
Oblivious Sketching for Logistic Regression

Alexander Munteanu 1 Simon Omlor 2 David P. Woodruff 3

Abstract
What guarantees are possible for solving logistic
regression in one pass over a data stream? To
answer this question, we present the first data
oblivious sketch for logistic regression. Our
sketch can be computed in input sparsity time
over a turnstile data stream and reduces the
size of a d-dimensional data set from n to only
poly(µd log n) weighted points, where µ is a use-
ful parameter which captures the complexity of
compressing the data. Solving (weighted) logis-
tic regression on the sketch gives an O(log n)-
approximation to the original problem on the full
data set. We also show how to obtain an O(1)-
approximation with slight modifications. Our
sketches are fast, simple, easy to implement, and
our experiments demonstrate their practicality.

1. Introduction
Sketches and coresets are arguably the most promising
and widely used methods to facilitate the analysis of
massive data with provable accuracy guarantees (Phillips,
2017; Munteanu & Schwiegelshohn, 2018; Feldman, 2020).
Sketching has become a standard tool in core research ar-
eas such as data streams (Muthukrishnan, 2005) and nu-
merical linear algebra (Mahoney, 2011; Woodruff, 2014),
and constantly paves its way into diverse areas including
computational geometry (Braverman et al., 2019; Mein-
trup et al., 2019), computational statistics (Geppert et al.,
2017; Munteanu, 2019), machine learning (Nelson, 2020)
and artificial intelligence (van den Brand et al., 2020; Gaj-
jar & Musco, 2020; Molina et al., 2018). Following the
sketch-and-solve paradigm, we first apply a simple and fast

Authors listed in alphabetical order. 1Dortmund Data
Science Center, Faculties of Statistics and Computer Sci-
ence, TU Dortmund University, Dortmund, Germany 2Faculty
of Statistics, TU Dortmund University, Dortmund, Germany
3Department of Computer Science, Carnegie Mellon Uni-
versity, Pittsburgh, PA, USA. Correspondence to: Alexan-
der Munteanu <alexander.munteanu@tu-dortmund.de>, Si-
mon Omlor <simon.omlor@tu-dortmund.de>, David Woodruff
<dwoodruf@cs.cmu.edu>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

dimensionality reduction technique to compress the data
to a significantly smaller sketch of polylogarithmic size.
In a second step we feed the sketch to a standard solver
for the problem, that needs little or no modifications. The
theoretically challenging part is to prove an approximation
guarantee for the solution obtained from the sketch with
respect to the original large data set.

1.1. Related work

Deficiencies of coreset constructions. Most works on lo-
gistic regression have studied coresets as a data reduction
method. Those are small subsets of the data, often ob-
tained by subsampling from a properly designed importance
sampling distribution (Huggins et al., 2016; Tolochinsky &
Feldman, 2018; Munteanu et al., 2018; Tukan et al., 2020;
Samadian et al., 2020). Those results often rely on regular-
ization as a means to obtain small coresets. This changes the
sampling distribution such that they do not generally apply
to the unregularized setting that we study. The above coreset
constructions usually require random access to the data and
are thus not directly suitable for streaming computations.
Even where row-order processing is permissible, at least two
passes are required, one for calculating or approximating
the probabilities and another for subsampling and collecting
the data, since the importance sampling distributions usu-
ally depend on the data. A widely cited general scheme for
making static (or multi-pass) constructions streamable in
one pass is the merge & reduce framework (Bentley & Saxe,
1980). However, this comes at the cost of additional poly-
logarithmic overhead in the space requirements and also in
the update time. The latter is a severe limitation when it
comes to high velocity streams that occur for instance in
large scale physical experiments such as the large hadron
collider, where up to 100 GB/s need to be processed and
data rates are anticipated to grow quickly to several TB/s in
the near future (Rohr, 2018). While the amortized insertion
time of merge & reduce is constant for some problems, in
the worst case Θ(log n) repeated coreset constructions are
necessary for the standard construction to propagate through
the tree structure; see e.g. (Feldman et al., 2020). This poses
a prohibitive bottleneck in high velocity applications. Any
data that passes and cannot be processed in real time will be
lost forever.

Another limitation of coresets and the merge & reduce

Oblivious Sketching for Logistic Regression

scheme is that they work only in insertion streams, where the
data is presented row-by-row. However it is unclear how to
construct coresets when the data comes in column-wise or-
der, e.g., when we first obtain the incomes of all individuals,
then receive their heights and weights, etc. A similar setting
arises when the data is distributed vertically on numerous
sites (Stolpe et al., 2013). Sensor networks are another
example where each sensor is recording only a single or
a small subset of features (columns), e.g., each at one of
many different production stages in a factory. Also the usual
form of storing data in a table either row- or column-wise is
not appropriate or efficient for extremely massive databases.
The data is rather stored as a sequence of (key, value) pairs
in an arbitrary order in big unstructured databases (Gessert
et al., 2017; Siddiqa et al., 2017).

The only work that can be simulated in a turnstile stream
to tackle the extreme settings described above, is arguably
(Samadian et al., 2020) via uniform subsampling. Their
coreset size is roughly Θ(d

√
n) and works only when the

problem is regularized very strongly such that the loss func-
tion is within constant factors to the regularizer, and thus
widely independent of the input data. Consequently, the
contribution of each point becomes roughly equal and thus
makes uniform sampling work. However, those arguments
do not work for unconstrained logistic regression, where
each single point can dominate the cost and thus no sublin-
ear compression below Ω(n) is possible in the worst case,
as was shown in (Munteanu et al., 2018). To cope with this
situation, the authors of (Munteanu et al., 2018) introduced
a complexity parameter µ(A) that is related to the statistical
modeling of logistic regression, and is a useful measure for
capturing the complexity of compressing the dataset A for
logistic regression. They developed a coreset construction
of size Õ(µd3/2

√
n). Although calculating their sampling

distribution can be simulated in a row-order stream, the
aforementioned limitation to two passes is an unsolved open
problem. The coreset size was reduced to poly(µd log n)
but only at the cost of even more row-order passes to com-
pute repeatedly a coreset from a coreset, O(log log n) times.

On the importance of data oblivious sketching. Oblivi-
ous sketching methods are much better positioned for han-
dling high velocity streams, as well as highly unstructured
and arbitrarily distributed data. Linear sketches allow effi-
cient applications in single pass sequential streaming and in
distributed environments, see, e.g. (Clarkson & Woodruff,
2009; Woodruff & Zhang, 2013; Kannan et al., 2014). Lin-
ear sketches can be updated in the most flexible dynamic set-
ting, which is commonly referred to as the turnstile model,
see, e.g., (Muthukrishnan, 2005) for a survey. In this model
we initialize a matrix A to the all-zero matrix. The stream
consists of (key, value) updates of the form (i, j, v), mean-
ing that Aij will be updated to Aij + v. A single entry can
be defined by a single update or by a subsequence of not

necessarily consecutive updates. For instance, a sequence
. . . , (i, j, 27), . . . , (i, j,−5), . . . will result in Aij = 22.
Deletions are possible in this setting by using negative up-
dates matching previous insertions. At first glance this
model might seem technical or unnatural but we stress that
for dealing with the aforementioned unstructured data, the
design of algorithms working in the turnstile model is of
high importance. We will see how any update can be cal-
culated in O(1) basic operations so it becomes applicable
in high velocity real-time applications. Additionally, due to
linearity, oblivious sketching algorithms can be represented
as linear maps, i.e., sketching matrices S. In particular they
support several operations such as adding, subtracting, and
scaling databases Aj efficiently in the sketch space, since
SA = S

∑
j αjAj =

∑
j αjSAj . For instance, if At1 and

At2 are balances of bank accounts at time steps t1 < t2,
then SB = SAt2 − SAt1 is a sketch of the changes in the
period t ∈ (t1, t2].

Data oblivious sketching for logistic regression. In this
paper we deal with unconstrained logistic regression in one
pass over a turnstile data stream. As most known turnstile
data stream algorithms are linear sketches (and there is some
evidence that linear sketches are optimal for such algorithms
in certain conditions (Li et al., 2014; Ai et al., 2016)), it
is natural for achieving our goals to look for a distribution
over random matrices that can be used to sketch the data
matrix such that the (optimal) cost of logistic regression is
preserved up to constant factors. Due to the aforementioned
impossibility result, the reduced sketching dimension will
depend polynomially on the mildness parameter µ(A), and
thus we need µ(A) to be small, which is common under
usual modeling assumptions in statistics (Munteanu et al.,
2018). In this setting, logistic regression becomes similar to
an `1-norm regression problem for the subset of misclassi-
fied inputs, and a uniform sample suffices to approximate
the contribution of the other points.

Known linear subspace embedding techniques for `1 based
on Cauchy (1-stable) random variables (Sohler & Woodruff,
2011) or exponential random variables (Woodruff & Zhang,
2013) have a dilation of O(d log d) or higher polynomials
thereof, and nearly tight lower bounds for this distortion
exist (Wang & Woodruff, 2019). While a contraction factor
of (1 − ε) seems possible over an entire linear subspace,
a constant dilation bound for an arbitrary but fixed vector
(e.g., the optimal solution) are the best we can hope for
(Indyk, 2006; Clarkson & Woodruff, 2015; Li et al., 2021).
A general sketching technique was introduced by (Clarkson
& Woodruff, 2015) that achieves such a lopsided result for
all regression loss functions that grow at least linearly and
at most quadratically (the quadratic upper bound condition
is necessary for a sketch with a sketching dimension sub-
polynomial in n to exist (Braverman & Ostrovsky, 2010))
and have properties of norms such as symmetry, are non-

Oblivious Sketching for Logistic Regression

decreasing in the absolute value of their argument, and have
f(0) = 0, which is true for a class of robust M -estimators,
though not for all. For example, the Tukey regression loss
has zero growth beyond some threshold. The above sketch-
ing technique has been generalized to cope with this problem
(Clarkson et al., 2019). However the latter work still relies
on a symmetric and non-decreasing loss function f with
f(0) = 0.

For the logistic regression loss `(v) = ln(1 + exp(v)), we
note that it does not satisfy the above norm-like conditions
since `(0) = ln(2), `(x) 6= `(−x), and while it is linearly
increasing on the positive domain, it is decreasing exponen-
tially to zero on the negative domain. Indeed, the class of
monotonic functions has linear lower bounds for the size
of any coreset and more generally for any sketch (Tolochin-
sky & Feldman, 2018; Munteanu et al., 2018), where the
unboundedness of the ratio `(x)/`(−x) plays a crucial role.

1.2. Our contributions

In this paper we develop the first oblivious sketching tech-
niques for a generalized linear model, specifically for logis-
tic regression. Our LogReg-sketch is algorithmically simi-
lar to the M -estimator sketches of (Clarkson & Woodruff,
2015; Clarkson et al., 2019). However, there are several
necessary changes and the theoretical analyses need non-
trivial adaptations to address the special necessities of the
logistic loss function. The sketching approach is based on a
combination of subsampling at different levels and hashing
the coordinates assigned to the same level uniformly into a
small number of buckets (Indyk & Woodruff, 2005; Verbin
& Zhang, 2012). Collisions are handled by summing all en-
tries that are mapped to the same bucket, which corresponds
to a variant of the so-called CountMin-sketch (Cormode
& Muthukrishnan, 2005), where the sketch Sh on each level
is presented only a fraction of all coordinates.

More precisely, we define an integer branching parameter
b and a parameter hmax = O(logb n), and each row of our
data matrix gets assigned to level h ≤ hmax with probability
proportional to b−h. The row is then assigned one of the N
buckets on level h uniformly at random and added to that
bucket. The new matrix that we obtain consists of hmax

blocks, where each block consists of N rows. The weight
of a row is proportional to bh. The formal definition of the
sketch is in Section 3. This scheme is complemented by a
row-sampling matrix T which takes a small uniform sample
of the data, which will be dealt with in Section 4.

S =

S0

S1

...
Shmax

T

The intuition behind this approach is that coordinates are
grouped according to weight classes of similar loss which
can be handled separately in the analysis. Weight classes
with a small number of members will be approximated well
on sketching levels with a large number of elements since
roughly all members need to be subsampled to obtain a
good estimate. Weight classes with many members will
be approximated well on levels with a smaller number of
subsamples, because if too many members survive the sub-
sampling there will also be too many collisions under the
uniform hashing, which would either lead to a large over-
estimate when those add up, or, due to asymmetry, would
cancel each other and lead to large underestimations. The
asymmetry problem is also one of the main reasons why
we need a new analysis relying on the CountMin-sketch
as a replacement for the Count-sketch previously used in
(Clarkson & Woodruff, 2015; Clarkson et al., 2019). The
reason is that Count-sketch assigns random signs to the
coordinates before summing them up in a bucket. The er-
ror could thus not be bounded if the sign of an element is
changed since the ratio `(x)/`(−x) is unbounded for uncon-
strained logistic regression. Finally, since there could be too
many small contributions near zero and logistic regression,
unlike a normed loss function, assigns a non-zero but con-
stant loss to them, their contribution can become significant.
This is taken care of by the small uniform sample of size
Õ(µd).

Our main result is the following theorem, where nnz(A)
denotes the number of non-zero entries in A or in a data
stream it corresponds to the number of updates,

fw(Ax) =
∑
i∈[n]

wi · ln (1 + exp(aix))

denotes the weighted logistic loss function, and f(Ax) is
the unweighted case where w is the all 1s vector. It also
assumes that the data is µ-complex for a small value µ
meaning that µ(A) ≤ µ as in (Munteanu et al., 2018), see
Section 2 for a formal definition:
Theorem 1. Let A ∈ Rn×d be a µ-complex matrix for
bounded µ <∞. Then there is a distribution over sketching
matrices S ∈ Rr×n with r = poly (µd log(n)), and a
corresponding weight vector w ∈ Rr, for which B = SA
can be computed in O(nnz(A)) time over a turnstile data
stream and for which if x′ is the minimizer to minx fw(Bx),
then with constant probability it holds that

f(Ax′) ≤ O(log n) min
x∈Rd

f(Ax).

Further, there is a convex function fw,c such that for the
minimizer x′′ to minx fw,c(Bx) it holds that

f(Ax′′) ≤ O(1) min
x∈Rd

f(Ax)

with constant probability.

Oblivious Sketching for Logistic Regression

The first item is a sketch-and-solve result in the sense that
first, the data is sketched and then the sketch is put into
a standard solver for weighted logistic regression. The
output is guaranteed to be an O(log n) approximation. The
second item requires a stronger modification which can be
handled easily for instance with a subgradient based solver
for convex functions. The individual loss for fw,c remains
the original logistic loss as in fw for each point. However
for a fixed x occurring in the optimization, the loss and
gradient are evaluated only on the K largest entries on each
level of the sketch Bx (except for the uniform sample T),
for a suitable K < N . This preserves the convexity of the
problem, and guarantees a constant approximation. The
details are given in Sections B.3, and 5.

Overview of the analysis. The rest of the paper is dedicated
to proving Theorem 1. We first show that the logistic loss
function can be split into two parts f(Ax) ≈ G+(Ax) +
f((Ax)−), which can be handled separately while losing
only an approximation factor of two; see Section 2.

The first part is G+(y) :=
∑
yi≥0 yi, the sum of all positive

entries which can be approximated by the aforementioned
collection of sketches Sh. Here we show that with high
probability no solution becomes much cheaper with respect
to the objective function and that with constant probabil-
ity, the cost of some good solution does not become too
much larger, which can be bounded by a factor of at most
O(log n) orO(1) depending on which of our two algorithms
we use. We prove this in Section 3. First, we bound the
contraction. To do so we define weight-classes of similar
loss. For weight classes with a small number of members,
a leverage-score argument yields that there cannot be too
many influential entries. For larger weight classes, we show
that there exists a small subset of influential entries that on
some subsampling level do not collide with any other influ-
ential entry when hashing into buckets, and thus represent
their weight class well. This concludes the handling of the
so-called heavy-hitters, see Section B.1. Those arguments
hold with very high probability, and so we can union bound
over a net and relate the remaining points to their closest
point in the net. This yields the contraction bound for the
entire solution space, see Section B.2. Although the high-
level outline is similar to (Clarkson & Woodruff, 2015),
several non-trivial adaptations are necessary to deal with
the assymmetric G+ function that is not a norm and has
zero growth on the negative domain. The O(log n) dilation
bound follows by a calculation of the expected value on
each level and summing over hmax = O(log n) levels. The
O(1) bound requires the aforementioned clipping of small
contributions on each level. Each weight class q makes a
main contribution on some level h(q). The argument is now
that it can have a significant impact only on levels in a small
region of size k = O(1) around h(q) ± k. Further, with
high probability for h > h(q) + k there will be no element

of the same weight class, so that the contribution to the
expectation is zero, and for h < h(q)− k the contribution
can be bounded by O(h−1max), so that for all three cases the
expected contribution is at most O(1) after summing over
all levels.

The second part is f− := f((Ax)−) which maps any
misclassified point to `(0) = ln(2) and the remaining
points to the usual logistic loss of a point, i.e., `(aix) =
log(1 + exp(aix)). Here we prove that for µ-complex data
sets the worst case contribution of any point can be bounded
by roughly µ/n and thus a uniform sample of Õ(µ) can
be used to approximate f− well. This will be done via the
well-known sensitivity framework (Langberg & Schulman,
2010) in Section 4. We put everything together to prove
Theorem 1 in Section 5. In Section 6 our experimental re-
sults demonstrate that our sketching techniques are useful
and competitive to uniform sampling, SGD, and an adaptive
coreset construction. We show in some settings the oblivi-
ous sketch performs almost the same or better, but is never
much worse. We stress that neither SGD nor the coreset
allow the desired turnstile streaming capabilities. We finally
conclude in Section 7.
Omitted proofs and details can be found in the supplemen-
tary material.

2. Preliminaries
2.1. Notation

In logistic regression we are usually given a data matrix
X ∈ Rn×d and a label vector L ∈ {−1, 1}n. For notational
brevity and since a data point always appears together with
its label, we technically work with a data matrix A ∈ Rn×d
where each row ai for i ∈ [n] is defined as ai := −lixi. We
set g(v) = ln(1 + exp(v)) for v ∈ R. Our goal is to find
x ∈ Rd that minimizes the logistic loss given by

f(Ax) =
∑
i∈[n]

g(aix) =
∑
i∈[n]

ln (1 + exp(aix)) .

We parameterize our analysis by

µA = sup
x∈Rd\{0}

‖(Ax)+‖1
‖(Ax)−‖1

where for y ∈ Rn, the vector y+ (resp. y−) denotes the
vector with all negative (resp. positive) entries replaced
by 0. This definition of µ has been introduced before in
(Munteanu et al., 2018) and is a useful parameter to bound
the amount of data reduction possible for logistic regression.
In the remainder we assume that A is µ-complex, meaning
that µA ≤ µ for some 1 ≤ µ ≤ ∞. For any vector y
we further define G+(y) :=

∑
yi≥0 yi to be the sum of all

positive entries. Also we define G(y) := ‖y‖1. Note that

Oblivious Sketching for Logistic Regression

by definition of µ the supremum considers for each x ∈ Rd,
also −x. Therefore, it holds for all x ∈ Rd that

µ−1‖(Ax)−‖1 ≤ ‖(Ax)+‖1 ≤ µ‖(Ax)−‖1.

In particular, the property G+(Ax) = ‖(Ax)+‖1 ≥
‖(Ax)−‖1

µ will often be used.

2.2. Initial approach

Our first idea is that we can split f into two parts which can
be approximated independently.

Lemma 2.1. For all x ∈ Rd it holds that

f(Ax) ≥ 1

2

(
f
(
(Ax)−

)
+G+(Ax)

)
and

f(Ax) ≤ f
(
(Ax)−

)
+G+(Ax).

Proof. Let v ∈ R≥0. Then it holds that g(v) = g(0) +∫ v
0
g′(y)dy = ln(2) +

∫ v
0
g′(y)dy. Note that g′(y) =

exp(y)
1+exp(y) , and thus for any y ∈ R we have g′(y) ≤ 1 and

for any y ∈ [0,∞) we have g′(y) ≥ exp(y)
2 exp(y) = 1

2 . We
conclude that

g(v) = g(0)+

∫ v

0

g′(y)dy ≥ g(0)+

∫ v

0

1

2
dy = g(0)+

1

2
v

and

g(v) = g(0) +

∫ v

0

g′(y)dy ≤ g(0) +

∫ v

0

1dy = g(0) + v.

Recall that in (Ax)− each coordinate aix > 0 is re-
placed by zero. Thus, if aix > 0 then g(aix) = g(0) +∫ aix
0

g′(y)dy = g((Ax)−i) +
∫ aix
0

g′(y)dy. Hence, it holds
that

f(Ax) =
∑
aix<0

g(aix) +
∑
aix≥0

g(aix)

≤
∑
aix<0

g(aix) +
∑
aix≥0

g(0) + aix

=
∑
aix<0

g(aix) +
∑
aix≥0

g(0) +
∑
aix≥0

aix

= f((Ax)−) +G+(Ax)

and similarly

f(Ax) = f((Ax)−) +
∑
aix>0

∫ aix

0

g′(y)dy

≥ f((Ax)−) +
1

2
G+(Ax)

≥ 1

2

(
f
(
(Ax)−

)
+G+(Ax)

)
.

Next we show that for minx∈R f(Ax), there is a non-trivial
lower bound that will later be used to show that f((Ax)−)
can be approximated well enough.

Lemma 2.2. For all x ∈ Rd it holds that

f(Ax) ≥ n

2µ
(1 + ln(µ)) = Ω

(
n

µ
(1 + ln(µ))

)
.

Proof. For any w ≥ 1 it holds that ln(w) =
∫ w
1

1
ydy.

Thus for v ≤ 0 we have g(v) = ln(1 + ev) =∫ 1+ev

1
1
ydy ≥

ev

2 since for 1 ≤ y ≤ ev + 1 ≤ 2

we have 1
y ∈ [12 , 1]. Let z = Ax. Using this fact

and Lemma 2.1 we get f(z) ≥ 1
2 (
∑
i exp(min{zi, 0}) +

G+(z)). Since exp(v) is convex, Jensen’s inequality im-
plies

∑
i exp(min{zi, 0}) = n

∑
i
1
n exp(min{zi, 0}) ≥

n exp(1
n

∑
i min{zi, 0}). Using this argument we get for

y = ‖z−‖1
n that

∑
i exp(min{zi, 0}) ≥ n exp(−y). Recall

that G+(z) ≥ yn
µ holds by definition of µ.

Using Lemma 2.1 we conclude that f(z) ≥ 1
2 (n exp(−y) +

yn
µ). The function (n exp(−y) + yn

µ) is minimized over y
if its first derivative is zero, i.e., if

n exp(−y) =
n

µ

which is equivalent to y = ln(µ). Hence f(z) ≥
1
2

(
n
µ + n ln(µ)

µ

)
.

3. Approximating G+(Ax)

Here we focus on approximating G+(Ax) =
∑
aix>0 aix.

We develop a sketching method similar to the approach of
(Clarkson & Woodruff, 2015). This gives us a new matrix
A′ = SA, referred to as the sketch, for which we will
show that with high probability it holds for all x ∈ Rd, that
G+(A′x) ≥ (1 − ε)G+(Ax) for ε > 0, and we also have
E(G+(A′x)) ≤ CG+(Ax) for some constant C > 1. We
show the following result:

Theorem 2. Given ε > 0, and δ > 0 we set r =

O
(
d5
(
µ
ε

)7
δ−2 ln4

(
nµ
δε

))
. Then there is a random ma-

trix S ∈ Rr×n such that for A′ = SA and a convex func-
tion G+

c , it holds that G+
c (A′x) ≥ (1 − ε)G+(Ax) and

E(G+
c (A′x)) ≤ CG+(Ax) for some constant C > 1 and

for all x ∈ Rd. The failure probability of this event is at
most δ.

3.1. The sketching algorithm

The idea is to hash the rows of A uniformly into buckets.
The rows that are assigned to the same bucket are added to
obtain a row of A′ which can also be written as A′ = SA
for a suitable matrix S. To avoid that for a given z = Ax,

Oblivious Sketching for Logistic Regression

there are too many entries of z that cancel with each other,
we assign a level to each bucket. The level of a bucket
determines how many coordinates are assigned to it (in
expectation). Buckets with fewer coordinates are given a
larger weight. In this way, large entries of Ax are preserved
in buckets with many coordinates, up to a small error, while
the contribution of many small entries of Ax is preserved
by buckets with few coordinates, but high weights.

More precisely, the sketching algorithm is defined as fol-
lows: we define N to be the number of buckets in each level
and hmax to be the number of levels. Let b be a branching
parameter that determines how the (expected) number of
coordinates changes between different levels.

Then each coordinate p ∈ [n] is hashed uniformly at random
to bucket gp ∈ [N] at level hp ∈ [hmax], where we set
hp = h with probability 1

βbh
, for 0 ≤ h ≤ hmax = logb(

n
m)

and some b > 2 and β = b−b−hmax

b−1 . The weight of zp is
given by wp = bhpβ. The sketching matrix is given by
S ∈ RhmaxN×n, where (S)jp = bhpβ if j = gp +hpN and
(S)jp = 0 otherwise.

Assume we are given some error parameter ε′ ∈ (0, 13) and
set ε = ε′

µ′ , where µ′ = µ + 1. Then we have G+(z) ≥
G(z−)
µ = G(z)−G(z+)

µ , which is equivalent to (µ+1)G+(z)
µ =

G+(z) + G+(z)
µ ≥ G(z)−G(z+)

µ . Multiplying by µ gives us

G+(z) ≥ G(z)
µ+1 = G(z)

µ′ . Let δ < 1 be a failure probability.
Let m be a parameter which determines whether a set of
coordinates is considered large.

3.2. Outline of the analysis

Instead of explaining how the sketch is applied to A, we
will explain how the sketch is applied to z := Ax for a
fixed x. Note that (SA)x = S(Ax). We assume without
loss of generality that G(z) = ‖z‖1 = 1. This can be
done since for any λ > 0, we have G(Sλz) = λG(Sz) and
G+(Sλz) = λG+(Sz).

We split the entries of z into weight classes and derive
bounds for the contribution of each individual weight class.
The goal is to show that for each x ∈ Rd the entries of
z that can be large are the same, and for the remaining
entries we can find a set of representatives which are in
buckets of appropriate weights and are large in contrast to
the remaining entries in their buckets. Therefore we let
Z = {zp | p ∈ [n]} be the multiset of values appearing in z.
We define weight classes as follows:
For q ∈ N we set W+

q = {zp ∈ Z | 2−q < zp ≤ 2−q+1} to
be the positive weight class of q. Similarly we define Wq =
{zp ∈ Z | 2−q < |zp| ≤ 2−q+1} to be the weight class of
q. Since we are also interested in the number of elements

in each weight class we define h(q) := blogb(
|W+

q |
βm)c if

|W+
q | ≥ βm and h(q) = 0 otherwise. This way we have

βmbh(q) ≤ |W+
q | ≤ βmbh(q)+1 and thus h(q) is the largest

index such that the expected number of entries from Wq

at level h is at least βm. Note that the contribution of
weight class Wq is at most 2−q+1n. Thus we set qmax =
log2(nε) and will ignore weight classes with q > qmax as
their contribution is smaller than ε.

Our first goal will be to show that there exists an event E with
low failure probability (which will be defined later) such that
if E holds then G+(SAx) gives us a good approximation to
G+(Ax) with very high probability. More precisely:

Theorem 3. If E holds then we have G+(SAx) ≥ (1 −
60ε′)G+(Ax) for any fixed x ∈ Rd with failure probability
at most e−mε

2/2.

This will suffice to proceed with a net argument, i.e., we
show that there exists a finite set N ⊂ Rd such that if we
have G+(SAx) ≥ (1 − ε′)G+(Ax) for all x ∈ N then it
holds that G+(SAx) ≥ (1 − 4ε′)G+(Ax) for all x ∈ Rd,
and thus we obtain the desired contraction bound.

Theorem 4. We have G+(SAx) ≥ (1 − 240ε′)G+(Ax)
for every x ∈ Rd with failure probability at most 2δ.

Finally we show that in expectation G+(SAx) is upper
bounded by hmaxG

+(Ax) = O(log(n)). Further we show
that there is a convex function G+

c and an event E ′ with
low failure probability such that we have G+

c (SAx) ≥
(1− ε′)G+(Ax) with high probability, and in expectation
G+
c (SAx) is upper bounded by CG+(Ax) for constant C.

Theorem 5. There is a constant C > 1 such that if E ′ holds
then E(G+

c (Sz)) ≤ CG+(z).

4. Approximating f((Ax)−)

The following theorem shows that a uniform sample R ⊂
{ai | i ∈ [n]} gives us a good approximation to f((Ax)−).
We also show that in expectation the contribution of R is
not too large and thus with constant probability contributes
at most Cf(Ax) for some constant factor C, by Markov’s
inequality. Using the sensitivity framework and bounding
its relevant parameters (see Section C) we get:

Theorem 6. For a uniform sample R ⊂ {ai | i ∈ [n]} of
size k = O(µε2 (d ln(µ) + ln(1

δ1
)) we have that with failure

probability at most δ1 that

∑
ai∈R

n

k
g(aix) ≥ f((Ax)−)− 3εf(Ax)

for all x ∈ Rd. Further E(
∑
ai∈R

n
k g(aix)) = f(Ax).

Oblivious Sketching for Logistic Regression

5. Approximation for logistic regression in
one pass over a stream of data

We set ε = 1
8 . To prove Theorem 1 we first show that we

can tweak the sketch A′ from Theorem 2 by adding weights
and scaling A′. This way we get a new sketch where the
weighted logistic loss and the sum of positive entries are the
same up to an additive constant of ln(2). More precisely
we set A′′ = NhmaxA

′ = NhmaxSA with equal weight
1

Nhmax
for all rows. We denote the weight vector byw′. This

way we make sure that fw′(A′′x) is very close to G+(Ax):

Lemma 5.1. For all x ∈ Rd it holds that G+(A′x) ≤
1

Nhmax
f(A′′x) ≤ G+(A′x) + ln(2).

Proof. First note that for any v ≥ 0 we have g(v) = ln(1 +
exp(v)) ≥ ln(exp(v)) = v. This implies that

f(A′′x) =

Nhmax∑
i=1

g(a′′i x) ≥
∑
a′′i x≥0

g(a′′i x)

≥
∑
a′′i x≥0

a′′i x =
∑
a′ix≥0

Nhmaxa
′
ix

= NhmaxG
+(A′x)

Further, note that for any v ∈ R we have g(v) ≤ ln(2) +
max{v, 0}. This is true for v ≤ 0 since g is monotonically
increasing and g(0) = ln(2), and since the derivative of g
is always bounded by 1 it also holds for v > 1, cf. Lemma
2.1. Consequently it holds that

f(A′′x) =

Nhmax∑
i=1

g(a′′i x)

≤
Nhmax∑
i=1

ln(2) + max{0, a′′i x}

=

Nhmax∑
i=1

ln(2) +
∑
a′′i x≥0

a′′i x

= Nhmax ln(2) +
∑
a′ix≥0

Nhmaxa
′
ix

= Nhmax(ln(2) +G+(Ax)).

We are now ready to show our main result:

Proof of Theorem 1. Let (T, u) be a weighted uniform ran-

dom sample from Theorem 6. We define B =

(
A′′

T

)
with

weight vector w = (w′, u). The size of B is bounded by
poly(µd log n) since it is dominated by the sketch of The-
orem 2. Note that B can handle any update in O(1) time

since we need to draw one random number for determin-
ing the level that a data point is assigned, another one for
determining its bucket and a third one to decide whether
to include it into the random sample or not. This sums
up to O(nnz(A)) time in total. We note that B can be
computed over a turnstile data stream when we replace the
random number generators by hash maps, so to compute the
pseudorandom choices on demand, see (Alon et al., 1986;
Dietzfelbinger, 1996).

Let x′ be a minimizer to minx fw(Bx). By Theorem 2,
Theorem 6, Lemma 5.1 and Lemma 2.1 we have

fw(Bx)

≥ fu(Tx) +G+(A′x)

≥ f((Ax)−)− 3εf(Ax) + (1− ε)G+(Ax)

≥ (1− 4ε)f(Ax)

=
1

2
f(Ax)

with constant probability for all x ∈ Rd simultaneously. Let
x∗ be a solution minimizing f(Ax). By Theorem 6 and
Lemma B.8 it holds that

E
(
fw(Tx∗) +G+(A′x∗)

)
≤ α

(
f
(
(A′x∗)−

)
+G+(Ax∗)

)
for α = O(log(n)) Thus using Markov’s inequality we
have fw(Tx∗)+G+(A′x∗) ≤ 2α (f((Ax∗)) +G+(Ax∗))
with probability at least 1/2. Since for any µ < ∞ the
optimal value of f(Ax) is greater or equal to ln(2), i.e.,
there is at least one missclassification, the above inequality
and Lemma 2.1 imply

f(Ax′) ≤ 2fw(Bx′)

≤ 2
(
fu(Tx′) +G+(A′x′) + ln(2)

)
≤ 2

(
fu(Tx∗) +G+(A′x∗)

)
+ 2 ln(2)

≤ 2
(
2α
(
f(Ax∗) +G+(Ax∗)

))
+ 2 ln(2)

≤ 10αf(Ax∗)

with probability at least 1/2, which proves the first part of
the theorem.

The last part of the theorem can be derived by slightly
changing the logistic loss function similar to a Ky Fan
norm. More precisely A′′ can be split into blocks Ah
for levels h = 0, . . . , hmax. Then we define fw,c(Bx) =
fu(Tx) + fw′,c(A

′′x) where

fw′,c(A
′′x) :=

∑
h

∑
i∈[K]

g((a′′x)π(i,h))

where (a′′x)π(i,h) denotes the i’th largest entry of Ahx.
The modified function thus omits for any fixed x all but

Oblivious Sketching for Logistic Regression

the largest K entries on each level. Lemma 5.1 can
now be adjusted to show that G+

c (A′x) ≤ fw′,c(A
′′x) ≤

G+
c (A′x)+ ln(2). Then we can use Theorem 5 to show that

f(Ax′′) ≤ 10C(Ax∗). The only other change in the proof
is that G+ gets replaced by G+

c .

Further we get the following corollary:

Corollary 5.2. Let A ∈ Rn×d be a µ-complex matrix for
some bounded 1 ≤ µ < ∞. There is an algorithm that
solves logistic regression in O(nnz(A) + poly(µd log n))
time up to a constant factor with constant probability.

6. Experiments
Our results can be reproduced with our open Python
implementation available at https://github.com/cxan96/
oblivious-sketching-logreg. We compare our oblivious
LogReg-sketch algorithm with uniform sampling (UNI),
stochastic gradient descent (SGD), and the `2-leverage score
(L2S) coreset from (Munteanu et al., 2018). SGD and L2S
work only on data presented row-by-row. L2S requires
two passes and is not data oblivious. We additionally note
that the actual distribution is taking the square root of the
`2-leverage scores as an approximation to `1 which is not
covered by one-pass online leverage score algorithms given
by (Cohen et al., 2020; Chhaya et al., 2020). We do not
compare to the other coresets surveyed in the related work
because they rely on regularization, and do not apply to
the plain unconstrained logistic regression studied in this
paper. SGD is allowed one entire pass over the data to be
comparable to our sketch. Its plot thus displays a flat line
showing the final result as a baseline. For all other data
reduction methods, the optimization is done with standard
optimizers from the scikit learn library1. The covertype
and kddcup data sets are loaded automatically by our code
from the scikit library, and webspam data is loaded from the
LIBSVM data repository2. Additional details on the size
and dimensions of the data sets are in the supplementary,
Section E. The synthetic data is constructed so that it has n
points in one place and two more points are placed in such a
way that the leverage score vectors will be (1

n , . . . ,
1
n ,

1
2 ,

1
2)

for `1, (1√
n
, . . . , 1√

n
, 12 ,

1
2) for `2 and it is crucial for any

reasonable approximation to find those two points. The
probability to see one of them is roughly 1

n for UNI and
SGD, and 1√

n
for L2S, but for `1-leverage scores it will be

1/2 and thus the points will be heavy hitters and sketched
well in separate buckets with constant probability (see Sec-
tion B.1). The LogReg-sketch uses hmax + 1 = 3 levels
and one level of uniform sampling. By the Ky Fan argu-
ment all but the largest 25% entries are cut off at each level.
The other algorithms were run using their standard param-

1https://scikit-learn.org/
2https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/

eters. We varied the target size of all reduction algorithms
in thirty equal steps and calculated the approximation ratio
f(Ax̃)/f(Ax∗) where x∗ is the solution returned on the
full problem and x̃ is the solution returned on the reduced
version. We repeated each experiment twenty times and
displayed the median among all repetitions in Figure 1.

For the real data that seem easy to subsample uniformly,
we show what happens if we introduce random Gaussian
N(0, 102) noise to 1% of data to simulate adversarial cor-
ruptions; displayed in Figure 1.

Finally we assess the sampling time as well as the total
running time (including the subsequent optimization) vs.
the accuracy of our sketch displayed in Figure 1.

Further plots can be found in the supplementary, Section E.

Discussion. The overall picture is that LogReg-sketch
never performs much worse than its competitors, even for
data that is particularly easy to handle for UNI and SGD
(see covertype and webspam). On the kddcup data we
see that LogReg-sketch improves slowly with increasing
sketch sizes and performs slightly better than UNI. Here
L2S clearly performs best. However, we emphasize again
that L2S can choose its sampling distribution adaptively to
the data and requires two passes in row-order. In contrast
LogReg-sketch makes its random choices obliviously to the
data and allows single-pass turnstile streaming. The higher
flexibility justifies slightly weaker (but still competitive) ap-
proximations. On the synthetic data we see the theoretical
claims confirmed. By construction UNI and SGD (not in
the plot since its median approximation ratio exceeds 1000)
have no chance to give a good approximation on a sublinear
sample. L2S starts to converge at about Θ(

√
n) samples.

LogReg-sketch has roughly zero error even for very small
constant sketch sizes.

When noise is added to corrupt a small number of data
points, we see that UNI is not robust and its accuracy deteri-
orates. In comparison our Sketch (and L2S) are unaffected
in this adversarial but natural setting due to their worst case
guarantees.

The sketching time of our Sketch is slightly slower but
closest to UNI, and the adaptive L2S takes much longer to
construct the coreset. When the subsequent optimization is
included, we see that the Sketch sometimes becomes even
faster than UNI, which indicates that the Sketch produces
a summary that is better preconditioned for the optimizer
than UNI.

In summary LogReg-sketch provably produces good re-
sults that are competitive with the other methods and better
than expected from the theoretical O(1) approximation. It
is weaker only when compared to the adaptive sampling
algorithm that is not applicable in several challenging com-

https://github.com/cxan96/oblivious-sketching-logreg
https://github.com/cxan96/oblivious-sketching-logreg
https://scikit-learn.org/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

Oblivious Sketching for Logistic Regression

0 2500 5000 7500 10000 12500 15000
reduced size

1.00

1.05

1.10

1.15

1.20

m
ed

ia
n

ap
pr

ox
im

at
io

n
ra

ti
o

Covertype

SGD

L2S

Uniform

Sketch

0 2500 5000 7500 10000 12500 15000
reduced size

1.0

1.2

1.4

1.6

1.8

2.0

m
ed

ia
n

ap
pr

ox
im

at
io

n
ra

ti
o

Webspam

SGD

L2S

Uniform

Sketch

0 5000 10000 15000 20000 25000 30000
reduced size

1

2

3

4

5

m
ed

ia
n

ap
pr

ox
im

at
io

n
ra

ti
o

Kddcup

SGD

L2S

Uniform

Sketch

0 2500 5000 7500 10000 12500 15000
reduced size

1.0

1.1

1.2

1.3

1.4

1.5

m
ed

ia
n

ap
pr

ox
im

at
io

n
ra

ti
o

Covertype, 1% noisy

SGD

L2S

Uniform

Sketch

0 2500 5000 7500 10000 12500 15000
reduced size

2

4

6

8

10

m
ed

ia
n

ap
pr

ox
im

at
io

n
ra

ti
o

Webspam, 1% noisy

SGD

L2S

Uniform

Sketch

0 500 1000 1500 2000 2500 3000
reduced size

10

20

30

m
ed

ia
n

ap
pr

ox
im

at
io

n
ra

ti
o

Synthetic

SGD

L2S

Uniform

Sketch

2 4 6
median sampling time (s)

1.0

1.2

1.4

1.6

1.8

2.0

m
ed

ia
n

ap
pr

ox
im

at
io

n
ra

ti
o

Webspam

L2S

Uniform

Sketch

0.0 2.5 5.0 7.5 10.0 12.5
median absolute running time (s)

1.0

1.2

1.4

1.6

1.8

2.0

m
ed

ia
n

ap
pr

ox
im

at
io

n
ra

ti
o

Webspam

L2S

Uniform

Sketch

0 5 10 15
median absolute running time (s)

2

4

6

8

10

m
ed

ia
n

ap
pr

ox
im

at
io

n
ra

ti
o

Kddcup

L2S

Uniform

Sketch

Figure 1. Comparison of the approximation ratios with and without added noise. Comparison of sketching resp. sampling times vs.
accuracy. Comparison of total running times including optimization vs. accuracy.

putational settings motivated in the introduction. We also
demonstrated that UNI and SGD have no error guarantees
under corruptions and in the worst case where LogReg-
sketch even outperforms the adaptive algorithm. In all cases
LogReg-sketch performs almost the same or better com-
pared to its competitors and comes with higher flexibility in
the aforementioned computational scenarios.

7. Conclusion
We developed the first data oblivious sketch for a general-
ized linear model, specifically for logistic regression, which
is an important model for classification (Shalev-Shwartz &
Ben-David, 2014) and estimation of Bernoulli probabilities
(McCullagh & Nelder, 1989). The sketching matrix can be
drawn from a data-independent distribution over sparse ran-
dom matrices which is simple to implement and can be ap-
plied to a data matrix A over a turnstile data stream in input-
sparsity time. This is important and has advantages over ex-
isting coreset constructions when it comes to high-velocity
streaming applications and when data is not presented in
row-order but in an arbitrary unstructured way. The result-

ing sketch of polylogarithmic size can be put in any solver
for weighted logistic regression and yields an O(log n)-
approximation. We also showed how the same sketch can
be slightly adapted to give an O(1)-approximation. Our
experiments demonstrate that those sketching techniques
are useful and competitive to uniform sampling, SGD, and
to state of the art coresets.

Acknowledgements
We thank the anonymous reviewers for their valuable com-
ments. Alexander Munteanu and Simon Omlor were sup-
ported by the German Science Foundation (DFG), Collab-
orative Research Center SFB 876, project C4 and by the
Dortmund Data Science Center (DoDSc). D. Woodruff
would like to thank NSF grant No. CCF-181584, Office
of Naval Research (ONR) grant N00014-18-1-256, and a
Simons Investigator Award. We thank Christian Peters and
Alexander Neuhaus for their help with the experiments.

Oblivious Sketching for Logistic Regression

References
Ai, Y., Hu, W., Li, Y., and Woodruff, D. P. New charac-

terizations in turnstile streams with applications. In 31st
Conference on Computational Complexity, CCC 2016,
May 29 to June 1, 2016, Tokyo, Japan, pp. 20:1–20:22,
2016.

Alon, N., Babai, L., and Itai, A. A fast and simple random-
ized parallel algorithm for the maximal independent set
problem. J. Algorithms, 7(4):567–583, 1986.

Bentley, J. L. and Saxe, J. B. Decomposable searching prob-
lems I: Static-to-dynamic transformation. J. Algorithms,
1(4):301–358, 1980.

Braverman, V. and Ostrovsky, R. Zero-one frequency laws.
In Proceedings of the 42nd ACM Symposium on Theory
of Computing, (STOC), pp. 281–290, 2010.

Braverman, V., Feldman, D., and Lang, H. New frameworks
for offline and streaming coreset constructions. CoRR,
abs/1612.00889, 2016.

Braverman, V., Charikar, M., Kuszmaul, W., Woodruff,
D. P., and Yang, L. F. The one-way communication
complexity of dynamic time warping distance. In 35th
International Symposium on Computational Geometry,
(SoCG), pp. 16:1–16:15, 2019.

Chhaya, R., Choudhari, J., Dasgupta, A., and Shit, S.
Streaming coresets for symmetric tensor factorization.
In Proceedings of the 37th International Conference on
Machine Learning (ICML), pp. 1855–1865, 2020.

Clarkson, K. L. and Woodruff, D. P. Numerical linear al-
gebra in the streaming model. In Proceedings of the
41st Annual ACM Symposium on Theory of Computing,
(STOC), pp. 205–214, 2009.

Clarkson, K. L. and Woodruff, D. P. Sketching for M-
estimators: A unified approach to robust regression. In
Proceedings of the 26th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pp. 921–939, 2015.

Clarkson, K. L., Wang, R., and Woodruff, D. P. Dimension-
ality reduction for tukey regression. In Proceedings of
the 36th International Conference on Machine Learning,
(ICML), pp. 1262–1271, 2019.

Cohen, M. B., Musco, C., and Pachocki, J. Online row
sampling. Theory Comput., 16:1–25, 2020.

Cormode, G. and Muthukrishnan, S. An improved data
stream summary: the count-min sketch and its applica-
tions. J. Algorithms, 55(1):58–75, 2005.

Dasgupta, A., Drineas, P., Harb, B., Kumar, R., and Ma-
honey, M. W. Sampling algorithms and coresets for `p
regression. SIAM J. Comput., 38(5):2060–2078, 2009.

Dietzfelbinger, M. Universal hashing and k-wise inde-
pendent random variables via integer arithmetic with-
out primes. In Proc. of the 13th Annual Symposium on
Theoretical Aspects of Computer Science, (STACS), pp.
569–580, 1996.

Feldman, D. Core-sets: An updated survey. Wiley Interdis-
cip. Rev. Data Min. Knowl. Discov., 10(1), 2020.

Feldman, D., Schmidt, M., and Sohler, C. Turning big
data into tiny data: Constant-size coresets for k-means,
pca, and projective clustering. SIAM J. Comput., 49(3):
601–657, 2020.

Gajjar, A. and Musco, C. Subspace embeddings under
nonlinear transformations. CoRR, abs/2010.02264, 2020.

Geppert, L. N., Ickstadt, K., Munteanu, A., Quedenfeld, J.,
and Sohler, C. Random projections for bayesian regres-
sion. Stat. Comput., 27(1):79–101, 2017.

Gessert, F., Wingerath, W., Friedrich, S., and Ritter, N.
NoSQL database systems: a survey and decision guid-
ance. Computer Science - Research and Development, 32
(3-4):353–365, 2017.

Huggins, J. H., Campbell, T., and Broderick, T. Coresets
for scalable Bayesian logistic regression. In Proceedings
of the 29th Annual Conference on Neural Information
Processing Systems (NIPS), pp. 4080–4088, 2016.

Indyk, P. Stable distributions, pseudorandom generators,
embeddings, and data stream computation. J. ACM, 53
(3):307–323, 2006.

Indyk, P. and Woodruff, D. P. Optimal approximations of the
frequency moments of data streams. In Proceedings of the
37th Annual ACM Symposium on Theory of Computing,
(STOC), pp. 202–208, 2005.

Kannan, R., Vempala, S., and Woodruff, D. P. Principal com-
ponent analysis and higher correlations for distributed
data. In Proceedings of the 27th Conference on Learning
Theory (COLT), pp. 1040–1057, 2014.

Kearns, M. J. and Vazirani, U. V. An Introduction to Compu-
tational Learning Theory. MIT Press, Cambridge, 1994.

Langberg, M. and Schulman, L. J. Universal ε-
approximators for integrals. In Proceedings of the 21st
Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 598–607, 2010.

Li, Y., Nguyen, H. L., and Woodruff, D. P. Turnstile stream-
ing algorithms might as well be linear sketches. In Sym-
posium on Theory of Computing, (STOC), pp. 174–183,
2014.

Oblivious Sketching for Logistic Regression

Li, Y., Woodruff, D. P., and Yasuda, T. Exponentially im-
proved dimensionality reduction for `1: Subspace embed-
dings and independence testing. CoRR, abs/2104.12946,
2021.

Mahoney, M. W. Randomized algorithms for matrices and
data. Found. Trends Mach. Learn., 3(2):123–224, 2011.

Maurer, A. A bound on the deviation probability for sums
of non-negative random variables. Journal of Inequalities
in Pure & Applied Mathematics, 4(1):1–6, 2003.

McCullagh, P. and Nelder, J. A. Generalized Linear Models.
Chapman & Hall, London, 1989.

Meintrup, S., Munteanu, A., and Rohde, D. Random pro-
jections and sampling algorithms for clustering of high-
dimensional polygonal curves. In Advances in Neural In-
formation Processing Systems 32, (NeurIPS), pp. 12807–
12817, 2019.

Molina, A., Munteanu, A., and Kersting, K. Core depen-
dency networks. In Proceedings of the Thirty-Second
AAAI Conference on Artificial Intelligence, (AAAI), pp.
3820–3827. AAAI Press, 2018.

Munteanu, A. Sketches and coresets for large-scale statis-
tical data analysis, 2019. 12th International Conference
on Computational and Methodological Statistics, (CM-
Statistics), 2019.

Munteanu, A. and Schwiegelshohn, C. Coresets-methods
and history: A theoreticians design pattern for approxi-
mation and streaming algorithms. Künstliche Intell., 32
(1):37–53, 2018.

Munteanu, A., Schwiegelshohn, C., Sohler, C., and
Woodruff, D. P. On coresets for logistic regression. In
Advances in Neural Information Processing Systems 31,
(NeurIPS), pp. 6562–6571, 2018.

Muthukrishnan, S. Data streams: Algorithms and applica-
tions. Found. Trends Theor. Comput. Sci., 1(2), 2005.

Nelson, J. Sketching and streaming algorithms, 2020. Tuto-
rial held at Advances in Neural Information Processing
Systems 33 (NeurIPS), 2020.

Phillips, J. M. Coresets and sketches. In Handbook of
Discrete and Computational Geometry, pp. 1269–1288.
Chapman and Hall/CRC, Boca Raton, 3rd edition, 2017.

Rohr, D. Data processing and online reconstruction. arXiv
preprint arXiv:1811.11485, 2018.

Samadian, A., Pruhs, K., Moseley, B., Im, S., and Curtin,
R. R. Unconditional coresets for regularized loss mini-
mization. In The 23rd International Conference on Artifi-
cial Intelligence and Statistics, (AISTATS), pp. 482–492,
2020.

Shalev-Shwartz, S. and Ben-David, S. Understanding Ma-
chine Learning - From Theory to Algorithms. Cambridge
University Press, 2014. ISBN 978-1-10-705713-5.

Siddiqa, A., Karim, A., and Gani, A. Big Data storage tech-
nologies: A survey. Frontiers of Information Technology
& Electronic Engineering, 18(8):1040–1070, 2017.

Sohler, C. and Woodruff, D. P. Subspace embeddings for
the `1-norm with applications. In Proceedings of the 43rd
ACM Symposium on Theory of Computing, (STOC), pp.
755–764, 2011.

Stolpe, M., Bhaduri, K., Das, K., and Morik, K. Anomaly
detection in vertically partitioned data by distributed core
vector machines. In Machine Learning and Knowledge
Discovery in Databases - European Conference, (ECML)
(PKDD), pp. 321–336, 2013.

Tolochinsky, E. and Feldman, D. Coresets for monotonic
functions with applications to deep learning. CoRR,
abs/1802.07382, 2018.

Tukan, M., Maalouf, A., and Feldman, D. Coresets for near-
convex functions. In Advances in Neural Information
Processing Systems 33, (NeurIPS), 2020.

van den Brand, J., Peng, B., Song, Z., and Weinstein,
O. Training (overparametrized) neural networks in near-
linear time. CoRR, abs/2006.11648, 2020.

Verbin, E. and Zhang, Q. Rademacher-sketch: A
dimensionality-reducing embedding for sum-product
norms, with an application to earth-mover distance. In
Automata, Languages, and Programming - 39th Interna-
tional Colloquium, (ICALP), pp. 834–845, 2012.

Wang, R. and Woodruff, D. P. Tight bounds for `p oblivious
subspace embeddings. In Proceedings of the Thirtieth
Annual ACM-SIAM Symposium on Discrete Algorithms,
(SODA), pp. 1825–1843, 2019.

Woodruff, D. P. Sketching as a tool for numerical linear
algebra. Found. Trends Theor. Comput. Sci., 10(1-2):
1–157, 2014.

Woodruff, D. P. and Zhang, Q. Subspace embeddings and
`p-regression using exponential random variables. In The
26th Annual Conference on Learning Theory, (COLT),
pp. 546–567, 2013.

	Introduction
	Related work
	Our contributions

	Preliminaries
	Notation
	Initial approach

	Approximating G+(A x)
	The sketching algorithm
	Outline of the analysis

	Approximating f((A x)-)
	Approximation for logistic regression in one pass over a stream of data
	Experiments
	Conclusion
	Preliminaries
	Omitted details from Section 3
	Contraction bounds
	Net argument
	Dilation bounds

	Omitted details from Section 4
	Omitted details from Section 5
	Omitted details from Section 6

