
A. Verification of Eq. (3)
In this section, we verify that if the alignment matrix α meets the continuity and monotonicity criteria, then we have

0 ≤ ∆(π) ≤ 1. (1)

where, ∆πi = πi − πi−1, for 1 ≤ i ≤ T2 − 1.

We denote P (xi, yj) the probability that the decoder frame yj is attended on the text token xi. At each output timestep, an
alignment pair (xi−1, yj−1) either move forward by one step to (xi, yj) or stay unmoved (xi−1, yj). Then we have:

P (xi, yj |xi−1, yj−1) + P (xi−1, yj |xi−1, yj−1) = 1, (2)

where P (xi, yj |xi−1, yj−1) is the conditional probability that (xi−1, yj−1) move forward to (xi, yj) given yj−1 is attended
on xi−1. For convenience we define:

βi,j = P (xi, yj |xi, yj−1), αi,j = P (xi, yj).

For each timestep (xi, yj), the previous alignment pair is either (xi, yj−1) or (xi−1, yj−1). thus we have:

P (xi, yj) = P (xi, yj |xi, yj−1) ∗ P (xi, yj−1) + P (xi, yj |xi−1, yj−1) ∗ P (xi−1, yj−1)

αi,j = P (xi, yj |xi, yj−1) ∗ P (xi, yj−1) + (1− P (xi−1, yj)|xi−1, yj−1)) ∗ P (xi−1, yj−1)

= βi,j ∗ αi,j−1 + (1− βi−1,j) ∗ αi−1,j−1. (3)

According to the definition of IMV, we have:

πj =

T1−1∑
i=0

αi,j ∗ pi =

T1−1∑
i=0

αi,j ∗ i

=

T1−1∑
i=1

αi,j ∗ i+ α0,j ∗ 0

=

T1−1∑
i=0

βi,j ∗ αi,j−1 ∗ i+

T1−1∑
i=1

(1− βi−1,j) ∗ αi−1,j−1 ∗ i

=

T1−1∑
i=0

βi,j ∗ αi,j−1 ∗ i+

T1−1∑
i=1

(1− βi−1,j) ∗ αi−1,j−1 ∗ (i− 1 + 1)

=

T1−1∑
i=0

βi,j ∗ αi,j−1 ∗ i+

T1−1∑
i=1

(1− βi−1,j) ∗ αi−1,j−1 ∗ (i− 1) +

T1−1∑
i=1

(1− βi−1,j) ∗ αi−1,j−1

=

T1−1∑
i=0

βi,j ∗ αi,j−1 ∗ i+

T1−1∑
i=1

αi−1,j−1 ∗ (i− 1)−
T1−1∑
i=1

βi−1,j ∗ αi−1,j−1 ∗ (i− 1) +

T1−1∑
i=1

(1− βi−1,j) ∗ αi−1,j−1

=

T1−1∑
i=0

βi,j ∗ αi,j−1 ∗ i+

T1−2∑
i=0

αi,j−1 ∗ i−
T1−2∑
i=0

βi,j ∗ αi,j−1 ∗ i+

T1−1∑
i=1

(1− βi−1,j) ∗ αi−1,j−1

= βT1−1,j ∗ αT1−1,j−1 ∗ (T1 − 1) + πj−1 − αT1−1,j−1 ∗ (T1 − 1) +

T1−1∑
i=1

(1− βi−1,j) ∗ αi−1,j−1

= πj−1 + (βT1−1,j − 1) ∗ αT1−1,j−1 ∗ (T1 − 1) +

T1−1∑
i=1

(1− βi−1,j) ∗ αi−1,j−1 (4)

T1 − 1 is the maximum input location, once an alignment pair reaches to maximum location (xT1−1, yj), the next alignment
pair must be (xT1−1, yj+1). Thus for all j > 1, βT1−1,j = P (xT1−1, yj |xT1−1, yj−1) = 1. Therefore, above equation can



be written as:

πj = πj−1 +

T1−1∑
i=1

(1− βi−1,j) ∗ αi−1,j−1 (5)

Because:

0 ≤
T1−1∑
i=1

(1− βi−1,j) ∗ αi−1,j−1 ≤
T1−1∑
i=1

αi−1,j−1 ≤
T1∑
i=1

αi−1,j−1 = 1. (6)

Then we get:

0 ≤ ∆πj ≤ 1, ∀j ∈ [0, T2 − 1]. (7)

B. Implementation details of EfficientTTS
B.1. Implementation details of EfficientTTS families

EFTS-CNN. EFTS-CNN consists of 6 convolutions. Each convolution is interspersed with weight normalization, Leaky
ReLU activation, and residual connection. We add a linear projection at the end to generate melspectrogram. The overall
training objective of EFTS-CNN is a combination of aligned position loss and MSE loss of melspectrogram. We set the
coefficients to 1 in our experiments.

EFTS-Flow. EFTS-Flow consists of 8 flow steps, and each flow step consists of two elemental invertible transformations:
an invertible linear layer and an affine coupling layer. To reduce the cost of computing the determinant of Jacobian matrix
for invertible linear layer( the cost is O(c3), where c is the channels of permutation, in our case, c is the dimensionality of
mel-spectrogram 80), we rearrange 80 channels into 8 groups, and perform permutation between 8 groups. To speed up
training, we train the flow decoder together with the CNN decoder which is able to learn accurate alignment within 200k
training steps. The overall training objective of EFTS-Flow is a combination of aligned position loss, maximum likelihood
estimation (MLE) loss, and MSE loss of melspectrogram. For simplicity, we set all coefficients to 1 in our experiments.

EFTS-Wav. The dilated convolutional adversarial decoder is similar to MelGAN except: (1) The input of the generator is
high dimensional hidden representations not 80-channel melspectrograms; (2) A multi-resolution STFT loss is incorporated
at end of the generator. We adopt the same structure of MelGAN discriminator for adversarial training. Similar as ClariNet
and EATS, we train MelGAN part by conditioning on sliced input corresponding to 0.5s audio clips, while other part
is trained on the whole-length utterance. We jointly train the CNN decoder with MSE loss of melspectrogram, which
allows EFTS-Wav to learn the whole-length alignment for each training step. In our experiments, we find that it’s more
efficient to pretrain the CNN decoder and dilated convolutional adversarial decoder using the alignment reconstructed from
π (following Eq. (11)), and then fine-tune the whole model using alignment reconstructed from e. The overall training
objective of EFTS-Wav generator is a linear combination of reconstruction loss of melspectrogram, MelGAN generator loss,
multi-resolution STFT loss, and aligned position loss. The coefficients of the losses are 2, 1, 10, 1 respectively.

EFTS-SMA. To evaluate the effectness of proposed monotonic approach, we also implement a EfficientTTS model called
EFTS-SMA. EFTS-SMA shares the same network structure with EFTS-CNN except the IMV generator. In the IMV
generator of EFTS-SMA, we compute IMV according to Eq. (2) directly. We train EFTS-SMA with a SMA loss, the
coefficients of each items in SMA loss are λ0 = 5, λ1 = 5, λ2 = 1, λ3 = 1. The overall training objective of EFTS-SMA
is a combination of aligned position loss and MSE loss of melspectrogram and SMA loss, the coefficients are 1, 1, 20
respectively.

B.2. Hyperparameters

The hyperparameters of proposed models are shown in Table 1.

B.3. EfficientTTS pseudocode

In Fig. 1 we present the pseudocode of EfficientTTS modules, including generating IMV from alignment matrix, extracting
aligned positions from IMV, and reconstructing alignment matrix from aligned positions.



Table 1. Hyperparameters of EfficientTTS models

Modules EFTS-CNN EFTS-Flow EFTS-Wav

Text-Encoder

EmbeddingDimension = 512,
FFTLayers = 4,

HiddenDimension = 512,
AttentionHeads = 2,

Mel-Encoder

Conv1DLayers = 4,
kernelSize = 5,

Dilation = [1,2,2,3],
FilterSize = 512,

IMV generator -

Aligned position predictor

σ−2 = 0.5 (in Eq. (17)),
Conv1DLayers = 3,
kernelSize =[3,3,1],

FilterSize = [128, 32, 1]
Alignment reconstruction σ−2 = 0.2 (in Eq. (20)),

Decoder

Conv1DLayers = 6
kernelSize = 5

Dilation = [1, 2, 2, 2, 1, 1]
FilterSize = 512

FlowSteps = 8,
InvertibleIinearChannels = 8,

AffineCouplingkernelSize = 5,
AffineCouplingFilterSize = 512,

AffineCouplingConv1dLayers = 2,
Dilation = [1,1]

UpsamplingScales
= [8, 8, 2, 2],

kernelSize = 7

B.4. Training details

Dataset preprocess. For both the DataBaker dataset and LJ-Speech dataset, we use phoneme sequences for training.
Specifically, for DataBaker dataset, we first convert Chinese characters into pinyin sequences and further convert pinyin
sequences to phoneme sequences according to fixed rules. While for LJ-Speech dataset, we use phonemizer 1 to convert text
sequences to phoneme sequences. We pad a special silence token at the beginning and end of each phoneme sequence to get
a more accurate alignment. We generate the 80-channel mel-spectrograms from 22.05kHZ waveforms according to an open
source implementation 2. The FFT size is set to 1024, hop length is 256, and window size is 1024. In our experiments, we
find the robustness of non-autoregressive models are sensitive to the lengths of audio clips of training data. Therefore, we
perform audio augmentation through random concatenating several audio clips to increase the average length of training
audio clips.

Training settings. EfficientTTS is memory efficient, thus allows us training with large batch size. We train all models on a
single Tesla V100 GPU. For EFTS-CNN and EFTS-Flow, we use the Adam optimizer with a batch size of 96 and a learning
rate 1× 10−3, β1 = 0.9 and β2 = 0.97. It takes 60k steps for training EFTS-CNN on DataBaker dataset until converge, and
250k training steps for EFTS-Flow. For EFTS-Wav, we pretrain the CNN decoder and dilated convolutional adversarial
decoder for 100k steps, and fine-tune the whole model for 560k training steps until converge. we use Adam optimizer with a
batch size of 48. We use a learning rate of 1× 10−4 for the generator and 5× 10−5 for the discriminator.

C. Analysis of Melspectrograms
Speech rate. EfficientTTS is able to produce high quality speech with different speech rate by multiplying the aligned
position with a positive scalar. Fig. 2 shows melspectrograms with different speech rate of the same utterance. The scalar
factors are 1.2, 1.0, 0.8 respectively. As can be seen, the generated melspectrograms are similar with each other, which
means proposed models are able to speed up or slow down generated speech without changing the pitch and degrading the
speech quality. We also attach several audio samples in our demo page.

Speech variation EFTS-Flow is a flow-based model, which is able to produce speech in diversity by inputting with different
latent variable z. Fig. 3 shows the different melspectrograms by changing the temperature of z. Our results show that
EFTS-Flow can produce high quality speech with different variations.

1https://github.com/bootphon/phonemizer
2https://github.com/r9y9/wavenet_vocoder

https://github.com/bootphon/phonemizer
https://github.com/r9y9/wavenet_vocoder


Algorithm 1 Tacotron2 with HMA
Initialize:
π = 0
p = range(0, T1)

for i = 0 to T2 − 1 do
αi = SoftAttention(xi, h)
π′ = αi · p
∆π = Clamp(π′ − π,min = 0,max = 1)
π = π + ∆π
αi = softmax(−σ−2 ∗ (π − p)2)
out = DecoderRNN(αi, h)

end for

D. Experiments on Tacotron 2
D.1. Implementation of Tacotron2-SMA and Tacotron2-HMA

We implement Tacotron2-SMA by adding a SMA loss during training. The detailed implementation of Tacotron2-HMA is
shown in Alg. 1. For each output timestep, we compute IMV π following Eq. (2). A Clamp(·) operation is used to limit
0 ≤ ∆π ≤ 1. We reconstruct the alignment α according to Eq. (11), and use the newly generated α for further computation.

D.2. Experiments results

We visualized the alignment matrix of different models in Fig. 4. As can be seen, the alignment matrix of Tacotron 2 is
noisy, which often leads to mispronunciations, in contrast, both Tacotron2-SMA and Tacotron2-HMA learn a clean and
smooth alignment.



Figure 1. EfficientTTS pseudocode



Figure 2. Melspectrograms with different speech rate by multiplying the aligned position by a positive scalar.

Figure 3. Melspectrograms with different speech variations generated by EFTS-Flow.



Figure 4. Alignments of Tacotron 2 with different settings of the same utterance.


