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Abstract
Randomized experiments can be susceptible to
selection bias due to potential non-compliance by
the participants. While much of the existing work
has studied compliance as a static behavior, we
propose a game-theoretic model to study compli-
ance as dynamic behavior that may change over
time. In rounds, a social planner interacts with a
sequence of heterogeneous agents who arrive with
their unobserved private type that determines both
their prior preferences across the actions (e.g.,
control and treatment) and their baseline rewards
without taking any treatment. The planner pro-
vides each agent with a randomized recommen-
dation that may alter their beliefs and their action
selection. We develop a novel recommendation
mechanism that views the planner’s recommenda-
tion as a form of instrumental variable (IV) that
only affects an agents’ action selection, but not
the observed rewards. We construct such IVs by
carefully mapping the history –the interactions
between the planner and the previous agents– to
a random recommendation. Even though the ini-
tial agents may be completely non-compliant, our
mechanism can incentivize compliance over time,
thereby enabling the estimation of the treatment
effect of each treatment, and minimizing the cu-
mulative regret of the planner whose goal is to
identify the optimal treatment.

1. Introduction
In many applications, estimating the causal effect of a treat-
ment or intervention is at the heart of a decision-making
process. Examples include a study on the effect of a vaccine
on immunity, an assessment of the effect of a training pro-
gram on workers’ efficiency, and a evaluation of the effect
of a sales campaign on a company’s profit. Many studies on
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causal effects rely on randomized experiments, which ran-
domly assign each individual in a population to a treatment
group or a control group and then estimate the causal effects
by comparing the outcomes across groups. However, in
many real-world domains, participation is voluntary, which
can be susceptible to non-compliance. For example, people
may turn down a vaccine or a drug when they are assigned
to receive the treatment (Wright, 1993). Another example is
a randomized evaluation of the Job Training Partnership Act
(JTPA) training program (Bloom et al., 1997), where only
60 percent of the workers assigned to be trained chose to
receive training, while roughly 2 percent of those assigned
to the control group chose to receive training. In many cases,
non-compliance can cause selection bias: for example, those
who choose to receive the drug or vaccine in a randomized
trial tend to be healthier, and those who join the training
program might may more productive to begin with.

Although non-compliance in randomized experiments has
been well studied in many observational studies (see e.g.
Angrist and Pischke (2008)), there has been little work that
studies and models how compliance varies over time. In re-
ality, however, participants’ compliance behaviors may not
be static: they may change according to their time-varying
beliefs about the treatments. If the outcomes from the previ-
ous trials suggest that the treatments are effective, then the
participants may become more willing to accept the recom-
mendation. For example, those initially weary about a new
vaccine may change their mind once they see others take
it without experiencing negative symptoms.1 Motivated by
this observation, this paper studies the design of dynamic
trial mechanisms that map history–the observations from
previous trials–to a treatment recommendation and gradu-
ally incentivize compliance over time.

In this paper, we introduce a game theoretic model to study
the dynamic (non)-compliance behavior due to changing
beliefs. In our model, there is a collection of treatments
such that each treatment j is associated with an unknown
treatment effect θj . We study an online learning game, in
which a set of T myopic agents arrive sequentially over
T rounds. Each agent t has a private unobserved type ut,

1A recent survey shows that many Americans choose to wait
before deciding to receive a COVID-19 vaccine (Hamel et al.,
2021).
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which determines their heterogeneous prior beliefs about
the treatment effects. Each agent’s goal is to select a treat-
ment j that maximizes the reward: θj + g

(ut)
t , where g(ut)

t

denotes the type-dependent baseline reward (without tak-
ing any treatment). We introduce a social planner whose
goal is to estimate the effects of underlying treatments and
incentive the agents to select the treatment that maximize
long-term cumulative reward. Upon the arrival of each agent
t, the planner provides the agent with a random treatment
recommendation, which is computed by a policy that maps
the history of interactions with the previous (t− 1) agents.
While agent t does not observe the previous history, they
form a posterior belief over the treatment effects based on
the recommendation and then select the action that maxi-
mizes their expected utility.

Under this model, we provide dynamic trial mechanisms
that incentivize compliance over time and accurately es-
timate the treatment effects. The key technical insight is
that the planner’s random recommendation at each round
can be viewed as an instrument that is independent of the
agent’s private type and only influences the observed re-
wards through the agent’s choice of action. By leverag-
ing this observation, we can perform instrumental variable
(IV) regression to recover the treatment effects, as long as
some of the agents are compliant with the recommenda-
tions. To create compliance incentives, our mechanisms
leverage techniques from the literature of incentivizing ex-
ploration (Mansour et al., 2015; Slivkins, 2019). The key
idea is information asymmetry: since each agent does not
directly observe the previous history, the planner has more
information. By strategically mapping previous history to
instruments, the planner can incentivize agents to explore
treatments that are less preferred a-priori.

We first focus on the binary action setting, where each agent
can select treatment or control. Then we will extend our
results to the k treatments setting in section 6. In the binary
setting, we first provide two mechanisms that works with
two initial non-compliance situations.

Complete non-compliance. In Section 3, we consider a set-
ting where the planner initially has no information about the
treatment effect θ, so all agents are initially non-compliant
with the planner’s recommendations. We provide Algo-
rithm 1 which first lets initial agents choose their preferred
arms, then constructs recommendations that incentivize
compliance for some later agents. This enables treatment
effect estimation through IV regression.

Partial compliance. In Section 4, we consider a setting
where the planner has an initial estimate of the treatment
effect θ (that may be obtained by running Algorithm 1), so
they can incentivize some agents to comply. We provide
Algorithm 2, which can be viewed as the bandit algorithm

active arm elimination (Even-Dar et al., 2006) which uses
IV estimates to compare treatments. Samples collected by
Algorithm 1 provide an increasingly accurate estimate θ̂ and
incentivize more agents to comply over time.

Regret minimization. In Section 5, we show that if the
planner first runs Algorithm 1 to obtain an initial treatment
effect estimate θ̂ and then runs Algorithm 2 to amplify com-
pliance, then he can achieve Õ(

√
T ) regret w.r.t. the cumu-

lative reward given by enforcing the optimal action for all
agents. We then extend such a regret minimization policy to
the setting with k different treatments in Section 6.

Experiments. Lastly, in Section 7, we complement our the-
oretical results with numerical simulations, which allow us
to examine how parameters in agents’ prior beliefs influence
the convergence rate of our recommendation algorithm.

1.1. Related Work

We design mechanisms which strategically select instru-
ments to incentivize compliance over time, so that we can
apply tools from IV regression (Angrist and Krueger, 2001;
Angrist and Imbens, 1995; Imbens et al., 1996) to estimate
causal effects. Although IV regression is an established tool
to estimate causal effects where there is non-compliance
in observational studies (see e.g. Bloom et al. (1997); An-
grist (2005)), our results deviate significantly from previous
works, due to the dynamic nature of our model. In particular,
even if all agents are initially non-compliant, our mecha-
nism can still incentivize compliance over time and estimate
treatment effects —whereas directly applying standard IV
regression at the onset cannot.

Our work draws on techniques from the growing literature
of incentivizing exploration (IE) (Kremer et al., 2013; Man-
sour et al., 2015; 2016; Immorlica et al., 2019; Sellke and
Slivkins, 2020), where the goal is also to incentivize my-
opic agents to explore arms in a multi-armed bandit setting
(Auer et al., 2002) using information asymmetry techniques
from Bayesian persuasion (Kamenica and Gentzkow, 2011).
While our mechanisms are technically similar to those in
Mansour et al. (2015), our work differs in several key as-
pects. First, prior work in IE —including Mansour et al.
(2015)— does not capture selection bias and cannot be di-
rectly applied in our setting to recover causal effects. The
mechanism in Mansour et al. (2015) aims to enforce full
compliance (also called Bayesian incentive-compatibility)
that requires all agents to follow the planner’s recommenda-
tions: as a result, the mechanism needs to cater to the type
of agents that are most difficult to convince. By contrast,
our mechanism relies only on the compliance of a partial
subset of agents in order to obtain accurate estimates.

There has also been a line of work on mechanisms that
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incentivize exploration via payments (Frazier et al., 2014;
Chen et al., 2018; Kannan et al., 2017). There are several
known disadvantages of such payment mechanisms, includ-
ing potential high costs and ethical concerns (Groth, 2010).
See Slivkins (2017) for a detailed discussion.

Thematically, our work relates to work on “instrument-
armed bandits” by Kallus (2018), which also views arm
recommendations as instruments. However, the compliance
behavior (modeled as a fixed stochastic mapping from in-
strument to treatments) is static in Kallus (2018): it does not
change over time —even if the planner has obtained accu-
rate estimate(s) of the treatment effect(s). By comparison,
since all agents eventually become compliant in our setting,
we can achieve sublinear regret w.r.t. the best treatment,
which is not achievable in a static compliance model.

2. Treatment-Control Model
We study a sequential game between a social planner and a
sequence of agents over T rounds, where T is known to the
social planner. We will first focus on the binary setting with
a single treatment, and study the more general setting of k
treatments in Section 6. In the binary setting, the treatment
of interest has unknown effect θ ∈ [−1, 1]. In each round t,
a new agent indexed by t arrives with their private type ut
drawn independently from a distribution U over the set of all
private typesU . Each agent t has two actions to choose from:
taking the treatment (denoted as xt = 1) and not taking the
treatment, i.e. the control (denoted as xt = 0). Upon arrival,
agent t also receives an action recommendation zt ∈ {0, 1}
from the planner. After selecting an action xt ∈ {0, 1},
agent t receives a reward yt ∈ R, given by

yt = θxt + g
(ut)
t (1)

where g(ut)
t denotes the confounding baseline reward which

depends on the agent’s private type ut; each is drawn from a
sub-Gaussian distribution with a sub-Gaussian norm of σg.
The social planner’s goal is to estimate the treatment effect
θ and maximize the total expected reward of all T agents.

History and recommendation policy. The interaction
between the planner and the agent t is given by the tu-
ple (zt, xt, yt). For each t, let Ht denote the history
from round 1 to t, i.e. the sequence of interactions be-
tween the social planner and the first t agents, such that
Ht := ((z1, x1, y1), . . . , (zt, xt, yt)). Before the game
starts, the social planner commits to a recommendation pol-
icy π = (πt)

T
t=1 where each πt : ({0, 1}×{0, 1}×R)t−1 →

∆({0, 1}) is a randomized mapping from the history Ht−1

to recommendation zt. Policy π is fully known to all agents.

Beliefs, incentives, and action choices. Each agent t
knows their place t in the sequential game, and their private

type ut determines a prior belief P(ut), which is a joint
distribution over the treatment effect θ and noisy error term
g(u). Agent t selects action xt as such:

xt := 1

[
E

P(ut),πt

[θ | zt, t] > 0

]
. (2)

An agent t is compliant with a recommendation zt if the
agent chooses the recommended action, i.e. xt = zt. We’ll
also say that a recommendation is compliant if xt = zt.

2.1. Recommendations as Instruments

Unlike the standard multi-armed bandit and previous models
on incentivizing exploration (Mansour et al., 2015; 2016),
the heterogeneous beliefs in our setting can lead to selection
bias. For example, agents who are willing to take the treat-
ment may also have higher baseline rewards. Thus, simply
comparing rewards across the treatment group (x = 1) and
the control group (x = 0) will lead to a biased estimate of θ.
To overcome this selection bias, we will view the planner’s
recommendations as instruments and perform instrumental
variable (IV) regression to estimate θ. There are two criteria
for zt to be a valid instrument: (1) zt influences the selection
xt, and (2) zt is independent from the noisy baseline reward
g(u). Our goal is to design a recommendation policy to meet
criterion (1). Criterion (2) follows because planner chooses
zt randomly, independent of the type ut.

Wald Estimator. Our mechanism periodically solves the
following IV regression problem: given a set S of n ob-
servations (xi, yi, zi)

n
i=1, compute an estimate θ̂S of θ. We

consider the following two-stage least square (2SLS) or
Wald estimator (which are equivalent for binary treatments):

θ̂S =

∑n
i=1(yi − ȳ)(zi − z̄)∑n
i=1(xi − x̄)(zi − z̄)

, (3)

where x̄, ȳ, z̄ denote the empirical means of variables xi, yi,
and zi respectively.

While existing work on IV regression mostly focuses on
asymptotic analyses, we provide a high-probability finite-
sample error bound for θ̂S , which is required by our regret
analysis and may be of independent interest.
Theorem 2.1 (Finite-sample error bound for Wald esti-
mator). Let z1, z2, . . . , zn ∈ {0, 1} be a sequence of in-
struments. Suppose there is a sequence of n agents such
that each agent i has their private type ui drawn indepen-
dently from U , selects action xi under instrument zi, and
receives reward yi. Let sample set S = (xi, yi, zi)

n
i=1. Let

A : ({0, 1}n × {0, 1}n × Rn)→ R denote the approxima-
tion bound for set S, such that

A(S, δ) :=
2σg
√

2n log(2/δ)

|
∑n
i=1(xi − x̄)(zi − z̄)|
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and the Wald estimator given by (3) satisfies∣∣∣θ̂S − θ∣∣∣ ≤ A(S, δ)

with probability at least 1− δ, for any δ ∈ (0, 1).

Proof Sketch. See Appendix B for the full proof. The
bound follows by substituting our expressions for yt, xt into
the IV regression estimator, applying the Cauchy-Schwarz
inequality to split the bound into two terms (one dependent
on {(gt, zt)}|S|t=1 and one dependent on {(xt, zt)}|S|t=1), and
bound the second term with high probability.

Note that the error rate above depends on the covariance
between the instruments z and action choices x. In partic-
ular, when

∑n
i=1(xi − x̄)(zi − z̄) is linear in n, the error

rate becomes Õ(1/
√
n). In the following sections, we will

provide mechanisms that incentivize compliance so that the
instruments z become correlated with actions x, enabling
us to achieve such an error rate.

3. Overcoming Complete Non-Compliance
In this section, we present a recommendation policy that
incentivizes compliance to enable IV estimation. We fo-
cus on a setting where the agents are initially completely
non-compliant: since the planner has no information about
the treatment effect in the initial rounds, the recommenda-
tions have no influence on agents’ action selections. For
simplicity of exposition, we will present our policy in a
setting where there are two types of agents who are initially
“always-takers” and “never-takers.” As we show later Sec-
tion 6, this assumption can be relaxed to have arbitrarily
many types and also allow all types to be “always-takers.”

Formally, consider two types of agents i ∈ {0, 1}. For
type i, let pi be the fraction of agents in the population,
P(i) the prior beliefs, and g(i) the baseline reward random
variables. Agents of type 1 initially prefer the treatment and
type 0 agents prefer control: their prior means for θ satisfy
µ(1) = EP(1) [θ] > 0 and µ(0) = EP(0) [θ] < 0.

Our policy (Algorithm 1) splits into two stages. In the
first stage, agents take their preferred action according to
their prior beliefs: type 0 agents choose control and type 1
treatment. This allows us to collect `0 and `1 observations
of rewards for x = 0 and x = 1, respectively. Let ȳ0 and
ȳ1 denote the empirical average rewards for the two actions,
respectively. Note that since the baseline rewards g(u) are
correlated with the selections x, the difference (ȳ1 − ȳ0) is
a biased estimate for θ.

In the second stage, we use this initial set of reward ob-
servations to construct valid instruments which incentivize
agents of one of the two types to follow both control and
treatment recommendations. Without loss of generality, we

focus on incentivizing compliance among type 0 agents.
Since they already prefer control, the primary difficulty here
is to incentivize type 0 agents to comply with treatment
recommendations.2 We leverage the following observation:
according to the prior P(0) of type 0 agents, there is a non-
zero probability that the biased estimate (ȳ1− ȳ0) is so large
that θ must be positive.

Formally, consider the following event for the average re-
wards ȳ0 and ȳ1:

ξ=

{
ȳ1>ȳ0+σg

(√
2 log(2/δ)

`0
+

√
2 log(2/δ)

`1

)
+G(0)+

1

2

}
(4)

whereG(0) is a constant such thatG(0) > EP(0) [g(1)−g(0)]
and σg is the variance parameter for g(0) and g(1).

Assumption 3.1 (Knowledge Assumption for Algorithm 1).
Within Section 3, the following are common knowledge
among agents and planner:3

1. Type 0 agents prefer control and type 1 agents prefer
treatment. The fraction of agents of type 0 in the popu-
lation is p0 ≥ 0 and the fraction of type 1 is p1 > 0.

2. Type 0’s prior treatment effect mean µ(0) and the prob-
ability of event ξ, denoted PP(0) [ξ], over the prior P(0)

of type 0.4

We prove that Algorithm 1 is compliant for agents of type
0 as long as the exploration probability ρ is less than some
constant that depends on prior P(0). When an agent of type
0 is recommended treatment, they do not know whether this
is due to exploration or exploitation. However, with small
enough ρ, their expected gain from exploiting exceeds the
expected loss from exploring. Hence, the agents comply
with the recommendation and take treatment.

Lemma 3.2 (Type 0 compliance with Algorithm 1). Under
Assumption 3.1, any type 0 agent who arrives in the last `
rounds of Algorithm 1 is compliant with any recommenda-
tion, as long as the exploration probability ρ satisfies

ρ ≤ 1 +
4µ(0)

PP(0) [ξ]− 4µ(0)
(5)

where the event ξ is defined above in Equation (4).

Proof Sketch. See Appendix C for the full proof. The proof
follows by expressing the compliance condition for type 0

2We could instead incentivize type 1 agents to take control.
This would require 1) rewriting event ξ so it indicates that the
expectation of θ over P(1) must be negative and 2) rewriting
Algorithm 1 so that control is recommended when exploring. We
cannot incentivize both types to comply at the same time.

3Assumptions do not hold elsewhere, unless explicitly stated.
4These assumptions (as well as Assumption 4.1 and Assump-

tion 5.1) require only partial knowledge of the priors for compliant
agents only. They are no more restrictive than the least restrictive
(detail-free) assumptions of Mansour et al. (2015).
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Algorithm 1 Overcoming complete non-compliance
Input: exploration probability ρ ∈ (0, 1), ` ∈ N (assume
w.l.o.g. ρ` ∈ N), minimum first stage samples `0, `1 ∈ N,
and failure probability δ < PP0

[ξ]/8
1st stage: The first 2 max (`0/p0, `1/p1) agents are
given no recommendation (they choose what they prefer)

2nd stage: Based on at least `0 control and `1 treatment
samples collected in the first stage:

if ȳ1 > ȳ0 + σg

(√
2 log(2/δ)

`0
+
√

2 log(2/δ)
`1

)
+ G(0) + 1

2

then
a∗ = 1

else
a∗ = 0

end if
From the next ` agents, pick ρ` agents uniformly at ran-
dom to be in the explore set E
for the next ` rounds do

if agent t is in explore set E then
zt = 1

else
zt = a∗

end if
end for

agents as different cases, depending on the recommendation.
By keeping the exploration probability ρ small with regard
to type 0 agent’s prior-dependent probability PP(0) [ξ] and
the conditional expected treatment effect EP(0) [θ|ξ], the
expected gain from exploiting is greater than the expected
loss from exploring. Hence, type 0 agents would comply
with the recommendation. We further simplify the condition
on exploration probability ρ by applying high probability
bound on the samples collected from the 1st stage (where
no recommendations were given).

We also provide a separate accuracy guarantee for the treat-
ment effect estimate θ̂ at the end of the Algorithm 1.

Theorem 3.3 (Treatment Effect Confidence Interval after
Algorithm 1). With sample set S` = (xi, yi, zi)

`
i=1 of `

samples collected from the second stage of Algorithm 1 —
run with exploration probability ρ small enough so that type
0 agents are compliant (see Lemma 3.2),— approximation
bound A(S`, δ) satisfies the following, with probability at
least 1− δ:

A(S`, δ) ≤
2σg
√

2 log(5/δ)

ρ(1− ρ)p0

√
`− (3− ρ)

√
ρ log(5/δ)

2(1−ρ)

for any δ ∈ (0, 1). Recall σg is the variance of g(ui), p0 is
the fraction of compliant never-takers in the population of
agents,5and A(S`, δ) is defined as in Theorem 2.1.

Proof Sketch. See Appendix C for the full proof. Note
that Theorem 2.1 applies, so we only have to bound the
denominator term which is dependent on {(xt, zt)}|S`|t=1. We
assume that Algorithm 1 is initialized with parameters (see
Lemma 3.2) such that type 0 agent is compliant. We bound
the term dependent on {(xt, zt)}|S`|t=1 with high probability.

3.1. Algorithm 1 Extensions

Algorithm 1 can be extended to handle more general settings:

1. There can be arbitrarily many types of agents that do
not share the same prior. In this case, let EP(u) [g0] and
EP(u) [g1] denote the expected baseline rewards for
never-takers and always-takers, respectively, over the
prior P(u) of any type u and G(u) > EP(u) [g1 − g0].
Then, Algorithm 1 can still incentivize any never-taker
type u agents to comply as long as the planner has a
lower bound on PP(u) [ξ(u)], where ξ(u) is defined just
as ξ in Equation (4), except G(0) is replaced with G(u).
Theorem 3.3 applies as is.

2. All types can be always-takers (who prefer the treat-
ment). The algorithm can incentivize some of the
agents to take control with an event ξ defined with-
out ȳ0 and flipped (i.e. the mean treatment reward is
much lower than the expected baseline reward).6

By Theorem 3.3, samples collected from Algorithm 1 pro-
duce a confidence interval on the treatment effect θ which
decreases proportionally to 1/

√
t by round t. However, it

still decreases slowly because the exploration probability ρ
is small (see roughly how small in Section 7). In Section 4,
we give an algorithm for which this confidence interval
improves quicker and works for arbitrarily many types.

4. Overcoming Partial Non-Compliance
In this section, we present a recommendation policy which
(1) capitalizes on partial compliance, eventually incentiviz-
ing all agents to comply, and (2) determines whether the
treatment effect is positive or not (with high probability).
Algorithm 2 recommends control and treatment sequentially
(one after the other). Lemma 4.2 gives conditions for par-
tial compliance from the beginning of Algorithm 2, given
access to initial samples which form a crude estimate of the
treatment effect. Theorem 4.3 demonstrates how rapidly this
estimate improves throughout Algorithm 2, which solely de-
pends on the fraction of compliant agents (and not on some
fraction like ρ with Algorithm 1). More (and eventually all)
types of agents progressively become compliant throughout
Algorithm 2.

Assumption 4.1 (Knowledge Assumption for Algorithm 2).
5We redefine p0 here to be applicable to more general settings.
6Also, Lemma C.3 can be proved sans clean event C0.
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Within Section 4, the following are common knowledge
among agents and planner:

1. The fraction of agents in the population who prefer
control is p0 ≥ 0; that who prefer treatment is p1 ≥ 0.

2. For each type u and for some τ (which can differ per u),
the probability τ PP(u) [θ > τ ] is known if EP(u) [θ] <
0; or τ PP(u) [θ < −τ ] is known if EP(u) [θ] ≥ 0.

Algorithm 2 Overcoming partial compliance

Input: samples S0 := (xi, zi, yi)
|S0|
i=1 which meet Theo-

rem 2.1 conditions and produce IV estimate θ̂S0
;7 time

horizon T ; number of recommendations of each action
per phase h; approximation bound failure probability δ;
Split the remaining rounds (up to T ) into consecutive
phases of h rounds each, starting with q = 1;
Let θ̂0 = θ̂S0

and A0 = A(S0, δ);
while |θ̂q−1| ≤ Aq−1 do

The next 2h agents are recommended control and treat-
ment sequentially (one after the other);
Let Sq be samples up to and including phase q, i.e.
Sq := (xi, zi, yi)

|S0|+hq
i=1 = Sq−1+{round q samples}

Let SBEST
q be the sample set with the smallest approxi-

mation bound so far (from phase 1 to q), i.e.
SBEST
q = argminSr,0≤r≤q A(Sr, δ);

Define θ̂q = θ̂SBEST
q

and Aq = A(SBEST
q , δ);

q = q + 1;
end while
For all remaining agents recommend a∗ = 1

[
θ̂q > 0

]
.

We focus on a setting where agents are assumed to have
been at least partially compliant in the past, such that we
may form an IV estimate from the history. The social plan-
ner employs Algorithm 2, which is a modification of the
Active Arms Elimination algorithm (Even-Dar et al., 2006).
Treatment and control “race”, i.e. are recommended se-
quentially, until the expected treatment effect is known to
be negative or positive (with high probability). Then, the
algorithm recommends the “winner” (the action with higher
expected reward) for the remainder of the time horizon T .

The compliance incentive works as such: when an agent is
given a recommendation, they do not know whether it is
because the action is still in the “race” or if the action is the
“winner”. When the algorithm is initialized with samples
that form an IV estimate which is sufficiently close to the
true treatment effect (according to the agent’s prior), then
the probability that any recommended action has “won” is
high enough such that the agent’s expected gain from taking
a “winning” action outweighs the expected loss from taking
a “racing” one. We formalize this in Lemma 4.2.

7Operator | · | denotes the cardinality of a set.

Lemma 4.2 (Algorithm 2 Partial Compliance). Recall
that Algorithm 2 is initialized with input samples S0 =

(xi, yi, zi)
|S0|
i=1 . For any type u with the following prior pref-

erence (control or treatment), if S0 satisfies the following
condition, with probability at least 1− δ, then all agents of
type u will comply with recommendations of Algorithm 2:

A(S0, δ) ≤

{
τ PP(u) [θ > τ ]/4 if EP(u) [θ] < 0;

τ PP(u) [θ < −τ ]/4 if EP(u) [θ] ≥ 0,

for some τ ∈ (0, 1), where A(S0, δ) is the approximation
bound for S0 and any δ ∈ (0, 1) (see Theorem 2.1).

Proof Sketch. See Appendix D.1 for the full proof. The
proof follows by using a "clean event" analysis where the
IV estimated treatment effect θ̂ is close to the true treatment
effect θ. We split the conditional expected treatment effect
EP(u) [θ] into different cases for the value of θ. With an IV
estimate that is sufficiently close to the true treatment effect,
the expected gain from exploiting (taking the “winning”
action) is greater than the expected loss from exploring
(taking a recommended action when the “race” is not over)
and the agent of type uwould comply with recommendation.

When a nonzero fraction of agents comply from the begin-
ning, the samples gathered in Algorithm 2 provide treatment
effect estimates θ̂ which become increasingly accurate over
rounds. In the following Theorem 4.3, we provide a high
probability guarantee on this accuracy.
Theorem 4.3 (Treatment Effect Confidence Interval from
Algorithm 2 with Partial Compliance). With set S =

(xi, yi, zi)
|S|
i=1 of |S| samples collected from Algorithm 2

where pc is the fraction of compliant agents in the popula-
tion, we form an estimate θ̂S of the treatment effect θ. With
probability at least 1− δ,∣∣∣θ̂S − θ∣∣∣ ≤ 8σg

√
2 log(5/δ)

pc
√
|S| −

√
50 log(5/δ)

for any δ ∈ (0, 1), where σg is the variance of g(ui).

Proof Sketch. See Appendix D.3.1 for a full proof. Note
that Theorem 2.1 applies, so we only to have to bound
the denominator term which is dependent on {(xt, zt)}|S|t=1.
We assume that Algorithm 2 is initialized with parameters
such that pc > 0 fraction of the population complies with
all recommendations. We bound the term dependent on
{(xt, zt)}|S|t=1 with high probability.

Agents become compliant during Algorithm 2 for the same
reason others become compliant from the beginning: they
expect that the estimate θ̂ is sufficiently accurate and it’s
likely they’re getting recommended an action because it
won the race. For large enough T , all agents will become
compliant.8 Note that the accuracy improvement in The-
orem 4.3 relies solely on the proportion of agents pc who
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comply from the beginning of Algorithm 2, which relies on
the accuracy of the approximation bound given by initial
samples S0. Thus, if the social planner can choose more
accurate S0, then the treatment effect estimate θ̂ given by
samples from Algorithm 2 becomes more accurate quicker.
In Section 5, we present a recommendation policy in which
S0 can be chosen by running Algorithm 1.

5. Combined Recommendation Policy
In this section, we present a recommendation policy πc,
which spans T rounds and runs Algorithms 1 and 2 in se-
quence. This policy achieves Õ(

√
T ) regret for sufficiently

large T and produces an estimate θ̂ which deviates from the
true treatment effect θ by O(1/

√
T ).9

Assumption 5.1 (Knowledge Assumption for Policy πc).
Within Sections 5.1 and 5.2, the following are common
knowledge among agents and planner:

1. All prior-dependent constants given in Assumption 4.1

2. For each type u which prefers control, prior mean
µ(u) and a lower bound on the probability PP(u) [ξ(u)]
(defined in Extension 1 of Algorithm 1 from Section 3.1)

5.1. Recommendation Policy πc

Recommendation policy πc over T rounds is given as such:

1) Run Algorithm 1 with exploration probability ρ set to
incentivize at least pc1 > 0 fraction of agents of the
population who initially prefer control to comply in
Algorithm 1 and ` to make at least pc2 > 0 fraction of
agents comply in Algorithm 2 (see Lemma 5.2).

2) Initialize Algorithm 2 with samples from Algorithm 1.
At least pc2 fraction of agents comply in Algorithm 2.

We first provide conditions on ` to define policy πc.
Lemma 5.2 (Lower bound on ` for Type u Compliance in
Algorithm 2). Recall that S` denotes the samples collected
from the second stage of Algorithm 1. Let S` be the input
samples S0 in Algorithm 2. Assume that pc1 proportion of
agents in the population are compliant with recommenda-
tions of Algorithm 1 and length ` satisfies:

` ≥


(

κ1
τ PP(u) [θ>τ ]

+ κ2

)2
if E
P(u)

[θ] < 0(
κ1

τ PP(u) [θ<−τ ]
+ κ2

)2
if E
P(u)

[θ] ≥ 0
(6)

for some τ ∈ (0, 1) and where κ1 :=
8σg
√

2 log(5/δ)

pc1ρ(1−ρ)
and

κ2 := (3−ρ)
√

ρ log(5/δ)
2(1−ρ) for any δ ∈ (0, 1). Then any agent

of type u will comply with recommendations of Algorithm 2.

8See Lemma D.1 for details.
9We spare the reader the details of the exact bound. It can be

deduced via Theorems 3.3, 4.3 and D.2 and Lemmas 4.2 and D.1.

Proof Sketch. See Appendix D.3 for the full proof. The proof
follows by substituting the value of ` into the approxima-
tion bound Theorem 3.3 and simplifying. The compliance
condition follows from Lemma 4.2.

Policy πc shifts from Algorithm 1 to Algorithm 2 as soon as
the condition on ` above is satisfied. This is because 1) the
treatment effect estimate θ̂ get more accurate quicker and 2)
less regret is accumulated in Algorithm 2 than Algorithm 1.

5.2. Regret Analysis

The goal of recommendation policy πc is to maximize the
cumulative reward of all agents. We measure the policy’s
performance through regret. We are interested in minimiz-
ing regret, which is specific to the treatment effect θ. Since
agents’ priors are not exactly known to the social planner,
this pseudo-regret is correct for any realization of these
priors and treatment effect θ.

Definition 5.3. [Pseudo-regret] The pseudo-regret of a rec-
ommendation policy is given as such:

Rθ(T ) = T max(θ, 0)−
T∑
t=1

θxt (7)

We present regret guarantees for recommendation policy πc.
First, policy πc achieves sub-linear pseudo-regret.

Lemma 5.4 (Pseudo-regret). The pseudo-regret accumu-
lated from policy πc is bounded for any θ ∈ [−1, 1] as
follows, with probability at least 1− δ for any δ ∈ (0, 1):

Rθ(T ) ≤ L1 +O(
√
T log(T/δ)) (8)

for sufficiently large time horizon T , where the length of Al-
gorithm 1 is L1 = `+ 2 max

(
`0
p0
, `1p1

)
.

Proof Sketch. See Appendix E.1 for the full proof. The
proof follows by observing that Algorithm 2 must end after
some log(T ) phases. We can bound the regret of the policy
πc by at most that of Algorithm 2 plus θ per each round of
Algorithm 1, or alternatively, we can upper bound it by θ
per each round of the policy πc.

Policy πc also achieves sub-linear regret, where the expec-
tation is over the randomness in the priors of the agents.
Lemma 5.5 provides a basic performance guarantee of our
recommendation policy.

Lemma 5.5 (Regret). Policy πc achieves regret as follows:

E[R(T )] = O(
√
T log(T )) (9)

for sufficiently large time horizon T .

Proof Sketch. See Appendix E.2 for the full proof. The
proof follows by observing that we can set the parameters in
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Algorithm 1 and Algorithm 2 in terms of the time horizon
T while maintaining compliance throughout policy πc.

These results are comparable to the pseudo-regret of the
classic multi-armed bandit problem, with some added con-
stants factors for the compliance constraints (Even-Dar et al.,
2006). The pseudo-regret of our policy πc is asymptotically
equivalent to an extension of the detail-free recommenda-
tion algorithm of (Mansour et al., 2015), which incentivizes
full compliance for all types. However, our policy can finish
in a more timely manner and has smaller prior-dependent
constants in the asymptotic bound.

In Section 6, we provide an extension of our model and pol-
icy πc to arbitrarily many treatments with unknown effects.
We also provide similar regret guarantees.

6. Many Treatments with Unknown Effects
In this section, we introduce a setting which extends the pre-
vious binary treatment setting by considering k treatments
(and no control). We now consider a treatment effect vector
θ ∈ Rk; and x, z ∈ {0, 1}k are one-hot encodings of the
treatment choice and recommendation, respectively. We
assume that E[g(ui)] = 0.10 All other terms are defined
similar to those in Section 2. Here, the reward yi ∈ R and
action choice xi ∈ {0, 1}k at round i are given as such:11yi = 〈θ, xi〉+ g(ui)

xi = argmax
1≤ j≤ k

(
EP(ui),πi

[θj |zi, i]
) (10)

Given sample set S = (zi, xi, yi)
n
i=1, we compute IV esti-

mate θ̂S of θ as such:

θ̂S =

(
n∑
i=1

zix
ᵀ
i

)−1 n∑
i=1

ziyi (11)

Next, we state finite sample approximation results which
extend Theorem 2.1 to this general setting.
Theorem 6.1 (Many Treatments Effect Approximation
Bound). Let z1, . . . , zn ∈ {0, 1}k be a sequence of instru-
ments. Suppose there is a sequence of n agents such that
each agent i has private type ui drawn independently from
U , selects xi under instrument zi and receives reward yi. Let
sample set S = (xi, yi, zi)

n
i=1. The approximation bound

A(S, δ) is given as such:12

A(S, δ) =
σg
√

2nk log(k/δ)

σmin (
∑n
i=1 zix

ᵀ
i )
,

10Without this assumption, we run into identifiability issues:
we cannot reconstruct the individual treatment effects θ1, . . . , θk

without fixing some mean E[g(u)]. Yet, for purposes of regret
minimization, assuming E[g(u)] = 0 does not change our results.

11We bastardize notation by writing xi = j instead of xi = ej
(the k-dimensional unit vector along the jth dimension).

and the IV estimator given by Equation (11) satisfies∥∥∥θ̂S − θ∥∥∥
2
≤ A(S, δ)

with probability at least 1− δ for any δ ∈ (0, 1).

Proof Sketch. See Appendix F.3 for the full proof. The
bound follows by substituting our expressions for yt, xt into
the IV regression estimator, applying the Cauchy-Schwarz
inequality to split the bound into two terms (one dependent
on {(g(ut)

t , zt)}|S|t=1 and one dependent on {(xt, zt)}|S|t=1).
We bound the second term with high probability.

Next, we extend recommendation policy πc to k treatments
(see Definition F.5 in Appendix F for details).13

Assumption 6.2 (Knowledge Assumption for General Pol-
icy πc). Within Section 6, the following are common knowl-
edge among agents and planner:

1. All agents share a preference ordering over all k treat-
ments, i.e. for any type u, the prior expected reward
EP(u) [θ1] > EP(u) [θ2] > · · · > EP(u) [θk].14

2. Prior-dependent constants PP(u) [ξ(u)] and
PP(u) [Gv > τ ] for some τ ∈ (0, 1) (see Appendix F.4).

In order to incentivize agents of any type u to comply with
general extensions Algorithms 3 and 4, we (again) set explo-
ration probability ρ and length ` to satisfy some compliance
conditions relative to PP(u) [ξ(u)] and τ PP(u) [Gv > τ ], re-
spectively (see Appendix F.4). We present the (expected)
regret from the k treatment extension of policy πc next.
Lemma 6.3 (Regret of Policy πc for k Treatments). An
extension of policy πc achieves (expected) regret as follows:

E[R(T )] = O
(
k
√
kT log(kT )

)
(12)

for sufficiently large time horizon T .

Proof Sketch. See Appendix F.4 for the full proof. The proof
follows the same structure as that of Lemma 5.5.

Though our analysis covers a more general k treatment set-
ting than Mansour et al. (2015) (capturing non-compliance
and selection bias), our policy πc accumulates asymptoti-
cally comparable regret in terms of T . See Appendix F for
all other results. Next, in Section 7, we implement Algo-
rithm 1 experimentally.

7. Numerical Experiments
In this section, we present experiments to evaluate Algo-
rithm 1. We mention previously in the paper that this approx-
imation bound decreases slowly throughout Algorithm 1,

12The operator σmin(·) denotes the smallest singular value.
13Algorithm 3 extends Algorithm 1 and Algorithm 4 extends

Algorithm 2.
14This ordering assumption is shared by Mansour et al. (2015).
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because the exploration probability ρ is small (see Theo-
rem 3.3). So, we are interested in (1) how small the explo-
ration probability ρ in Algorithm 1 is and (2) how slowly
the approximation bound on the absolute difference |θ − θ̂|
decreases as Algorithm 1 progresses (where θ̂ is based on
samples from Algorithm 1). These are important to study,
because this slow improvement in accuracy is the primary
source of inefficiency (in terms of sample size) for policy
πc, which accumulates linear regret during Algorithm 1
(see Lemma 5.4) for marginal improvements in estimation
accuracy. This motivates the social planner to move to Al-
gorithm 2 —where the estimation accuracy increases much
quicker— as soon as possible in policy πc. Yet, there is
also a tradeoff for moving to Algorithm 2 too quickly: if
Algorithm 1 is not run for long enough, then only a small
portion of agents may comply in Algorithm 2. In order to
better inform the choice of hyperparameters in policy πc
(specifically, the compliance paramters pc1 and pc2), we
empirically estimate these quantities experimentally. We
defer experiments on Algorithm 2 to the appendix.15

Experimental Description. We consider a setting with
two types of agents: type 0 who are initially never-takers
and type 1 who are initially always-takers. We let each
agent’s prior on the treatment effect be a truncated Gaussian
distribution between −1 and 1. The noisy baseline reward
g

(ut)
t for each type u of agents is drawn from a Gaussian

distribution N (µg(u) , 1), with its mean µg(u) also drawn
from a Gaussian prior. We let each type of agent have equal
proportion in the population, i.e. p0 = p1 = 0.5. We are
interested in finding the probability of event ξ (as defined in
Equation (4)) and the exploration probability ρ (as defined
in Equation (5)). Instead of deriving an explicit formula
for PP0 [ξ] to calculate the exploration probability ρ, we
estimate it using Monte Carlo simulation by running the first
stage of Algorithm 1 for 1000 iterations and aggregating the
results. After this, Algorithm 1 is run with the previously-
found exploration probability ρ over an increasing number
of rounds. We repeatedly calculate the IV estimate of the
treatment effect and compare it to a naive OLS estimate
(that regresses the treatment onto the reward) over the same
samples as a benchmark.

Results. In Figure 1, we compare the approximation
bound on |θ − θ̂| between IV estimate θ̂ versus via a naive
estimate for a specific, chosen ρ = 0.001. In our experi-
ments, the exploration probability ρ generally lies within
[0.001, 0.008]. In Figure 1, we let hidden treatment effect
θ = 0.5, type 0 and type 1 agents’ priors on the treatment
effect be N (−0.5, 1) and N (0.9, 1) —each truncated onto
[−1, 1],— respectively. We also let the mean baseline re-
ward for type 0 and type 1 agents be µg(0) ∼ N (0, 1) and

15The code is available here.

Figure 1. Approximation bound using IV regression and OLS dur-
ing Algorithm 1 with ρ = 0.001. Results are averaged over 5 runs;
light blue error bars represent one standard error.

µg(1) ∼ N (0.1, 1), respectively. These priors allow us to set
the exploration probability ρ = 0.001 for Figure 1, where IV
regression consistently outperforms OLS for any reasonably
long run of Algorithm 1.

To our knowledge, these experiments are the first empirical
evaluation of an algorithm in the incentivizing exploration
literature. Figure 1 shows the effect of small exploration
probability ρ = 0.001: we need to run Algorithm 1 for a
while to get a decently-accurate causal effect estimate.16

8. Conclusion
In this paper, we presented a model for how (non)-
compliance changes over time based on beliefs and new
information. We provide novel mechanisms that view
treatment recommendations as instrumental variables (IVs),
which enable treatment effects estimation via IV regression,
even in the presence of non-compliance and confounding.

Future Work. Here, we focused on a setting where the
causal model is linear and there is no treatment modification
by the private type (so all agents share the same treatment
effect θ). Future work may extend our results to non-linear
settings and settings with treatment effect heterogeneity. We
may also relax the (somewhat unrealistic) assumptions 1)
that the social planner knows key prior-dependent constants
about all agents and 2) that agents fully know their prior, the
recommendation mechanism, and can exactly update their
posterior over treatment effects. Finally, our empirical re-
sults invite further work to improve the practicality of incen-
tivizing exploration mechanisms to allow for more frequent
exploration and lessen the number of samples needed.

16We suspect this weakness is likely endemic to previous works.
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