical ideas. (Extensions to the general K-armed
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case are discussed later.) The regret bound scale in s0

and d matches the equivalent terms in the offline Lasso
results (see the discussions in Section 4.1).

(c) We comprehensively evaluate our algorithm on numer-
ical experiments and show that it consistently outper-
forms existing methods, even when these methods are
granted prior knowledge of the correct sparsity index
(and can greatly outperform them if this information is
misspecified).

The salient feature of our algorithm is that it does not rely
on forced sampling which was used by almost all previous
work, e.g., Bastani & Bayati (2020); Wang et al. (2018);
Kim & Paik (2019), to satisfy certain regularity of the em-
pirical Gram matrix. Forced sampling requires prior knowl-
edge of s0 because such schemes, the key ideas of which go
back to Goldenshluger & Zeevi (2013), need to be fine-tuned
using the correct sparsity index. (See further discussions in
Section 2.4.)

2. Preliminaries

2.1. Notation

For a vector x 2 Rd, we use kxk1 and kxk2 to denote
its `1-norm and `2 norm respectively, the notation kxk0 is
reserved for the cardinality of the set of non-zero entries of
that vector. We define [n] for a positive integer n to be a set
containing positive integers up to n, i.e., {1, 2, ..., n}. For
a real-valued function f , we use ḟ and f̈ to denote its first
and second derivatives.

2.2. Generalized Linear Contextual Bandits

We consider the stochastic generalized linear bandit problem
with K arms. Let T be the problem horizon, namely the
number of rounds to be played. In each round t 2 [T ],
the learning agent observes a context consisting of a set
of K feature vectors Xt =

�
Xt,i 2 Rd

| i 2 [K]
 

, where
the tuple Xt is drawn i.i.d. over t 2 [T ] from an unknown
joint distribution with probability density pX with respect
to the Lebesgue measure. Note that the feature vectors for
different arms are allowed to be correlated. Each feature
vector Xt,i is associated with an unknown stochastic reward
Yt,i 2 R. The agent then selects one arm, denoted by at 2

[K] and observes the reward Yt := Yt,at , corresponding to
the chosen arm’s feature Xt := Xt,at , as a bandit feedback.
The policy consists of the sequence of actions ⇡ = {at :
t = 1, 2, ...} and is non-anticipating, namely each action
only depends on past observations and actions.

In this work, we assume that the reward Yt,i of arm i is
given by a generalized linear model (GLM), i.e.

Yt,i = µ(X>
t,i�

⇤) + ✏t,i

where µ : R ! R (also known as inverse link function)
is a known increasing function, �⇤

2 Rd is an unknown
parameter, and each ✏t,i is an independent zero-mean noise.
Therefore, E[Yt,i|Xt,i = x] = µ(x>

�
⇤) for all i 2 [K] and

t 2 [T ]. Widely used examples for µ are µ(z) = z which
corresponds to the linear model, and µ(z) = 1/(1 + e

�z)
which corresponds to the logistic model. The parameter
�
⇤ and the feature vectors {Xt,i} are potentially high-

dimensional, i.e., d � 1, but �⇤ is sparse, that is, the
number of non-zero elements in �

⇤, s0 = k�⇤
k0 ⌧ d. It

is important to note that the agent does not know s0 or the
support of the unknown parameter �⇤.

We assume that there is an increasing sequence of sigma
fields {Ft} such that each ✏t,i is Ft-measurable with
E[✏t,i|Ft�1] = 0. In our problem, Ft is the sigma-field gen-
erated by random variables of chosen actions {a1, ..., at},
their features {X1,a1 , ..., Xt,at}, and the corresponding re-
wards {Y1,a1 , ..., Yt,at}. We assume the noise ✏t,i for all
i 2 [K] is sub-Gaussian with parameter �, where � is a
positive absolute constant, i.e., E[e↵✏t,i ]  e

↵2�2/2 for all
↵ 2 R. In practice, for bounded reward Yt,i, the noise
✏t,i is also bounded and hence satisfies the sub-Gaussian
assumption with an appropriate � value.

The agent’s goal is to maximize the cumulative expected
reward E[

PT
t=1 µ(X

>
t,at

�
⇤)] over T rounds. Let a

⇤
t =

argmaxi2[K]

�
µ(X>

t,i�
⇤)
 

denote the optimal arm for each
round t. Then, the expected cumulative regret of policy
⇡ = {a1, ..., aT } is defined as

R
⇡(T ) :=

TX

t=1

E
h
µ(X>

t,a⇤
t
�
⇤)� µ(X>

t,at
�
⇤)
i
.

Hence, maximizing the expected cumulative rewards of
policy ⇡ over T rounds is equivalent to minimizing the
cumulative regret R⇡(T ). Note that all the expectations
and probabilities throughout the paper are with respect to
feature vectors and noise unless explicitly stated otherwise.

2.3. Lasso for Generalized Linear Models

For given samples Y1, ..., Yn and corresponding features
X1, ..., Xn, the Lasso (Tibshirani, 1996) estimate for the
generalized linear model can be defined as

�̂n 2 argmin
�

�
`n(�) + �k�k1

 
(1)

where `n(�) := �
1
n

Pn
j=1

⇥
YjX

>
j � �m(X>

j �)
⇤
, m(·)

is infinitely differentiable with ṁ(X>
�
⇤) = E[Y |X] =

µ(X>
�
⇤), and � is a penalty parameter. Lasso is known

to be an efficient (offline) tool for estimating the high-
dimensional linear regression parameter. The “fast con-
vergence” property of Lasso is guaranteed when data are
i.i.d. and when the observed covariates are not highly cor-
related. The restricted eigenvalue condition (Bickel et al.,



Sparsity-Agnostic Lasso Bandit

2009; Raskutti et al., 2010), the compatibility condition
(Van De Geer & Bühlmann, 2009), and the restricted isome-
try property (Candes & Tao, 2007) have been used to ensure
that such high correlations are avoided. In sequential learn-
ing settings, however, these conditions are often violated
because the observations are adapted to the past and the
feature variables of the chosen arms converge to a small
region of the feature space as the learning agent updates its
arm selection policy.

2.4. Why do existing sparse bandit algorithms require

prior knowledge of the sparsity index?

The primary reason that a priori knowledge of sparsity is
assumed throughout most of the literature is, roughly speak-
ing, to ensure suitable “size” of the confidence bounds and
concentration. For example, (Abbasi-Yadkori et al., 2012)
require the parameter s0 to explicitly construct a high proba-
bility confidence set with its radius proportional to s0 rather
than d. The recently proposed bandit algorithms of (Bastani
& Bayati, 2020; Kim & Paik, 2019) and the variant with
MCP estimator in (Wang et al., 2018) employ a logic that
is similar in spirit (though different in execution). Specif-
ically, the compatibility condition or restricted eigenvalue
condition is assumed to hold only for the theoretical Gram
matrix, and the empirical Gram matrix may not satisfy such
condition (the difficulty in controlling that is due to the
non-i.i.d. adapted samples of the feature variables). As a
remedy to this issue, (Bastani & Bayati, 2020) and (Wang
et al., 2018) utilize the forced-sampling technique of (Gold-
enshluger & Zeevi, 2013) to obtain a “sufficient” number of
i.i.d. samples and use that to show that the empirical Gram
matrices concentrate in the vicinty of the theoretical Gram
matrix, and hence, satisfy the compatibility condition after a
sufficient amount of forced-sampling. The forced-sampling
duration needs to be predefined and scales at least polynomi-
ally in the sparsity s0 to ensure concentration of the Gram
matrices. That is, if the algorithm does not know s0, the
forced-sampling duration will have to scale polynomially in
d. (Kim & Paik, 2019) propose an alternative to forced sam-
pling that builds on doubly-robust techniques used in the
missing data literature; however, their algorithm involves
random arm selection with a probability that is calibrated us-
ing s0, and initial uniform sampling whose duration requires
knowledge of s0 and scales polynomially with s0 in order to
establish their regret bounds. The sensitivity to the sparsity
index specification is also evident in cases where its value
is misspecified which may result in severe deterioration in
the performance of the algorithm (see further discussion in
Section 5.1).

The key observation in our analysis is that, under some
mild conditions, i.i.d. samples, which are the key output of
the forced sampling scheme, are in fact not essential. We
show that the empirical Gram matrix satisfies the required

regularity after a sufficient number of rounds, provided the
theoretical Gram matrix is also regular; the details of this
analysis are in Section 4. Numerical experiments support
this findings, and moreover, demonstrate that the perfor-
mance of the algorithm can be superior to forced-sampling-
based schemes that are tuned with foreknowledge of the
parameter s0.

3. Proposed Algorithm

Our proposed SPARSITY-AGNOSTIC (SA) LASSO BANDIT
algorithm for high-dimensional GLM bandits is summarized
in Algorithm 1. As the name suggests, our algorithm does
not require prior knowledge of the sparsity index s0. It relies
on Lasso for parameter estimation, and does not explicitly
use exploration strategies or forced-sampling. Instead, in
each round, we choose an arm which maximizes the inner
product of a feature vector and the Lasso estimate. After ob-
serving the reward, we update the regularization parameter
�t and update the Lasso estimate �̂t which minimizes the
penalized negative log-likelihood function defined in (1).

SA LASSO BANDIT requires only one input parameter �0.
We show in Section 4 that �0 = 2�xmax where xmax is
a bound on the `2-norm of the feature vectors Xt,i. Thus,
�0 does not depend on the sparsity index s0 or the under-
lying parameter �

⇤. (Note that, in comparison, Kim &
Paik (2019) require three tuning parameters, and Bastani &
Bayati (2020) and Wang et al. (2018) require four tuning
parameters, most of which are functions of the unknown
sparsity index s0.) It is worth noting that tuning parame-
ters, while helping to achieve low regret, are challenging to
specify in online learning settings. In contrast, our proposed
algorithm is practical and easy to implement.

Algorithm 1 SA LASSO BANDIT

1: Input parameter: �0

2: for all t = 1 to T do

3: Observe Xt,i for all i 2 [K]

4: Compute at = argmaxi2[K] X
>
t,i�̂t

5: Pull arm at and observe Yt

6: Update �t  �0

q
4 log t+2 log d

t

7: Update �̂t+1  argmin� {`t(�) + �tk�k1}

8: end for

Discussion of the algorithm. Algorithm 1 may appear to
be an exploration-free greedy algorithm (see e.g., Bastani
et al. 2020), but this is not the case. To better understand
this we will compare the steps in Algorithm 1 to upper-
confidence bound (UCB) algorithms. A UCB algorithm
constructs a high-probability confidence ellipsoid around
a greedy maximum likelihood estimate and chooses a pa-
rameter value within the ellipse that maximizes the reward.
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Once the UCB estimate is chosen, the action selection is
greedy with respect to the parameter estimate.1 The UCB
algorithms regularize parameter estimates by carefully con-
trolling the size of the confidence ellipsoid to ensure conver-
gence, thus, exploration is loosely equivalent to regularizing
the parameter estimate. The algorithm we propose also com-
putes the parameter estimate by regularizing the MLE with
a sparsifying norm, and then, as in UCB, takes a greedy
action with respect to this regularized parameter estimate.
We adjust the penalty parameter associated with the spar-
sifying norm over time at carefully specified rate in order
to ensure that our estimate is consistent as we collect more
samples. (This adjustment and specification do not require
knowledge of sparsity s0.) Incorrect choice for the penalty
parameter would lead to large regret, which is analogous to
poor choice of confidence widths in UCB.

4. Regret Analysis

In this section, we establish an upper bound on the expected
regret of SA LASSO BANDIT for the two-armed generalized
linear bandits. We focus on the two-arm case primarily
for clarity and accessibility of key analysis ideas. We later
extend our analysis to the K-armed case with K � 3 in
Section 5. It is important to note that our proposed algorithm
does not change with the number of arms. We start with
an assumption standard in the (generalized) linear bandit
literature.
Assumption 1 (Feature set and parameter). There exists a
positive constant xmax such that kxk2  xmax for all x 2
Xt and all t, and a positive constant b such that k�⇤

k2  b.
Assumption 2 (Link function). There exist 0 > 0 and
1 < 1 such that the derivative µ̇(·) of the link function
satisfies 0  µ̇(x>

�)  1 for all x and �.

Clearly for the linear link function, 0 = 1 = 1. For the
logistic link function, we have 1 = 1/4.
Definition 1 (Active set and sparsity index). The active set
S0 := {j : �⇤

j 6= 0} is the set of indices j for which �
⇤
j

is non-zero, and the sparsity index s0 = |S0| denotes the
cardinality of the active set S0.

For the active set S0, and an arbitrary vector � 2 Rd, we
can define

�j,S0 := �j {j 2 S0} , �j,Sc
0
:= �j {j /2 S0} .

Thus, �S0 = [�1,S0 , ...,�d,S0 ]
> has zero elements outside

the set S0 and the components of �Sc
0

can only be non-
zero in the complement of S0. Let C(S0) denote the set of
vectors

C(S0) := {� 2 Rd
| k�Sc

0
k1  3k�S0k1} . (2)

1Likewise, in Thompson sampling (Thompson, 1933), the
agent chooses the greedy action for the sampled parameter.

Let X 2 RK⇥d denote the design matrix where each row is
a feature vector for an arm. (Although we focus on K = 2
case in this section, the definitions and the assumptions
introduced here also apply to the case of K � 3.) Then,
in keeping with the previous literature on sparse estimation
and specifically on sparse bandits (Bastani & Bayati, 2020;
Wang et al., 2018; Kim & Paik, 2019), we assume that
the following compatibility condition is satisfied for the
theoretical Gram matrix ⌃ := 1

KE[X>X].

Assumption 3 (Compatibility condition). For active set S0,
there exists compatibility constant �2

0 > 0 such that

�
2
0k�S0k

2
1  s0�

>⌃� for all � 2 C(S0) .

We add to this the following mild assumption that is more
specific to our analysis.

Assumption 4 (Relaxed symmetry). For a joint distribution
pX , there exists ⌫ <1 such that pX (�x)

pX (x)  ⌫ for all x.

Discussion of the assumptions. Assumptions 1 and 2
are the standard regularity assumptions used in the GLM
bandit literature (Filippi et al., 2010; Li et al., 2017; Kveton
et al., 2020). It is important to note that unlike the existing
GLM bandit algorithms which explicitly use the value of
0, our proposed algorithm does not use 0 or 1 — this in-
formation is only needed to establish the regret bound. The
compatibility condition in Assumption 3 is analogous to the
standard positive-definite assumption on the Gram matrix
for the ordinary least squares estimator for linear models but
is less restrictive. The compatibility condition ensures that
truly active components of the parameter vector are not “too
correlated.” As mentioned above, the compatibility condi-
tion is a standard assumption in the sparse bandit literature
(Bastani & Bayati, 2020; Wang et al., 2018; Kim & Paik,
2019). Assumption 4 states that the joint distribution pX can
be skewed but this skewness is bounded. Obviously, if pX
is symmetrical, we have ⌫ = 1. Assumption 4 is satisfied
for a large class of continuous and discrete distributions,
e.g., elliptical distributions including Gaussian and trun-
cated Gaussian distributions, multi-dimensional uniform
distribution, and Rademacher distribution. Note that in the
non-sparse low dimensional setting (i.e., d = s), the relaxed
symmetry in Assumption 4 together with the positive defi-
niteness of the theoretical Gram matrix is equivalent to the
covariate diversity condition introduced in (Bastani et al.,
2020). However, in the sparse high-dimensional setting con-
sidered here, the relaxed symmetry does not imply diversity
in all covariates. Consequently, the greedy parameter esti-
mation approach proposed by (Bastani et al., 2020) is not
guaranteed to achieve a sublinear regret. As in the case of
0 and 1 in Assumption 2, the parameter ⌫ is only needed
to establish the regret bound, our proposed algorithm does
not require knowledge of ⌫.
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4.1. Regret Bound for SA LASSO BANDIT

Theorem 1 (Regret bound for two arms). Suppose K = 2
and Assumptions 2-4 hold. Then the expected regret of the
SA LASSO BANDIT policy (⇡) over horizon T is upper-
bounded by

R
⇡(T )  4max +

2 log(2d2) + 2

C0(�0, s0)2

+
32max⇢0�s0

p
T log(dT )

min�
2
0

where C0(�0, s0) = min
�
1
2 ,

�2
0

128s0⇢0

�
.

Discussion of Theorem 1. In terms of key prob-
lem primitives, Theorem 1 establishes a regret bound of
O(s0

p
T log(dT )) without any prior knowledge on s0. The

bound shows that the regret of SA LASSO BANDIT grows
at most logarithmically in feature dimension d. The key
takeaway from this theorem is that SA LASSO BANDIT
is sparsity-agnostic and is able to achieve correct depen-
dence on parameters d and s0. Based on the offline Lasso
convergence results under the compatibility condition (e.g.,
Theorem 6.1 in (Bühlmann & Van De Geer, 2011)), we
believe that the dependence on d and s0 in Theorem 1 is
best possible.2

The regret bound in Theorem 1 is tighter than the previously
known bound in the same problem setting (Kim & Paik,
2019) although direct comparison is not immediate, given
the difference in assumptions involved — compared to (Kim
& Paik, 2019), we require Assumption 4 whereas they as-
sume the sparsity index s0 is known. Having said that, the
numerical experiments in Section 6 support our theoretical
claims and provide additional evidence that our proposed
algorithm compares very favorably to other existing meth-
ods (which are tuned with the knowledge of the correct s0),
and moreover, the performance is not sensitive to several
of our assumptions that were imposed primarily for techni-
cal tractability purposes. As mentioned earlier, the previous
work on sparse bandits (Bastani & Bayati, 2020; Wang et al.,
2018; Kim & Paik, 2019) require the knowledge of sparsity.
In the absence of such knowledge, if sparsity is underspec-
ified, then these algorithms would suffer a regret linear in
T . On the other hand, if the sparsity is overspecified, the
regret of these algorithms scales with d instead of s0. Our
proposed algorithm does not require such prior knowledge,
hence there is no risk of under or over specification, and yet

2Since the horizon T does not exist in offline Lasso results,
it is not straightforward to see whether

p
T dependence can be

improved comparing only with the offline Lasso results. Clearly,
without an additional assumption on the separability of the arms,
we know that poly-logarithmic scalability in T is not feasible. We
briefly discuss our conjecture in comparison with the lower bound
result in the non-sparse linear bandits in Secton B.1 in the appendix
where we discuss the regret bound under the RE condition.

our analysis provides a sharper regret guarantee. Further-
more, our result also suggests that even when the sparsity is
known, random sampling to satisfy the compatibility con-
dition, invoked by all existing sparse bandit algorithms to
date, can be wasteful since said conditions may be already
satisfied even in the absence of such sampling. This finding
is also supported by the numerical experiments in Section 6
and additional experiments in the appendix. We provide the
outline of the proof and the key lemmas in the following
section.

4.2. Challenges and Proof Outlines

There are two essential challenges that prevent us from fully
benefiting from the fast convergence property of Lasso:

(i) The samples induced by our bandit policy are not i.i.d.,
therefore the standard Lasso oracle inequality does not
hold.

(ii) Empirical Gram matrices do not necessarily satisfy
the compatibility condition even under Assumption 3.
This is because the selected feature variables for which
the rewards are observed do not provide an “even” rep-
resentation for the entire distribution.

To resolve (i), we provide a Lasso oracle inequality for the
GLM with non-i.i.d. adapted samples under the compati-
bility condition in Lemma 1. For (ii), we aim to provide a
remedy without using the knowledge of sparsity or without
using i.i.d. samples. Hence, this poses a greater challenge.
In Section 4.2.2, we address this issue by showing that
the empirical Gram matrix behaves “nicely” even when we
choose arms adaptively without deliberate random sampling.
In particular, we show that adapted Gram matrices can be
controlled by the theoretical Gram matrix, and the empiri-
cal Gram matrix concentrates properly around the adapted
Gram matrix as we collect more samples. Connecting this
matrix concentration to the corresponding compatibility con-
stants, we show that the empirical Gram matrix satisfies the
compatibility condition with high probability.

4.2.1. LASSO ORACLE INEQUALITY FOR GLM WITH
NON-I.I.D. DATA.

We present an oracle inequality for the Lasso estimator for
GLM under non-i.i.d. data. This is a generalization of the
standard Lasso oracle inequality (Bühlmann & Van De Geer,
2011) that allows adapted sequences of observations. This
result may be of independent interest.
Lemma 1 (Oracle inequality). Suppose the compatibil-
ity condition holds for the empirical covariance matrix
⌃̂t =

1
t

Pt
⌧=1 X⌧X

>
⌧ with active set S0 and compatibility

constant �t. For some � 2 (0, 1), define the regularization

parameter �t := 2�
q

2[log(2/�)+log d]
t . Then with proba-
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bility at least 1 � �, the Lasso estimate �̂t defined in (1)
satisfies

k�̂t � �
⇤
k1 

4s0�t

min�
2
t

.

Note that here we assume that the compatibility condition
holds for the empirical Gram matrix ⌃̂t. In the next section,
we show that this holds with high probability. The Lasso
oracle inequality holds without further assumptions on the
underlying parameter �⇤ or its support. Therefore, if we
show that ⌃̂t satisfies the compatibility condition absent
knowledge of s0, then the remainder of the result does not
require this knowledge as well.

4.2.2. COMPATIBILITY CONDITION AND MATRIX
CONCENTRATION.

For matrix M , we define �
2(M,S0) :=

min�
�
s0�

>
M�/k�S0k

2
1 : k�Sc

0
k1  3k�S0k1 6= 0

 

as the (generic) compatibility constant. Hence, it suffices to
show �

2(M,S0) > 0 in order to show that matrix M satis-
fies the compatibility condition. Now, under Assumption 3,
the theoretical Gram matrix ⌃ = 1

KE[X>X] satisfies the
compatibility condition i.e., �2

0 = �
2(⌃, S0) > 0.

Definition 2. We define the adapted Gram matrix as ⌃t :=
1
t

Pt
⌧=1 E[X⌧X

>
⌧ |F⌧ ] and the empirical Gram matrix as

⌃̂t :=
Pt

⌧=1 X⌧X
>
⌧ .

For each E[X⌧X
>
⌧ |F⌧ ] in ⌃t, the history F⌧ affects how

the feature vector X⌧ is chosen. More specifically, our
algorithm uses F⌧ to compute �̂⌧ and then chooses arm
a⌧ such that its (realized) feature xa⌧ maximizes x

>
a⌧
�̂⌧ .

Therefore, we can rewrite ⌃t as

⌃t=
1

t

tX

⌧=1

2X

i=1

EX⌧

⇥
X⌧,iX

>
⌧,i {X⌧,i=argmax

X2X⌧

X
>
�̂⌧}|�̂⌧

⇤
.

Since the compatibility condition is satisfied only for the
theoretical Gram matrix ⌃ and we need to show the empiri-
cal Gram matrix ⌃̂t satisfies the compatibility condition, the
adapted Gram matrix ⌃t serves as a bridge between ⌃ and
⌃̂t in our analysis. We first lower-bound the compatibility
constant �2(⌃t, S0) in terms of �2(⌃, S0) so that we can
show that ⌃t satisfies the compatibility condition as long
as ⌃ satisfies the compatibility condition. Then, we show
that ⌃̂t concentrates around ⌃t with high probability and
that such matrix concentration guarantees the compatibility
condition of ⌃̂t.

In Lemma 2, we show that ⌃t can be controlled in terms of
the theoretical Gram matrix ⌃, which allows us to link the
compatibility constant of ⌃ to compatibility constant of ⌃t.
Note that Lemma 2 shows the result for any fixed vector �;
hence can be applied to E[X⌧X

>
⌧ |F⌧ ].

Lemma 2. For fixed � 2 Rd, we have
P2

i=1 E
h
Xt,iX

>
t,i {Xt,i = argmaxX2Xt

X
>
�}

i
< ⌃

⇢0
.

Therefore, we have ⌃t < ⌃
⇢0

which implies that

�
2(⌃t, S0) �

�2(⌃,S0)
⇢0

> 0, i.e., ⌃t satisfies the compati-
bility condition. Note that both ⌃ and ⌃t can be singular.
In Lemma 3, we show that ⌃̂t concentrates to ⌃t with high
probability. This result is crucial in our analysis since it
allows the matrix concentration without using i.i.d. sam-
ples. The proof of Lemma 3 utilizes a new Bernstein-type
inequality for adapted samples (Lemma 8 in the appendix)
which may be of independent interest.

Lemma 3. For t �
2 log(2d2)
C(�0,s0)2

where C(�0, s0) =

min
�
1
2 ,

�2
0

128s0⇢0

�
, we have

P
✓
k⌃t � ⌃̂tk1 �

�
2
0

32s0⇢0

◆
 exp

⇢
�
tC(�0, s0)2

2

�
.

Then, we invoke the following corollary to use the matrix
concentration results to ensure the compatibility condition
for ⌃̂t.
Corollary 1 (Corollary 6.8, (Bühlmann & Van De Geer,
2011)). Suppose that ⌃0-compatibility condition holds for
the index set S with cardinality s = |S|, with compati-
bility constant �2(⌃0, S), and that k⌃1 � ⌃0k1  �,
where 32s�  �

2(⌃0, S). Then, for the set S, the ⌃1-
compatibility condition holds as well, with �

2(⌃1, S) �
�
2(⌃0, S)/2.

In order to satisfy the hypotheses for Lemma 3 and
Corollary 1, we define the initial period t < T0 :=
2 log(2d2)/C(�0, s0)2 during which the compatibility con-
dition for the empirical Gram matrix is not guaranteed, and
the event Et :=

�
k⌃t � ⌃̂tk1  �

2
0/(32s0⇢0)

 
. Then for

all t � dT0e and ⌃t for which event Et holds, we have

�
2
t := �

2(⌃̂t, S0) �
�
2(⌃t, S0)

2
�

�
2
0

2⇢0
> 0 .

Hence, the compatibility condition is satisfied for the empir-
ical Gram matrix without using sparsity information.

4.2.3. PROOF SKETCH OF THEOREM 1

We combine the results above to analyze the regret bound of
SA LASSO BANDIT shown in Theorem 1. First, we divide
the time horizon [T ] into three groups:

(a) (t  T0). Here the compatibility condition is not
guaranteed to hold.

(b) (t > T0) such that Et holds.

(c) (t > T0) such that Et does not hold.
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These sets are disjoint, hence we bound the regret contribu-
tion from each separately and obtain an upper bound on the
overall regret. It is important to note that SA LASSO BAN-
DIT Algorithm does not rely in any way on this partitioning
– it is introduced purely for the purpose of analysis. Set (a) is
the initial period over which we do not have guarantees for
the compatibility condition. Therefore, we cannot apply the
Lasso convergence result; hence we can incur O(s20 log d)
regret. Set (b) is where the compatibility condition is sat-
isfied; hence the Lasso oracle inequality in Lemma 1 can
apply. In fact, this group can be further divided to two
cases: (b-1) when the high-probability Lasso result holds
and (b-2) when it does not, where the regret of (b-2) can be
bounded by O(1). For (b-1), using the Lasso convergence
result and summing the regret over the time horizon gives
O(s0

p
T log(dT )) regret, which is the leading factor in the

regret bound of Theorem 1. Lastly, (c) contains the failure
events of Lemma 3 whose regret is O(s20). The proofs of
the lemmas are deferred to the appendix.

5. Extension to K Arms

Recall that SA LASSO BANDIT is valid for any number of
arms; hence, no modifications are required to extend the
algorithm to K � 3 arms. The analysis of SA LASSO
BANDIT for the K-armed case tackles largely the same
challenges described in Section 4.2: the need for a Lasso
convergence result for adapted samples and ensuring the
compatibility condition without knowing s0 (and without
relying on i.i.d. samples). The former challenge is again
taken care of by the Lasso convergence result in Lemma 1.
However, the latter issue is more subtle in the K-armed
case than in the two-armed case. In particular, when con-
trolling the adapted Gram matrix ⌃t with the theoretical
Gram matrix ⌃, the Gram matrix for the unobserved feature
vectors could be incomparable with the Gram matrix for
the observed feature vectors. For this issue, we introduce
an additional regularity condition, which we denote as the
“balanced covariance” condition.
Assumption 5 (Balanced covariance). Consider a per-
mutation (i1, ..., iK) of (1, ...,K). For any integer k 2

{2, ...,K � 1} and fixed vector �, there exists CX < 1

such that

E
⇥
XikX

>
ik {X

>
i1� < ... < X

>
iK�}

⇤

4 CXE
⇥
(Xi1X

>
i1 +XiKX

>
iK ) {X

>
i1� < ... < X

>
iK�}

⇤
.

In Algorithm 1 we observe only the reward corresponding to
arm i1, and Assumption 4 implies that we have some control
on the arm iK . This balanced covariance condition implies
that there is “sufficient randomness” in the observed features
compared to non-observed features. The exact value of CX
depends on the joint distribution of X including the correla-
tion between arms. In general, the more positive the corre-

lation, the smaller CX (obviously, with an extreme case of
perfectly correlated arms having a constant CX independent
of any problem parameters). When the arms are indepen-
dent and identically distributed, Assumption 5 holds with
CX = O(1) for both the multivariate Gaussian distribution
and a uniform distribution on a sphere, and for an arbitrary
independent distribution for each arm, Assumption 5 holds
for CX =

�K�1
K0

�
where K0 = d(K�1)/2e. It is important

to note that even in this pessimistic case, CX does not ex-
hibit dependence on dimensionality d or the sparsity index
s0. These are formalized in Proposition 1 in the appendix.3
This balanced covariance condition is somewhat similar to
“positive-definiteness” condition for observed contexts in
the bandit literature (e.g., Goldenshluger & Zeevi (2013);
Bastani et al. (2020)). However, notice that we allow the
covariance matrices on both sides of the inequality to be
singular. Hence, the positive-definiteness condition for ob-
served context in our setting may not hold even when the
balanced covariance condition holds. While this condition
admittedly originates from our proof technique, it also pro-
vides potential insights on learnability of problem instances.
That is, CX close to infinity implies that the distribution of
feature vectors is heavily skewed toward a particular direc-
tion. Hence, learning algorithms may require many more
samples to learn the unknown parameter, leading to larger
regret. It is important to note that our algorithm does not
require any prior information on CX . The regret bound
for the K-armed sparse bandits under Assumption 5 is as
follows.
Theorem 2 (Regret bound for K arms). Suppose K � 3
and Assumptions 1-4, and 5 hold. Let �0 = 2�xmax. Then
the expected cumulative regret of the SA LASSO BANDIT
policy ⇡ over horizon T � 1 is upper-bounded by

R
⇡(T )  41 +

41xmaxb(log(2d2) + 1)

C1(s0)2

+
641⌫CX�xmaxs0

p
T log(dT )

0�
2
0

where C1(s0) = min
⇣

1
2 ,

�2
0

256s0⌫CXx2
max

⌘
.

Theorem 2 establishes O
�
s0

p
T log(dT )

�
regret without

prior knowledge on s0, achieving the same rate as Theo-
rem 1 in terms of the key problem primitives. Since both
multivariate Gaussian distributions and uniform distribu-
tions satisfy Assumption 4 with ⌫ = 1 and Assumption 5
with CX = O(1), the regret bound in Theorem 2 still holds

3While it is not our primary goal to derive general tight bounds
on CX , we acknowledge that the bound on CX for an arbitrary
distribution for independent arms is very loose, and is the result
of conservative analysis driven by lack of information on pX .
Numerical evaluation on distributions other than Gaussian and
uniform distributions, detailed in Section 5, buttress this point and
indicate that the dependence on K is no greater than linear.
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Figure 1. The evaluations of SA LASSO BANDIT (Algorithm 1), DR LASSO BANDIT (Kim & Paik, 2019), and LASSO BANDIT (Bastani
& Bayati, 2020). The first row shows results for features drawn from a multivariate Gaussian distribution with varying correlation between
arms. The second and third rows show results for uniform and non-Gaussian elliptical distributions respectively. The results provide clear
evidence that SA LASSO BANDIT outperforms the benchmarks across various experiments.

under Assumptions 1-3 for these distributions. Therefore,
to our knowledge, this is the first sparsity-agnostic regret
bound for a general K-armed high-dimensional contextual
bandit algorithm even for the Gaussian distribution or uni-
form distribution.

The proof of Theorem 2 largely follows that of Theorem 1.
The main difference is how we control the adapted Gram
matrix ⌃t with the theoretical Gram matrix ⌃. Under the
balanced covariance condition, we can ensure the lower
bound of the adapted Gram matrix as a function of the
theoretical Gram matrix, which is analogous to the result in
Lemma 2. In particular, we show that for a fixed � 2 Rd,
KX

i=1

EXt

h
Xt,iX

>
t,i {Xt,i=argmax

X2Xt

X
>
�}

i
< (2⌫CX )�1⌃ .

The formal result is presented in Lemma 10 in the appendix
along with its proof. Next, we again invoke the matrix
concentration result in Lemma 3 to connect the compatibility
constant of empirical Gram matrix ⌃̂t to that of ⌃t, and
eventually to the theoretical Gram matrix ⌃. Thus, we
ensure the compatibility condition of ⌃̂t. The additional
regret in the K-armed case as compared to the two-armed
case is essentially a scaling by CX to ensure the balanced
covariance condition.

6. Experiments

We conduct numerical experiments to evaluate SA LASSO
BANDIT and compare with existing sparse bandit algo-
rithms: DR LASSO BANDIT (Kim & Paik, 2019) and
LASSO BANDIT (Bastani & Bayati, 2020). For each case
with different experimental configurations, we conduct 20
independent runs. For performance evaluations, we report
the average of the cumulative regret for each of the algo-
rithms. The error bars represent the standard deviations.
Each row of the plots show experiments using different
distributions for feature vectors. Additional results are pre-
sented in the appendix. SA LASSO BANDIT exhibits supe-
rior performances across different distributions as well as
other problem parameters.

The results provide convincing evidence that the perfor-
mance of our proposed algorithm is superior to the existing
sparse bandit methods that we compare with. SA LASSO
BANDIT outperforms the existing sparse bandit algorithms
by significant margins, even though the correct sparsity in-
dex s0 is revealed to these algorithms and kept hidden from
SA LASSO BANDIT. Furthermore, SA LASSO BANDIT
is much more practical and simple to implement with a
minimal number of a hyperparameter.
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algorithms for linear stochastic bandits. In Advances in
Neural Information Processing Systems, pp. 2312–2320,
2011.

Abbasi-Yadkori, Y., Pal, D., and Szepesvari, C. Online-
to-confidence-set conversions and application to sparse
stochastic bandits. In Artificial Intelligence and Statistics,
pp. 1–9, 2012.

Abe, N. and Long, P. M. Associative reinforcement learn-
ing using linear probabilistic concepts. In International
Conference on Machine Learning, pp. 3–11, 1999.

Agrawal, S. and Goyal, N. Thompson sampling for contex-
tual bandits with linear payoffs. In International Confer-
ence on Machine Learning, pp. 127–135, 2013.

Auer, P. Using confidence bounds for exploitation-
exploration trade-offs. Journal of Machine Learning
Research, 3(Nov):397–422, 2002.

Bang, H. and Robins, J. M. Doubly robust estimation in
missing data and causal inference models. Biometrics, 61
(4):962–973, 2005.

Bastani, H. and Bayati, M. Online decision making with
high-dimensional covariates. Operations Research, 68
(1):276–294, 2020.

Bastani, H., Bayati, M., and Khosravi, K. Mostly
exploration-free algorithms for contextual bandits. Man-
agement Science, 2020.

Bickel, P. J., Ritov, Y., and Tsybakov, A. B. Simultaneous
analysis of lasso and dantzig selector. The Annals of
Statistics, 37(4):1705–1732, 2009.
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