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Abstract
We develop a rigorous approach for using a set
of arbitrarily correlated weak supervision sources
in order to solve a multiclass classification task
when only a very small set of labeled data is avail-
able. Our learning algorithm provably converges
to a model that has minimum empirical risk with
respect to an adversarial choice over feasible label-
ings for a set of unlabeled data, where the feasibil-
ity of a labeling is computed through constraints
defined by rigorously estimated statistics of the
weak supervision sources. We show theoretical
guarantees for this approach that depend on the
information provided by the weak supervision
sources. Notably, this method does not require
the weak supervision sources to have the same
labeling space as the multiclass classification task.
We demonstrate the effectiveness of our approach
with experiments on various image classification
tasks.

1. Introduction
In the last decade, deep neural networks have been applied
to accurately solve a wide range of classification tasks in dif-
ferent domains, but the supervised learning of these models
requires a considerable amount of labeled data. An alterna-
tive strategy is to learn from weak supervision, i.e., sources
of labels that are noisy or heuristic. Examples include hand-
written rules (Ratner et al., 2017; Wu et al., 2018; Safranchik
et al., 2020) and classifiers trained for related tasks (Varma
et al., 2017; Bach et al., 2019; Chen et al., 2019). Even if
these sources of information are noisy, results show that
they can lead to high-quality models, particularly when the
outputs from many weak sources are combined.

A key technical challenge in such work is how to com-
bine multiple sources of weak supervision, since they might
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conflict with one another. We assume access to only a
small amount of ground-truth labeled data. Much prior
work on aggregating noisy labels (Dawid & Skene, 1979;
Zhang et al., 2016; Gao & Zhou, 2013; Karger et al., 2014;
Ghosh et al., 2011; Dalvi et al., 2013; Ratner et al., 2016;
2019) assumes that the sources make independent errors,
which is a very strong assumption. Some recent work (Bach
et al., 2017; Varma et al., 2019) attempts to learn more
sophisticated distributions, but still relies on parametric
assumptions that make conditional independence assump-
tions. Such independence assumptions in models of weak
supervision sources are hard to verify and limiting in prac-
tice. Furthermore, many useful weak supervision sources,
particularly ones learned from related datasets, can be ar-
bitrarily correlated, as there may be systematic differences
between the target classification task and the mildly related
tasks used to learn them. For example, if all the labelers are
fine-tuned from the same pretrained model, they are likely
to inherit some of the same biases.

Recent work has addressed the problem of combining weak
labelers without distributional assumptions by taking an
adversarial approach. For binary classification, Balsubra-
mani & Freund (2015) formulate the problem as minimax
optimization, where the goal is to find the labels of an un-
labeled dataset that minimize the error with respect to the
worst-case assignment to the unknown ground-truth labels,
while satisfying statistical constraints on the individual er-
ror of the weak labelers. This minimax problem can be
optimally solved for a large family of loss functions (Bal-
subramani & Freund, 2016). The adversarial label learning
(ALL) framework (Arachie & Huang, 2019) uses a similar
minimax optimization to learn a model that minimizes risk
using the worst-case assignment to the unknown ground-
truth labels, and was later extended to the multiclass setting
(Arachie & Huang, 2021), but it does not optimally solve
the minimax optimization problem, and provides no gener-
alization guarantees for the models it learns.

Another recent work, performance guaranteed majority vote
(PGMV) (Mazzetto et al., 2021), takes an alternative ap-
proach for the binary hard classification setting. Instead of
working with an adversarial choice of the ground-truth la-
bels, it uses both a small amount of labeled data and a large
amount of unlabeled data to empirically estimate properties
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of the labelers which are then used to constraint their joint
output distribution. However, this approach is inherently
limited to hard binary classification, as it exploits the fact
that when two labelers disagree, one must be correct.

In this paper, we address the limitations of previous work
by providing a framework for multiclass classification with
weak supervision, with rigorous computational efficiency
and generalization error guarantees. Similar to ALL, we
formulate the search for ground truth as a search over the set
of feasible labelings that satisfy statistical constraints on the
weak supervision sources. However, ALL lacks theoretical
guarantees, and we show using techniques from convex op-
timization that our training algorithm rapidly converges to
the optimal solution of the minimax optimization problem.
Furthermore, we provide generalization bounds through uni-
form convergence theory for the learned model, in terms of
the information provided by the weak supervision sources
(with respect to the target classification), geometrically rep-
resented as the diameter of the set of feasible labelings.

Contributions. We introduce a novel method to use the
information provided by a set of arbitrarily correlated weak
supervision sources to learn a classifier for a given target
task. Inspired by previous work, we use a small amount of
labeled data to compute statistics of the weak supervision
sources, and we formulate an optimization problem to find
the prediction model that achieves the lowest empirical risk
with respect to an adversarial choice of a labeling of an
unlabeled dataset that agrees with those statistics. Our main
contributions are as follows.

1. We develop the first method with theoretical guarantees
for learning multiclass classifiers from weak supervision
sources without any prior assumptions on the joint distribu-
tion of their outputs and the true label (§4).

2. We provide theoretical analysis of our method, proving
approximation guarantees on the quality of our solution, and
time complexity bounds for the training algorithm (§4).

3. We provide generalization bounds for the solution pro-
vided by our method using a geometrical quantity that rep-
resents the aggregate information provided by the weak
supervision sources with respect to the target classification
task (§4.2).

4. While the presentation of our method is general, we
demonstrate the applicability of our approach through two
practical instances of prediction model and loss function:
convex combination of the weak supervision sources and
multinomial logistic regression (§4.1).

5. We show how to extend our method to use weak supervi-
sion sources with different labeling spaces from the target
task. This is useful, e.g., when learning with attributes. In
many weak supervision tasks, related classifications, such
as whether a classifier detects stripes on an animal, yields

partial information for target tasks like species identification
(§4.3).

6. We conduct experiments demonstrating the effectiveness
of our novel approach for multiclass classification tasks.
Our experiments show that our method compares favorably
with the recently-published ALL and PGMV algorithms for
(binary classification) from weak supervision sources (§5).

2. Related Work
The problem of learning from multiple, possibly conflict-
ing, weak labelers with little to no ground-truth data has
received considerable attention recently (Ratner et al., 2016;
Bach et al., 2017; Ratner et al., 2017; Varma et al., 2019;
Arachie & Huang, 2019; Mazzetto et al., 2021).This setting
is distinct from much work on ensemble learning (Zhang
& Ma, 2012), such as boosting (Schapire, 1990; Freund,
1995), where abundant labeled examples are used to learn
to combine ensemble members. Other ensemble methods,
such as bagging (Breiman, 1996), take an unweighted vote
of ensemble members, but rely on the assumption that each
member is trained on labeled data sampled from the target
distribution. Unlike these methods, in weak supervision, the
goal is to use other statistical properties of the labelers, such
as their agreements and disagreements, to learn to combine
them. In this way, the combination of the labelers can be
potentially improved without increasing the need for labeled
training data.

This work has its roots in crowdsourcing, where the “label-
ers” are people with varying unknown levels of reliability.
Dawid and Skene’s (1979) seminal work showed how the
accuracy of each labeler can be estimated with expecta-
tion maximization by assuming a naive Bayes distribution
over the labelers’ votes and the latent ground truth. Since
then, much work has provided theoretically guaranteed al-
gorithms for learning under these assumptions (Zhang et al.,
2016; Gao & Zhou, 2013; Karger et al., 2014; Ghosh et al.,
2011; Dalvi et al., 2013). When the labelers are humans
working without coordination, the independence assumption
is a reasonable one.

Recently, frameworks for weakly supervised machine learn-
ing like Snorkel (Ratner et al., 2016; Bach et al., 2017; Rat-
ner et al., 2017) have used and extended these learning tech-
niques to the setting in which the labelers are programmed
rules, weak classifiers, or other heuristics. As described in
the introduction, learned and programmed labelers can have
heavily correlated errors because of common elements in the
heuristics they use. This potential problem has motivated
attempts to relax the independence assumption. One line
of work (Bach et al., 2017; Varma et al., 2019) has tried to
learn more sophisticated parametric models of the labelers,
but they are still limited by how correct their assumptions
are, which are hard to verify in practice. In this work, we
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therefore focus on methods for learning from weak supervi-
sion that do not make such assumptions on the distribution
of labeler outputs and ground truth.

3. Preliminaries
We denote scalar and generic items as lowercase letters, vec-
tors as lowercase bold letters, and matrices as bold upper-
case letters. The i-th column of a matrixA is denoted by the
corresponding lowercase symbol ai, i.e.,A = [a1, . . . ,an].
Due to space constraints, all proofs are deferred to the ap-
pendix.

In multiclass learning, we have a domain X and a classifier
function h that maps each x ∈ X to one of k possible
labels (classes). Since we will work later with distributions
over the k classes, it is convenient to represent label i ∈
1, . . . , k, as a k-dimensional vector ei, with all components
set to 0, except for the i-th component, which is set to 1.
Thus, h : X → Y = {e1, . . . , ek}. A classifier (e.g., the
softmax layer of a neural network) may output a probability
distribution vector y ∈ Rk≥0 over the k classes, where yc is
the probability that the item belongs to class c, and

∑
c yc =

1. We take Y� ⊃ Y to be the set of all possible probability
vectors. A loss function ` : Y� × Y → R≥0 quantifies the
error of the classifier’s output h(x) with respect to the true
label y. Let pXY be the probability distribution over X ×Y .
Given a classifier h, its risk is defined as

R(h)
.
= E

(x,y)∼pXY
`(h(x),y) .

In standard supervised learning, we are given labeled sam-
ples from pXY , and we find a classifier with low risk among
a set of classifiersH, which is also called a hypothesis class.
The amount of labeled data required to guarantee that we
can find (or train) such a classifier is referred to as the sam-
ple complexity, which is related to the size or expressivity of
H. For many classification tasks of interest, there could be
low availability of labeled data, and this is a critical problem
for a wide range of domains, where the most successful
hypothesis classes are very expressive (e.g., convolutional
neural networks for images).

In this work, we assume access to mL i.i.d. labeled sam-
ples X̃ = {x̃1, . . . , x̃mL

}, Ỹ = [ỹ1, . . . , ỹmL
] drawn from

pXY , where the sample size mL is insufficient for the di-
rect supervised learning of H. To circumvent the lack of
sufficient training data, we assume access to a set of weak la-
belers (classifiers)φ1, . . . ,φn, also called weak supervision
sources. These labelers are weak in the sense that they can
be inaccurate with respect to the target classification task.
For example, the weak labelers could be trained for classifi-
cation tasks that are only tangentially related to the target
classification task: we could train a labeler to detect stripes
on zebras and horses, and then attempt to use it to label

images as either tigers or lions. Moreover, we add no fur-
ther assumptions on the properties of those classifiers, and
their output could be arbitrarily correlated. We also assume
access to m unlabeled data points X = {x1, . . . , xm} sam-
pled independently from the marginal distribution pX , and
our method uses the weak supervision sources φ1, . . . ,φn
to constrain the space of possible labels that can be given
to these unlabeled data points. We use the limited labeled
data to compute statistics of the weak labelers, and then
consider possible labelings of the unlabeled data X that
satisfy feasibility constraints derived from these statistics.

As an example, suppose that we use the mL labeled data
points to compute the empirical risk statistic of each weak
supervision source, i.e., µ̂i = 1

mL

∑mL

j=1 `(φi(x̃j), ỹj), for
each i ∈ 1, . . . , n. In Section 4, we use related statistics in
order to prove generalization guarantees. If we were to as-
sign a labeling to the unlabeled data points X , a reasonable
approach would be to find a labeling such that the empirical
risk of the weak supervision source i computed with respect
of those labels is equal to µ̂i. However, this is a computa-
tionally hard problem, as we have to assign a discrete label
(from Y) to each item, and each label affects the empirical
risk of all the weak supervision sources. Moreover, there
is no guarantee that we can find such a labeling for the un-
labeled data, and it is unclear which labeling to choose in
case there are multiple solutions.

To address the computational issues with discrete label se-
lection, we assign a probability vector from Y� to each
unlabeled data point. In other words, for each unlabeled
item xj , we assign a probability vector yj , where yj,c repre-
sents the probability that item xj belongs to class c. Given
a classifier h, we define the loss of the classifier on item
x ∈ X with respect to the probability vector y ∈ Y� as
the expected loss. Abusing notation, let e ∼ y denote that
e = ec ∈ Y with probability yc. We then define

`�(h(x),y)
.
= E
e∼y

`(h(x), e) =

k∑
c=1

yc · `(h(x), ec) . (1)

We observe that this definition of loss generalizes the one
computed with respect to a discrete labeling, since for each
e ∈ Y , we have `(h(x), e) = `�(h(x), e). Also, the loss (1)
is linear with respect to the labeling y. Let Y ∈ Rk×m be
a matrix that describes a possible labeling of the unlabeled
data points; in particular the j-th column of the matrix Y
is yj ∈ Y�, and it denotes the probability vector of the
labeling of the item xj . The empirical risk of a classifier h
on the unlabeled data X with labeling Y is defined as

R̂(h;X,Y )
.
=

1

m

m∑
j=1

`�(h(xj),yj) .

Finding a labeling Y for which R̂(h;X,Y ) = µ̂i for i ∈
1, . . . , n is equivalent to the computationally easy task of
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solving a linear system with O(n + m) constraints (the n
constraints on the empirical risk equality and m constraints
on probability vectors summing to 1) and O(mk) variables.
However, there still could be multiple solutions to such an
underdefined linear system. The core idea of the method
presented in Section 4 is to find a model that has the lowest
empirical risk with respect to an adversarial choice among a
related feasible set of labelings.

4. Learning Algorithm
Let H = {hθ : θ ∈ Θ ⊆ Rd} be the hypothesis class that
we will use to find the classifier for the classification task of
interest, where each classifier h ∈ H is parametrized by a
vector of weights θ.

Let Y ∗ be the (unknown) true labeling of the unlabeled
data X . For each weak supervision source i, we use the
labeled data to compute an interval4i such that, with high
probability, we have that R̂(φi(x);X,Y ∗) ∈ 4i for i ∈
1, . . . , n. This is a crucial property that we will need to
show our theoretical bound (Theorem 8), and we construct
such intervals in Lemma 1.

Let Y� be the set of all possible labeling matrices Y such
that the empirical risk of φi, computed with respect to the
labeling Y of the unlabeled data X , belongs to the cor-
responding interval 4i for each weak supervision source.
Formally, the set Y� is defined as

Y� .= {Y ∈ Rk×m :

yj ∈ Y� for j ∈ 1, . . . ,m

R̂(φi;X,Y ) ∈ 4i for i ∈ 1, . . . , n} .

We will refer to Y� as the set of feasible labelings. The next
lemma shows how to build the intervals 4i to guarantee
that, with high probability, the true labeling Y ∗ is feasible.
Lemma 1 (Weak Labeler Risk Constraints). Suppose that
the codomain of the loss function ` is contained in the
interval [0, B]. Let µ̂1, . . . , µ̂n be the empirical risks of
φ1, . . . ,φn computed with respect to the mL labeled sam-
ples. Fix a value δ ∈ (0, 1) and take

γ
.
= B

√
(mL +m) ln 2n

δ

2mLm
.

If we set 4i = [µi − γ, µi + γ], then with probability at
least 1− δ it holds that Y ∗ ∈ Y�.

We want to find the classifier that achieves the lowest empir-
ical risk among the feasible labelings of the unlabeled data
points. That is, we choose the classifier hθ̂ ∈ H, where θ̂
is the solution of the minimax problem

θ̂
.
= arg min

θ∈Θ
max
Y ∈Y�

R̂(hθ;X,Y ) . (2)

The optimization problem above has some nice properties.
The set Y� is specified by linear constraints in Y . Moreover,
the objective of the minimax (2) problem is also linear in Y .
Hence, it is easy to see that for a given θ ∈ Θ, it is possible
to solve the maximization problem

f(θ) = max
Y ∈Y�

R̂(hθ;X,Y ) , (3)

through a linear program with O(mk) variables and O(m+
n) constraints.

In order to solve the minimax problem (2), we will intro-
duce a few assumptions on the loss function and the model
choiceH, which are satisfied by many classic machine learn-
ing settings. In particular, we would like the function f(θ)
to be convex, so that we can solve the minimization prob-
lem minθ∈Θ f(θ). Even if f(θ) is convex, we may not be
able to apply a gradient-based optimization method, as f(θ)
involves a maximization, hence it is not differentiable every-
where. To solve this issue, we use the subgradient, which
generalizes the gradient. This will require the loss function
to be Lipschitz continuous. A function g : Rd1 → Rd2 is
said to be L-Lipschitz continuous if for any x,y ∈ Rd1 , it
holds that ||g(x)− g(y)||2 ≤ L||x− y||2.
Definition 2 (Subgradient). LetA ⊆ Rb be the domain of a
function g. A vector v ∈ Rb is a subgradient for a function
g at x ∈ A if for any y ∈ A we have that

g(y)− g(x) ≥ vT · (y − x) .

For each x ∈ A, we define

∂g(x)
.
= {v : v is a subgradient of g at x} .

If a function is differentiable at a point, then its subgradient
with respect to that point is unique, and equals the gradient.
Furthermore, if the function is convex, then there exists at
least one subgradient for each point of its domain.

The following intermediate result, which immediately fol-
lows from the definition of `�, will prove useful throughout
this discussion.
Lemma 3 (Linear Loss Properties). Let `(hθ(x), e) be con-
vex and L-Lipschitz continuous with respect to θ for any
(x, e) ∈ X × Y . Then, for any probability vector y ∈ Y�,
the function `�(hθ(x),y) is also convex and L-Lipschitz
continuous with respect to θ.

The next Lemma shows that under some conditions often
encountered in our adversarial learning framework, it is
possible to compute the subgradient of the function f .
Lemma 4 (Subgradient of Adversarial Learn-
ing). Fix a value θ′ ∈ interior(Θ), let Y ′

.
=

arg maxY ∈Y� R̂(hθ′ ;X,Y ), and assume that `(hθ(x), e)
is convex with respect to θ for any x ∈ X and e ∈ Y . Then

∅ 6= ∂R(hθ′ ;X,Y
′) ⊆ ∂f(θ′) .
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Algorithm 1 Subgradient Algorithm
Input: Number of iterations T , step size h, H, X ,
φ1, . . . ,φn
Output: Approximate solution θ̃ of (2) (See Theorem 5)
θ̃(0) = θ(0) ← arbitrary point θ ∈ Θ
for t ∈ 1, . . . , T do
Y ′ ← arg maxY ∈Y� R̂(hθ(t−1) ;X,Y )

v ← arbitrary vector from ∂R̂(hθ(t−1) ;X,Y ′)
θ(t) ← P (θ(t−1) − hv) (P is projection onto Θ)
θ̃(t) ← arg min{f(θ̃(t−1)), f(θ(t))}

end for
Return θ̃(T )

A subgradient-based optimization approach (Shor et al.,
1985) is similar to gradient descent, however at each itera-
tion we use the subgradient instead of the gradient, and we
memorize the best solution found among all the iterations.

The subgradient-based optimization algorithm used to solve
the optimization problem (2) is presented in Algorithm 1.

As observed before, Y ′ as defined in the algorithm can
be computed by solving a linear program. The projection
step depends on the set of parameters Θ. While this is
not a requirement for our approach, if the loss function
`(hθ(x),y), is differentiable with respect to θ, then we
can compute the gradient of the empirical risk instead of a
subgradient.

Theorem 5 (Subgradient Method Convergence Rates). Sup-
pose that for any (x,y) ∈ X×Y , `(hθ(x),y) isL-Lipschitz
continuous and convex with respect to θ. Let step size
h > 0, and iteration count T ∈ N, and θ̃ as returned by
Algorithm 1. Then, we have that

f(θ̃)− f(θ̂) ≤ diameter(Θ)2 + L2h2T

2hT
,

where diameter(·) is computed with respect to the `2-norm,
i.e., diameter(Θ)2 .

= maxθ1,θ2∈Θ‖θ1 − θ2‖22, and θ̂ is
defined as in (2). Alternatively, for any ε > 0, then if
h = ε/L2 and T ≥ L2 diameter(Θ)2

ε2 , we have that

f(θ̃)− f(θ̂) ≤ ε .

Therefore, we can compute a solution within additive er-
ror ε of (2) by running O(L

2 diameter(Θ)2

ε2 ) iterations of the
subgradient algorithm.

4.1. Applications

In order to feature the generality of our framework, we show
two examples of different instantiations of the optimiza-
tion problem (2) for different choices of loss function and
prediction models for which we can apply Theorem 5.

Convex combination of the weak supervision sources.
Let Θ = {θ = (θ1, . . . , θn) ∈ Rn+ :

∑n
i=1 θi = 1}. Our

prediction model is a convex combination of the output of
the weak classifiers φ, . . . ,φn. In particular, given θ ∈ Θ,
the classifier hθ is defined as hθ(x) =

∑n
i=1 θiφi(x) for

any x ∈ X . It is easy to see that diameter(Θ) ≤
√

2. Given
an arbitrary vector v ∈ Rn, the projection step to Θ can
be done efficiently by using for example the algorithm of
Wang & Carreira-Perpinán (2013).

Let ` be the Brier loss, defined for any (x, e) ∈ X × Y as

`(hθ(x), e)
.
=

k∑
c=1

(
hθ(x)c − ec

)2
= ||hθ(x)||22 − 2hθ(x)T · e+ 1 .

It is easy to see that the function `(hθ(x), e) is convex,
differentiable with respect to θ, and has codomain [0, 2].

Lemma 6 (Brier Model Lipschitz Properties). The loss
`(hθ(x), e) of a prediction model hθ defined as in this
subsection is 2

√
n-Lipschitz continuous with respect to θ.

Softmax (multinomial logistic legression). Suppose that
each item is a vector in Rb, i.e., X ⊆ Rb, and assume
that ||x||2 ≤ Bx for any x ∈ X . Let Θ = {θ =
(wT

1 . . .w
T
k ) ∈ Rb·k : wc ∈ Rb ∧ ||wc||2 ≤ Bw for c ∈

1, . . . , k}. That is, θ is the concatenation of k vectors
with bounded norm. Observe that with this definition of
Θ, we have that diameter(Θ) ≤

√
2kBw. Given a vec-

tor θ = (wT
1 . . .w

T
k ), the projection step to Θ is simply

θ̃ = (w̃T
1 . . . w̃

T
k ), where w̃c = wc/min(Bw/||wc||2, 1)

for c ∈ 1, . . . , k.

Given θ = (wT
1 . . .w

T
k ) ∈ Θ and x ∈ X , we define

hθ(x)
.
=

(
exp(wT

1 · x)∑k
c=1 exp(wT

c ·x)
, . . . ,

exp(wT
k · x)∑k

c=1 exp(wT
c ·x)

)T
.

This classifier is a particular instantiation of softmax com-
bined with a linear model. For a vector v = (v1, . . . , vd)

T ,
define lnv

.
= (ln v1, . . . , ln vd)

T . Given (x, e) ∈ X × Y ,
we define the cross-entropy loss ` of the prediction model
hθ as

`(hθ(x), e)
.
= −eT · ln(hθ(x)) .

This combination of prediction model and loss function is
also known as multinomial logistic regression. It is easy to
see that the loss function is differentiable with respect to
θ, and it is a known result that `(hθ(x), e) is convex with
respect to θ for any (x, e) ∈ X × Y (Böhning, 1992). We
now characterize the boundedness and Lipschitz properties
of the softmax function with respect to the cross-entropy
loss.
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Lemma 7 (Properties of Multinomial Logistic Regression).
For any (x, e) ∈ X × Y , and θ ∈ Θ, we have

1. `(hθ(x), e) ∈ [0, BwBx + ln k]; and

2. `(hθ(x), e) is (kBx)-Lipschitz continuous with respect
to θ.

4.2. Statistical Learning Guarantees

In this subsection, we develop a bound on the true risk
of the classifier hθ̂ that is a solution of the optimization
problem (2). The bounds are expressed in function of the
Rademacher complexity of the function family L = {`�◦h :
h ∈ H} that describes the loss of each function h ∈ H, the
risk minimizer θ∗ = arg minθ∈ΘR(hθ), and the average
diameter DY� of the feasible set of solutions Y�, where

DY�
.
= sup
Y ′,Y ′′∈Y�

1

m

m∑
j=1

∥∥∥y′j − y′′j ∥∥∥
1
. (4)

The quantityDY� characterizes the information given by the
classifiers φ1, . . . ,φn on the classification task. In particu-
lar, a weak supervision source provides useful information
on the classification task of interest only if it reduces the size
of the feasible set, and it provably improves the performance
of our algorithm if it decreases the average diameter DY� .

Given a function family L, we define the empirical
Rademacher average (see Mitzenmacher & Upfal, 2017)
of the unlabeled items X and a possible labeling Y of those
items as

R̂m(L;X,Y )
.
= E
σ

 sup
`�◦h∈L

1

m

m∑
i=1

σi`
�(h(xi),yi)

 ,

where σ1, . . . , σm are independent random variables from
the Rademacher distribution, i.e., P(σi = 1) = P(σi =
−1) = 1

2 . Intuitively, this quantity measures the capacity
ofH to overfit, and under mild conditions, it approaches 0
as sample size m tends to infinity, in which case overfitting
becomes impossible.

Theorem 8 (Adversarial Risk Bounds). Let hθ̂ be the so-
lution of (2). Let θ∗ = arg minθ∈ΘR(hθ). Suppose that
the codomain of the loss function ` is contained in the in-
terval [0, B]. Let Y ∗ be the true (unknown) labeling of the
unlabeled data X , and assume that Y ∗ ∈ Y�. Then, with
probability 1− δ it holds that

R(hθ̂) ≤ R(hθ∗) +BDY�

+ sup
Y ∈Y�

4R̂m(L;X,Y ) +O

B
√

ln 1
δ

m

 .

4.3. Constraining the Feasible Set

Previously, our presentation has implicitly assumed an align-
ment between the output classes of the weak supervision
sources φ1, . . . ,φn and the target classification task. In
fact, as seen in Lemma 1, we compute the intervals 4i
based on the empirical risk of the weak supervision sources
using labeled data of the target classification task. How-
ever, for many applications of interest, the weak supervision
sources could output to a different codomain, potentially
with an unequal number of classes. As an example, sup-
pose that we would like to distinguish between images of
{cat, dog, rabbit, bear}. A binary classifier that tells us if
the animal represented in an image has a tail or not still pro-
vides a useful clue with respect to the target classification
task, and we would like to use that information.

In this subsection, we will show how to constrain the fea-
sible set of labelings Y� in a more general setting, where
the weak supervision source φi is a classifier that maps
elements from the domain X to soft labels over ki classes,
i.e., φi : X → Y�ki , where Y�ki = {v ∈ Rki≥0 :

∑
c vc = 1}.

Consider the weak supervision source φi. For each c ∈
1, . . . , k and c̃ ∈ 1, . . . , ki, we use themL labeled examples
(x̃1, ỹ1), . . . , (x̃mL

, ỹmL
) to compute the statistic

µ̂i,c,c̃(X̃, Ỹ )
.
=

1

|X̃|

|X̃|∑
j=1

yj,c[φi(xj)]c̃ .

It is clear that the function µ̂i,c,c̃(X̃, Ỹ ) is linear in Ỹ . For
each weak supervision source φi, true class c ∈ 1, . . . , k,
and weak supervision source’s output class c̃ ∈ 1, . . . , ki,
based on the value µ̂i,c,c̃(X̃, Ỹ ), we compute an interval
4i,c,ĉ, defined as

4i,c,ĉ
.
= [µ̂i,c,c̃(X̃, Ỹ )− γ, µ̂i,c,c̃(X̃, Ỹ ) + γ] .

where the value γ is specified in Lemma 9.

Given a labeling Y of the unlabeled dataset X , we say that
Y is a feasible solution if for each i, c and c̃, it holds that:

µ̂i,c,c̃(X,Y ) ∈ 4i,c,ĉ . (5)

That is, the set of all the feasible solutions Y� is defined as

Y� .= {Y ∈ Rk×m :

yj ∈ Y� for j ∈ 1, . . . ,m

µ̂i,c,c̃(X,Y ) ∈ 4i,c,ĉ ∀i, c, c̃} .

Notice that the constraints specified in Y� are still linear
in Y , therefore we can still compute the value f(θ) (as in
(3)) by solving a linear program, and all the discussion done
with empirical-risk based constraints still applies.

In order to be able to give the theoretical bound of Theo-
rem 8, we need to guarantee that the true labeling Y ∗ of the
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unlabeled data X is feasible. This is possible by choosing a
suitable value γ when defining the intervals4i,c,c̃.
Lemma 9 (Generalized Weak Labeler Constraints). For
every i ∈ 1, . . . , n, c ∈ 1, . . . , k, and c̃ ∈ 1, . . . , ki let
4i,c,c̃ be computed as in (5). Let K = k

∑n
i=1 ki. Fix a

value δ ∈ (0, 1), if we use the value

γ
.
=

√
(mL +m) ln 2nK

δ

2mLm

to compute those intervals, then with probability at least
1− δ it holds that Y ∗ ∈ Y�.

Sharper bounds for interval estimates, both for risk con-
straints (Lemma 1), and generalized constraints (Lemma 9)
are of course possible. The Hoeffding bound, used to show
both results, is known to be loose for low-variance functions,
and the union bound is loose for correlated functions. Infor-
mative weak labelers should produce low-variance statistics,
and our framework is designed explicitly for correlated la-
belers. The costly union bound can be circumvented via
the Rademacher average, and Cousins & Riondato (2020)
show that finite or linear families of statistics, particularly
those with low variance, can be uniformly-bounded, even
more sharply with the empirically centralized Rademacher
average.

5. Experiments
We demonstrate the applicability and performance of our
method on image multiclass classification tasks derived
from the DomainNet (Peng et al., 2019) dataset. We also
provide experiments on image binary classification tasks de-
rived from the Animals with Attributes 2 (Xian et al., 2018)
dataset in order to compare our methods with additional
baselines. The code for the experiments is available online.1

DomainNet contains images from 345 different classes
in 6 different domains, which we refer to as P =
{clipart, infograph, painting, quickdraw, real, sketch}. An-
imals with Attributes 2 contains natural images of 50 types
of animals. Associated with the dataset is a list of 85 at-
tributes for each animal class, which we use to create weak
supervision sources. Animals with Attributes 2 is divided
into 40 “seen” classes and 10 “unseen” classes, where the
seen classes can be used to train attribute classifiers without
leaking information about the unseen classes.

We refer to our algorithms by using the acronyms AMCL-
CC and AMCL-LR, where AMCL stands for Adversial
Multi Class Learning. AMCL-CC is an implementation
of our method that uses a Convex Combination of the
weak supervision sources as the prediction model, whereas

1https://github.com/BatsResearch/
mazzetto-icml21-code

AMCL-LR uses (multinomial) Logistic Regression (see
Section 4.1). For every image, we compute the output of a
pretrained ResNet-18 and use it as input for AMCL-LR.

5.1. Setup

From DomainNet, we select k = 5 random classes from
the 25 classes with the largest number of instances. Then,
for each domain p ∈ P , we learn a multiclass classifier
φp for those k classes in domain p. The classifier φp is
trained by fine-tuning a pretrained ResNet-18 network (He
et al., 2016), using 60% of the labeled data for that domain.
For each domain p, we consider the classifiers trained in
the remaining domains, i.e., P \ {p}, as weak supervision
sources, i.e., the classifiers {φq} for q ∈ P \{p}. We remark
that these weak supervision sources never have access to
samples from domain p.

From Animals With Attributes, we create binary classifica-
tion tasks by selecting pairs of unseen classes. Following
Mazzetto et al. (2021), we create weak supervision sources
by using the seen classes to train classifiers for the attributes
that distinguish them. Similarly to Domain Net, these clas-
sifiers are learned by fine-tuning a pretrained ResNet-18
network using labeled data from the seen classes. In order
to focus on the most challenging tasks (where the weak
supervision sources are not highly accurate), we select the 4
class pairs among the unseen classes with the lowest major-
ity vote accuracy.

We remark that all algorithms that require unlabeled data
are evaluated in a transductive setting: the unlabeled data
used by the algorithms are also used to evaluate the final
learned prediction models.

5.2. Baselines and Algorithms

Following the example of Mazzetto et al. (2021), we com-
pare our method with the following five baselines and algo-
rithms.

Best Weak Supervision Source (Best WSS): We report
the accuracy of the best weak supervision source.

Majority Vote (MV): We consider a simple approach to
combining the weak supervision sources: we average their
output and select the most voted class. This approach re-
quires no learning, but is suboptimal when the errors made
by weak supervision sources are not independent, or when
the error rates of weak supervision sources are not equal.

Semi-Supervised Dawid-Skene Estimator (DS): We also
consider a semi-supervised extension to the standard crowd-
sourcing algorithm (Dawid & Skene, 1979) that finds the
optimal aggregation of the outputs of independent weak
supervision sources. The Dawid-Skene estimator is also the
default aggregation method for the Snorkel system (Ratner

https://github.com/BatsResearch/mazzetto-icml21-code
https://github.com/BatsResearch/mazzetto-icml21-code
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Figure 1. Experimental results on Animals with Attributes for the binary classification tasks of dolphin v. blue whale and seal v. walrus as
we vary the amount of labeled data. Each method uses 560 unlabeled data for dolphin v. blue whale and 602 unlabeled data for seal v.
walrus.
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Figure 2. Experimental results on Domain Net for the clipart and quickdraw domains as we vary the amount of labeled data. Each method
uses 500 unlabeled data. Results are listed for the 5 classes of {sea turtle, vase, whale, bird, violin }.

et al., 2017). Here, we use a semi-supervised version of
this algorithm, for a fair comparison with our work. We
simply optimize the marginal likelihood of the weak super-
vision sources’ outputs using the unlabeled data, and the
joint likelihood when the label is observed.

Adversarial Label Learning (ALL): This algorithm
(Arachie & Huang, 2019) learns a prediction model that has
the highest expected accuracy with respect to an adversarial
labeling of an unlabeled dataset, where this labeling must
satisfy error constraints on the weak supervision sources.
This approach shares similarities with our method; however,
it fails to provide theoretical guarantees on the learning of
the prediction model. For a fair comparison to our method,
we use logistic regression as the prediction model, and use
the same features as AMCL-LR.

Performance-Guaranteed Majority Vote (PGMV): This
method finds a subset of weak supervision sources whose
majority vote achieves high accuracy with respect to the
worst-case distribution of the output of the weak supervision
sources. Again, this worst-case distribution is constrained by
using statistics computed on the weak supervision sources
(individual error rates and pairwise differences).

Due to the limitations of PGMV and ALL, we can run those
algorithms only for binary classification tasks.

5.3. Results

Animals With Attributes (binary classification): In Fig-
ure 1, we report the results on the Animals With Attributes
dataset for two binary classification tasks.

In the binary setting, our methods match or outperform the
state-of-the-art methods PGMV and ALL over all labeled-
sample sizes. We note that even though AMCL-LR and ALL
use the same inputs and train the same prediction model, our
method achieves overall higher accuracies, in addition to
providing theoretical guarantees on the generalization error
of the prediction model.

Domain Net (multiclass classification): In Figure 2, we
report the accuracies of the different algorithms on the Do-
main Net dataset for the clipart and quickdraw domains. As
previously discussed, ALL and PGMV cannot be used in
this setting, as they are restricted to binary classification.

In the multiclass setting, our methods again match or out-
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perform the baselines over all quantities of labeled data.
We note that in the quickdraw domain, the weak supervi-
sion sources are overall very inaccurate, and it is difficult
to recover useful information from them. However, unlike
the baseline algorithms DS and MV, AMCL-CC can still
recover and improve upon the best weak supervision source.

Again, as noted by the Best WSS column, the weak supervi-
sion sources are quite inaccurate in this dataset. Therefore,
we do not report the results for the AMCL-LR algorithm, as
the weak supervision sources do not constrain the feasible
set of solutions sufficiently well for our method to accurately
learn a (relatively) complex model like a (multinomial) lo-
gistic regressor.

Due to space constraints, additional plots and experimental
details for both datasets are reported in the appendix.

6. Conclusion
We develop the first general framework with theoretical
guarantees that can use information provided by arbitrarily-
correlated weak supervision sources in order to learn a pre-
diction model for a multiclass classification task. In many
practical settings, our training method provably converges
to the model that achieves the smallest risk with respect
to an adversarial feasible labeling of an unlabeled dataset,
and we provide generalization guarantees on the quality of
the learned model based on a measure of the information
provided by the weak supervision sources. Surprisingly, our
theoretical guarantees for this adversarial learning setting
stem from standard methods in convex optimization and uni-
form convergence theory. Finally, we provide experiments
that illustrate the practical applicability of our approach and
its advantages over existing methods.
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Böhning, D. Multinomial logistic regression algorithm.
Annals of the institute of Statistical Mathematics, 44(1):
197–200, 1992.

Breiman, L. Bagging predictors. Machine Learning, 24(2):
123–140, 1996.

Chen, V. S., Varma, P., Krishna, R., Bernstein, M., Ré, C.,
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